JP2016098608A - Sand production processing system and shield excavator - Google Patents

Sand production processing system and shield excavator Download PDF

Info

Publication number
JP2016098608A
JP2016098608A JP2014238116A JP2014238116A JP2016098608A JP 2016098608 A JP2016098608 A JP 2016098608A JP 2014238116 A JP2014238116 A JP 2014238116A JP 2014238116 A JP2014238116 A JP 2014238116A JP 2016098608 A JP2016098608 A JP 2016098608A
Authority
JP
Japan
Prior art keywords
residual soil
excavation
soil
excavated
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238116A
Other languages
Japanese (ja)
Other versions
JP6432771B2 (en
Inventor
清人 金丸
Kiyoto Kanemaru
清人 金丸
弘章 四方
Hiroaki Yomo
弘章 四方
成実 西井
Narumi Nishii
成実 西井
信悦 大友
Nobuyoshi Otomo
信悦 大友
克豊 安井
Katsutoyo Yasui
克豊 安井
博文 松林
Hirofumi Matsubayashi
博文 松林
光博 隅倉
Mitsuhiro Sumikura
光博 隅倉
正憲 鈴木
Masanori Suzuki
正憲 鈴木
武彦 中谷
Takehiko Nakatani
武彦 中谷
智明 大木
Tomoaki Oki
智明 大木
崇 江口
Takashi Eguchi
崇 江口
和彦 設樂
Kazuhiko Shidara
和彦 設樂
田▲崎▼ 雅晴
Masaharu Tazaki
雅晴 田▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2014238116A priority Critical patent/JP6432771B2/en
Publication of JP2016098608A publication Critical patent/JP2016098608A/en
Application granted granted Critical
Publication of JP6432771B2 publication Critical patent/JP6432771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sand production processing system and a shield excavator enabling a medicine to evenly penetrate into the sand production in order to sufficiently reduce elution of a processing material in the sand production by the medicine.SOLUTION: A sand production processing system 1 crushes a sand production generated by digging a soil layer and has a sand production processing mechanism 30 capable of adding a medicine, which reduces elution of a processing material such as arsenic into the sand production, to the sand production. The shield excavator 20 has at least the sand production processing system 1.SELECTED DRAWING: Figure 1

Description

本発明は、掘削残土処理システム及びシールド掘削機に関する。   The present invention relates to an excavation residual soil processing system and a shield excavator.

シールド工法によりトンネルを築造する際には、土層の断面に自然由来のヒ素が出現し、掘削残土にヒ素が含まれる場合がある。その場合には、掘削残土を処分する際に何らかの処理を行わなければ、掘削残土が汚染土となる問題があった。
このようなヒ素を含む掘削残土の処理方法の一つとして、例えば掘削残土に薬剤を添加することでヒ素を溶出させないようにする処理方法が挙げられる。
When building a tunnel by the shield method, arsenic derived from nature may appear in the cross section of the soil layer, and arsenic may be contained in the excavated soil. In that case, there is a problem that the excavated residual soil becomes contaminated soil unless any treatment is performed when the excavated residual soil is disposed of.
As one of the processing methods for such excavation residual soil containing arsenic, for example, there is a processing method for preventing arsenic from eluting by adding a chemical to the excavation residual soil.

例えば、特許文献1には、重金属汚染土壌に三価のアルミニウム塩である硫酸アルミニウム、硝酸アルミニウム及びミョウバンの何れか一つを水と共に添加して撹拌することによって、土壌中の重金属を不溶化させる処理方法が開示されている。
また、特許文献2には、有機ハロゲン化合物とハロゲン元素のうち一種以上と重金属で汚染された土壌において鉄粉及びアルミニウム塩を添加し、次いでアルカリ性域に調節し、生成したアルミニウム水酸化物にハロゲン元素と重金属を同伴させ、次いで中性セメント剤を添加する処理方法が開示されている。
For example, Patent Document 1 discloses a treatment for insolubilizing heavy metals in soil by adding and stirring any one of trivalent aluminum salts, aluminum sulfate, aluminum nitrate and alum, to heavy metal-contaminated soil. A method is disclosed.
In Patent Document 2, iron powder and an aluminum salt are added to soil contaminated with one or more of an organic halogen compound and a halogen element and heavy metal, and then adjusted to an alkaline region. A processing method is disclosed in which elements and heavy metals are entrained and then a neutral cement is added.

特許第3227487号公報Japanese Patent No. 3227487 特許第3867002号公報Japanese Patent No. 3867002

しかしながら、土層の粘性が高い場合には掘削残土が塊で排土されるので、上記特許文献1,2に開示されている処理方法では掘削残土の内部まで均等に薬剤を浸透させるのは困難である。その結果、薬剤と掘削残土中のヒ素との化学反応が充分に進行せず、薬剤によるヒ素の溶出抑制効果が充分に発揮されないため、処理後の掘削残土からのヒ素の溶出量が閾値を超えてしまうという問題がある。   However, when the soil layer is highly viscous, the excavated residual soil is dumped in a lump, and it is difficult for the treatment methods disclosed in Patent Documents 1 and 2 to penetrate the chemical evenly into the excavated residual soil. It is. As a result, the chemical reaction between the chemical and arsenic in the excavated soil does not proceed sufficiently, and the arsenic elution suppression effect by the chemical is not fully exhibited. There is a problem that it ends up.

本発明は、上記事情に鑑みてなされたものであり、薬剤による掘削残土中の処理対象物質の溶出抑制効果を充分に発揮させるために、掘削残土の内部まで均等に薬剤を浸透させることができる掘削残土処理システム及びシールド掘削機の提供を目的とする。   The present invention has been made in view of the above circumstances, and in order to sufficiently exhibit the elution suppression effect of the treatment target substance in the excavated residual soil by the chemical, the chemical can be evenly penetrated into the excavated residual soil. The purpose is to provide an excavation residual soil treatment system and a shield excavator.

請求項1記載の掘削残土処理システムは、土層を掘削する際に発生した掘削残土を破砕すると共に前記掘削残土に薬剤を添加可能に構成された掘削残土処理機構を備えていることを特徴とする。
上記掘削残土処理システムによれば、掘削残土が掘削残土処理機構に導入された際に、掘削残土が確実に破砕されて細粒状になる。このような掘削残土に、掘削残土中に存在する処理対象物質の掘削残土からの溶出を抑制する薬剤が添加されることで、薬剤が掘削残土の内部まで均等に浸透する。なお、「細粒状」とは含水率によって乾燥した状態から液体に近い泥状まで変化するすべての状態を示す。
The excavation residual soil processing system according to claim 1, further comprising an excavation residual soil treatment mechanism configured to crush the excavation residual soil generated when excavating the soil layer and to add a chemical to the excavation residual soil. To do.
According to the excavation residual soil processing system, when the excavation residual soil is introduced into the excavation residual soil processing mechanism, the excavation residual soil is reliably crushed and becomes finely granular. By adding the chemical | medical agent which suppresses the elution from the excavation residual soil of the process target substance which exists in the excavation residual soil to such excavation residual soil, the chemical | drug | medicine penetrate | infiltrates uniformly to the inside of excavation residual soil. “Fine-grained” refers to all states that change from a dry state to a mud-like state close to a liquid depending on the moisture content.

請求項2記載の掘削残土処理システムにおいて、前記掘削残土処理機構は前記掘削残土を導入する導入部と、前記掘削残土に前記薬剤を添加する薬剤添加部と、前記導入部から導入された前記掘削残土を破砕する破砕部と、前記掘削残土を導出する導出部と、を備えていることを特徴とする。
上記掘削残土処理システムによれば、掘削残土が導入部を介して破砕部に導入されると共に破砕され、細粒化される。その後、薬剤添加部から細粒状の掘削残土に薬剤が添加される。薬剤が添加された掘削残土は、導出部から掘削残土処理システムの外部に向けて導出される。このような円滑な処理により、薬剤が掘削残土の内部まで均等に浸透する。
3. The excavation residue processing system according to claim 2, wherein the excavation residue treatment mechanism includes an introduction unit that introduces the excavation residue, a chemical addition unit that adds the chemical to the excavation residue, and the excavation introduced from the introduction unit. A crushing portion for crushing the remaining soil and a derivation portion for deriving the excavated residual soil are provided.
According to the excavation residual soil processing system, the excavation residual soil is introduced into the crushing portion via the introduction portion, and is crushed and refined. Then, a chemical | medical agent is added to fine granular excavation residual soil from a chemical | medical agent addition part. The excavated residual soil to which the chemical is added is led out from the excavating portion to the outside of the excavated residual soil treatment system. With such a smooth process, the chemical penetrates evenly into the excavated soil.

