JP2016100997A - Control device of electric motor - Google Patents

Control device of electric motor Download PDF

Info

Publication number
JP2016100997A
JP2016100997A JP2014236557A JP2014236557A JP2016100997A JP 2016100997 A JP2016100997 A JP 2016100997A JP 2014236557 A JP2014236557 A JP 2014236557A JP 2014236557 A JP2014236557 A JP 2014236557A JP 2016100997 A JP2016100997 A JP 2016100997A
Authority
JP
Japan
Prior art keywords
axis
current
electric motor
armature
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014236557A
Other languages
Japanese (ja)
Other versions
JP6731700B2 (en
Inventor
昌之 廣田
Masayuki Hirota
昌之 廣田
潤一 金塚
Junichi Kanezuka
潤一 金塚
善行 家中
Yoshiyuki Ienaka
善行 家中
俊幸 上町
Toshiyuki Uemachi
俊幸 上町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
RB Controls Co Ltd
Original Assignee
Institute of National Colleges of Technologies Japan
RB Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, RB Controls Co Ltd filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2014236557A priority Critical patent/JP6731700B2/en
Publication of JP2016100997A publication Critical patent/JP2016100997A/en
Application granted granted Critical
Publication of JP6731700B2 publication Critical patent/JP6731700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a problem in which, when a large reluctance torque is generated, an unstable state is brought about caused by a slight variation of a torque or speed.SOLUTION: The electric motor is treated by being converted to an equivalent circuit having a d-axis armature on a d-axis in a direction of a field magnet flux and a q-axis armature on a q-axis perpendicular to the d-axis. The energization control means sets a limit value lower than a maximum value of a q-axis current, which is a current flowing through the q-axis armature and controls so that the q-axis current does not exceed the limit value.SELECTED DRAWING: Figure 4

Description

本発明は、埋込磁石型同期モータの駆動装置に関するものであり、弱め磁束制御により動作範囲を拡大する制御技術に関する。   The present invention relates to a drive device for an embedded magnet type synchronous motor, and relates to a control technique for expanding an operation range by magnetic flux weakening control.

埋込磁石型同期モータにおいて、回転子の磁極方向をd軸とし、それに直交する方向をq軸とした直交座標上で表したベクトル図を図1に示す。ここで、ψaは永久磁石による磁束である。また、電機子電流ベクトルiをdq軸成分に分解し、d軸成分を励磁電流idとし,q軸成分をトルク分電流iqとする。   FIG. 1 shows a vector diagram represented on an orthogonal coordinate system in which the magnetic pole direction of the rotor is d-axis and the direction orthogonal thereto is q-axis in the embedded magnet type synchronous motor. Here, ψa is a magnetic flux generated by a permanent magnet. Further, the armature current vector i is decomposed into dq-axis components, the d-axis component is set as the excitation current id, and the q-axis component is set as the torque component current iq.

運転時にid,iqが流れると、巻線インダクタンスのdq軸成分Ld,Lqにより磁束LdidおよびLqiqが発生し、これらを合成した磁束ψ0がモータ内部の磁束となる。回転子が角速度ωで回転すると、各磁束に対して誘起電圧ωψa,ωLdidおよびωLqiqが発生する。これらを合成した電圧voがモータ内部に発生する誘起電圧となり、これに巻線抵抗での電圧降下Raiを加えたものが、モータに加えられている電圧vとなる。   When id and iq flow during operation, magnetic fluxes Ldid and Lqiq are generated by the dq axis components Ld and Lq of the winding inductance, and a magnetic flux ψ0 obtained by combining these becomes the magnetic flux inside the motor. When the rotor rotates at an angular velocity ω, induced voltages ωψa, ωLdid, and ωLqiq are generated for each magnetic flux. A voltage vo obtained by synthesizing these becomes an induced voltage generated in the motor, and a voltage v Ra applied to the winding resistance is added to the voltage v applied to the motor.

埋込磁石型同期モータが発生するトルクTは、電磁力に基づくマグネットトルクψaiqと、磁界が鉄心を引き寄せることで発生するリラクタンストルク(Ld−Lq)idiqからなり、数式1で表される。ここで、pは極対数である。   The torque T generated by the embedded magnet type synchronous motor includes a magnet torque ψaiq based on an electromagnetic force and a reluctance torque (Ld−Lq) idq generated when the magnetic field attracts the iron core. Here, p is the number of pole pairs.

iqを流すことでマグネットトルクが発生し、idを負の方向に流すことでリラクタンストルクが発生することが分かる。   It can be seen that magnet torque is generated by flowing iq, and reluctance torque is generated by flowing id in the negative direction.

