JP2016098439A - Composite yarn and fabric using the same - Google Patents

Composite yarn and fabric using the same Download PDF

Info

Publication number
JP2016098439A
JP2016098439A JP2014233416A JP2014233416A JP2016098439A JP 2016098439 A JP2016098439 A JP 2016098439A JP 2014233416 A JP2014233416 A JP 2014233416A JP 2014233416 A JP2014233416 A JP 2014233416A JP 2016098439 A JP2016098439 A JP 2016098439A
Authority
JP
Japan
Prior art keywords
yarn
fabric
shaped cross
composite yarn
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014233416A
Other languages
Japanese (ja)
Other versions
JP6578650B2 (en
Inventor
菱沼 澄男
Sumio Hishinuma
澄男 菱沼
圭資 村田
Keishi Murata
圭資 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014233416A priority Critical patent/JP6578650B2/en
Publication of JP2016098439A publication Critical patent/JP2016098439A/en
Application granted granted Critical
Publication of JP6578650B2 publication Critical patent/JP6578650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a yarn and a fabric, having thermal insulating properties, a swelling feel and lightness in combination.SOLUTION: A composite yarn includes a hollow yarn having an approximately C-shaped cross-section and an elastic fiber. The hollow yarn has a wall thickness of 0.2 μm to 15.0 μm, and a loop height of 300 μm to 5000 μm.SELECTED DRAWING: Figure 1

Description

本発明は、略C型断面形状を有する糸(以下「略C型断面糸」という)と弾性繊維で構成された複合糸、及びこれを用いた布帛に関する。   The present invention relates to a composite yarn composed of a yarn having a substantially C-shaped cross-sectional shape (hereinafter referred to as “substantially C-shaped cross-sectional yarn”) and an elastic fiber, and a fabric using the same.

近年、着用時の動きやすさ等の観点で、保温性、膨らみ感等の必要な特性を保持しつつ、軽さを追求した衣服の開発が盛んである。この目的のために、さまざまな機能性繊維が開発されてきた。   In recent years, from the viewpoint of ease of movement when worn, development of clothing that pursues lightness while maintaining necessary characteristics such as heat retaining properties and a feeling of swelling has been active. Various functional fibers have been developed for this purpose.

中でも、中空断面を有する繊維(以下、中空繊維と称する)が注目されている。中空繊維は、繊維質量当たりの体積が大きく、軽量性、保温性が優れており、適度な膨らみ感が得られるため、古くから、詰め綿や布団綿等の短繊維に用いられてきたが、近年では、衣料用途等でも使用可能な長繊維が各種開発されている。   Among these, a fiber having a hollow cross section (hereinafter referred to as a hollow fiber) is attracting attention. Hollow fibers have a large volume per fiber mass, are lightweight, have excellent heat retention, and have a moderate swell, and have long been used for short fibers such as stuffed cotton and futon cotton. In recent years, various types of long fibers that can be used for clothing and the like have been developed.

中空繊維の製造方法としては、中空用紡糸口金を用い、紡糸、延伸により中空繊維を製造する方法が知られている(特許文献1、以下、この方法を「直接中空形成法」と称する)。しかしながら、直接中空形成法では、中空率の高い(例えば、中空率約55%以上の)中空糸を得ることが困難であり、単糸繊度が小さいものを作ることもできない。また、中空繊維は、曲げ剛性が高く、風合いが硬い。また、撚りが施されると膨らみ感と軽量性が損なわれるおそれがあるため、撚り加工をした中空繊維を得ることはできない。中空率を高めるために、芯成分と鞘成分を有する芯鞘型繊維から芯成分を除去することにより中空繊維を製造する溶出法が開発された。   As a method for producing a hollow fiber, a method for producing a hollow fiber by spinning and drawing using a spinneret for hollow is known (Patent Document 1, hereinafter, this method is referred to as “direct hollow forming method”). However, in the direct hollow forming method, it is difficult to obtain a hollow fiber having a high hollow ratio (for example, a hollow ratio of about 55% or more), and a single fiber fineness cannot be made. Further, the hollow fiber has high bending rigidity and a hard texture. Moreover, since a feeling of swelling and lightness may be impaired when twisting is performed, it is not possible to obtain a twisted hollow fiber. In order to increase the hollow ratio, an elution method has been developed in which a hollow fiber is produced by removing the core component from a core-sheath fiber having a core component and a sheath component.

しかしながら、いずれの方法を使用するにしても、中空繊維は、特に長繊維として用いる場合、仮撚や撚糸、製編織時に物理的圧力によって中空部分がつぶれてしまい、目標とする中空率が得られず、中空繊維本来の機能が十分に発揮されないという欠点があった。   However, no matter which method is used, when hollow fibers are used as long fibers, the hollow portions are crushed by physical pressure during false twisting, twisting and weaving, and the target hollow ratio can be obtained. In addition, the original function of the hollow fiber is not sufficiently exhibited.

このような問題を回避するために、いくつかの工夫がなされてきた。第1に、繊維断面形状をC型に変える方法がある。一例として、芯鞘型繊維の鞘成分をポリエステルとし、芯成分の一部が繊維表面に露出しており、芯成分を溶解して得られる溶出型中空糸様繊維(例えば、C型断面等を有する繊維)が知られている(特許文献2)。C型断面を有するポリエステル繊維は、断面が完全な中空ではなく、C型であるため、中空部分が比較的つぶれにくく、単繊維それぞれが適度な柔軟性を持っており、ソフト性をより強調することができる(特許文献3)。   In order to avoid such a problem, several ideas have been made. First, there is a method of changing the fiber cross-sectional shape to a C-shape. As an example, the sheath component of the core-sheath fiber is polyester, a part of the core component is exposed on the fiber surface, and an elution type hollow fiber-like fiber obtained by dissolving the core component (for example, a C-shaped cross section) Fiber) is known (Patent Document 2). The polyester fiber having a C-shaped cross section is not completely hollow in cross section, but is C-shaped, so that the hollow portion is relatively hard to be crushed, each single fiber has appropriate flexibility, and the softness is more emphasized. (Patent Document 3).

さらに、中空部分の溶出を種々の加工の後に行うと、中空部分がつぶれにくくなる。ポリエステル芯鞘複合繊維において、製編織後にアルカリ等の溶剤減量を施して芯成分を除去することにより、仮撚や撚糸及び製編織時の物理的圧力に耐え、中空部が維持されやすいことが知られている(特許文献4)。   Furthermore, if the elution of the hollow portion is performed after various processing, the hollow portion is not easily crushed. Polyester core-sheath composite fibers are known to be able to withstand physical pressure during false twisting and twisting and weaving and maintain the hollow part by removing the core component by reducing the amount of solvent such as alkali after weaving and weaving. (Patent Document 4).

特開2007−270358号JP 2007-270358 A 特開昭55―93812号JP 55-93812 特開昭64−52839号JP-A 64-52839 特開2007−131980号JP2007-131980A

しかしながら、上述の工夫を施した繊維は、必要な軽さは得られるものの、以下のような課題がある。   However, although the fiber which gave the above-mentioned device can obtain the required lightness, there are the following problems.

(1)中空繊維と、この中空繊維から得られる布帛の強力が、全体的に低くなりがちであり、高強力を必要とする衣料では問題となる。特に、中空率が高い中空繊維では、さまざまな商品に適用する際に制約がある。   (1) The strength of the hollow fiber and the fabric obtained from the hollow fiber tends to be low as a whole, which is a problem in clothing that requires high strength. In particular, hollow fibers having a high hollow ratio have limitations when applied to various products.

(2)中空繊維は、特にストレッチ性が要求される用途(例えば、スポーツ衣料)では伸度が足りない場合があり、得られる布帛は、着用時に身体への追随性が乏しく、着心地が良くない。   (2) The hollow fiber may have insufficient elongation especially in applications where stretchability is required (for example, sports clothing), and the resulting fabric has poor followability to the body when worn and is comfortable to wear Absent.

(3)繊維自体の膨らみ感は、断面をC型断面にすることで向上するが、まだ十分とはいえない。   (3) The feeling of swelling of the fiber itself is improved by making the cross section a C-shaped cross section, but it is not yet sufficient.

また、溶出法により中空部分を作成する場合には、直接中空形成法よりも高い中空率が得られるものの、以下の課題がある。   Moreover, when creating a hollow part by the elution method, although the hollow rate higher than a direct hollow formation method is obtained, there exist the following subjects.

(4)製編織後に中空繊維の芯部分を除去する場合、(i)ウール、絹、アクリル、レーヨン、キュプラ、カチオンポリエステル等のアルカリに弱い繊維や、アルカリで変色、変質しやすい繊維等と組み合わせることができない、(ii)絹、レーヨン等のセット性が良くない繊維と組み合わせた布帛は、製編織後の溶出工程によりシワが発生しやすい、(iii)コート地やパンツ地のような厚地で目付の大きな布帛は、従来の装置では製編織後の溶出を行うことが物理的に不可能であり、専用の溶出装置が必要となる。   (4) When removing the core portion of the hollow fiber after weaving and weaving, (i) combining with fibers that are vulnerable to alkali such as wool, silk, acrylic, rayon, cupra, and cationic polyester, and fibers that are easily discolored or deteriorated by alkali. (Ii) Fabrics combined with fibers with poor setting properties such as silk and rayon are prone to wrinkles due to the elution process after weaving and weaving. (Iii) Thick fabrics such as coated fabrics and pants fabrics A fabric with a large basis weight is physically impossible to perform elution after weaving and weaving with a conventional apparatus, and a dedicated elution apparatus is required.

本発明は、上述の課題を解決すべく、略C型断面糸と弾性繊維とで構成された複合糸を提供する。この略C型断面糸は、壁の平均厚みが0.2μm〜15.0μmであり、かつ中空糸のループ高さが300μm〜5000μmである。   In order to solve the above-described problems, the present invention provides a composite yarn composed of a substantially C-shaped cross-sectional yarn and elastic fibers. This substantially C-shaped cross-sectional yarn has an average wall thickness of 0.2 μm to 15.0 μm and a hollow fiber loop height of 300 μm to 5000 μm.

複合糸の軽量性、膨らみ感等の性質を損なわない範囲であれば、他の糸が複合糸に含まれてもよい。他の糸の例としては、通常の中実ポリエステル糸、中実ポリアミド糸などが挙げられるが、特に限定はない。他の糸は、好ましくは、複合糸に50質量%以下の量で含まれる。   Other yarns may be included in the composite yarn as long as the properties such as lightness and swelling of the composite yarn are not impaired. Examples of other yarns include ordinary solid polyester yarns and solid polyamide yarns, but are not particularly limited. The other yarn is preferably contained in the composite yarn in an amount of 50% by mass or less.

本発明の好ましい実施態様では、略C型断面糸の中空率が55〜80%であり、単糸繊度は0.1〜50デシテックスである。本発明のさらに好ましい実施態様では、略C型断面糸は、仮撚糸である。本発明の好ましい実施態様では、弾性繊維は、ポリウレタン系である。   In a preferred embodiment of the present invention, the hollowness of the substantially C-shaped cross-sectional yarn is 55 to 80%, and the single yarn fineness is 0.1 to 50 dtex. In a further preferred embodiment of the present invention, the substantially C-shaped cross-sectional yarn is a false twisted yarn. In a preferred embodiment of the invention, the elastic fibers are polyurethane-based.

好ましくは、略C型断面糸は、芯成分と鞘成分を有する複合糸の芯部分を溶出することによって中空部分が形成される。さらに好ましくは、溶出は、アルカリ液を用いた溶出である。好ましくは、本発明の複合糸において、弾性繊維は、複合糸中1〜70質量%含まれる。布帛を形成した後ではなく、複合糸の状態でアルカリ溶出することにより、(i)ウール等のアルカリに弱い繊維や、アルカリで変色、変質しやすい繊維等と組み合わせることができ、(ii)絹、レーヨン等のセット性が良くない繊維と組み合わせた布帛も、製編織後の溶出工程が不要なため、シワ発生が抑えられ、(iii)コート地やパンツ地のような厚地で目付の大きな布帛であっても、複合糸の状態で溶出してから製編織するため、従来の装置を使用して非常に軽い布帛を得ることができる。   Preferably, in the substantially C-shaped cross-sectional yarn, a hollow portion is formed by eluting a core portion of a composite yarn having a core component and a sheath component. More preferably, the elution is an elution using an alkaline solution. Preferably, in the composite yarn of the present invention, the elastic fiber is contained in an amount of 1 to 70% by mass in the composite yarn. By elution with alkali in the state of composite yarn instead of after forming the fabric, it can be combined with (i) fibers that are vulnerable to alkali such as wool or fibers that are easily discolored or deteriorated by alkali, and (ii) silk Cloths combined with fibers with poor setability, such as rayon, also eliminate wrinkling because an elution process after weaving is not necessary, and (iii) Fabrics with a large area weight such as coats and pants Even so, since it is knitted and woven after elution in the state of the composite yarn, it is possible to obtain a very light fabric using a conventional apparatus.