請求項3記載の掘削残土処理システムにおいて、前記薬剤添加部は、前記破砕部を掘削残土が通過する前の部分、又は、前記破砕部を掘削残土が通過した後の部分に設置されていることを特徴とする。
上記シールド掘削残土処理システムによれば、薬剤添加部が破砕部を掘削残土が通過する前の部分に設置されれば、薬剤が予め添加された掘削残土が破砕部で破砕されて細粒状になり、その際に掘削残土と薬剤とが混練され、薬剤が掘削残土の内部まで均等に浸透する。また、薬剤添加部が破砕部を掘削残土が通過した後の部分に設置されれば、破砕部で細粒化された掘削残土に薬剤が添加され、薬剤が掘削残土の内部まで均等に浸透する。
In the excavation residual soil processing system of Claim 3, the said chemical | medical agent addition part is installed in the part before excavation residual soil passes the said crushing part, or the part after excavation residual soil passes the said crushing part. It is characterized by.
According to the shield excavation residual soil treatment system, if the chemical addition unit is installed in a portion before the excavation residual soil passes through the crushing portion, the excavation residual soil to which the chemical has been added in advance is crushed by the crushing portion and becomes fine granular. At that time, the excavation residue and the chemical are kneaded, and the chemical penetrates evenly into the excavation residual soil. In addition, if the chemical addition part is installed in the part after the excavation residual soil passes through the crushing part, the chemical is added to the excavation residual soil finely divided in the crushing part, and the chemical penetrates evenly into the excavation residual soil. .

請求項4記載のシールド掘削機は、前記掘削残土処理システムを備えていることを特徴とする。
上記シールド掘削機によれば、シールド掘削機において発生した掘削残土が掘削残土処理システムに導入されることで、薬剤が掘削残土の内部まで均等に浸透し、掘削残土が円滑に処理される。
According to a fourth aspect of the present invention, there is provided a shield excavator comprising the excavation residual soil processing system.
According to the above shield excavator, the excavated residual soil generated in the shield excavator is introduced into the excavated residual soil treatment system, so that the chemical agent penetrates evenly into the excavated residual soil and the excavated residual soil is processed smoothly.

請求項5記載のシールド掘削機は、土層を掘削する掘削機構と、前記掘削機構で発生した前記掘削残土を前記掘削残土処理システムに向けて排土する第一排土部と、前記掘削残土処理システムから導出された前記掘削残土を外方に排土する第二排土部と、を備えていることを特徴とする。
上記シールド掘削機によれば、掘削機構で発生した掘削残土が第一排土部により掘削残土処理システムに排土され、掘削残土処理システムに導入されると共に処理される。処理後の掘削残土は第二排土部によりシールド掘削機の外方に排土される。このような円滑な処理により、薬剤が掘削残土の内部まで均等に浸透する。
The shield excavator according to claim 5, wherein a excavation mechanism excavating a soil layer, a first excavation portion for excavating the excavation residual soil generated by the excavation mechanism toward the excavation residual soil treatment system, and the excavation residual soil And a second soil discharging portion for discharging the remaining excavated soil derived from the processing system to the outside.
According to the shield excavator, the excavated residual soil generated by the excavating mechanism is discharged to the excavated residual soil processing system by the first soil discharging portion, and introduced into the excavated residual soil processing system and processed. The treated excavation remaining soil is discharged outside the shield excavator by the second earth discharging portion. With such a smooth process, the chemical penetrates evenly into the excavated soil.

本発明の掘削残土処理システム及びシールド掘削機によれば、掘削残土の内部まで均等に薬剤を浸透させることができるので、掘削残土と薬剤との化学反応が効率良く促進され、薬剤による掘削残土中の処理対象物質の溶出抑制効果が充分に発揮される。   According to the excavation residual soil treatment system and shield excavator of the present invention, the chemical can be uniformly permeated into the excavation residual soil, so that the chemical reaction between the excavation residual soil and the chemical is efficiently promoted, and the chemical excavation in the excavation residual soil by the chemical is performed. The elution suppression effect of the target substance is sufficiently exhibited.

本発明の一実施形態であるシールド掘削機を示す概略断面図である。It is a schematic sectional drawing which shows the shield excavator which is one Embodiment of this invention. 本発明の一実施形態である掘削残土処理システムの一部を示す水平断面図である。It is a horizontal sectional view showing a part of excavation residual soil processing system which is one embodiment of the present invention. 本発明の一実施形態である掘削残土処理システムの一部を示す縦断面図であり、図2に示すX−X線で矢視した場合に対応する図である。It is a longitudinal cross-sectional view which shows a part of excavation residual soil processing system which is one Embodiment of this invention, and is a figure corresponding to the case where it views on the XX line shown in FIG. 本発明の一実施形態である掘削残土処理システムの一部を示す縦断面図であり、図2に示すY−Y線で矢視した場合に対応する図である。It is a longitudinal cross-sectional view which shows a part of excavation residual soil processing system which is one Embodiment of this invention, and is a figure corresponding to the case where an arrow is taken by the YY line shown in FIG. 実施例における土砂からのポリ塩化アルミニウム(PAC)添加量に対するヒ素溶出量の変化を示すグラフである。It is a graph which shows the change of the arsenic elution amount with respect to the polyaluminum chloride (PAC) addition amount from the earth and sand in an Example.

以下、本発明に係る掘削残土処理システム及びシールド掘削機の一実施形態について、図1〜4を参照して説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅及び厚みの比率等は実際のものと同一とは限らず、適宜変更することができる。   Hereinafter, one embodiment of the excavation residual soil processing system and shield excavator according to the present invention will be described with reference to FIGS. Note that the drawings used in the following description are schematic, and the ratios of length, width, and thickness are not necessarily the same as actual ones, and can be changed as appropriate.

以下では、例えばトンネル築造の際に、土層の掘削によって発生した掘削残土中に存在するヒ素の溶出量を閾値以下に抑え、掘削残土を埋め戻し等の後処理可能にするために使用される場合を想定し、本発明を適用した一実施形態(以下、単に本実施形態という)の掘削残土処理システム及びシールド掘削機について説明する。   In the following, for example, when tunnels are constructed, the amount of arsenic present in the excavated residual soil generated by excavating the soil layer is suppressed to a threshold value or less, and post-processing such as backfilling of the excavated residual soil is made possible. Assuming the case, an excavation residual soil treatment system and a shield excavator according to an embodiment (hereinafter simply referred to as the present embodiment) to which the present invention is applied will be described.

図1は本実施形態のシールド掘削機20を示す概略断面図である。
図1に示すように、シールド掘削機20は少なくとも本実施形態の掘削残土処理システム1を備えて構成されている。また、シールド掘削機20は掘削機構50と、第一排土部52と、第二排土部54と、を備えて構成されている。なお、図1においては破砕部22の詳細な構成の図示は省略する。
以下、掘削残土が排土される方向(図1に示す矢印D1方向)に沿って配置されている順に、シールド掘削機20の各構成要素について説明する。
FIG. 1 is a schematic sectional view showing a shield excavator 20 according to the present embodiment.
As shown in FIG. 1, the shield excavator 20 is configured to include at least the excavation residue processing system 1 of the present embodiment. Further, the shield excavator 20 includes an excavation mechanism 50, a first earth discharging part 52, and a second earth discharging part 54. In addition, illustration of the detailed structure of the crushing part 22 is abbreviate | omitted in FIG.
Hereinafter, the components of the shield excavator 20 will be described in the order in which they are arranged along the direction in which the excavated residual soil is discharged (the direction of the arrow D1 shown in FIG. 1).