Figure 2016100997
Figure 2016100997

回転速度ωが大きくなると起電カvoが大きくなるが、モータを駆動するインバータの出力電圧vには限界があるため、誘起電圧をインバータ出力限界よりも小さい値vomに制限する必要がある。そこで、図2のように励磁電流idを負の方向に流し、誘起電圧voを制限値vomまで小さくする弱め磁束制御が用いられる。ここで、誘起電圧voの大きさが数式2で表されることから、vo=vomとしてidについて解くと、弱め磁束制御のための電流idが数式3および数式4として求められる(例えば、特許文献1参照)。   As the rotational speed ω increases, the electromotive force vo increases. However, since the output voltage v of the inverter that drives the motor is limited, it is necessary to limit the induced voltage to a value vom that is smaller than the inverter output limit. Therefore, as shown in FIG. 2, the flux weakening control is used in which the exciting current id is passed in the negative direction and the induced voltage vo is reduced to the limit value vom. Here, since the magnitude of the induced voltage vo is expressed by Equation 2, when id is solved with vo = vom, the current id for the flux weakening control is obtained as Equation 3 and Equation 4 (for example, Patent Documents). 1).

Figure 2016100997
Figure 2016100997

Figure 2016100997
Figure 2016100997

Figure 2016100997
Figure 2016100997

特開2008−43030号公報(段落0098〜0100)JP 2008-43030 A (paragraphs 0098 to 0100)

図3は、各回転速度において弱め磁束制御により誘起電圧をvomに制限したときの電流ベクトル軌跡(以下、電圧制限楕円という)を示している。負荷が大きくなるにつれ、より大きなリラクタンストルクを発生するよう、idを負の方向に大きくする。したがって、電流ベクトルは電圧制限楕円上を図において左側に推移することになる。電圧制限楕円の中心座標は(ーψa/Ld,0)であり、id=−ψa/Ldを境界として、図において右側の領域では数式3を用いて励磁電流idを演算し、左側の領域では数式4を用いて励磁電流idを演算する。   FIG. 3 shows a current vector locus (hereinafter referred to as a voltage limit ellipse) when the induced voltage is limited to vom by the magnetic flux weakening control at each rotational speed. As the load increases, id is increased in the negative direction so as to generate a larger reluctance torque. Therefore, the current vector moves to the left in the figure on the voltage limit ellipse. The center coordinate of the voltage limiting ellipse is (−ψa / Ld, 0), and the excitation current id is calculated using Equation 3 in the right region in the figure, with id = −ψa / Ld as the boundary, and in the left region. The excitation current id is calculated using Equation 4.

しかし、運転条件によっては境界付近で動作することがあり、このときトルクや速度のわずかな変動により数式3の演算と数式4の演算とを頻繁に切り替えることから、不安定状態に陥る場合が生じるという不具合がある。   However, it may operate near the boundary depending on the operating conditions. At this time, the calculation of Formula 3 and the calculation of Formula 4 are frequently switched due to slight fluctuations in torque and speed, which may result in an unstable state. There is a problem that.

そこで本発明は、上記の問題点に鑑み、上記の不具合が生じない電動モータの制御装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a control device for an electric motor that does not cause the above problems.

上記課題を解決するために本発明による電動モータの制御装置は、永久磁石による界磁を複数個有するロータを、回転軸の周囲に同心円状に配置した埋込磁石型同期モータの作動を制御する電動モータの制御装置であって、直流電源から供給される直流電圧を多相交流電圧に変換して電動モータの電機子に印加するインバータと、所定のトルク指令に応じて、インバータを介して電動モータの各相の電機子に流れる電流のベクトル和である相電流を制御する通電制御手段とを備えたものにおいて、上記電動モータを、界磁の磁束方向であるd軸上にあるd軸電機子とd軸と直交するq軸上にあるq軸電機子とを有する等価回路に変換して扱い、上記通電制御手段は、q軸電機子に流れる電流であるq軸電流の最大値より低い制限値を設定し、q軸電流がこの制限値を越えないように制御することを特徴とする。   In order to solve the above-mentioned problems, an electric motor control apparatus according to the present invention controls the operation of an embedded magnet type synchronous motor in which a rotor having a plurality of fields by permanent magnets is arranged concentrically around a rotating shaft. An electric motor control device that converts a DC voltage supplied from a DC power source into a multiphase AC voltage and applies it to an armature of the electric motor, and an electric motor via the inverter in accordance with a predetermined torque command Including an energization control means for controlling a phase current that is a vector sum of currents flowing through armatures of respective phases of the motor, wherein the electric motor is connected to a d-axis electric machine on a d-axis that is a magnetic flux direction of a field. Treated by converting into an equivalent circuit having a q-axis armature on the q-axis orthogonal to the d-axis and the energization control means is lower than the maximum value of the q-axis current that is the current flowing through the q-axis armature Set the limit value, Axis current and the controller controls so as not to exceed this limit.