さらに、本発明は、上述のような複合糸を用いて作られた布帛も提供する。好ましくは、得られる布帛は織物であり、織物の伸長率が5%以上、伸長回復率が80%以上である。本発明の好ましい実施態様では、得られる布帛は編地であり、編地の伸長率が90%以上、伸長回復率が80%以上である。さらに、本発明の好ましい実施態様では、複合糸の溶出後の総繊維度が10デシテックス以上500デシテックス以下である。また、さらに好ましくは、本発明の布帛は起毛加工されている。   Furthermore, the present invention also provides a fabric made using the composite yarn as described above. Preferably, the obtained fabric is a woven fabric, and the stretch rate of the woven fabric is 5% or more and the stretch recovery rate is 80% or more. In a preferred embodiment of the present invention, the obtained fabric is a knitted fabric, and the stretch rate of the knitted fabric is 90% or more and the stretch recovery rate is 80% or more. Furthermore, in a preferred embodiment of the present invention, the total fiber degree after elution of the composite yarn is 10 dtex or more and 500 dtex or less. More preferably, the fabric of the present invention has been brushed.

本発明では、略C型断面糸に弾性繊維を組み合わせることによって、略C型断面糸の低強力を芯部にある弾性繊維が補い、複合糸全体として高い強力が得られる。そのため、本発明の複合糸は、略C型断面糸の軽量性、ソフトさ、風合い等の優れた性質を保持しつつ、さまざまな商品に使用することができる。また、芯部に使用する弾性繊維が非常に高いストレッチ性を有するため、本発明の複合糸は、高いストレッチ性を有し、得られる布帛は、着用時に身体への追随性が良く、着心地が良い。また、本発明の複合糸は、略C型断面糸自体の断面方向の膨らみに加え、弾性繊維の周囲に略C型断面糸が大きなループとなって複合されているので、複合糸全体の膨らみが極大化される構造となる。この膨らみが大きな糸を用いると、従来にはない大きな膨らみを有する布帛が得られる。   In the present invention, by combining the elastic fiber with the substantially C-shaped cross-sectional yarn, the low strength of the substantially C-shaped cross-sectional yarn is supplemented by the elastic fiber in the core portion, so that the composite yarn as a whole has high strength. Therefore, the composite yarn of the present invention can be used for various products while maintaining the excellent properties such as lightness, softness and texture of the substantially C-shaped cross-sectional yarn. In addition, since the elastic fiber used for the core portion has a very high stretchability, the composite yarn of the present invention has a high stretchability, and the resulting fabric has good followability to the body when worn and is comfortable to wear. Is good. In addition, the composite yarn of the present invention has a substantially C-shaped cross-sectional yarn bulging in the cross-sectional direction of the substantially C-shaped cross-sectional yarn itself. Is a structure that is maximized. When a yarn having a large bulge is used, a fabric having a large bulge that is not conventionally obtained can be obtained.

図1は、本発明の一実施形態にかかる略C型断面糸の断面を示す顕微鏡写真である(倍率2000倍)。FIG. 1 is a photomicrograph showing the cross section of a substantially C-shaped cross-sectional yarn according to an embodiment of the present invention (magnification 2000 times). 図2は、以下に示す「先混用後溶出法」で得られた複合糸の画像である(倍率400倍)。FIG. 2 is an image of a composite yarn obtained by the “elution method after pre-mixing” shown below (400 × magnification). 図3は、以下に示す「先溶出後混用法」で得られた複合糸の画像である(倍率400倍)。FIG. 3 is an image of a composite yarn obtained by the following “mixing method after elution” (400 × magnification). 図4は、本発明の一実施形態にかかる略C型断面糸において、弾性繊維と混用せずに芯成分を除去した後の画像である(倍率400倍)。FIG. 4 is an image after removing the core component without mixing with the elastic fiber in the substantially C-shaped cross-sectional yarn according to one embodiment of the present invention (magnification 400 times). 図5は、従来の綿コアスパンヤーン(比較例)の画像である(倍率400倍)。FIG. 5 is an image of a conventional cotton core spun yarn (comparative example) (400 × magnification).

以下、本発明の実施形態を詳細に説明する。
本発明の複合糸は、略C型断面糸と、弾性繊維とで構成される。
Hereinafter, embodiments of the present invention will be described in detail.
The composite yarn of the present invention is composed of a substantially C-shaped cross-sectional yarn and elastic fibers.

(1.略C型断面糸)
本発明の複合糸は、略C型断面糸を含む。
(1. C-shaped cross section yarn)
The composite yarn of the present invention includes a substantially C-shaped cross-sectional yarn.

本発明において、「略C型断面糸」とは、繊維軸方向に連続して中空繊維の壁の一部が開口しており、断面形状が略C型(変形して略V型、略U型に見えるものを含む)の糸を指す。   In the present invention, the “substantially C-shaped cross-sectional yarn” means that a part of the hollow fiber wall is opened continuously in the fiber axis direction, and the cross-sectional shape is approximately C-shaped (deformed to be approximately V-shaped, approximately U-shaped). Threads (including those that look like molds).

本明細書において、「溶出型中空糸」とは、芯成分と鞘成分とからなる芯鞘構造を有し、芯成分を除去することにより略C型断面形状を有する糸を形成し得る糸であって、繊維横断面において当該芯成分の一部が当該鞘成分の開口部から繊維表面に露出している糸をいう。   In this specification, the “eluting hollow fiber” is a yarn that has a core-sheath structure composed of a core component and a sheath component, and can form a yarn having a substantially C-shaped cross-sectional shape by removing the core component. In the fiber cross section, a part of the core component is exposed to the fiber surface from the opening of the sheath component.

図1は、本発明の一実施形態にかかる略C型断面糸の断面を示す顕微鏡写真である。   FIG. 1 is a photomicrograph showing a cross section of a substantially C-shaped cross-sectional yarn according to an embodiment of the present invention.

本発明の略C型断面糸の製造方法として、芯成分と鞘成分とを有する芯鞘糸の芯成分を溶出する方法が挙げられる。芯成分は、芯鞘糸の芯成分と鞘成分との特定の溶媒に対する溶解性の差を利用し、芯成分を溶出するという一般的な方法によって除去することができ、例えば、アルカリ溶液を用いて溶出される。溶出に用いるアルカリ溶液は、水酸化ナトリウム、水酸化カリウム等の水溶液が好ましい。   A method for eluting the core component of the core-sheath yarn having a core component and a sheath component can be mentioned as a method for producing the substantially C-shaped cross-section yarn of the present invention. The core component can be removed by a general method of eluting the core component by utilizing the difference in solubility in a specific solvent between the core component and the sheath component of the core-sheath yarn. For example, using an alkaline solution Is eluted. The alkaline solution used for elution is preferably an aqueous solution such as sodium hydroxide or potassium hydroxide.

芯鞘糸の芯成分は、鞘成分よりもアルカリ溶液に溶解しやすいものであればよい。例えば、5−スルホイソフタル酸金属塩又は/及びポリエチレングリコールを共重合成分として用いたポリエステルが芯成分として好適に用いられる。好ましくは、5−スルホイソフタル酸金属塩とポリエチレングリコールをともに共重合成分として用いたポリエステルが芯成分として用いられる。好ましくは、5−スルホイソフタル酸金属塩は、ナトリウム塩である。ポリエステルは、好ましくは、ポリエチレンテレフタレートである。好ましくは、共重合する5−スルホイソフタル酸ナトリウム塩とポリエチレングリコールの量は、芯成分全体の質量を基準として、2成分合計で10質量%〜30質量%、さらに好ましくは、12質量%〜20質量%である。10質量%より少ないと、アルカリ溶液による溶出が不十分となる場合がある。一方、30質量%より多いと、製糸安定性が悪くなる場合がある。   The core component of the core-sheath yarn only needs to be easier to dissolve in the alkaline solution than the sheath component. For example, polyester using 5-sulfoisophthalic acid metal salt or / and polyethylene glycol as a copolymerization component is preferably used as the core component. Preferably, polyester using both 5-sulfoisophthalic acid metal salt and polyethylene glycol as a copolymerization component is used as the core component. Preferably, the 5-sulfoisophthalic acid metal salt is a sodium salt. The polyester is preferably polyethylene terephthalate. Preferably, the amount of 5-sulfoisophthalic acid sodium salt and polyethylene glycol to be copolymerized is 10% by mass to 30% by mass, more preferably 12% by mass to 20%, based on the total mass of the core component. % By mass. If it is less than 10% by mass, elution with an alkaline solution may be insufficient. On the other hand, when the amount is more than 30% by mass, the yarn-making stability may deteriorate.

また、芯成分のポリエステルには、アルカリ溶液による溶出性と製糸安定性を妨げない範囲で、アジピン酸、イソフタル酸、セバシン酸、フタル酸、ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、シクロヘキサンジカルボン酸等のジカルボン酸及びそのエステル形成性誘導体、ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオキシ化合物、p−(β−オキシエトキシ)安息香酸等のオキシカルボン酸及びそのエステル形成性誘導体等が共重合されていてもよい。   In addition, the core component polyester includes adipic acid, isophthalic acid, sebacic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, cyclohexane as long as it does not interfere with the dissolution property with an alkaline solution and the stability of yarn production. Dicarboxylic acids such as dicarboxylic acids and ester-forming derivatives thereof, dioxy compounds such as diethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol, and oxycarboxylic acids such as p- (β-oxyethoxy) benzoic acid and ester formation thereof May be copolymerized.

一方、芯鞘糸の鞘成分は、芯成分よりもアルカリ溶液に溶解しにくいものであればよい。好ましくは、鞘成分は、ポリエステル又はポリアミドを主成分として含む。   On the other hand, the sheath component of the core-sheath yarn only needs to be less soluble in the alkaline solution than the core component. Preferably, the sheath component contains polyester or polyamide as a main component.

鞘成分に用いられるポリエステル又はポリアミドは、用途に応じて、アルカリ溶液への溶解性、風合い、染色性等の種々の因子に基づいて選択することができる。   The polyester or polyamide used for the sheath component can be selected based on various factors such as solubility in an alkaline solution, texture, and dyeability depending on the application.

鞘成分として選択されるポリエステルの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリトリメチレンテレフタレート等の芳香族ポリエステル、ポリ乳酸等の脂肪族ポリエステルが挙げられる。好ましくは、ポリエチレンテレフタレートが用いられる。   Specific examples of the polyester selected as the sheath component include aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate and polytrimethylene terephthalate, and aliphatic polyesters such as polylactic acid. Preferably, polyethylene terephthalate is used.

本発明において、芯成分よりもアルカリ溶液による溶出性が低くなる範囲であれば、鞘成分のポリエステルにも上述の5−スルホイソフタル酸金属塩やポリエチレングリコール又は上述のオキシカルボン酸等が共重合されていてもよい。   In the present invention, the above-described 5-sulfoisophthalic acid metal salt, polyethylene glycol, or the above-described oxycarboxylic acid, etc. are copolymerized with the polyester of the sheath component as long as the elution with an alkaline solution is lower than the core component. It may be.

また、鞘成分のポリエステルにも、芯成分よりもアルカリ溶液による溶出性が低くなる範囲で、アジピン酸、イソフタル酸、セバシン酸、フタル酸、ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、シクロヘキサンジカルボン酸等のジカルボン酸及びそのエステル形成性誘導体、ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオキシ化合物、p−(β−オキシエトキシ)安息香酸等のオキシカルボン酸及びそのエステル形成性誘導体等が共重合されていてもよい。   Also, the polyester of the sheath component is adipic acid, isophthalic acid, sebacic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, cyclohexane as long as the elution property with an alkaline solution is lower than that of the core component. Dicarboxylic acids such as dicarboxylic acids and ester-forming derivatives thereof, dioxy compounds such as diethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol, and oxycarboxylic acids such as p- (β-oxyethoxy) benzoic acid and ester formation thereof May be copolymerized.