掘削機構50は、従来一般の各種シールド掘削機による掘削時と同様に、円筒形のスキンプレート2の矢印D1方向後部でエレクタ(図示略)によりセグメントを組み立てることで一次覆工Sを施工しつつシールド掘削機20を掘進させるための機構である。掘削機構50においては、切羽13を備えた環状且つ面板型のカッター10の矢印D1方向後方に作泥土室7が設けられている。作泥土室7には作泥土材注入管8から作泥土材9が注入され、図示しない練混ぜ翼によって強力に練混ぜることによって掘削された土砂を泥土に変換し、泥土圧を土圧・水圧とバランスさせることにより切羽13を安定させ、掘削を行う。掘削時において、前記土層の断面に自然由来のヒ素が出現した際には掘削残土にヒ素が含まれる。   The excavation mechanism 50 constructs the primary lining S by assembling the segments with an erector (not shown) at the rear of the cylindrical skin plate 2 in the direction of the arrow D1 in the same manner as when excavating with various conventional shield excavators. This is a mechanism for excavating the shield excavator 20. In the excavation mechanism 50, the mud clay chamber 7 is provided behind the annular and face plate type cutter 10 having the face 13 in the direction of arrow D <b> 1. The mud clay chamber 7 is filled with a mud clay material injection pipe 8 from a mud clay material injection pipe 8 and converts the excavated soil into mud by powerful mixing with a mixing blade (not shown). The face 13 is stabilized by balancing and the excavation is performed. At the time of excavation, when naturally derived arsenic appears in the cross section of the soil layer, the excavated residual soil contains arsenic.

第一排土部52は掘削機構50で発生した掘削残土を掘削残土処理システム1に向けて排土可能に構成され、掘削機構50に順次連設されたスクリューコンベア60,62,64からなる。スクリューコンベア60の一端部60aは作泥土室7の底部に連結されている。スクリューコンベア60の他端部60bは接続管61を介してスクリューコンベア62の一端部62aに上方から連結されている。スクリューコンベア62の他端部62bは接続管63を介してスクリューコンベア64の一端部64aに上方から連結されている。スクリューコンベア64の他端部64bは掘削残土処理システム1の導入部21に連結されている。
従って、掘削機構50の作泥土室7に堆積した掘削残土はスクリューコンベア60に導入され、スクリューコンベア60,62,64により矢印D1方向に搬送された後、掘削残土処理システム1の導入部21に排土される。
なお、第一排土部52の構成は掘削残土を掘削残土処理システム1に向けて排土可能であれば特に限定されず、例えば金属製或いは樹脂製等の搬送管と該搬送管に付設された掘削残土搬送手段で構成されていてもよい。
The first earth removing unit 52 is configured to be able to remove the excavated residual soil generated by the excavating mechanism 50 toward the excavated residual soil processing system 1, and includes screw conveyors 60, 62, and 64 sequentially connected to the excavating mechanism 50. One end 60 a of the screw conveyor 60 is connected to the bottom of the mud clay chamber 7. The other end 60 b of the screw conveyor 60 is connected to one end 62 a of the screw conveyor 62 from above via a connecting pipe 61. The other end 62 b of the screw conveyor 62 is connected to the one end 64 a of the screw conveyor 64 from above via a connecting pipe 63. The other end portion 64 b of the screw conveyor 64 is connected to the introduction portion 21 of the excavation residual soil processing system 1.
Accordingly, the excavated residual soil accumulated in the mud clay chamber 7 of the excavation mechanism 50 is introduced into the screw conveyor 60 and conveyed in the direction of the arrow D1 by the screw conveyors 60, 62, 64, and then introduced into the introduction unit 21 of the excavated residual soil treatment system 1. It is earthed.
The configuration of the first earth removing unit 52 is not particularly limited as long as the excavated residual soil can be excavated toward the excavated residual soil processing system 1, and is attached to the conveyance pipe and the conveyance pipe made of metal or resin, for example. The excavation residual soil conveying means may be used.

スクリューコンベア62の一端部62a及びスクリューコンベア64の一端部64aは一次覆工Sの内部に設けられた架台Mによって支持されている。架台Mの内部には、例えば掘削機構50、第一排土部52、掘削残土処理システム1及び第二排土部54を稼働させるための電源等(図示略)が収容されている。   One end 62a of the screw conveyor 62 and one end 64a of the screw conveyor 64 are supported by a gantry M provided inside the primary lining S. Inside the gantry M, for example, a power source (not shown) for operating the excavation mechanism 50, the first soil removal unit 52, the excavation residual soil processing system 1, and the second soil removal unit 54 are accommodated.

掘削残土処理システム1は掘削残土を破砕する掘削残土処理機構30を備えて構成されている。
掘削残土処理機構30は導入部21と、破砕部22と、薬剤添加部23と、導出部25と、を備えている。
The excavated residual soil treatment system 1 includes a excavated residual soil treatment mechanism 30 that crushes excavated residual soil.
The excavated residual soil processing mechanism 30 includes an introduction unit 21, a crushing unit 22, a chemical addition unit 23, and a derivation unit 25.

導入部21は掘削残土を導入すると共に破砕部22に搬送可能に構成されている。導入部21は例えば配管等で構成され、導入部21の一端部21aがスクリューコンベア64の他端部64bに連結されると共に、導入部21の他端部21bが破砕部22に開口している。また、導入部21の他端部21b近傍には後述する薬剤添加部23の接続管32の一端部32bが連結されている。   The introduction part 21 is configured to introduce the excavated residual soil and to convey it to the crushing part 22. The introduction part 21 is composed of, for example, piping, and one end part 21 a of the introduction part 21 is connected to the other end part 64 b of the screw conveyor 64, and the other end part 21 b of the introduction part 21 opens to the crushing part 22. . In addition, one end portion 32b of a connecting pipe 32 of a drug addition portion 23 described later is connected to the vicinity of the other end portion 21b of the introduction portion 21.

薬剤添加部23は掘削残土に薬剤(図示略)を添加可能に構成されている。このような薬剤添加部23の構成としては、例えば図1に示すように薬剤が収容されている容器31と、容器31及び導入部21を連結する接続管32と、を備えた構成が挙げられるが、特に限定されない。また、薬剤添加部23は破砕部22の後に設置されていてもよい。   The drug addition unit 23 is configured to be able to add a drug (not shown) to the excavated residual soil. As a structure of such a medicine addition part 23, the structure provided with the container 31 in which the medicine is accommodated as shown in FIG. 1, for example, and the connection pipe 32 which connects the container 31 and the introduction part 21 is mentioned. However, it is not particularly limited. Further, the drug addition unit 23 may be installed after the crushing unit 22.

容器31には掘削残土中に存在するヒ素の掘削残土からの溶出を抑制可能な薬剤が収容されている。本実施形態ではこのような薬剤としてポリ塩化アルミニウム(PAC)が用いられている。PACはpHの変化や海水中等における外的環境変化の影響を受け難く、ヒ素の掘削残土からの溶出を抑制する効果を安定的に発揮する。従って、ヒ素の不溶化処理後の掘削残土を例えば海洋中に埋めることも可能になり、掘削残土の後処理方法の選択幅が拡がる。また、PACはヒ素の不溶化以外の用途でも建設現場等で使用されており、広く一般に普及し、入手し易い安価な物質である。従って、PACを薬剤に使用することで本実施形態における掘削残土からのヒ素の不溶化処理が経済的に行われる。   The container 31 contains a chemical capable of suppressing elution of arsenic existing in the excavated residual soil from the excavated residual soil. In this embodiment, polyaluminum chloride (PAC) is used as such a drug. PAC is less susceptible to changes in pH and external environmental changes such as in seawater, and stably exhibits the effect of suppressing arsenic elution from excavated soil. Therefore, it becomes possible to bury the excavated residual soil after the arsenic insolubilizing treatment, for example, in the ocean, and the selection range of the post-treatment method of the excavated residual soil is expanded. PAC is also used at construction sites for purposes other than insolubilization of arsenic, and is an inexpensive substance that is widely spread and easily available. Therefore, by using PAC as a chemical, arsenic insolubilization processing from excavated residual soil in this embodiment is economically performed.