また、上記q軸電流を制限値に制限したことにより減少するトルクの減少分を、d軸電機子に流れる電流であるd軸電流を増加させることによるリラクタンストルクの増加分で補うことを特徴とする。   Further, it is characterized in that a decrease in torque that is reduced by limiting the q-axis current to a limit value is compensated by an increase in reluctance torque by increasing a d-axis current that is a current flowing in the d-axis armature. To do.

さらに、上記q軸電流を制限値に制限した場合に、制限したことによるq軸電流の減少分に応じて電動モータの回転速度偏差を補正し、回転速度が不安定になるワインドアップ現象の発生を抑制することを特徴とする。   Further, when the q-axis current is limited to a limit value, a wind-up phenomenon in which the rotation speed becomes unstable by correcting the rotational speed deviation of the electric motor according to the reduction amount of the q-axis current due to the limitation. It is characterized by suppressing.

負荷の増加にともない動作点が電圧制限楕円上を推移し、数式3が適用される領域と数式4が適用される領域との境界点に達したとき、トルク分電流iqはvom/(ωLq)で最大となる。この最大値より大きなトルク分電流指令iq_refが与えられた場合、数式3、数式4の平方根の中が負となり、励磁電流idを演算することができなくなる。   As the load increases, the operating point shifts on the voltage limit ellipse and reaches the boundary point between the region where Formula 3 is applied and the region where Formula 4 is applied, and the torque current iq is vom / (ωLq). Is the largest. If a current command iq_ref corresponding to a torque larger than this maximum value is given, the square roots of Equations 3 and 4 are negative, and the excitation current id cannot be calculated.

そこで、iq_refを最大値vom/(ωLq)より小さな値(iq_lim)で制限する。iq_limより大きな電流指令iq_refが与えられると、数式5のように、iqが制限されるため、数式6のΔTだけトルクが不足することとなる。   Therefore, iq_ref is limited to a value (iq_lim) smaller than the maximum value vom / (ωLq). When a current command iq_ref greater than iq_lim is given, iq is limited as shown in Equation 5, and thus the torque is insufficient by ΔT in Equation 6.

Figure 2016100997
Figure 2016100997

Figure 2016100997
Figure 2016100997

不足したトルク△Tは、数式7のようにリラクタンストルクで補うものとする。このリラクタンストルクを発生するために必要な励磁電流△idは数式8となり、これを数式3のidに加えることで、重負荷時においても弱め磁束制御を達成することができる。   The insufficient torque ΔT is compensated with reluctance torque as shown in Equation 7. The exciting current Δid necessary for generating the reluctance torque is expressed by Equation 8, and by adding this to the equation id, the magnetic flux control can be achieved even under heavy load.

Figure 2016100997
Figure 2016100997

Figure 2016100997
Figure 2016100997

Figure 2016100997
Figure 2016100997

図4は、数式3及び数式4による電圧制限楕円と、数式9により弱め磁束制御を行ったときの電流ベクトル軌跡を示している。q軸電流が制限されるまで、動作点は数式3の電圧制限楕円上を推移する。q軸電流がiq_limに制限されると、動作点は電圧制限楕円より内側を推移することになる。ここで、不足したトルクを補うためd軸電流をΔidだけ負の方向に増やすことから、−Ψa/Ldの境界より左側の領域であっても数式3を用いてidを演算することができる。これにより、数式3による演算と数式4による演算とを切りかえることで発生する不安定現象を防ぐことができる。   FIG. 4 shows a voltage limit ellipse according to Equation 3 and Equation 4, and a current vector locus when the flux-weakening control is performed according to Equation 9. Until the q-axis current is limited, the operating point moves on the voltage limit ellipse of Equation 3. When the q-axis current is limited to iq_lim, the operating point shifts inside the voltage limit ellipse. Here, in order to compensate for the insufficient torque, the d-axis current is increased in the negative direction by Δid, so that id can be calculated using Equation 3 even in the region on the left side of the boundary of −Ψa / Ld. Thereby, the unstable phenomenon which generate | occur | produces by switching the calculation by Numerical formula 3 and the calculation by Numerical formula 4 can be prevented.