鞘成分として使用可能なポリアミドの具体例としては、例えば、ナイロン6、ナイロン66、ナイロン610、ナイロン56、ナイロン11、又は芳香族ポリアミド等、さらにはこれらの共重合ポリアミドが挙げられる。ビニル成分を混合し、吸湿性、接触冷感性を発現させる改質ポリアミドも好ましく用いられる。鞘成分にポリアミドを用いる場合、上述のような芯成分に加え、ポリアミドよりもアルカリ溶液への溶解性が高いポリエステルを芯成分として用いてもよい。   Specific examples of the polyamide that can be used as the sheath component include, for example, nylon 6, nylon 66, nylon 610, nylon 56, nylon 11, or aromatic polyamide, and copolymerized polyamides thereof. A modified polyamide that mixes a vinyl component to develop hygroscopicity and contact cooling is also preferably used. When using polyamide for the sheath component, in addition to the core component as described above, polyester having higher solubility in an alkaline solution than polyamide may be used as the core component.

本発明の略C型断面糸は、壁の平均厚みが0.2μm〜15.0μm、好ましくは、0.3μm〜10.0μm、さらに好ましくは、0.35μm〜5.0μmである。例えば、溶出前の中空糸の単糸繊度が0.23デシテックス、中空率が80%であれば、溶出後に得られる中空糸の壁の厚みは、約0.26μmとなる。例えば、溶出前の中空糸の単糸繊度が110.0デシテックス、中空率55%であれば、溶出後に得られる中空糸の壁の厚みは、約13.7μmとなる。壁の平均厚みの具体的な算出方法は、実施例の「1−1.略C型断面糸の評価方法(1)」に記載する。壁の平均厚みが0.2μmに満たないものは、強力が不足し、また、直接中空形成法では一般的に作るのが困難であり、溶出法では作成することは可能であっても、強力が不足する、溶出減量での制御が困難である等の問題が生じる。本発明の略C型断面糸は、後述の中空率が従来のものより高いため、壁の平均厚みは、かなり小さなものが得られる。逆に、壁の平均厚みが15.0μmを超えるものは、軽量感に乏しく、風合いが硬くなる。   The substantially C-shaped cross-section yarn of the present invention has an average wall thickness of 0.2 μm to 15.0 μm, preferably 0.3 μm to 10.0 μm, and more preferably 0.35 μm to 5.0 μm. For example, if the single fiber fineness of the hollow fiber before elution is 0.23 dtex and the hollow ratio is 80%, the thickness of the hollow fiber wall obtained after elution is about 0.26 μm. For example, if the single fiber fineness of the hollow fiber before elution is 110.0 decitex and the hollow ratio is 55%, the thickness of the hollow fiber wall obtained after elution is about 13.7 μm. A specific method for calculating the average wall thickness is described in “1-1. Evaluation Method for Approximate C-Shaped Section Thread (1)” in Examples. If the average wall thickness is less than 0.2μm, the strength is insufficient, and it is generally difficult to make by the direct hollow forming method. Insufficient control or difficulty in controlling elution loss occurs. The substantially C-shaped cross-section yarn of the present invention has a higher hollowness, which will be described later, than the conventional one, so that an average wall thickness is considerably small. On the contrary, when the average wall thickness exceeds 15.0 μm, the feeling of lightness is poor and the texture becomes hard.

また、本発明の略C型断面糸は、中空率が55%〜80%、好ましくは、60〜70%である。ここで、中空率は、実施例の「1−1.略C型断面糸の評価方法(2)」に記載する。   Further, the substantially C-shaped cross-section yarn of the present invention has a hollowness of 55% to 80%, preferably 60 to 70%. Here, the hollowness ratio is described in “1-1. Evaluation method of substantially C-shaped cross-sectional yarn (2)” in Examples.

中空率は、カサ高性、軽量性、保温性の観点から、また、芯成分を除去した後の編織物の機械強度等を考慮して設定され、略C型断面糸において中空率が55%以上であることが好ましい。従来の中空糸と比較して中空率が大きく、繊維質量に対し占める体積が大きく、優れたカサ高性、軽量性を有する。中空率が80%を超えると、中空糸の強力が低下する傾向がある。   The hollowness is set from the viewpoints of high bulkiness, lightness, and heat retention, and in consideration of the mechanical strength of the knitted fabric after removing the core component, etc., and the hollowness of the substantially C-shaped cross-section yarn is 55%. The above is preferable. Compared with the conventional hollow fiber, the hollow ratio is large, the volume occupied by the fiber mass is large, and it has excellent bulkiness and lightness. When the hollow ratio exceeds 80%, the strength of the hollow fiber tends to decrease.

本発明の略C型断面糸の単糸繊度は、0.1〜50デシテックスであることが好ましい。0.1デシテックス未満のものは紡糸が困難となる場合がある。50デシテックスを超えるものは風合いが硬くなる傾向がある。   The single yarn fineness of the substantially C-shaped cross-sectional yarn of the present invention is preferably 0.1 to 50 dtex. If it is less than 0.1 dtex, spinning may be difficult. When it exceeds 50 dtex, the texture tends to be hard.

本発明の芯鞘構造を有する溶出型中空糸は、好ましくは、仮撚加工されている。仮撚加工を行うことで、最終的に製造される布帛の膨らみ感、カサ高性が増す。仮撚温度によって、得られる糸の性質が異なり、種々の用途に適した糸が得られる。例えば、一般的な仮撚温度(例えば、ポリエステルでは180℃〜220℃、ポリアミドでは160℃〜190℃)で仮撚加工した糸は、捲縮が大きく、カサ高いため、ボリューム感のある厚地布帛が得られやすい。また、ポリエステルフィラメント糸、ポリアミドフィラメント糸をもっと低温(例えば、ポリエステルフィラメント糸では150〜160℃、ポリアミドフィラメント糸では130℃〜140℃)で仮撚加工すると、捲縮は小さくなるものの、滑らかさが増し、絹様のタッチが得られるので、中厚地用糸として特に好ましい。また、カサ高性と滑らかさを併せ持つ汎用的な糸を製造するには、ポリエステルフィラメント糸では、180℃〜220℃で仮撚加工した後、160℃〜200℃でセットするとよい。ポリアミドフィラメント糸では、160℃〜190℃で仮撚加工した後、160℃〜180℃でセットするとよい。   The elution type hollow fiber having the core-sheath structure of the present invention is preferably false twisted. By performing false twisting, the feeling of swelling and the bulkiness of the finally produced fabric increase. Depending on the false twisting temperature, the properties of the obtained yarn differ, and yarns suitable for various applications can be obtained. For example, a yarn that has been false twisted at a common false twisting temperature (for example, 180 ° C. to 220 ° C. for polyester and 160 ° C. to 190 ° C. for polyamide) has large crimps and high bulk, so that a thick fabric with a sense of volume. Is easy to obtain. Also, if the polyester filament yarn and the polyamide filament yarn are false twisted at a lower temperature (for example, 150 to 160 ° C. for the polyester filament yarn and 130 to 140 ° C. for the polyamide filament yarn), the crimp is reduced but the smoothness is reduced. In addition, since a silky touch can be obtained, it is particularly preferable as a medium thick yarn. Moreover, in order to manufacture a general-purpose yarn having both high bulkiness and smoothness, in the case of a polyester filament yarn, after false twisting at 180 ° C. to 220 ° C., the yarn may be set at 160 ° C. to 200 ° C. For polyamide filament yarns, false twisting at 160 ° C. to 190 ° C. and then setting at 160 ° C. to 180 ° C. is preferable.

(2.弾性繊維)
本発明の複合糸に使用する弾性繊維は、弾性を有する繊維であれば特に限定されないが、具体的には、ポリウレタン系弾性繊維、ポリエーテルエステル系弾性繊維、及びポリエステル系バイメタル複合繊維(ポリエチレンテレフタレート/ポリエチレンテレフタレート、ポリエチレンテレフタレート/ポリブチレンテレフタレート、ポリエチレンテレフタレート/ポリトリメチルテレフタレート等)や高捲縮仮撚糸等が挙げられる。好ましくは、本発明の弾性繊維は、ポリウレタン系弾性繊維である。
(2. Elastic fiber)
The elastic fiber used for the composite yarn of the present invention is not particularly limited as long as it has elasticity. Specifically, the polyurethane elastic fiber, the polyether ester elastic fiber, and the polyester bimetal composite fiber (polyethylene terephthalate). / Polyethylene terephthalate, polyethylene terephthalate / polybutylene terephthalate, polyethylene terephthalate / polytrimethyl terephthalate, etc.) and highly crimped false twisted yarn. Preferably, the elastic fiber of the present invention is a polyurethane-based elastic fiber.

弾性繊維を混用した複合糸を使用することで、滑らかさに加え、優れたストレッチ性、伸長回復性を有する布帛が得られ、着用しやすさ、着用時のフィット感等好ましい特性が得られる。   By using a composite yarn mixed with elastic fibers, a fabric having excellent stretch properties and stretch recovery properties in addition to smoothness can be obtained, and favorable characteristics such as ease of wearing and a feeling of fit when worn can be obtained.

(3.複合糸)
本発明の複合糸は、上述の略C型断面糸と弾性繊維とで構成される。略C型断面糸と弾性繊維とは、混繊加工、合撚加工又はカバーリング加工により混用され、ストレッチ性の均一性から合撚加工、エアー混繊加工、カバーリング加工等が適用されることが好ましい。また、かかる加工では、弾性繊維を2.0〜4.0倍で延伸しながらポリエステルフィラメント系、ポリアミドフィラメント糸と加工すると、加工糸の芯部に弾性繊維が配置されてストレッチ性、伸長回復性が効率よく発揮できることから、特に好ましい。
(3. Composite yarn)
The composite yarn of the present invention is composed of the aforementioned substantially C-shaped cross-sectional yarn and elastic fibers. The substantially C-shaped cross-section yarn and the elastic fiber are mixed and used by blending, twisting, or covering, and from the uniformity of stretch properties, twisting, air blending, covering, etc. are applied. Is preferred. In such processing, if the elastic fiber is processed into a polyester filament or polyamide filament yarn while being stretched by 2.0 to 4.0 times, the elastic fiber is arranged at the core of the processed yarn, and stretchability and stretch recovery properties are achieved. Is particularly preferable because it can be efficiently exhibited.

本発明の複合糸は、ループ高さが300〜5000μmであり、好ましくは、500〜4500μmであり、非常に大きなループ高さを有する。本発明では、複合糸中の略C型断面糸のループ高さは、エアー混繊加工の場合には1000μm〜5000μm、合撚加工によって製造した場合には、300μm〜3000μm、カバーリング加工の場合には700μm〜2000μmであり、ループ高さの大きな中空繊維を製造したい場合には、エアー混繊加工が好ましい。
また、ループ高さは、中空糸と弾性繊維とを複合した後、種々の条件(例えば、温度、緊張率など)を変えた処理を施すことによって制御することができ、上に列挙したループ高さより大きなもの、小さなものを後加工により作ることもできる。ループ高さが大きいほど、弾性繊維と略C型断面糸との間に多くの空気を含み、複合糸全体としての膨らみが大きくなる。
The composite yarn of the present invention has a loop height of 300 to 5000 μm, preferably 500 to 4500 μm, and has a very large loop height. In the present invention, the loop height of the substantially C-shaped cross-section yarn in the composite yarn is 1000 μm to 5000 μm in the case of air blending processing, 300 μm to 3000 μm in the case of manufacturing by twisting processing, and in the case of covering processing In the case of manufacturing a hollow fiber having a large loop height of 700 μm to 2000 μm, air mixed fiber processing is preferable.
The loop height can be controlled by combining the hollow fiber and the elastic fiber and then applying various treatments (for example, temperature, strain rate, etc.). Larger and smaller ones can be made by post-processing. The larger the loop height, the more air is contained between the elastic fiber and the substantially C-shaped cross section yarn, and the swelling of the composite yarn as a whole increases.