導入部21内に導入された掘削残土には、薬剤添加部23から上記薬剤が添加される。薬剤の添加量は掘削残土からのヒ素の溶出量が閾値以下に充分抑えられるように適宜設定されていることが好ましい。前記閾値が例えば土壌汚染対策法の溶出基準である0.01[mg/L]であれば、一例として溶出量が0.1[mg/L]の掘削残土に対し、0.4重量%以上の添加量で前記閾値未満の溶出量が実現されている。   The chemical is added from the chemical addition unit 23 to the excavation residual soil introduced into the introduction unit 21. It is preferable that the amount of the chemical added is appropriately set so that the amount of arsenic eluted from the excavated residual soil is sufficiently suppressed below the threshold value. For example, if the threshold is 0.01 [mg / L], which is the elution standard of the Soil Contamination Countermeasures Law, for example, 0.4% by weight or more with respect to the excavated residual soil with an elution amount of 0.1 [mg / L] The amount of elution that is less than the above threshold is realized.

図2は破砕部22を示す水平断面図である。破砕部22の上面には導入部21の他端部21bが開口している。但し、図2においては破砕部22の上面、導入部21及び接続管32の図示は省略する。図3及び図4は破砕部22を示す縦断面図であって、図3は図2に示すX−X線で矢視した場合に対応する図であり、図4は図2に示すY−Y線で矢視した場合に対応する図である。   FIG. 2 is a horizontal sectional view showing the crushing portion 22. On the upper surface of the crushing portion 22, the other end portion 21 b of the introducing portion 21 is opened. However, illustration of the upper surface of the crushing part 22, the introduction part 21, and the connecting pipe 32 is omitted in FIG. 3 and FIG. 4 are longitudinal sectional views showing the crushing portion 22, FIG. 3 is a view corresponding to a view taken along the line XX shown in FIG. 2, and FIG. 4 is a Y- It is a figure corresponding to the case where an arrow is seen by a Y line.

図2〜図4に示すように、破砕部22は容器35と、三つのシャフトブレード(回転刃)36A,36B,36Cと、を備えて構成されている。
容器35は破砕部22の筐体であり、導入孔37及び導出孔38を備え、破砕・混合撹拌部40及びフィルタ47を同一空間内に備えている。容器35の上部には導入孔37が設けられ、導入孔37を介して導入部21から掘削残土及び薬剤が矢印D2方向で導入可能とされている。容器35の下部には導出孔38が設けられ、容器35の内部で破砕されると共に薬剤と混合及び撹拌された掘削残土が導出口42を介して矢印D3方向で導出可能とされている。容器35は例えば略筒状に形成されている。
As shown in FIGS. 2 to 4, the crushing portion 22 includes a container 35 and three shaft blades (rotating blades) 36 </ b> A, 36 </ b> B, and 36 </ b> C.
The container 35 is a casing of the crushing unit 22, includes an introduction hole 37 and a lead-out hole 38, and includes a crushing / mixing stirring unit 40 and a filter 47 in the same space. An introduction hole 37 is provided in the upper part of the container 35, and excavation residual soil and chemicals can be introduced from the introduction part 21 through the introduction hole 37 in the direction of the arrow D <b> 2. A lead-out hole 38 is provided in the lower part of the container 35, and the excavated residual soil that is crushed inside the container 35 and mixed and stirred with the chemical can be led out in the direction of arrow D 3 through the lead-out port 42. The container 35 is formed in a substantially cylindrical shape, for example.

破砕・混合撹拌部40は掘削残土を破砕して薬剤と混合し、これらを撹拌するための場所である。破砕・混合撹拌部40にはシャフトブレード36A,36B,36Cが配設されている。シャフトブレード36A,36B,36Cはそれぞれ、破砕・混合撹拌部40の長手方向に沿って設けられた回転軸45と、回転軸45に装着された刃46と、を有する。   The crushing / mixing stirring unit 40 is a place for crushing the excavated soil and mixing it with the chemicals, and stirring them. Shaft blades 36 </ b> A, 36 </ b> B, and 36 </ b> C are disposed in the crushing / mixing stirring unit 40. Each of the shaft blades 36 </ b> A, 36 </ b> B, 36 </ b> C has a rotary shaft 45 provided along the longitudinal direction of the crushing / mixing stirring unit 40 and a blade 46 attached to the rotary shaft 45.

回転軸45は、モータ(図示略)等によって回転することにより、自身を中心として刃46を回転させる部材である。即ち、回転軸45の中心は、刃46の回転の軸線を構成している。
刃46の基端部は回転軸45に連結されている。刃46は容器35の内周面に向かって延在している。図2〜図4には棒状に形成された刃46を例示しているが、刃46の形状及び回転軸45に装着される数は特に限定されない。刃46は例えば矩形、鋸型等の板状に形成されていてもよい。また、刃46は回転軸45に対して螺旋を描くように連続的又は断続的に装着されていてもよい。
The rotating shaft 45 is a member that rotates the blade 46 about itself by being rotated by a motor (not shown) or the like. That is, the center of the rotation shaft 45 constitutes the axis of rotation of the blade 46.
The base end portion of the blade 46 is connected to the rotation shaft 45. The blade 46 extends toward the inner peripheral surface of the container 35. Although the blade 46 formed in the rod shape is illustrated in FIGS. 2 to 4, the shape of the blade 46 and the number attached to the rotating shaft 45 are not particularly limited. The blade 46 may be formed in a plate shape such as a rectangle or a saw shape. The blade 46 may be mounted continuously or intermittently so as to draw a spiral with respect to the rotating shaft 45.

図2に示すように、三つのシャフトブレード36A,36B,36Cの回転軸45は、上面視した場合にそれらの中心が正三角形Tの角に位置するように配設されている。正三角形Tの一辺の長さは刃46の長さより適度に長く、三つのシャフトブレード36A,36B,36Cを回転作動させた際のラップゾーンLの大きさを充分確保できるように設定されている。また、上面視した場合には、刃46は回転軸45の中心から四方向に延びるように配置され、図3及び図4に示すように側面視した場合には刃46は回転軸45の長手方向において三箇所で接続及び支持されている。このような配置において、刃46の回転軸45への装着位置は、三つのシャフトブレード36A,36B,36Cの回転軸45を図2に示す矢印D4,D5,D6方向にそれぞれ回転作動させた際に、刃46同士が接触することなく、且つ、三つのシャフトブレード36A,36B,36Cの刃46が相互に通過するラップゾーンLを形成可能に設定されている。
なお、刃46の数及び配置は特に限定されず、破砕・混合撹拌部40をなす空間を切るようにして撹拌できるように設定されている。
As shown in FIG. 2, the rotation shafts 45 of the three shaft blades 36 </ b> A, 36 </ b> B, 36 </ b> C are arranged such that their centers are located at the corners of the regular triangle T when viewed from above. The length of one side of the equilateral triangle T is appropriately longer than the length of the blade 46, and is set so that the size of the lap zone L can be sufficiently secured when the three shaft blades 36A, 36B, 36C are rotated. . Further, when viewed from the top, the blade 46 is arranged to extend in four directions from the center of the rotation shaft 45, and when viewed from the side as shown in FIGS. Connected and supported at three locations in the direction. In such an arrangement, the blade 46 is mounted on the rotary shaft 45 when the rotary shafts 45 of the three shaft blades 36A, 36B, and 36C are rotated in the directions of arrows D4, D5, and D6 shown in FIG. The blades 46 of the three shaft blades 36A, 36B, and 36C can be formed so that the blades 46 pass through each other without contact between the blades 46.
The number and arrangement of the blades 46 are not particularly limited, and are set so that stirring can be performed by cutting a space forming the crushing / mixing stirring unit 40.