速度制御系を持つシステムでは、一般に、q軸電流指令iq_refは速度のPI制御器で作られる。PI制御器の出力を制限した場合、ワインドアップ現象により速度や電流が振動的な振る舞いをすることがある。そこで、iq_refが制限されたときに制限された量ΔiqをPI制御器の入力にフィードバックし、数式10のように速度偏差Δω(=ωref−ω)を修正することで振動を抑制する。ここで、Kpは速度PI制御器の比例ゲインである。図5に、iq_refの制限を考慮したPI制御器の構成を示す。   In a system having a speed control system, the q-axis current command iq_ref is generally generated by a speed PI controller. When the output of the PI controller is limited, the speed and current may behave in an oscillating manner due to the windup phenomenon. Therefore, when iq_ref is limited, the limited amount Δiq is fed back to the input of the PI controller, and the vibration is suppressed by correcting the speed deviation Δω (= ωref−ω) as shown in Equation 10. Here, Kp is a proportional gain of the speed PI controller. FIG. 5 shows the configuration of the PI controller considering the limitation of iq_ref.

Figure 2016100997
Figure 2016100997

以上の説明から明らかなように、本発明によれば、埋込磁石型同期モータの弱め磁束制御が必要となる高速回転領域において、トルク電流iqを制限し、不足したトルクをリラクタンストルクで補うよう励磁電流idを決める。これにより、励磁電流を計算する2つの数式である数式3と数式4とを切り替えることなく、一つの数式を用いて連続的に励磁電流指令を決定することができ、計算式の切り替えに起因する振動や発振といった現象を抑えることができる。   As is apparent from the above description, according to the present invention, the torque current iq is limited in the high-speed rotation region where the flux-weakening control of the embedded magnet type synchronous motor is required, and the insufficient torque is compensated with the reluctance torque. Determine the excitation current id. Accordingly, the excitation current command can be determined continuously using one equation without switching between the two equations that calculate the excitation current, Equation 3 and Equation 4, resulting from the switching of the equation. Phenomena such as vibration and oscillation can be suppressed.

埋込磁石型同期モータ運転時における電圧、電流および磁束のベクトル図Vector diagram of voltage, current and magnetic flux when operating an embedded magnet type synchronous motor 埋込磁石型同期モータで弱め磁束制御を行ったときの電圧、電流および磁束のベクトル図Vector diagram of voltage, current, and magnetic flux when flux-weakening control is performed with an embedded magnet type synchronous motor 弱め磁束制御時の電流ベクトル軌跡(電圧制限楕円)と励磁電流演算式との関係を表す図Diagram showing the relationship between the current vector locus (voltage limit ellipse) and the excitation current calculation formula during flux-weakening control 本発明による弱め磁束制御時の電流ベクトル軌跡(電圧制限楕円)を表す図The figure showing the electric current vector locus (voltage limit ellipse) at the time of the flux weakening control by this invention トルク電流制限による影響を抑制する手法のブロック図Block diagram of a technique to suppress the effects of torque current limitation 埋込磁石型同期モータの駆動システムの一例を示すブロック図Block diagram showing an example of a drive system for an embedded magnet type synchronous motor 速度推定に用いる拡張誘起電圧オブザーバのブロック図Block diagram of extended induced voltage observer used for speed estimation

以下、本発明を埋込磁石型同期モータのセンサレス駆動システムに適用した一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment in which the present invention is applied to a sensorless drive system of an embedded magnet type synchronous motor will be described with reference to the drawings.