本発明の弾性繊維は、布帛のストレッチ性、伸長回復性の点から、好ましくは、略C型断面糸と弾性繊維の合計質量を基準として、1質量%〜70質量%含有されている。さらには2質量%〜50質量%、さらには、5質量%〜30質量%含まれていることが好ましい。1質量%未満の場合は、ストレッチ性、伸長回復性が小さくなり、また、70質量%を超える場合には、布帛の締め付け感が強くなり過ぎる場合がある。   The elastic fiber of the present invention is preferably contained in an amount of 1% by mass to 70% by mass on the basis of the total mass of the substantially C-shaped cross-sectional yarn and the elastic fiber from the viewpoint of stretchability and stretch recovery of the fabric. Furthermore, it is preferable that 2 mass%-50 mass%, and also 5 mass%-30 mass% are contained. If the amount is less than 1% by mass, the stretchability and the stretch recovery property are reduced, and if it exceeds 70% by mass, the feeling of tightening the fabric may be too strong.

本発明の複合糸は、総繊度が10デシテックス以上500デシテックス以下であることが好ましい。総繊度が10デシテックス未満のものは、製造が困難な場合があり、一方、総繊度が500デシテックスを超えるものは、衣料用途として厚くなりすぎる傾向がある。用途によって、最適な総繊度がある。例えば、超薄地の羽衣のような布帛は、約10〜約50デシテックス、婦人用一般薄地の布帛、スポーツ用薄地は、約50〜約120デシテックス、中程度の厚地の布帛、ジャケット、パンツ地は、約120〜約200デシテックス、厚地織物、外衣、コート、重衣(例えば、柔道着、剣道着等)は、約200〜約500デシテックスのものが最適である。   The composite yarn of the present invention preferably has a total fineness of 10 dtex or more and 500 dtex or less. Those having a total fineness of less than 10 dtex may be difficult to produce, while those having a total fineness exceeding 500 dtex tend to be too thick for clothing applications. Depending on the application, there is an optimum total fineness. For example, a fabric such as an ultra-thin garment is about 10 to about 50 dtex, a general thin fabric for women, a thin fabric for sports is about 50 to about 120 dtex, a medium-thick fabric, jacket, pants Is about 120 to about 200 decitex, and thick cloth, outer garment, coat, heavy garment (for example, judo clothes, kendo clothes, etc.) is optimally about 200 to about 500 dtex.

(4.芯鞘糸の芯成分を溶出させる方法)
本発明の芯鞘糸の芯成分は、芯鞘糸の芯成分を溶出する一般的な方法によって除去することができ、例えば、アルカリ溶液を用いて溶出される。溶出に用いるアルカリ溶液は、好ましくは、水酸化ナトリウム、水酸化カリウム等の水溶液が好ましい。芯成分の方が鞘成分よりも例えばアルカリ溶液に溶解しやすいという性質を利用して、芯成分を除去する。糸の状態で芯成分を溶出させる方法としては、従来の技術である糸染設備を利用し、アルカリ溶液で溶出する方法がある。具体的には、チーズの形状で処理するチーズ染色機、又はカセ形状で処理するカセ染色機、マフ染色機、スター染色機を用い、溶出を行う。溶出の均一性、糸の解舒性から、チーズ染色機を用いることが特に好ましい。
(4. Method of eluting the core component of the core-sheath thread)
The core component of the core-sheath yarn of the present invention can be removed by a general method for eluting the core component of the core-sheath yarn, and is eluted using, for example, an alkaline solution. The alkaline solution used for elution is preferably an aqueous solution such as sodium hydroxide or potassium hydroxide. The core component is removed by utilizing the property that the core component is more easily dissolved in, for example, an alkaline solution than the sheath component. As a method of eluting the core component in the yarn state, there is a method of eluting with an alkaline solution using a yarn dyeing equipment which is a conventional technique. Specifically, elution is performed using a cheese dyeing machine processed in the shape of cheese, or a case dyeing machine, a muff dyeing machine, or a star dyeing machine processed in the shape of a cake. It is particularly preferable to use a cheese dyeing machine from the uniformity of elution and the unwinding property of the yarn.

本発明の芯鞘糸において、鞘成分は、完全な中空構造ではなく、C型形状等を有し、繊維横断面において当該芯成分の一部が当該鞘成分の開口部から繊維表面に露出しているため、完全な中空構造を有する糸と比較して、アルカリ溶液が芯成分に浸透しやすく、比較的穏和な条件で溶出しやすく、芯成分の溶け残りが起こりにくい。溶出条件は、芯成分の組成、処理に使用する装置等によって変わるが、使用するアルカリ溶液の好ましい濃度は、例えば、0.5〜40%である。好ましい処理温度は、例えば、80℃〜120℃である。この範囲内で芯成分を除去することにより、均一で効率的に溶出させることができるので好ましい。   In the core-sheath yarn of the present invention, the sheath component does not have a complete hollow structure, but has a C shape or the like, and a part of the core component is exposed to the fiber surface from the opening of the sheath component in the fiber cross section. Therefore, as compared with a yarn having a complete hollow structure, the alkaline solution easily penetrates into the core component, easily elutes under relatively mild conditions, and remains undissolved in the core component. The elution conditions vary depending on the composition of the core component, the apparatus used for the treatment, and the like, but the preferred concentration of the alkaline solution to be used is, for example, 0.5 to 40%. A preferable processing temperature is, for example, 80 ° C to 120 ° C. It is preferable to remove the core component within this range because it can be eluted uniformly and efficiently.

本発明の溶出型中空糸の芯成分を溶出させる方法としては、代表的には、以下の3種類の方法がある。   As a method for eluting the core component of the elution type hollow fiber of the present invention, there are typically the following three methods.

1.芯鞘糸と弾性繊維とを混繊又は合撚又はカバーリングさせて複合糸を製造した後、糸の状態で芯鞘糸の芯成分を溶出させる(以下、「先混用後溶出法」と称する)。   1. After producing a composite yarn by blending or twisting or covering the core-sheath yarn and the elastic fiber, the core component of the core-sheath yarn is eluted in the state of the yarn (hereinafter referred to as “the pre-mixing elution method”). ).

2.芯鞘糸の芯成分を溶出させた後、弾性繊維と混繊又は合撚又はカバーリングし、複合糸を製造する(以下、「先溶出後混用法」と称する)。   2. After the core component of the core-sheath yarn is eluted, it is mixed with the elastic fiber or mixed or twisted or covered to produce a composite yarn (hereinafter referred to as “mixed after elution”).

3.芯鞘糸と弾性繊維とを混繊又は合撚又はカバーリングして複合糸を製造した後、製編織して布帛とした後、芯成分を溶出させる(以下、「製編織後溶出法」と称する)。   3. After producing a composite yarn by blending or twisting or covering the core-sheath yarn and the elastic fiber, weaving and weaving it into a fabric, and then eluting the core component (hereinafter referred to as “the post-weaving elution method”) Called).

3種類の溶出方法のうち、どれを使用するかにより、得られる複合糸や布帛の性質が異なってくるが、これについては後述する。   Depending on which of the three types of elution methods is used, the properties of the composite yarn and fabric to be obtained differ, which will be described later.

(5.上述の溶出法によって得られる複合糸及び布帛の性質)
本願発明者らは、同じ組成の芯鞘型繊維であっても、芯成分の除去方法を変えることにより、種々の用途に適した様々な特性を有する複合糸及び布帛が得られることを発見した。以下に詳細を示す。なお、本明細書において、「布帛」とは、織物、編物、不織布等の生地をいう。織物の例としては、平織、綾織(斜文織ともいう)、朱子織、二重織等の織物がある。編物の例としては、丸編、経編、横編等の編物がある。
(5. Properties of composite yarn and fabric obtained by the above elution method)
The inventors of the present application have found that composite yarns and fabrics having various properties suitable for various applications can be obtained by changing the removal method of the core component even if the core-sheath fiber has the same composition. . Details are shown below. In this specification, “fabric” refers to a fabric such as a woven fabric, a knitted fabric, or a non-woven fabric. Examples of the woven fabric include plain woven fabric, twill woven fabric (also referred to as oblique woven fabric), satin woven fabric, and double woven fabric. Examples of the knitted fabric include a knitted fabric such as a circular knitting, a warp knitting, and a flat knitting.

(5−1.先混用後溶出法によって得られる複合糸、布帛の性質)
図2は、先混用後溶出法で得られる複合糸の顕微鏡写真である(倍率400倍)。図2の複合糸の製造法及び先混用後溶出法の詳細を、以下の実施例1に示す。図2において、中央部に弾性繊維が存在し、弾性繊維の周囲に、本発明の略C型断面形状を有する溶出型中空糸が交絡しており、大きなループ形状が形成されている。略C型断面糸と弾性繊維とを混用した後に略C型断面糸の芯成分を除去しているため、弾性繊維によって略C型断面糸が伸びきらない状態で保持され、芯成分を除去した後も中空部分の形状が保持されやすいと考えられる。実際に、図2によれば、略C型断面糸の捲縮がきれいに残っており、略C型断面糸同士の間、弾性繊維と略C型断面糸との間に空気を多く含む。また、細かい捲縮が存在するため、略C型断面糸のループがつぶれにくいと考えられる。
(5-1. Properties of composite yarn and fabric obtained by elution method after pre-mixing)
FIG. 2 is a photomicrograph of a composite yarn obtained by the elution method after premixing (magnification 400 times). The details of the method for producing the composite yarn of FIG. 2 and the elution method after pre-mixing are shown in Example 1 below. In FIG. 2, an elastic fiber is present at the center, and an elution-type hollow fiber having a substantially C-shaped cross-sectional shape of the present invention is entangled around the elastic fiber to form a large loop shape. Since the core component of the substantially C-shaped cross-sectional yarn is removed after mixing the substantially C-shaped cross-sectional yarn and the elastic fiber, the substantially C-shaped cross-sectional yarn is held by the elastic fiber so that the core component is not stretched. It is considered that the shape of the hollow portion is easily maintained later. Actually, according to FIG. 2, the crimps of the substantially C-shaped cross-section yarn remain cleanly, and a large amount of air is contained between the substantially C-shaped cross-sectional yarns and between the elastic fiber and the substantially C-shaped cross-sectional yarn. Further, since there are fine crimps, it is considered that the loop of the substantially C-shaped cross-section yarn is not easily crushed.

先混用後溶出法によって得られた複合糸から作られる布帛は、上述の複合糸の特徴から、非常に軽く、優れた保温性を有し、膨らみが大きいと考えられ、特に、軽くて暖かい秋冬向けの衣料として優れた特性を有する。   The fabric made from the composite yarn obtained by the elution method after the pre-mixing is considered to be very light and has excellent heat retention and large swelling due to the characteristics of the composite yarn described above. Excellent properties for clothing.

(5−2.先溶出後混用法によって得られる複合糸、布帛の性質)
図3は、先溶出後混用法で得られる複合糸の顕微鏡写真である(倍率400倍)。図3の複合糸の製造法及び先混用後溶出法の詳細を、以下の実施例2に示す。図2と図3の複合糸は、複合糸の組成は同じであり、溶出法のみが異なる。図2と図3を比較すると明らかなように、溶出法を変えることによって、同じ組成から外観が著しく異なる複合糸が得られる。先溶出後混用法では、略C型断面糸の芯成分を溶出させた後、弾性繊維と混用する。図2の複合糸と同様に、中央部に弾性繊維が存在し、弾性繊維の周囲に、本発明の略C型断面形状を有する溶出型中空糸が交絡しており、大きなループ形状が形成されているが、略C型断面糸は、比較的滑らかな外観を有しており、捲縮はそれほど大きくない。
(5-2. Properties of composite yarn and fabric obtained by the mixed method after elution)
FIG. 3 is a photomicrograph of the composite yarn obtained by the pre-elution mixed method (400 times magnification). The details of the method for producing the composite yarn of FIG. 3 and the elution method after premixing are shown in Example 2 below. The composite yarns of FIGS. 2 and 3 have the same composite yarn composition and differ only in the elution method. As is apparent from a comparison of FIG. 2 and FIG. 3, by changing the elution method, a composite yarn having a significantly different appearance can be obtained from the same composition. In the pre-elution mixed method, the core component of the substantially C-shaped cross-sectional yarn is eluted and then mixed with the elastic fiber. Similar to the composite yarn of FIG. 2, an elastic fiber is present at the center, and an elution-type hollow fiber having a substantially C-shaped cross section of the present invention is entangled around the elastic fiber to form a large loop shape. However, the substantially C-shaped cross-section yarn has a relatively smooth appearance, and the crimp is not so large.