従って、導入孔37から破砕・混合撹拌部40に導入された掘削残土は、三つのシャフトブレード36A,36B,36Cが回転作動することで、複数の刃46に打撃され、矢印D7に図示したようにあらゆる方向に弾き飛ばされる。弾き飛ばされた掘削残土同士はラップゾーンL内で無数の衝突を繰り返し、瞬時に破砕され、細粒状になる。本実施形態では、掘削残土は泥状になる。さらに薬剤とかき混ぜられて良好に混合及び撹拌される。   Accordingly, the excavated residual soil introduced into the crushing / mixing agitation unit 40 from the introduction hole 37 is struck by the plurality of blades 46 by the rotation of the three shaft blades 36A, 36B, 36C, as illustrated by the arrow D7. Played in every direction. The excavated residual soil that has been bounced off repeats countless collisions within the lap zone L, and is crushed instantaneously to become fine particles. In this embodiment, the excavation residual soil is mud. Furthermore, it is agitated with the drug and mixed and stirred well.

フィルタ47は破砕・混合撹拌部40と導出孔38との間に設けられた多数の細孔(図示略)を有する部材である。破砕されると共に薬剤と混合及び撹拌された掘削残土は、フィルタ47の前記細孔を通過して矢印D3方向に導かれ、導出孔38から導出される。   The filter 47 is a member having a large number of pores (not shown) provided between the crushing / mixing stirring section 40 and the outlet hole 38. The excavated residual soil that has been crushed and mixed and stirred with the chemicals passes through the pores of the filter 47, is guided in the direction of arrow D <b> 3, and is derived from the outlet hole 38.

図1に示すように、導出部25は破砕部22で破砕されると共に薬剤と混合及び撹拌された掘削残土を掘削残土処理システム1の外部、即ち本実施形態では第二排土部54に導出可能に構成されている。導出部25は例えば配管等で構成され、導出部25の一端部25aが掘削残土処理機構30の破砕部22の下部に開口し、且つ、導出孔38に連結されると共に、導出部25の他端部25bがスクリューコンベア66の一端部66aに連結されている。導出部25の一端部25aには掘削残土を導出するタイミング又は掘削残土の導出量を調節可能なバルブ26が設けられている。   As shown in FIG. 1, the derivation unit 25 derives the excavated residual soil crushed by the crushing unit 22 and mixed and stirred with the chemicals to the outside of the excavated residual soil treatment system 1, that is, in the present embodiment, to the second soil discharging unit 54. It is configured to be possible. The derivation unit 25 is constituted by, for example, a pipe or the like, and one end portion 25a of the derivation unit 25 opens at a lower portion of the crushing unit 22 of the excavation residual soil treatment mechanism 30 and is connected to the derivation hole 38. The end portion 25 b is connected to one end portion 66 a of the screw conveyor 66. A valve 26 is provided at one end portion 25a of the derivation unit 25. The valve 26 is capable of adjusting the timing at which the excavated residual soil is derived or the amount of excavated residual soil.

第二排土部54は掘削残土処理システム1の導出部25から排出された掘削残土を外方に向けて排土可能に構成され、スクリューコンベア66からなる。スクリューコンベア66の一端部66aは掘削残土処理システム1の導出部25の他端部25bに連結されている。スクリューコンベア66の他端部(図示略)はシールド掘削機20の外方(例えば地上等)に開放されている外部コンベア(図示略)等に連結されている。
従って、掘削残土処理システム1から導出された掘削残土はスクリューコンベア66に導入され、スクリューコンベア66により矢印D1方向に搬送された後、地上等に排土される。
なお、第二排土部54の構成は掘削残土を地上等の少なくとも掘削残土処理システム1の外方に向けて排土可能であれば特に限定されず、第一排土部52と同様に、例えば金属製或いは樹脂製等の搬送管と該搬送管に付設された掘削残土搬送手段で構成されていてもよい。
The second soil discharging unit 54 is configured to be able to discharge the excavated residual soil discharged from the derivation unit 25 of the excavated residual soil processing system 1 outward, and includes a screw conveyor 66. One end portion 66 a of the screw conveyor 66 is connected to the other end portion 25 b of the lead-out portion 25 of the excavation residual soil processing system 1. The other end (not shown) of the screw conveyor 66 is connected to an external conveyor (not shown) opened to the outside of the shield excavator 20 (for example, the ground).
Therefore, the excavated residual soil derived from the excavated residual soil processing system 1 is introduced into the screw conveyor 66, conveyed by the screw conveyor 66 in the direction of arrow D1, and then discharged to the ground or the like.
The configuration of the second earth removing unit 54 is not particularly limited as long as the excavated residual soil can be excavated at least outside the excavated residual soil treatment system 1 such as the ground, and similarly to the first earth discharging unit 52, For example, it may be composed of a transport pipe made of metal or resin, and excavation residual soil transport means attached to the transport pipe.

以上説明したように、本実施形態の掘削残土処理システム1は、土層を掘削する際に発生した掘削残土を破砕すると共に掘削残土に薬剤を添加可能に構成された掘削残土処理機構30を備えている。
上記構成によれば、掘削残土が掘削残土処理機構30に導入された際に、掘削残土が確実に破砕されて細粒状になる。また、掘削残土にPAC等の薬剤が添加されることで、薬剤が掘削残土の内部まで均等に浸透し、掘削残土と薬剤との化学反応が確実に、且つ、効率良く促進される。従って、薬剤による掘削残土中のヒ素の溶出抑制効果を充分に発揮させ、掘削残土中に存在する掘削残土からのヒ素の溶出量を閾値以下に抑えることができる。
As described above, the excavated residual soil treatment system 1 according to the present embodiment includes the excavated residual soil treatment mechanism 30 configured to crush the excavated residual soil generated when excavating the soil layer and to add chemicals to the excavated residual soil. ing.
According to the above configuration, when the excavated residual soil is introduced into the excavated residual soil processing mechanism 30, the excavated residual soil is reliably crushed and becomes finely granular. Further, by adding a chemical such as PAC to the excavated residual soil, the chemical penetrates evenly into the excavated residual soil, and the chemical reaction between the excavated residual soil and the chemical is reliably and efficiently promoted. Therefore, the arsenic elution suppression effect in the excavation residual soil by the chemical can be sufficiently exerted, and the arsenic elution amount from the excavation residual soil existing in the excavation residual soil can be suppressed to a threshold value or less.

本実施形態の掘削残土処理システム1において、掘削残土処理機構30は掘削残土を導入する導入部21と、掘削残土に薬剤を添加する薬剤添加部23と、導入部21から導入された掘削残土を破砕する破砕部22と、掘削残土を導出する導出部25と、を備えている。また、本実施形態の掘削残土処理システム1において、破砕部22は掘削残土と薬剤とを混合及び撹拌可能な構成を備えている。
上記構成によれば、掘削残土が導入部21を介して破砕部22に導入されると共に破砕され、細粒状になる。また、薬剤添加部23から掘削残土に薬剤が添加され、細粒化された掘削残土と薬剤とが混合及び撹拌される。撹拌された掘削残土は、破砕部22から導出され、さらに導出部25から掘削残土処理システム1の外部に向けて導出される。このような円滑な処理により、薬剤を掘削残土の内部まで均等に浸透させ、掘削残土と薬剤との化学反応を確実に、且つ、より効率良く促進させることができる。
In the excavation residue processing system 1 of the present embodiment, the excavation residue treatment mechanism 30 includes an introduction unit 21 for introducing excavation residue, a chemical addition unit 23 for adding a chemical to the excavation residue, and excavation residue introduced from the introduction unit 21. A crushing unit 22 for crushing and a deriving unit 25 for deriving excavated residual soil are provided. Moreover, in the excavation residual soil processing system 1 of this embodiment, the crushing part 22 is equipped with the structure which can mix and stir excavation residual soil and a chemical | medical agent.
According to the said structure, excavation residual soil is introduce | transduced into the crushing part 22 via the introducing | transducing part 21, and is crushed, and becomes a granular form. Moreover, a chemical | medical agent is added to excavation residual soil from the chemical | medical agent addition part 23, and the finely excavated residual soil and chemical | medical agent are mixed and stirred. The agitated excavated soil is led out from the crushing unit 22 and further led out from the crushing unit 25 toward the outside of the excavated residue soil processing system 1. By such a smooth treatment, the chemical can be evenly penetrated into the excavated residual soil, and the chemical reaction between the excavated residual soil and the chemical can be promoted reliably and more efficiently.