図6は、埋込磁石型同期モータのセンサレス駆動システムを示している。このシステムは、速度制御部1、励磁電流指令演算部2、電流制御部3、非干渉制御部4、座標変換部5、速度推定部6、PWM変調部7、および三相インバータ8から構成される。   FIG. 6 shows a sensorless drive system of an embedded magnet type synchronous motor. This system includes a speed control unit 1, an excitation current command calculation unit 2, a current control unit 3, a non-interference control unit 4, a coordinate conversion unit 5, a speed estimation unit 6, a PWM modulation unit 7, and a three-phase inverter 8. The

検出されたモータ電流iu、iwを、推定した磁極位置(電気角)θに基づくγ−δ回転座標系に座標変換し、iγ、iδを求める。このモータ電流iγ、iδと、モータ電圧の指令値vγ1_ref、vδ1_refが速度推定部6に入力される。   The detected motor currents iu and iw are coordinate-transformed into a γ-δ rotating coordinate system based on the estimated magnetic pole position (electrical angle) θ to obtain iγ and iδ. The motor currents iγ and iδ and the motor voltage command values vγ1_ref and vδ1_ref are input to the speed estimation unit 6.

速度推定部6では、モータ電圧指令vγ1_ref、vδ1_refとモータ電流iγ、iδから、拡張誘起電圧eγ、eδを推定する。図7に、拡張誘起電圧を推定するオブザーバの構成を示す。求められた拡張誘起電圧から、磁極位置の推定誤差θeを数式11のように求める。   The speed estimation unit 6 estimates the expansion induced voltages eγ and eδ from the motor voltage commands vγ1_ref and vδ1_ref and the motor currents iγ and iδ. FIG. 7 shows the configuration of an observer for estimating the extended induced voltage. From the obtained extended induced voltage, an estimation error θe of the magnetic pole position is obtained as in Expression 11.

Figure 2016100997
Figure 2016100997

数式11で演算された推定誤差θeが0となるようPI演算を行い、その出力を推定速度(機械角速度)ωmとする。このωmを積分演算し、推定磁極位置θmを求める。ωmは、速度制御および非干渉制御に用いられる。また、θmは極対数Pによって電気角θに変換され座標変換5に用いられる。   PI calculation is performed so that the estimated error θe calculated by Expression 11 becomes 0, and the output is set to an estimated speed (mechanical angular speed) ωm. This ωm is integrated and the estimated magnetic pole position θm is obtained. ωm is used for speed control and non-interference control. Further, θm is converted into an electrical angle θ by the number of pole pairs P and used for coordinate conversion 5.

速度制御部1では、速度指令値ω_refと推定速度ωmとが一致するようPI制御を行う。このPI制御器の出力を、トルク電流指令iqとする。弱め磁束制御が必要な領域で、iq_refが制限値iq_limより大きくなったとき、iq_refをiq_limで制限する。このとき、ワインドアップ現象を防ぐため、図5に示すように、制限された量Δiqを求め、速度偏差△ωを修正して積分演算を再計算する。   The speed control unit 1 performs PI control so that the speed command value ω_ref and the estimated speed ωm coincide. The output of this PI controller is a torque current command iq. When iq_ref becomes larger than the limit value iq_lim in the area where the flux-weakening control is necessary, iq_ref is limited by iq_lim. At this time, in order to prevent a wind-up phenomenon, as shown in FIG. 5, a limited amount Δiq is obtained, the speed deviation Δω is corrected, and the integral calculation is recalculated.

励磁電流指令演算部2では、励磁電流指令id_refを決定する。回転速度が小さく、弱め磁束制御が必要ない領域では、可能な限り小さな電流で効率よくトルクを発生するよう、図3に示す「最大トルク/電流制御」曲線に従ってid_refを決定する。このときの演算式を数式12に示す。   The excitation current command calculation unit 2 determines the excitation current command id_ref. In an area where the rotational speed is low and the flux-weakening control is not necessary, id_ref is determined according to the “maximum torque / current control” curve shown in FIG. 3 so that torque is efficiently generated with as little current as possible. An arithmetic expression at this time is shown in Expression 12.

Figure 2016100997
Figure 2016100997

回転速度が上がり、誘起電圧voが制限値vomより大きくなると、弱め磁束制御が必要になるため、数式3によりid_refを決定する。ここで、iq_refがiq_limで制限されている場合は、不足したトルクをリラクタンストルクで補うための励磁電流△idを数式8から求め、数式9によりid_refを演算する。   When the rotational speed increases and the induced voltage vo becomes larger than the limit value vom, the flux-weakening control is required. Therefore, id_ref is determined by Equation 3. Here, when iq_ref is limited by iq_lim, an excitation current Δid for compensating for the insufficient torque with the reluctance torque is obtained from Equation 8, and id_ref is calculated by Equation 9.