そのため、先溶出後混用法によって得られた複合糸から作られる布帛は、図2の複合糸から作られる布帛と比較して、肌触りが滑らかであり、通気性がよいと考えられ、特に、軽くてさらさらした春夏向けの衣料として優れた特性を有する。   Therefore, the fabric made from the composite yarn obtained by the pre-elution mixed method is considered to be smoother and more breathable than the fabric made from the composite yarn of FIG. It has excellent characteristics as a spring and summer garment.

また、図2の複合糸も図3の複合糸も、両方とも略C型断面糸を使用しているため、中実繊維を使用した場合と比較してカサ高く、得られる布帛は非常に軽く、ふわふわと柔らかく、伸長率、伸長回復性が高い。また、中空繊維ではなく略C型断面糸を使用しているため、略C型断面糸特有の軽量性、ソフトさ、風合い等の優れた性質を保持している。   In addition, since both the composite yarn of FIG. 2 and the composite yarn of FIG. 3 use a substantially C-shaped cross-sectional yarn, they are higher in weight than the case of using solid fibers, and the resulting fabric is very light. Soft and fluffy, with high stretch rate and high stretch recovery. In addition, since a substantially C-shaped cross-section yarn is used instead of a hollow fiber, it retains excellent properties such as lightness, softness, and texture that are characteristic of a substantially C-shaped cross-section yarn.

(5−3.製編織後溶出法によって得られる布帛の性質)
糸の状態で略C型断面糸の芯成分を除去する場合と比較して、製編織後溶出法によって得られる布帛では、略C型断面糸のループが比較的小さく、均一になる。そのため、得られる布帛は、非常に均一な保温性、カサ高性、ストレッチ性を有し、寸法安定性が高い。
(6.布帛)
本発明の複合糸を用いた布帛としては、織物、編物として好適に用いられる。
織物は、伸長率が5%以上、伸長回復率が80%以上であることが好ましい。伸長率が5%以上であれば、身体の動きに追随できるため好ましい。着用時の動きやすさとフィット性から、伸長率が5%〜40%であることが特に好ましい。本発明の織物の伸長回復率は80〜95%の範囲であることが好ましい。この範囲ではフィット感、着用快適性に優れる。また、型崩れが少なく形態保持性にも優れる。80%未満では回復が劣る場合がある。また、95%を超える物は一般的には製造できない。
(5-3. Properties of fabric obtained by elution method after weaving)
Compared with the case where the core component of the substantially C-shaped cross-sectional yarn is removed in the state of the yarn, in the fabric obtained by the post-woven weaving method, the loop of the substantially C-shaped cross-sectional yarn is relatively small and uniform. Therefore, the obtained fabric has very uniform heat retention, high bulkiness, stretchability, and high dimensional stability.
(6. Fabric)
The fabric using the composite yarn of the present invention is preferably used as a woven fabric or a knitted fabric.
The woven fabric preferably has an elongation rate of 5% or more and an elongation recovery rate of 80% or more. An elongation rate of 5% or more is preferable because it can follow the movement of the body. It is particularly preferable that the elongation rate is 5% to 40% from the viewpoint of ease of movement and fit when worn. The elongation recovery rate of the fabric of the present invention is preferably in the range of 80 to 95%. In this range, the fit and wear comfort are excellent. Moreover, there is little loss of shape and excellent shape retention. If it is less than 80%, recovery may be inferior. Moreover, the thing over 95% cannot generally be manufactured.

編物は、伸長率が90%以上、伸長回復率が80%以上であることが好ましい。着用時の動きやすさとフィット性から、伸長率は100%〜200%が特に好ましい。本発明の編物の伸長回復率は、織物の場合と同様の理由で、80〜95%の範囲であることが好ましい。   The knitted fabric preferably has an elongation rate of 90% or more and an elongation recovery rate of 80% or more. The stretch rate is particularly preferably 100% to 200% from the viewpoint of ease of movement and fit when worn. The elongation recovery rate of the knitted fabric of the present invention is preferably in the range of 80 to 95% for the same reason as in the case of the woven fabric.

(7.起毛処理)
本発明の布帛を起毛処理してもよい。起毛処理は、例えば、針布起毛機、バフ起毛機など一般的な起毛のための機械を用いて行うことができる。一般的に、針布起毛機を用いると、細かく密で長い毛羽が得られ、バフ起毛機を用いると、短く粗い毛羽が得られる。理論に束縛されるものではないが、起毛することによって、略C型断面糸の鞘部分が細かく切断され、割繊したり、クラックが入ったりすることで、従来にはない細かい特徴のある毛羽が得られると考えられる。布帛の裏面(人体に触れる側)を起毛すると、肌との摩擦が少なくなり、滑らかな質感が得られ、着用することで暖かく感じる。布帛の表面(外気側)を起毛すると、光沢、見栄え、手触りなどが良くなる。
(7. Brushed treatment)
You may raise the fabric of this invention. The raising process can be performed using a general raising machine such as a needle cloth raising machine or a buff raising machine. Generally, when a needle cloth raising machine is used, fine, dense and long fluff is obtained, and when a buff raising machine is used, a short and coarse fluff is obtained. It is not bound by theory, but by raising, the sheath portion of the approximately C-shaped cross-section yarn is finely cut, split, and cracked, so there are fluffs with fine features that have not existed in the past Can be obtained. When raising the back surface (the side that touches the human body) of the fabric, friction with the skin is reduced, a smooth texture is obtained, and it feels warm when worn. When the surface (outside air side) of the fabric is raised, the gloss, appearance, and touch are improved.

以下に、実施例に基づいて本発明を詳細に説明するが、本発明は必ずしもこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not necessarily limited thereto.

(評価方法)
(1.略C型断面糸、複合糸、布帛の分析)
本発明の方法によって作成した略C型断面糸、複合糸及び布帛は、以下の方法によって分析した。
(Evaluation method)
(1. Analysis of substantially C-shaped cross-sectional yarn, composite yarn, and fabric)
The substantially C-shaped cross section yarn, composite yarn and fabric produced by the method of the present invention were analyzed by the following method.

(1−1.略C型断面糸の評価方法)
(1)厚み(μm)
略C型断面糸の単糸を切断し、走査型顕微鏡を用い、倍率2000倍で糸断面を撮影した。得られた顕微鏡写真を用い、略C型断面糸の壁の厚み(単位:μm)を実測した。1本の糸についてC型断面の任意の10箇所を選んで測定した(n=10)。この測定を10本の糸について行い、測定値を平均した値を中空糸の厚み(μm)とした。厚みが小さいほど、糸は軽く、ソフトである。
(1-1. Evaluation method of substantially C-shaped cross-section yarn)
(1) Thickness (μm)
A single yarn having a substantially C-shaped cross section was cut, and a cross section of the yarn was photographed at a magnification of 2000 using a scanning microscope. Using the obtained micrograph, the wall thickness (unit: μm) of the substantially C-shaped cross-sectional yarn was measured. An arbitrary 10 points of the C-shaped cross section were selected and measured for one yarn (n = 10). This measurement was performed on ten yarns, and the average value of the measured values was taken as the thickness (μm) of the hollow fiber. The smaller the thickness, the lighter and softer the yarn.

(2)中空率(%)
上記(1)で得られた顕微鏡写真を拡大し、紙にコピーした。次いで、中空部を含めてC型断面を輪郭部分で切り落とし、質量(S;単位g)を測定した。さらに、中空部を輪郭部分で切り落とし、中空部の質量(S;単位g)を測定する。10個のC型断面についてS、Sをそれぞれ測定した。以下の式で中空率を求めた。
(2) Hollow ratio (%)
The photomicrograph obtained in (1) above was enlarged and copied to paper. Next, the C-shaped cross section including the hollow portion was cut off at the contour portion, and the mass (S 0 ; unit g) was measured. Further, the hollow portion is cut off at the contour portion, and the mass (S 1 ; unit g) of the hollow portion is measured. S 0 and S 1 were measured for 10 C-shaped sections. The hollow ratio was determined by the following formula.

中空率(%)=S(g)/S(g)×100
(1−2.複合糸の評価方法)
本発明の複合糸を以下の方法によって評価した。
Hollow ratio (%) = S 1 (g) / S 0 (g) × 100
(1-2. Evaluation method of composite yarn)
The composite yarn of the present invention was evaluated by the following method.

(1)外観評価
それぞれの糸について、デジタルマイクロスコープVHX−1000(株式会社キーエンス製)を用い、倍率400倍で拡大した顕微鏡写真を撮影し、糸の外観を評価した。
(1) Appearance Evaluation For each yarn, a digital microscope VHX-1000 (manufactured by Keyence Corporation) was used to take micrographs magnified at a magnification of 400 times to evaluate the appearance of the yarn.

評価項目:糸の巻き付き方、ループの形状、捲縮の有無等
(2)ループ高さ
それぞれの糸を、精密万能試験機オートグラフAG−IS(株式会社島津製作所製)を用い、(a)荷重せずそのまま、又は(b)荷重0.5g、(c)荷重6gで引っ張り、デジタルマイクロスコープVHX−1000(株式会社キーエンス製)を用い、倍率400倍で拡大した画像を得た。中心部にある弾性繊維の位置を0とし、弾性繊維から垂直に各ループの一番大きな部分を測定し、ループ高さHa、Hb、Hcそれぞれについて20点ずつ測定し、その平均値としてループ高さHa、Hb、Hc(単位μm)を得た。
Evaluation items: How to wrap the yarn, loop shape, presence or absence of crimp, etc. (2) Loop height Each yarn is used with precision universal testing machine Autograph AG-IS (manufactured by Shimadzu Corporation), (a) An image magnified at a magnification of 400 times was obtained using the digital microscope VHX-1000 (manufactured by Keyence Corporation) as it was without load, or pulled with (b) a load of 0.5 g and (c) a load of 6 g. The position of the elastic fiber in the center is set to 0, the largest part of each loop is measured perpendicularly from the elastic fiber, 20 points are measured for each of the loop heights Ha, Hb, Hc, and the loop height is obtained as an average value. Ha, Hb, and Hc (unit: μm) were obtained.

ループ高さHa=荷重せずそのままで測定したループ高さ(μm)
ループ高さHb=荷重0.5gで測定したループ高さ(μm)
ループ高さHc=荷重6gで測定したループ高さ(μm)
(3)ループ保持率
上記(2)のループ高さから、Hb/Ha、Hc/Haを算出した(単位%)。Hb/Ha、Hc/Haの値が大きいほど、荷重を加えてもループがつぶれにくいことを示す。
Loop height Ha = Loop height measured without load (μm)
Loop height Hb = Loop height measured at a load of 0.5 g (μm)
Loop height Hc = loop height measured at 6 g load (μm)
(3) Loop retention rate Hb / Ha and Hc / Ha were calculated from the loop height in (2) (unit%). As the values of Hb / Ha and Hc / Ha are larger, the loop is less likely to be crushed even when a load is applied.

(4)糸の伸度、強度:引っ張り試験
2014年版のJIS L1013の8.5「引張強さ及び伸び率」の8.5.1「標準時試験」(JIS法)に従って測定した
それぞれの糸を初荷重0.5gで、引張試験機でつかみ、引張試験を行う。糸が切断するまでに糸に加えた力(cN)と糸のストローク(ひずみ)の関係をグラフにし、糸切断時の強力(cN)と伸度(%)を得た(n=10の平均値)。糸の強度を、1デシテックスあたりの強度(cN/dtex)として表した。
(4) Elongation and strength of yarn: Tensile test Each yarn measured in accordance with 8.5.1 “Standard time test” (JIS method) of 8.5 “Tensile strength and elongation” of JIS L1013 of 2014 edition At an initial load of 0.5 g, a tensile tester is used to perform a tensile test. The relationship between the force (cN) applied to the yarn until it was cut and the stroke (strain) of the yarn was graphed to obtain the strength (cN) and elongation (%) at the time of yarn cutting (average of n = 10) value). Yarn strength was expressed as strength per decitex (cN / dtex).