また、本実施形態の掘削残土処理システム1において、薬剤添加部23は、破砕部22を掘削残土が通過する前の部分、又は、破砕部22を掘削残土が通過した後の部分に設置されていることを特徴とする。本実施形態では、薬剤添加部23は破砕部22を掘削残土が通過する前の部分に、即ち導入部21に連結して設置されている。
上記構成によれば、薬剤が予め添加された掘削残土が破砕部22で破砕されて細粒状になると共に掘削残土と薬剤とが混練及び撹拌され、薬剤が掘削残土の内部まで均等に浸透する。一方、薬剤添加部23が破砕部22を掘削残土が通過した後の部分に設置されれば、破砕部22で細粒化された掘削残土に薬剤が添加され、薬剤が掘削残土の内部まで均等に浸透する。上記何れの部分に薬剤添加部23を設置しても、掘削残土と薬剤との化学反応を確実に、且つ、より効率良く促進させることができる。
Moreover, in the excavation residual soil processing system 1 of this embodiment, the chemical | medical agent addition part 23 is installed in the part before excavation residual soil passes through the crushing part 22, or the part after excavation residual soil passes through the crushing part 22. It is characterized by being. In the present embodiment, the chemical addition unit 23 is installed in a portion before the excavated residual soil passes through the crushing unit 22, that is, connected to the introduction unit 21.
According to the said structure, the excavation residual soil to which the chemical | medical agent was added previously is crushed by the crushing part 22, and it becomes a granular shape, and excavation residual soil and a chemical | medical agent are knead | mixed and stirred, and a chemical | medical agent osmose | permeates equally to the inside of excavation residual soil. On the other hand, if the chemical addition unit 23 is installed in a portion after the excavation residual soil has passed through the crushing portion 22, the chemical is added to the excavation residual soil finely divided by the crushing portion 22, and the chemical is evenly distributed to the inside of the excavation residual soil. To penetrate. Even if the chemical addition unit 23 is installed in any part, the chemical reaction between the excavation residual soil and the chemical can be promoted reliably and more efficiently.

本実施形態のシールド掘削機20は、掘削残土処理システム1を備えていることを特徴とする。
上記構成によれば、シールド掘削機20において発生した掘削残土が掘削残土処理システム1に導入されることで、掘削残土が確実に破砕されて細粒状になり、PAC等の薬剤が掘削残土の内部まで均等に浸透し、掘削残土と薬剤との化学反応が確実に、且つ、効率良く促進される。
The shield excavator 20 according to the present embodiment includes the excavation residual soil processing system 1.
According to the above configuration, the excavated residual soil generated in the shield excavator 20 is introduced into the excavated residual soil treatment system 1, so that the excavated residual soil is reliably crushed into a fine granular shape, and a chemical such as PAC is contained inside the excavated residual soil. The chemical reaction between the excavated soil and the chemical is reliably and efficiently promoted.

本実施形態のシールド掘削機20は、土層を掘削する掘削機構50と、掘削機構50で発生した掘削残土を掘削残土処理システム1に向けて排土する第一排土部52と、掘削残土処理システム1から導出された掘削残土を外方に排土する第二排土部54と、を備えている。
上記構成によれば、掘削機構50を用いた土層の掘削により発生した掘削残土が第一排土部52により掘削残土処理システム1に排土され、掘削残土処理システム1に導入されると共に処理される。即ち、掘削残土が確実に破砕されて細粒状になり、その掘削残土にPAC等の薬剤が添加されると共にこれらが混合及び撹拌される。処理後の掘削残土は第二排土部54によりシールド掘削機20の外方に排土される。このような円滑な処理により、薬剤が掘削残土の内部まで均等に浸透させ、掘削残土と薬剤との化学反応を確実に、且つ、より効率良く促進させることができる。
The shield excavator 20 according to the present embodiment includes an excavation mechanism 50 that excavates a soil layer, a first earth discharge unit 52 that excavates residual excavation generated by the excavation mechanism 50 toward the excavation residual soil treatment system 1, and excavation residual soil. And a second earth removing portion 54 for discharging the excavated residual soil derived from the processing system 1 to the outside.
According to the above configuration, the excavation residual soil generated by excavation of the soil layer using the excavation mechanism 50 is discharged to the excavation residual soil treatment system 1 by the first earth discharge unit 52 and introduced into the excavation residual soil treatment system 1 and processed. Is done. That is, the excavated residual soil is reliably crushed into fine particles, and a chemical such as PAC is added to the excavated residual soil, and these are mixed and stirred. The treated excavation remaining soil is discharged out of the shield excavator 20 by the second soil discharging unit 54. By such a smooth treatment, the chemical can penetrate evenly into the excavated residual soil, and the chemical reaction between the excavated residual soil and the chemical can be promoted reliably and more efficiently.

以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. It can be changed.

例えば、掘削残土中に存在する処理対象物質はヒ素に限定されない。そして、掘削残土に添加される薬剤はPACに限定されず、掘削残土中に存在する処理対象物質の掘削残土からの溶出を閾値以下に抑制可能な薬剤であればよい。
また、上記実施形態では薬剤添加部23の接続管32の一端部32bが掘削残土処理システム1の導入部21に連結されている(図1参照)が、前述のように薬剤は掘削残土の混合及び撹拌前又は混合及び撹拌時に掘削残土に添加可能であればよく、接続管32の一端部32bは何れの位置に連結されていてもよい。例えば、接続管32の一端部32bは第一排土部52を構成するスクリューコンベア60,62,64或いは掘削残土処理システム1の破砕部22の容器35の上部等に連結されていてもよい。このように薬剤添加部23の設置場所の自由度が大きいので、掘削残土処理システム1及びシールド掘削機20の設計の自由度も大きくなる。
For example, the material to be treated present in the excavated residual soil is not limited to arsenic. And the chemical | medical agent added to excavation residual soil is not limited to PAC, What is necessary is just the chemical | medical agent which can suppress the elution from the excavation residual soil of the process target substance which exists in excavation residual soil below a threshold value.
Moreover, in the said embodiment, the one end part 32b of the connection pipe 32 of the chemical | medical agent addition part 23 is connected with the introducing | transducing part 21 of the excavation residual soil processing system 1 (refer FIG. 1). In addition, it is only necessary to be able to add to the excavation residual soil before stirring or at the time of mixing and stirring, and the one end portion 32b of the connection pipe 32 may be connected to any position. For example, the one end portion 32 b of the connection pipe 32 may be connected to the screw conveyors 60, 62, 64 constituting the first soil discharge portion 52, or the upper portion of the container 35 of the crushing portion 22 of the excavation residual soil treatment system 1. Thus, since the freedom degree of the installation place of the chemical | medical agent addition part 23 is large, the freedom degree of design of the excavation residual soil processing system 1 and the shield excavator 20 also becomes large.