電流制御部では、電流指令id_ref,iq_refとモータ電流iγ、iδとが一致するよう、それぞれPI制御し、PI制御器の出力を電圧指令vγ_ref,vδ_refとする。この電圧指令vγ_ref,vδ_refに非干渉制御を施し、電圧指令vγ1_ref,vδ1_refを決定する。ここで、vγ1_ref,vδ1_refは数式13および数式14で求められる。   The current control unit performs PI control so that the current commands id_ref and iq_ref and the motor currents iγ and iδ match, and outputs the PI controller as voltage commands vγ_ref and vδ_ref. Non-interference control is performed on the voltage commands vγ_ref and vδ_ref to determine the voltage commands vγ1_ref and vδ1_ref. Here, vγ1_ref and vδ1_ref are obtained by Expression 13 and Expression 14.

Figure 2016100997
Figure 2016100997

Figure 2016100997
Figure 2016100997

PWM変調部では、電圧指令vγ1_ref,vδ1_refから空間ベクトル変調により、インバータのスイッチング指令を決定し、インバータを動作させ、埋込磁石型同期モータを駆動する。   The PWM modulation unit determines an inverter switching command by space vector modulation from the voltage commands vγ1_ref and vδ1_ref, operates the inverter, and drives the embedded magnet type synchronous motor.

なお、本発明は上記した形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもかまわない。   In addition, this invention is not limited to an above-described form, You may add a various change in the range which does not deviate from the summary of this invention.

1 速度制御部
2 励磁電流指令演算部
3 電流制御部
4 非干渉制御部
5 座標変換部
6 速度推定部
7 PWM変調部
8 三相インバータ
DESCRIPTION OF SYMBOLS 1 Speed control part 2 Excitation current command calculating part 3 Current control part 4 Non-interference control part 5 Coordinate conversion part 6 Speed estimation part 7 PWM modulation part 8 Three-phase inverter

Claims (3)

永久磁石による界磁を複数個有するロータを、回転軸の周囲に同心円状に配置した埋込磁石型同期モータの作動を制御する電動モータの制御装置であって、直流電源から供給される直流電圧を多相交流電圧に変換して電動モータの電機子に印加するインバータと、所定のトルク指令に応じて、インバータを介して電動モータの各相の電機子に流れる電流のベクトル和である相電流を制御する通電制御手段とを備えたものにおいて、
上記電動モータを、界磁の磁束方向であるd軸上にあるd軸電機子とd軸と直交するq軸上にあるq軸電機子とを有する等価回路に変換して扱い、上記通電制御手段は、q軸電機子に流れる電流であるq軸電流の最大値より低い制限値を設定し、q軸電流がこの制限値を越えないように制御することを特徴とする電動モータの制御装置。
A control device for an electric motor for controlling the operation of an embedded magnet type synchronous motor in which a rotor having a plurality of magnetic fields by permanent magnets is arranged concentrically around a rotating shaft, and a DC voltage supplied from a DC power source Is converted to a multiphase AC voltage and applied to the armature of the electric motor, and a phase current that is a vector sum of currents flowing through the armature of each phase of the electric motor via the inverter according to a predetermined torque command And a power supply control means for controlling
The electric motor is handled by converting it into an equivalent circuit having a d-axis armature on the d-axis that is the magnetic flux direction of the field and a q-axis armature on the q-axis that is orthogonal to the d-axis. The means sets a limit value lower than the maximum value of the q-axis current, which is a current flowing through the q-axis armature, and controls so that the q-axis current does not exceed the limit value. .
上記q軸電流を制限値に制限したことにより減少するトルクの減少分を、d軸電機子に流れる電流であるd軸電流を増加させることによるリラクタンストルクの増加分で補うことを特徴とする請求項1に記載の電動モータの制御装置。   The decrease in torque that is reduced by limiting the q-axis current to a limit value is supplemented by an increase in reluctance torque by increasing the d-axis current that is a current flowing in the d-axis armature. Item 4. A control device for an electric motor according to Item 1. 上記q軸電流を制限値に制限した場合に、制限したことによるq軸電流の減少分に応じて電動モータの回転速度を補正し、回転速度が不安定になるワインドアップ現象の発生を抑制することを特徴とする請求項1または請求項2に記載の電動モータの制御装置。   When the q-axis current is limited to a limit value, the rotational speed of the electric motor is corrected in accordance with the amount of decrease in the q-axis current due to the limitation, thereby suppressing the occurrence of a windup phenomenon in which the rotational speed becomes unstable. The control apparatus for an electric motor according to claim 1, wherein the control apparatus is an electric motor.
JP2014236557A 2014-11-21 2014-11-21 Electric motor controller Active JP6731700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014236557A JP6731700B2 (en) 2014-11-21 2014-11-21 Electric motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236557A JP6731700B2 (en) 2014-11-21 2014-11-21 Electric motor controller