(5)糸の強さ(タフネス、強伸度積)
上述の(4)から、強伸度積(%・cN/dtex)=伸度(%)×強度(cN/dtex)を求めた。強伸度積の値が大きいほど、糸が粘り強く、靱性が大きいことを表す。
(5) Yarn strength (toughness, high elongation product)
From (4) above, the product of strong elongation (% · cN / dtex) = elongation (%) × strength (cN / dtex) was determined. The larger the value of the product of strength and elongation, the stronger the yarn and the greater the toughness.

なお、一度布帛にした後に構成糸のループ高さ、ループ伸長率等を測定する場合には、布帛を分解し、得られた糸について上述の評価を行う。   In addition, when measuring the loop height, loop elongation rate, etc. of the constituent yarn after making it once into a fabric, the fabric is disassembled and the above evaluation is performed on the obtained yarn.

(1−3.布帛の評価方法)
作成した布帛を、以下の方法によって評価した。
(1-3. Fabric Evaluation Method)
The created fabric was evaluated by the following method.

(1)布帛の軽さ:目付(g/m
織物の軽さは、2014年版のJIS L1096の8.3.2に記載のA法(JIS法)に従って測定した織物の目付(g/m)によって表した。値が小さいほど、軽い。
(1) Lightness of fabric: basis weight (g / m 2 )
The lightness of the fabric was expressed by the basis weight (g / m 2 ) of the fabric measured according to the A method (JIS method) described in 8.3.2 of JIS L1096 of the 2014 edition. The smaller the value, the lighter.

(2)布帛の厚さ:厚さ(mm)
2014年版のJIS L1096の8.4のA法(JIS法)に従って測定した(一定時間:10秒間、一定圧力:23.5kPa)。
(2) Fabric thickness: Thickness (mm)
It was measured according to 8.4 A method (JIS method) of JIS L1096 of 2014 edition (constant time: 10 seconds, constant pressure: 23.5 kPa).

(3)布帛の膨らみ感:カサ高度(cm/g)
カサ高度(cm/g)は、厚さ(mm)を目付(g/m)で除し、1000を掛けた値とした。
(3) Sense of swelling of fabric: high altitude (cm 3 / g)
The bulk height (cm 3 / g) was obtained by dividing the thickness (mm) by the basis weight (g / m 2 ) and multiplying by 1000.

(4)布帛の滑らかさ:表面粗さ SMD値
評価機器:KES−FB4表面試験機(カトーテック(株)製)を用い、織物の裏面の表面粗さSMD値(μm)を測定した。織物の場合、裏面の経糸方向(タテ)と緯糸方向(ヨコ)をそれぞれ3ヶ所測定し、その平均値を求めた。編物の場合、編物のウェール方向とコース方向をそれぞれ5ヶ所測定し、その平均値を求めた。値が小さいほど、布帛に凹凸が少なく、良好である。
(4) Smoothness of fabric: surface roughness SMD value Evaluation apparatus: The surface roughness SMD value (μm) of the back surface of the fabric was measured using a KES-FB4 surface tester (manufactured by Kato Tech Co., Ltd.). In the case of a woven fabric, the warp direction (vertical) and the weft direction (horizontal) on the back side were measured at three locations, and the average value was obtained. In the case of a knitted fabric, the wale direction and the course direction of the knitted fabric were measured at five locations, and the average value was obtained. The smaller the value is, the better the fabric has less unevenness.

(5)布帛のソフトさ:曲げ剛性 B値
評価機器:KES−FB2純曲げ試験機(カトーテック(株)製)を用い、織物の場合には、織物裏面の経糸方向と緯糸方向に曲げた時の織物の平均の曲げ剛性B値(gf・cm/cm)を測定した(経、緯それぞれN=3)。編物の場合には、編物のウェール方向とコース方向に曲げた時の平均の曲げ剛性B値(gf・cm/cm)を測定した(それぞれN=5)。値が小さいほど、剛性は低く、ソフトな風合いである。
(5) Softness of fabric: Bending rigidity B value Evaluation device: Using KES-FB2 pure bending tester (manufactured by Kato Tech Co., Ltd.), in the case of a fabric, the fabric was bent in the warp direction and the weft direction. The average bending stiffness B value (gf · cm 2 / cm) of the fabric was measured (N = 3 for each of the warp and the weft). In the case of the knitted fabric, the average bending stiffness B value (gf · cm 2 / cm) when the knitted fabric was bent in the wale direction and the course direction was measured (N = 5 for each). The smaller the value, the lower the stiffness and the softer the texture.

(6)布帛の伸長率
2014年版のJIS L1096の8.14.1項、A法(ストリップ法)に従って評価した。織物の場合、経方向と緯方向それぞれ3回測定し、平均値を算出した。編物の場合、ウェール方向及びコース方向に5回測定し、平均値を算出した。値が大きいほど、伸びが大きく良好である。
(6) Elongation rate of the fabric The evaluation was performed according to the 2014 edition, JIS L1096, section 8.14.1, method A (strip method). In the case of a woven fabric, measurement was performed three times for each of the warp direction and the weft direction, and an average value was calculated. In the case of a knitted fabric, measurement was performed five times in the wale direction and the course direction, and an average value was calculated. The larger the value, the better the elongation.

(7)布帛の伸長回復率
織物の場合:
2014年版のJIS L1096の8.15.1項、A法のbの「繰り返し定率伸長時伸長弾性率」(5回繰り返し)に従って、織物の緯糸方向又は緯糸方向を測定し評価した。値が高いほど、ストレッチ後の回復性が良好である。
(7) Elongation recovery rate of fabric For fabric:
The weft direction or the weft direction of the woven fabric was measured and evaluated in accordance with the 2014 edition of JIS L1096, Section 8.15.1, “Method A, b,“ Elongation elastic modulus at repeated constant rate elongation ”(repeated 5 times). The higher the value, the better the recoverability after stretching.

編物の場合:
2014年版のJIS L1096の8.16.2項、D法の「繰り返し定伸長法」に従って、編物のウェール方向及びコース方向にそれぞれ5枚測定し、荷重−伸び曲線を描いた。値が高いほど、ストレッチ後の回復性が良好である。
For knitting:
According to the 2014 edition of JIS L1096 section 8.16.2, D method “Repeated Constant Elongation Method”, 5 sheets were measured in the waling direction and the course direction of the knitted fabric, respectively, and a load-elongation curve was drawn. The higher the value, the better the recoverability after stretching.

(実施例1 複合糸の調製−先混用後溶出法)
(1)溶出型中空糸(未溶出)の調製
芯成分として、5−スルホイソフタル酸ナトリウム塩4.8モル%及びポリエチレングリコール10.6質量%を共重合成分として含むポリエチレンテレフタレートと、鞘成分としてポリエチレンテレフタレートを用い、芯成分/鞘成分の質量比率が60/40になるように、鞘成分側がC字型となる芯鞘断面用C型口金ノズル(36ホール)から紡糸温度290℃で吐出させ、紡速3000m/分で紡糸し、繊維断面形状が略C字型の部分配向複合繊維糸として、総繊度140デシテックス、36フィラメントの糸条を一旦巻き取った。続いて、得られた部分配向複合繊維糸を、延伸仮撚機を用いて、熱セット温度165℃、延伸倍率1.7倍、加工速度600m/分で仮撚加工をして、芯/鞘質量比率が60/40、総繊度84デシテックス、36フィラメントの溶出型中空糸(未溶出)を得た。
(Example 1 Preparation of composite yarn-pre-mixed elution method)
(1) Preparation of an elution-type hollow fiber (non-eluting) As a core component, polyethylene terephthalate containing 4.8 mol% of 5-sulfoisophthalic acid sodium salt and 10.6% by mass of polyethylene glycol as a copolymer component, and as a sheath component Using polyethylene terephthalate, the core component / sheath component is discharged at a spinning temperature of 290 ° C. from a core-sheath cross-section C-type nozzle nozzle (36 holes) in which the sheath component side is C-shaped so that the mass ratio of the core component / sheath component is 60/40. Spinning was performed at a spinning speed of 3000 m / min, and a filament having a total fineness of 140 dtex and 36 filaments was once wound up as a partially oriented composite fiber yarn having a substantially C-shaped fiber cross-section. Subsequently, the obtained partially oriented composite fiber yarn was false twisted at a heat setting temperature of 165 ° C., a draw ratio of 1.7 times, and a processing speed of 600 m / min by using a drawing false twister, and the core / sheath An elution-type hollow fiber (non-eluting) having a mass ratio of 60/40, a total fineness of 84 dtex, and 36 filaments was obtained.

(2)溶出型中空糸(未溶出)とポリウレタン弾性繊維の混繊糸の調製
次いで、上述の溶出型中空糸(未溶出)を6本引き揃え(総繊度504デシテックス)、44デシテックスのポリウレタン弾性繊維「ライクラ」(東レオペロンテックス(株)製)を3.3倍延伸しながら、エアーで交絡させ、混繊した。得られたポリエステル/ポリウレタン弾性繊維の混繊糸は、総繊度が548デシテックスであった。
(2) Preparation of blended yarn of elution-type hollow fiber (non-eluting) and polyurethane elastic fiber Subsequently, the above-described elution-type hollow fiber (non-eluting) is aligned (total fineness 504 dtex), 44 dtex polyurethane elasticity The fiber “Lycra” (manufactured by Toyo Leoperontex Co., Ltd.) was entangled with air while being stretched 3.3 times and mixed. The obtained polyester / polyurethane elastic fiber mixed yarn had a total fineness of 548 dtex.

(3)中空糸の芯成分の除去
その後、この複合糸を一旦、ソフトなチーズ形状に巻き返した。その後、糸染設備であるチーズ染色機に入れ、2.5%水酸化ナトリウム水溶液を用い、上述のようにして得た溶出型中空糸を100℃で40分間処理し、芯成分を完全に除去し、中空率が60%の溶出型中空糸(溶出済)を含む実施例1の複合糸を得た。総繊度は246デシテックス、単糸繊度が0.93デシテックスであり、中空糸の壁の厚みは1.73μmであった。得られた複合糸は、きわめて軽く、ソフトで布帛に広汎に用いられる好適な複合糸であった。評価結果は、以下の表1に示す。
(3) Removal of core component of hollow fiber Thereafter, this composite yarn was once wound into a soft cheese shape. Then, put it into a cheese dyeing machine, which is a yarn dyeing facility, and treat the elution-type hollow fiber obtained as described above with a 2.5% aqueous sodium hydroxide solution at 100 ° C. for 40 minutes to completely remove the core component. Thus, a composite yarn of Example 1 including an elution-type hollow fiber having a hollow ratio of 60% (eluted) was obtained. The total fineness was 246 dtex, the single yarn fineness was 0.93 dtex, and the wall thickness of the hollow fiber was 1.73 μm. The resulting composite yarn was extremely light, soft and suitable for wide use in fabrics. The evaluation results are shown in Table 1 below.

(実施例2 複合糸の調製−先溶出後混用法)
実施例1の(1)で調製した溶出型中空糸(未溶出)の芯成分を実施例1の(3)と同じ方法で溶出させた後、実施例1の(2)に記載するように、溶出型中空糸(溶出後)を6本引き揃え、44デシテックスのポリウレタン弾性繊維「ライクラ」(東レオペロンテックス(株)製)を3.3倍延伸しながら、エアーで交絡させ、混繊し、実施例2の複合糸を得た。得られた中空糸は、きわめて軽く、ソフトで布帛に広汎に用いられる好適な複合糸であった。評価結果は、以下の表1に示す。
(Example 2 Preparation of composite yarn-mixed method after first elution)
As described in (2) of Example 1, after the elution-type hollow fiber (non-eluting) core component prepared in (1) of Example 1 was eluted by the same method as (3) of Example 1. , 6 elution-type hollow fibers (after elution) are aligned, and 44 decitex polyurethane elastic fiber “Lycra” (manufactured by Toyo Perontex Co., Ltd.) is stretched 3.3 times while being entangled with air and mixed. A composite yarn of Example 2 was obtained. The obtained hollow fiber was extremely light, soft and suitable composite yarn widely used for fabrics. The evaluation results are shown in Table 1 below.

(比較例1 中空糸の調製)
実施例1の(1)で調製した溶出型中空糸(未溶出)をウレタン弾性繊維と混用することなく、実施例1の(3)と同じ方法で芯成分を溶出させ、比較例1とした。
(Comparative Example 1 Preparation of hollow fiber)
The core component was eluted in the same manner as in (3) of Example 1 without mixing the elution-type hollow fiber (non-eluting) prepared in (1) of Example 1 with urethane elastic fiber, thereby obtaining Comparative Example 1. .