また、上記実施形態では掘削残土を破砕すると共に、掘削残土と薬剤を混合及び撹拌可能な破砕部22を備えた掘削残土処理システム1について説明したが、破砕部22は導入部21から導入された掘削残土を破砕可能に構成されていればよい。このような破砕部22の機構としては、例えば回転軸に複数の刃物を取り付けた回転刃と固定刃との間に作用する剪断力により掘削残土を粉砕する一軸破砕機、近接させて配置した二つの回転刃を互いに内側に回転させることにより回転刃間に作用する大きな剪断力により掘削残土を粉砕する二軸破砕機、ハンマーにより高速に叩くことで掘削残土を粉砕するハンマー式粉砕機、油圧モーターと二つのジョーを備えたバケットで掘削残土を粉砕するバケットクラッシャー等が挙げられるが、薬剤の混合効果が発揮される程度の細かさに掘削残土を破砕することができれば特に限定されない。   In the above embodiment, the excavation residual soil is crushed and the excavation residual soil treatment system 1 including the crushing portion 22 capable of mixing and stirring the excavation residual soil and the chemical has been described. What is necessary is just to be comprised so that crushing remains of excavation can be crushed. As a mechanism of such a crushing unit 22, for example, a uniaxial crusher that crushes excavated residual soil by a shearing force acting between a rotary blade having a plurality of blades attached to a rotary shaft and a fixed blade, and two arranged adjacent to each other. A biaxial crusher that crushes excavated surplus soil with a large shearing force acting between the rotary blades by rotating two rotary blades inside each other, a hammer-type crusher that crushes excavated surplus soil by hitting it with a hammer at high speed, a hydraulic motor A bucket crusher that crushes the excavated residual soil with a bucket having two jaws is available, but the excavated residual soil is not particularly limited as long as the excavated residual soil can be crushed to such a degree that the effect of mixing the chemicals is exhibited.

次いで、上述した本発明の実施形態の掘削残土処理システム1の効果を裏付けるために行った実施例について説明する。なお、本発明は以下の実施例にのみ限定されるものではない。   Next, examples carried out in order to support the effect of the excavation residual soil treatment system 1 according to the embodiment of the present invention described above will be described. In addition, this invention is not limited only to a following example.

図2〜図4に示す構成を備えた破砕部22としてマルチクラッシャーBIG BANG(製造元:株式会社冨士機)を用意した。さらに、第一排土部52と第二排土部54として二つのスクリューコンベア64,66を用意した。スクリューコンベア64の他端部64bをマルチクラッシャーの導入口に連結させ、スクリューコンベア66の一端部66aをマルチクラッシャーの導出口に連結させた。スクリューコンベア64の一端部64aに掘削残土として地山から掘削した土砂を投入し、マルチクラッシャーの導入口からクラッシャー内に導入した。また、薬剤として土砂に対して0.5〜1.0重量%のPACを添加した。   A multi-crusher BIG BANG (manufacturer: Fuji machine Co., Ltd.) was prepared as the crushing section 22 having the configuration shown in FIGS. Furthermore, two screw conveyors 64 and 66 were prepared as the first earth discharging part 52 and the second earth discharging part 54. The other end 64b of the screw conveyor 64 was connected to the multi-crusher inlet, and one end 66a of the screw conveyor 66 was connected to the multi-crusher outlet. The earth and sand excavated from the natural ground as the excavated residual soil was introduced into one end portion 64a of the screw conveyor 64, and introduced into the crusher from the multi-crusher inlet. In addition, 0.5 to 1.0% by weight of PAC was added as a chemical to the earth and sand.

次に、マルチクラッシャーの三つのシャフトブレードを土砂が細粒状になるまで毎分840回転で作動させ、土砂を破砕すると共に土砂と薬剤とを混合及び撹拌した。その後、土砂をマルチクラッシャーの導出口からスクリューコンベア66に導出し、スクリューコンベア66から取り出した。土砂からのヒ素の溶出量とpHの測定はそれぞれICP発光分光分析装置(販売元:セイコーインスツル株式会社)、pH測定電極(販売元:株式会社堀場製作所)を用いて測定した。   Next, the three shaft blades of the multi-crusher were operated at 840 revolutions per minute until the sediment became fine, and the sediment was crushed and the sediment and the chemical were mixed and stirred. Thereafter, the earth and sand were led out to the screw conveyor 66 from the outlet of the multi-crusher and taken out from the screw conveyor 66. The amount of arsenic eluted from the earth and sand and the pH were measured using an ICP emission spectroscopic analyzer (distributor: Seiko Instruments Inc.) and a pH measuring electrode (distributor: Horiba, Ltd.), respectively.

土砂からのヒ素の溶出量の測定結果を図5に示す。図5において、「処理前」は薬剤を添加する前のヒ素の初期溶出濃度であることを示し、「処理後」は薬剤添加処理後のヒ素溶出濃度であることを示している。また、同図の「添加位置」において、「先」はマルチクラッシャーで破砕する前の土砂にPACを添加したことを示し、「後」はマルチクラッシャーで破砕した後の土砂にPACを添加したことを示している。   The measurement results of the amount of arsenic eluted from the earth and sand are shown in FIG. In FIG. 5, “before treatment” indicates the initial elution concentration of arsenic before adding the drug, and “after process” indicates the arsenic elution concentration after the drug addition process. Also, in the “addition position” in the figure, “Previous” indicates that PAC was added to the soil before crushing with the multi-crusher, and “After” indicates that PAC was added to the soil after crushing with the multi-crusher. Is shown.

図5に示すように、「処理前」では掘削残土に薬剤が添加されていないため、掘削残土からのヒ素溶出量が土壌汚染対策法の溶出基準である0.01[mg/L]を超えている。これに対し、「処理後」では、土砂にPACを添加した後に、土砂をマルチクラッシャーで破砕すると共に土砂とPACとを撹拌することで、土砂からのヒ素の溶出量が0.01[mg/L]以下になり、本発明の効果を確認した。PACを土砂の0.5重量%添加した場合、及び0.75重量%添加した場合では、土砂からのヒ素の溶出量は0[mg/L]となった。また、PACを土砂の1.0重量%添加した場合であっても、土砂からのヒ素の溶出量は約0.002[mg/L]まで低減された。   As shown in FIG. 5, since the chemical is not added to the excavated residual soil in “Before treatment”, the amount of arsenic eluted from the excavated residual soil exceeds 0.01 [mg / L], which is the elution standard of the soil pollution countermeasure method. ing. On the other hand, in the “after treatment”, after adding PAC to the earth and sand, the earth and sand are crushed with a multi-crusher and the earth and sand and PAC are stirred, so that the amount of arsenic eluted from the earth and sand is 0.01 [mg / mg]. L] The following was confirmed and the effect of the present invention was confirmed. When PAC was added by 0.5% by weight of earth and sand, and when 0.75% by weight was added, the amount of arsenic eluted from the earth and sand was 0 [mg / L]. Further, even when 1.0% by weight of PAC was added to the earth and sand, the amount of arsenic eluted from the earth and sand was reduced to about 0.002 [mg / L].

また、例えばPACをスクリューコンベア64の一端部64aから掘削土砂と共に導入した場合のように、マルチクラッシャーで破砕した後の細粒化された土砂にPACを添加することでも、土砂からのヒ素の溶出量は0.01[mg/L]以下になり、本発明の効果が得られた。PACを土砂の0.5重量%添加した場合及び1.0重量%添加した場合では、土砂からのヒ素の溶出量は0[mg/L]となった。また、PACを土砂の0.75重量%添加した場合では、土砂からのヒ素の溶出量が0.002[mg/L]未満まで低減された。即ち、PACの添加位置によらず、破砕した土砂に所定量のPACを添加することで効率良く、確実に薬剤による掘削残土中のヒ素の溶出抑制効果が発揮されたと考えられる。
上記説明したように、本発明を適用した掘削残土処理システムによれば、掘削残土の内部まで均等に薬剤を浸透させることができるので、掘削残土と薬剤との化学反応が効率良く促進され、薬剤による掘削残土中のヒ素の溶出抑制効果が充分に発揮されることを確認した。
In addition, for example, when PAC is introduced together with excavated earth and sand from one end 64a of the screw conveyor 64, PAC is added to finely divided earth and sand after being crushed by a multi-crusher, so that arsenic is eluted from the earth and sand. The amount was 0.01 [mg / L] or less, and the effect of the present invention was obtained. When PAC was added at 0.5% by weight of the earth and sand and 1.0% by weight, the elution amount of arsenic from the earth and sand was 0 [mg / L]. Further, when PAC was added at 0.75% by weight of the earth and sand, the amount of arsenic eluted from the earth and sand was reduced to less than 0.002 [mg / L]. That is, it is considered that the arsenic elution suppression effect of the excavation residual soil by the chemical agent was efficiently and surely exerted by adding a predetermined amount of PAC to the crushed earth and sand regardless of the addition position of PAC.
As described above, according to the excavation residual soil treatment system to which the present invention is applied, the chemical can be uniformly permeated into the excavation residual soil, so that the chemical reaction between the excavation residual soil and the chemical is efficiently promoted, and the chemical It was confirmed that the arsenic elution suppression effect in the excavated residual soil was fully exhibited.