Publications (2)

Publication Number Publication Date
JP2016100997A true JP2016100997A (en) 2016-05-30
JP6731700B2 JP6731700B2 (en) 2020-07-29

Family

ID=56078222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236557A Active JP6731700B2 (en) 2014-11-21 2014-11-21 Electric motor controller

Country Status (1)

Country Link
JP (1) JP6731700B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736790A (en) * 2017-04-17 2018-11-02 日本电产三协株式会社 The control device and method of servomotor
JP2019180173A (en) * 2018-03-30 2019-10-17 株式会社富士通ゼネラル Motor controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112598A (en) * 2000-09-28 2002-04-12 Matsushita Electric Ind Co Ltd Motor controller
WO2003009463A1 (en) * 2001-07-13 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Speed control device for ac electric motor
JP2008029082A (en) * 2006-07-19 2008-02-07 Toyota Motor Corp Rotating electric machine control unit, method and program for controlling rotating electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112598A (en) * 2000-09-28 2002-04-12 Matsushita Electric Ind Co Ltd Motor controller
WO2003009463A1 (en) * 2001-07-13 2003-01-30 Mitsubishi Denki Kabushiki Kaisha Speed control device for ac electric motor
US20040135533A1 (en) * 2001-07-13 2004-07-15 Masaya Harakawa Speed control device for ac electric motor
JP2008029082A (en) * 2006-07-19 2008-02-07 Toyota Motor Corp Rotating electric machine control unit, method and program for controlling rotating electric machine
US20090179602A1 (en) * 2006-07-19 2009-07-16 Toyota Jidosha Kabushiki Kaisha Rotary electric machine control device, rotary electric machine control method, and rotary electric machine control program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736790A (en) * 2017-04-17 2018-11-02 日本电产三协株式会社 The control device and method of servomotor
JP2018182938A (en) * 2017-04-17 2018-11-15 日本電産サンキョー株式会社 Control apparatus and method for servomotor
JP7026448B2 (en) 2017-04-17 2022-02-28 日本電産サンキョー株式会社 Servo motor control device and method
CN108736790B (en) * 2017-04-17 2022-07-19 日本电产三协株式会社 Control device and method for servo motor
JP2019180173A (en) * 2018-03-30 2019-10-17 株式会社富士通ゼネラル Motor controller
JP7081274B2 (en) 2018-03-30 2022-06-07 株式会社富士通ゼネラル Motor control device

Also Published As

Publication number Publication date
JP6731700B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6367332B2 (en) Inverter control device and motor drive system
JP6167982B2 (en) Motor drive device and electric compressor
US9742333B2 (en) Motor control device
US8519648B2 (en) Temperature compensation for improved field weakening accuracy
JP6776066B2 (en) Inverter controller and motor drive system
JP6580899B2 (en) Drive system and inverter device
JP2013212002A (en) Motor controller
JP2009290929A (en) Controller for permanent magnet type synchronous motor
JP6396869B2 (en) Motor control device
JP5994355B2 (en) Control device for permanent magnet type synchronous motor
US9780713B2 (en) Driving apparatus for electric motor
JP2012222959A (en) Synchronous machine controller
JP2007068354A (en) Controller of permanent magnet-type rotary electric machine
JP2018057077A (en) Motor control device and drive system
JP2013187931A (en) Motor control device
JP6731700B2 (en) Electric motor controller
JP2016220364A (en) Control device for permanent magnet synchronous motor
JP2007330074A (en) Motor controller and motor control method
JP5800933B2 (en) Motor control device for controlling synchronous motor
JP7012931B2 (en) Inverter controller and motor drive system
JP2017175819A (en) Motor drive device
JP7099225B2 (en) Motor control device
JP2022121778A (en) Control device for high efficiency operation and control method for high efficiency operation of permanent magnet synchronous motor
JP2020036513A (en) Motor controller
JP2018191492A (en) Motor control device for controlling vector of synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6731700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250