(比較例2 綿コアスパンヤーン)
比較例として、従来の綿コアスパンヤーン(芯44デシテックスのポリウレタン弾性糸を、綿11.8番手でカバリング加工)を用いた。
(Comparative Example 2 Cotton core spun yarn)
As a comparative example, a conventional cotton core spun yarn (polyurethane elastic yarn having a core of 44 dtex was covered with cotton 11.8 count).

(複合糸の評価)
実施例1及び2で得られた複合糸と、比較例1及び2の糸を用い、上述の「1−2.複合糸の評価方法」に基づき評価を行った。評価結果を表1に示す。
(Evaluation of composite yarn)
Using the composite yarns obtained in Examples 1 and 2 and the yarns of Comparative Examples 1 and 2, the evaluation was performed based on the above-mentioned “1-2. Evaluation method for composite yarn”. The evaluation results are shown in Table 1.

*1 それぞれn=20の平均値
*2 ウレタン弾性繊維と混用していないため、測定せず
表1の結果から、実施例1及び実施例2の複合糸は、比較例の綿コアスパンヤーンと比較して、ループ高さが非常に大きい。また、荷重を加えたときの値(Hb、Hc)及びループ保持率の値から、0.5gまで荷重を加えてもループが保持されており(例えば、荷重0.5gで、実施例1ではループ保持率76.3%、実施例2では87.5%であるのに対し、比較例2では55.8%)、荷重を加えてもループがつぶれにくいことがわかった。また、本発明の複合糸は、糸の強力が比較例よりもかなり大きく、非常に強い糸であった。
* 1 Average value of n = 20 each
* 2 Not measured because it is not mixed with urethane elastic fiber. From the results in Table 1, the loop height of the composite yarns of Example 1 and Example 2 is much higher than that of the cotton core spun yarn of the comparative example. Big. Further, from the values (Hb, Hc) when the load is applied and the value of the loop retention rate, the loop is retained even when the load is applied up to 0.5 g (for example, with the load of 0.5 g, in Example 1) The loop retention rate was 76.3%, which was 87.5% in Example 2, compared with 55.8% in Comparative Example 2, and it was found that the loop was not easily crushed even when a load was applied. Further, the composite yarn of the present invention was very strong because the strength of the yarn was considerably larger than that of the comparative example.

(実施例3 中空糸の壁の厚みの測定)
実施例1に記載の方法に従って、さまざまな太さの中空糸を用いて複合糸を作成し、溶出後の壁の厚みを測定した。結果を以下の表2に示す。
(Example 3 Measurement of wall thickness of hollow fiber)
In accordance with the method described in Example 1, composite yarns were prepared using hollow fibers of various thicknesses, and the wall thickness after elution was measured. The results are shown in Table 2 below.

それぞれ特徴のある糸が得られた。例えば、実施例1の糸は、きわめて軽く、ソフトで布帛に広汎に用いられる好適な糸であった。また、実施例3−A、3−Bの糸は、羽根のようにきわめて軽く、薄地布帛として好適な糸であった。実施例3−Fの糸は、従来のモノフィラメントに対し、きわめて軽く、ソフトであり、張り、腰に富む糸であった。   Each characteristic yarn was obtained. For example, the yarn of Example 1 was a very light, suitable yarn that was soft and widely used in fabrics. In addition, the yarns of Examples 3-A and 3-B were extremely light as blades, and were suitable as thin fabrics. The yarn of Example 3-F was a yarn that was extremely light and soft compared to conventional monofilaments, and was rich in tension and waist.

(実施例4 デニム地の作成)
(1)製織
経糸にネービー色にインディゴ染色した綿の9番単糸を用い、これを糊付け、整経し、これに実施例1で得られた複合糸を緯糸として打ち込み、生機織物にした。織物の組織は3/1の綾組織であり、また、生機幅175cm、経糸密度:68本/2.54cm、緯糸密度:45本/2.54cmであった。
(Example 4 creation of denim)
(1) Weaving Navy cotton indigo-dyed No. 9 single yarn was used as the warp, this was glued and warped, and the composite yarn obtained in Example 1 was driven into it as a weft to make a raw fabric. The structure of the woven fabric was a 3/1 twill structure. The width of the machine was 175 cm, the warp density was 68 / 2.54 cm, and the weft density was 45 / 2.54 cm.

(2)仕上げ加工
次いでこの織物を拡布状に連続で糊抜き精練加工を行い、サンフォライズ加工し、180℃でセットした。更にこの織物を40℃で10分ワッシャーで洗いを行い(ワンウォッシャー加工)、最終仕上げした。
(2) Finishing process Next, this woven fabric was continuously subjected to desizing and scouring processing in an expanded form, subjected to sanforization processing, and set at 180 ° C. Further, this woven fabric was washed with a washer at 40 ° C. for 10 minutes (one washer processing), and was finally finished.

(実施例5 デニム地の作成)
緯糸に実施例2で得られた複合糸を用いた以外は、実施例4と同じ手順でデニム生地を作成した。
(Example 5 creation of denim)
A denim fabric was prepared in the same procedure as in Example 4 except that the composite yarn obtained in Example 2 was used as the weft.

(比較例3 デニム地の作成)
緯糸に比較例1で得られた中空糸を用いた以外は、実施例4と同じ手順でデニム生地を作成した。得られたデニム地の伸長率は2%であり、伸長回復率は15%であり、身体への追随性はほとんどなかった。
(Comparative example 3 creation of denim)
A denim fabric was prepared in the same procedure as in Example 4 except that the hollow fiber obtained in Comparative Example 1 was used as the weft. The stretch rate of the obtained denim fabric was 2%, the stretch recovery rate was 15%, and there was almost no followability to the body.

(比較例4 デニム生地の作成)
緯糸に比較例2の綿コアスパンヤーンを用いた以外は、実施例4と同じ手順でデニム生地を作成した。
(Comparative example 4 creation of denim fabric)
A denim fabric was prepared in the same procedure as in Example 4 except that the cotton core spun yarn of Comparative Example 2 was used as the weft.

以下の表は、本発明の複合糸を用いたデニム地(実施例4)と、綿コアスパンヤーンを用いたデニム地(比較例4)の特性をまとめたものである(評価方法は「1−2.布帛の評価方法」を参照)。   The following table summarizes the characteristics of the denim fabric using the composite yarn of the present invention (Example 4) and the denim fabric using the cotton core spun yarn (Comparative Example 4) (the evaluation method is “1”). -2. "Method for evaluating fabric").

実施例4、比較例4で得た最終仕上げした織物について製品評価を行い、結果を表3に記載した。仕上げ幅:130cm、経糸密度:89本/2.54cm、緯糸密度:51本/2.54cmで、目付は328g/mであった。また織物の全体の混率は綿81重量%、ポリエステル17重量%、ポリウレタン弾性繊維2重量%であった。 Product evaluation was performed on the final finished fabrics obtained in Example 4 and Comparative Example 4, and the results are shown in Table 3. The finished width was 130 cm, the warp density was 89 / 2.54 cm, the weft density was 51 / 2.54 cm, and the basis weight was 328 g / m 2 . The total mixing ratio of the woven fabric was 81% by weight cotton, 17% by weight polyester, and 2% by weight polyurethane elastic fiber.

以上のように、本発明の複合糸を用いると、従来技術では得られなかった、きわめて軽く、膨らみがあり、ソフトでドライな風合いで履き心地が良く、また、ストレッチ性、伸長回復性に優れたデニム地が得られた。   As described above, when the composite yarn of the present invention is used, it is extremely light and swelled, which is not obtained by the prior art, and it is comfortable to wear with a soft and dry texture, and has excellent stretchability and stretch recovery. A denim fabric was obtained.

(実施例6 製編織後溶出法を用いたパンツ地の作成)
(1)芯鞘糸(未溶出)の調製
芯成分として、5−スルホイソフタル酸ナトリウム塩5.2モル%及びポリエチレングリコール10.4質量%を共重合成分として用いたポリエチレンテレフタレートと、鞘成分としてポリエチレンテレフタレートを用い、芯成分/鞘成分の質量比率が60/40になるように、鞘成分側がC字型となる芯鞘断面用C型口金ノズル(36ホール)から紡糸温度290℃で吐出させ、紡速3000m/分で紡糸し、繊維断面形状が略C字型の部分配向複合繊維糸として、総繊度140デシテックス、36フィラメントの糸条を一旦巻き取った。続いて、得られた部分配向複合繊維糸を、延伸仮撚機を用いて、熱セット温度165℃、延伸倍率1.7倍、加工速度600m/分で仮撚加工をして、芯/鞘質量比率が60/40、総繊度84デシテックス、36フィラメントの芯鞘糸(未溶出)を得た。
(Example 6 Preparation of pants fabric using elution method after weaving)
(1) Preparation of core-sheath thread (not eluted) As a core component, polyethylene terephthalate using 5.2 mol% of 5-sulfoisophthalic acid sodium salt and 10.4% by mass of polyethylene glycol as a copolymer component, and as a sheath component Using polyethylene terephthalate, the core component / sheath component is discharged at a spinning temperature of 290 ° C. from a core-sheath cross-section C-type nozzle nozzle (36 holes) in which the sheath component side is C-shaped so that the mass ratio of the core component / sheath component is 60/40. Spinning was performed at a spinning speed of 3000 m / min, and a filament having a total fineness of 140 dtex and 36 filaments was once wound up as a partially oriented composite fiber yarn having a substantially C-shaped fiber cross-section. Subsequently, the obtained partially oriented composite fiber yarn was false twisted at a heat setting temperature of 165 ° C., a draw ratio of 1.7 times, and a processing speed of 600 m / min by using a drawing false twister, and the core / sheath A core-sheath yarn (not eluted) having a mass ratio of 60/40, a total fineness of 84 dtex, and 36 filaments was obtained.

(2)芯鞘糸(未溶出)とポリウレタン弾性繊維の混繊糸の調製
次いで、上述の芯鞘糸(未溶出)を2本引き揃え(総繊度504デシテックス)、22デシテックスのポリウレタン弾性繊維「ライクラ」(東レオペロンテックス(株)製)を3.3倍延伸しながら、エアーで交絡させ、混繊した。
(2) Preparation of blended yarn of core-sheath yarn (non-eluting) and polyurethane elastic fiber Next, two core-sheath yarns (non-eluting) are aligned (total fineness 504 dtex), 22 dtex polyurethane elastic fiber “ While stretching “Lycra” (manufactured by Toyo Leoperontex Co., Ltd.) 3.3 times, it was entangled with air and mixed.

(3)製織
経糸に上述の(1)の84デシテックス、36フィラメントの芯鞘糸(未溶出)を用い、緯糸に上述の(2)の混繊複合糸を用い、エアー織機を用いて生機織物にした。織物の組織は2/1の綾組織であり、また、生機幅159cm、経糸密度:178本/2.54cm、緯糸密度:100本/2.54cm、目付が148g/mであった。
(3) Weaving The above-mentioned (1) 84 dtex, 36-filament core-sheath yarn (uneluting) is used for the warp, the above-mentioned (2) mixed fiber composite yarn is used for the weft, and the fabric is woven using an air loom. I made it. The structure of the woven fabric was a 2/1 twill structure, the raw machine width was 159 cm, the warp density was 178 / 2.54 cm, the weft density was 100 / 2.54 cm, and the basis weight was 148 g / m 2 .

(4)仕上げ加工
次いでこの織物を拡布状に連続で糊抜き精練加工を行い、180℃でセットした。その後、液流染色機中、2.0%水酸化ナトリウム水溶液を用い、105℃で35分間処理し、中空糸の芯成分を完全に除去した。次いで、この織物を、0.5%owfの青色分散染料を用い、130℃で染色した。次いで、160℃でセットし、最終仕上げした。
(4) Finishing process Next, the woven fabric was continuously subjected to desizing and scouring in an expanded form, and set at 180 ° C. Then, it processed for 35 minutes at 105 degreeC using 2.0% sodium hydroxide aqueous solution in a liquid dyeing machine, and removed the core component of the hollow fiber completely. The fabric was then dyed at 130 ° C. with 0.5% owf blue disperse dye. Then, it was set at 160 ° C. and finished.