1 掘削残土処理システム
20 シールド掘削機
21 導入部
22 破砕部
23 薬剤添加部
25 導出部
30 掘削残土処理機構
50 掘削機構
52 第一排土部
54 第二排土部
DESCRIPTION OF SYMBOLS 1 Excavation residual soil processing system 20 Shield excavator 21 Introduction part 22 Crushing part 23 Drug addition part 25 Derivation part 30 Excavation residual soil processing mechanism 50 Excavation mechanism 52 First earth removal part 54 Second earth removal part

Claims (5)

土層を掘削する際に発生した掘削残土を破砕すると共に前記掘削残土に薬剤を添加可能に構成された掘削残土処理機構を備えていることを特徴とする掘削残土処理システム。   An excavation residual soil treatment system comprising a excavation residual soil treatment mechanism configured to crush the excavation residual soil generated when excavating the soil layer and to add a chemical to the excavation residual soil. 前記掘削残土処理機構は、
前記掘削残土を導入する導入部と、
前記掘削残土に前記薬剤を添加する薬剤添加部と、
前記導入部から導入された前記掘削残土を破砕する破砕部と、
前記掘削残土を導出する導出部と、を備えていることを特徴とする請求項1に記載の掘削残土処理システム。
The excavation residue processing mechanism is
An introduction part for introducing the excavated residual soil;
A drug addition unit for adding the drug to the excavated soil;
A crushing unit for crushing the excavated residual soil introduced from the introduction unit;
The excavation residual soil processing system according to claim 1, further comprising a derivation unit that derives the excavation residual soil.
前記薬剤添加部は、
前記破砕部を掘削残土が通過する前の部分、又は、前記破砕部を掘削残土が通過した後の部分に設置されていることを特徴とする請求項2に記載の掘削残土処理システム。
The drug addition part is
The excavation residual soil processing system according to claim 2, wherein the excavation residual soil treatment system is installed in a portion before the excavation residual soil passes through the crushing portion or a portion after the excavation residual soil passes through the crushing portion.
請求項1〜3のうち何れか一項に記載の掘削残土処理システムを備えていることを特徴とするシールド掘削機。   The shield excavator provided with the excavation residual soil processing system as described in any one of Claims 1-3. 土層を掘削する掘削機構と、
前記掘削機構で発生した掘削残土を前記掘削残土処理システムに向けて排土する第一排土部と、
前記掘削残土処理システムから導出された前記掘削残土を外方に排土する第二排土部と、を備えていることを特徴とする請求項4に記載のシールド掘削機。
An excavation mechanism for excavating the soil layer;
A first excavation portion for excavating residual excavation generated by the excavation mechanism toward the excavation residual soil treatment system;
The shield excavator according to claim 4, further comprising: a second earth discharging unit that discharges the excavated residual soil derived from the excavated residual soil processing system outward.
JP2014238116A 2014-11-25 2014-11-25 Excavated soil treatment system and shield excavator Active JP6432771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238116A JP6432771B2 (en) 2014-11-25 2014-11-25 Excavated soil treatment system and shield excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238116A JP6432771B2 (en) 2014-11-25 2014-11-25 Excavated soil treatment system and shield excavator

Publications (2)

Publication Number Publication Date
JP2016098608A true JP2016098608A (en) 2016-05-30
JP6432771B2 JP6432771B2 (en) 2018-12-05

Family

ID=56076455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238116A Active JP6432771B2 (en) 2014-11-25 2014-11-25 Excavated soil treatment system and shield excavator

Country Status (1)

Country Link
JP (1) JP6432771B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818026A (en) * 1987-12-29 1989-04-04 Kabushiki Kaisha Komatsu Seisakusho Shield type tunneling apparatus
JPH01315593A (en) * 1988-04-22 1989-12-20 Kajima Corp Waste soil processing for shield construction and processing device
JPH0366898A (en) * 1989-08-07 1991-03-22 Fujita Corp Soil and sand carryout method in shield method and soil modifying device
JP2001280080A (en) * 2000-01-24 2001-10-10 Hitachi Zosen Corp Shield machine and shield excavating facility
JP2007092375A (en) * 2005-09-28 2007-04-12 Toyo Kogyo Kk Soil moving device of shield machine with small caliber
JP2014163218A (en) * 2013-06-27 2014-09-08 Maeda Corp Shield machine and shield method
US20150233243A1 (en) * 2012-10-19 2015-08-20 Herrenknecht Aktiengesellschaft Method and device for transporting overburden away during tunnelling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818026A (en) * 1987-12-29 1989-04-04 Kabushiki Kaisha Komatsu Seisakusho Shield type tunneling apparatus
JPH01315593A (en) * 1988-04-22 1989-12-20 Kajima Corp Waste soil processing for shield construction and processing device
JPH0366898A (en) * 1989-08-07 1991-03-22 Fujita Corp Soil and sand carryout method in shield method and soil modifying device
JP2001280080A (en) * 2000-01-24 2001-10-10 Hitachi Zosen Corp Shield machine and shield excavating facility
JP2007092375A (en) * 2005-09-28 2007-04-12 Toyo Kogyo Kk Soil moving device of shield machine with small caliber
US20150233243A1 (en) * 2012-10-19 2015-08-20 Herrenknecht Aktiengesellschaft Method and device for transporting overburden away during tunnelling
JP2014163218A (en) * 2013-06-27 2014-09-08 Maeda Corp Shield machine and shield method

Also Published As

Publication number Publication date
JP6432771B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP5001100B2 (en) Construction sludge treatment soil preparation system and construction sludge treatment soil preparation method
CN104368595A (en) Contaminated soil ex-situ medicating, mixing and restoring system
JP6463222B2 (en) Processing method and processing system of excavated soil
JP6432771B2 (en) Excavated soil treatment system and shield excavator
JP2012197630A (en) Method for processing foam soil
JP2016160735A (en) Machine inside earth removal processing system in underground excavation boring machine
JP2003340423A (en) System and method for treating contaminated soil
JP6663296B2 (en) Rocks insolubilization system, tunnel excavation system and tunnel construction method
JP2007321524A (en) Deep mixing device and deep mixing method of soil stabilization
JP4312591B2 (en) Mud / earth pressure combined shield machine
JP6423185B2 (en) Bubble shield method
JP2005324083A (en) Polluted soil treatment method and polluted soil treatment system
JP6961206B2 (en) Vertical crusher
JP5010998B2 (en) Processing equipment, processing method of excavated sediment
JPS6040713Y2 (en) Shield excavator sludge conveying device
JP2014163218A (en) Shield machine and shield method
JP2589170B2 (en) Earth Pressure Shield Surplus Soil Treatment Method Using High Moisture Abrasion Treatment Agent
JP3182668B2 (en) Excavated soil improvement equipment for earth pressure shield machine
JP2014201999A (en) Treatment method and treatment system of shield excavation surplus soil
JP6853320B2 (en) Screw conveyor, shield excavator and soil removal method
JP6156803B2 (en) Solid processing product stirring device
JP2001038396A (en) Mud solidifying and treating device
JP2010046620A (en) System for granulating/solidifying object to be treated
JP2008057254A (en) Soil improving apparatus
JP2016097380A (en) Insolubilization method of arsenic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6432771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150