得られた織物は、幅が153cm、経密度185本/2.54cm、緯密度105本/2.54cm、中空糸部分の減量率は60.2%であった。また、得られた織物は、目付が59.2g/m、厚さ0.32mm、カサ高度が5.41cm/g、ストレッチ率(ヨコ)が38%、伸長回復率が90.2%であった。風合いはソフトできわめて軽く、また滑らかな高級感溢れる青色のツイル織物であった。 The resulting woven fabric had a width of 153 cm, a warp density of 185 strands / 2.54 cm, a weft density of 105 strands / 2.54 cm, and the weight loss rate of the hollow fiber portion was 60.2%. The obtained fabric has a basis weight of 59.2 g / m 2 , a thickness of 0.32 mm, a bulk height of 5.41 cm 3 / g, a stretch rate (width) of 38%, and an elongation recovery rate of 90.2%. Met. The texture was soft and extremely light, and it was a smooth, high-quality blue twill fabric.

(比較例5 パンツ地の作成)
経糸に通常の丸断面のポリエチレンテレフタレートフィラメント(84デシテックス、36フィラメント)を用い、緯糸に通常の丸断面のポリエチレンテレフタレートフィラメント(84デシテックス、36フィラメント)とポリウレタン弾性繊維(44デシテックス)を複合した以外は、実施例6と同様の方法で生機織物にした。生機織物を作成した後に溶出減量加工をせずに、実施例6に従って染色し、最終仕上げした。
(Comparative example 5 creation of pants)
Other than using normal polyethylene terephthalate filaments (84 dtex, 36 filaments) for warp and combining normal polyethylene terephthalate filaments (84 dtex, 36 filaments) and polyurethane elastic fibers (44 dtex) for wefts. A green fabric was produced in the same manner as in Example 6. After the raw fabric was prepared, it was dyed and finished according to Example 6 without being subjected to elution weight loss processing.

得られた織物は、幅が153cm、経密度185本/2.54cm、緯密度105本/2.54cmであった。また、得られた織物は、目付が153.9g/m、厚さ0.29mm、カサ高度が1.88cm/g、ストレッチ率(ヨコ)が26.2%、伸長回復率が81.3%であった。ストレッチ率及び伸長回復率は優れているが、風合いは硬く、軽さや滑らかさ、カサ高度に特徴がなく、平凡な織物であった。 The resulting woven fabric had a width of 153 cm, a warp density of 185 / 2.54 cm, and a weft density of 105 / 2.54 cm. The obtained fabric has a basis weight of 153.9 g / m 2 , a thickness of 0.29 mm, a bulk height of 1.88 cm 3 / g, a stretch rate (horizontal) of 26.2%, and an elongation recovery rate of 81. 3%. Although the stretch rate and elongation recovery rate were excellent, the texture was hard, and it was a mediocre woven fabric with no features in lightness, smoothness, and bulkiness.

(実施例7 ウール混織物)
実施例1に従って、中空率が60%の溶出型中空糸(溶出済)を含む複合糸を得た。溶出後の繊度は、202デシテックス−216フィラメント+ウレタン44デシテックスであった。この中空糸の溶出減量率は60.3%であった。
(Example 7 Wool blended fabric)
According to Example 1, a composite yarn containing an elution type hollow fiber (eluted) having a hollow ratio of 60% was obtained. The fineness after elution was 202 dtex-216 filament + urethane 44 dtex. The hollow fiber elution weight loss rate was 60.3%.

経糸に52番のウールを用い、緯糸に上述の複合糸を用い、平組織の生機織物を得た。次いでこの織物を拡布状に連続で糊抜き精練加工を行い、180℃でセットした。その後、この織物を、グレーの酸性染料とグレーの分散染料を用い、105℃で染色した。次いで、セミデカ加工(表面の糸を蒸気でプレスする加工)し、仕上げた。   A 52-mm wool was used for the warp and the above-mentioned composite yarn was used for the weft to obtain a plain fabric fabric. Subsequently, this woven fabric was continuously subjected to desizing and scouring in an expanded form, and set at 180 ° C. The fabric was then dyed at 105 ° C. using a gray acid dye and a gray disperse dye. Then, semi-deca processing (processing to press the surface yarn with steam) was finished.

得られた織物の風合いはソフトで、膨らみ感があり、滑らかできわめて軽かった。また、ストレッチ(ヨコ)率は28.3%、伸長回復率は88.3%であり、機能性と高級感が溢れるグレーの平織物が得られた。   The texture of the resulting fabric was soft, swelled, smooth and extremely light. In addition, the stretch (horizontal) rate was 28.3%, and the elongation recovery rate was 88.3%, and a gray plain woven fabric full of functionality and luxury was obtained.

(比較例6 ウール混織物)
実施例7の複合糸の代わりに、実施例1の芯/鞘質量比率が60/40、総繊度85デシテックス、36フィラメントの芯鞘糸(未溶出)を緯糸に用いた以外は実施例7と同じ手順を行い、平組織を有する生機織物を得た。
(Comparative Example 6 Wool blended fabric)
Example 7 and Example 7 except that the core / sheath mass ratio of Example 1 is 60/40, the total fineness is 85 dtex, and the 36 filament core / sheath thread (not eluted) is used as the weft instead of the composite yarn of Example 7. The same procedure was performed to obtain a green fabric having a plain structure.

その後、液流染色機を用いて溶出工程を行おうとしたが、アルカリ液によってウールサイドが糸切れを起こし、加工することができなかった。   Thereafter, an elution process was attempted using a liquid dyeing machine, but the wool side was broken by the alkaline solution and could not be processed.

(実施例8 ニット生地の作成)
実施例1の(1)の溶出型中空糸(未溶出)を1本(総繊度84デシテックス、36フィラメント)と、22デシテックスのポリウレタン弾性繊維「ライクラ」(東レオペロンテックス(株)製)を3.3倍延伸しながら、合撚した。その後、この原糸を一旦、ソフトなチーズ形状に巻き返した。その後、糸染設備であるチーズ染色機に入れ、2.0%水酸化ナトリウム水溶液を用い、上述のようにして得た溶出型中空糸を100℃で45分間処理し、芯成分を完全に除去し、中空率が60%の略C型断面糸(溶出済)を含む複合糸を得た。
Example 8 Preparation of knit fabric
One elution-type hollow fiber (not eluted) of Example 1 (1) (total fineness of 84 dtex, 36 filaments) and 22 dtex polyurethane elastic fiber “Lycra” (manufactured by Toyo Perontex Co., Ltd.) Twisting while stretching 3 times. Thereafter, the raw yarn was once rolled back into a soft cheese shape. Then, put it into a cheese dyeing machine, which is a yarn dyeing facility, and treat the elution-type hollow fiber obtained as described above with a 2.0% aqueous sodium hydroxide solution at 100 ° C for 45 minutes to completely remove the core component. Thus, a composite yarn containing a substantially C-shaped cross-sectional yarn (eluted) having a hollowness of 60% was obtained.

この複合糸を用い、釜径34吋(2.54cm)、ゲージ数32ゲージで編成し、天竺組織を得た。編成時には、複合糸に対し、編み張力2.2gをかけて編物を作成した。得られた生成は、幅が154cm、目付は78g/mmであった。この生成を常法に従って精練し、180℃でセットし、次いで、青色分散染料を用い、130℃で染色し、仕上げ処理した。仕上げ処理後の編物は、幅が150cm、目付は65g/mm、厚さ0.25mmであった。 This composite yarn was used to knit with a hook diameter of 34 mm (2.54 cm) and a gauge number of 32 gauges to obtain a tengu structure. At the time of knitting, a knitted fabric was prepared by applying 2.2 g of knitting tension to the composite yarn. The resulting product had a width of 154 cm and a basis weight of 78 g / mm 2 . This product was refined according to a conventional method, set at 180 ° C., then dyed at 130 ° C. with a blue disperse dye and finished. The finished knitted fabric had a width of 150 cm, a basis weight of 65 g / mm 2 , and a thickness of 0.25 mm.

得られた編物は、カサ高度が3.85cm/g、ストレッチ率(ヨコ方向)125.4%、伸長回復率(ヨコ方向)が89.3%であった。得られた編物は、軽く(目付は65g/mm)、風合いはソフトであり、かつ滑らかな高級感溢れる青色の天竺編物であった。 The obtained knitted fabric had a bulk height of 3.85 cm 3 / g, a stretch rate (horizontal direction) of 125.4%, and an elongation recovery rate (horizontal direction) of 89.3%. The obtained knitted fabric was light (weighing 65 g / mm 2 ), soft in texture, and a smooth, smooth blue knitted knitted fabric.

(比較例7 ニット生地の作成)
実施例8の中空率が60%の略C型断面糸(溶出済)を含む複合糸の代わりに、通常の丸断面のポリエチレンテレフタレートフィラメント糸(84デシテックス、36フィラメント)を、22デシテックスのポリウレタン弾性繊維「ライクラ」(東レオペロンテックス(株)製)を3.3倍延伸しながら合撚した。この複合糸を用い、実施例8と同じ手順で青色の天竺編物を得た。得られた生成は、幅が154cm、目付は195g/mmであった。この生成を常法に従って精練し、180℃でセットし、次いで、青色分散染料を用い、130℃で染色し、仕上げ処理した。仕上げ処理後の編物は、幅が150cm、目付は162g/mm、厚さ0.35mmであった。
(Comparative Example 7 Creation of knit fabric)
Instead of the composite yarn containing a substantially C-shaped cross-section yarn (eluted) of 60% in Example 8, a normal round-section polyethylene terephthalate filament yarn (84 dtex, 36 filament) was replaced with 22 dtex polyurethane elasticity. The fiber “Lycra” (manufactured by Tolo Perontex Co., Ltd.) was twisted while being stretched 3.3 times. Using this composite yarn, a blue knitted fabric was obtained in the same procedure as in Example 8. The resulting product had a width of 154 cm and a basis weight of 195 g / mm 2 . This product was refined according to a conventional method, set at 180 ° C., then dyed at 130 ° C. with a blue disperse dye and finished. The finished knitted fabric had a width of 150 cm, a basis weight of 162 g / mm 2 , and a thickness of 0.35 mm.

得られた編物は、カサ高度が2.16cm/g、ストレッチ率(ヨコ方向)83.2%、伸長回復率(ヨコ方向)が62.3%であった。得られた編物は、軽量感がなく、風合いは硬く、ザラザラした風合いで平凡な天竺編物であった。 The obtained knitted fabric had a bulk height of 2.16 cm 3 / g, a stretch rate (horizontal direction) of 83.2%, and an elongation recovery rate (horizontal direction) of 62.3%. The obtained knitted fabric had no feeling of light weight, had a hard texture, and had a rough texture and an ordinary tengu knitted fabric.

(実施例9 起毛加工したデニム地)
実施例4(1)で得られたデニム地の生機織物を、実施例4(2)に従って精練、サンフォライズ、セットした。次いで、この生機織物を起毛加工した。針布起毛機を用い、織物の裏面を3回起毛した。起毛加工後、実施例4(2)に従ってワンウォッシャー加工し、仕上げた。ストレッチ率(ヨコ)31.4%、伸長回復率:89.2%であった。仕上製品は軽く、ソフトな色合いであり、裏面の毛羽は細かく、高密度であり、暖かいものであった。秋冬用途として好適なデニムが得られた。
Example 9 Denim fabric with brushed finish
The denim raw fabric obtained in Example 4 (1) was scoured, sanforized and set according to Example 4 (2). Next, the raw fabric was brushed. Using a needle cloth raising machine, the back side of the fabric was raised three times. After raising, the one washer was processed and finished according to Example 4 (2). The stretch rate (horizontal) was 31.4%, and the elongation recovery rate was 89.2%. The finished product was light and soft in color, and the fluff on the back was fine, dense and warm. Denim suitable for autumn / winter use was obtained.

Claims (12)

略C型断面糸と弾性繊維とで構成された複合糸であって、該C型断面糸の壁の平均厚みが0.2μm〜15.0μmであり、かつ略C型断面糸が弾性繊維に300μm〜5000μmのループ高さで混繊又は合撚又はカバーリングされていることを特徴とする、複合糸。   A composite yarn composed of a substantially C-shaped cross-sectional yarn and an elastic fiber, wherein the average thickness of the wall of the C-shaped cross-sectional yarn is 0.2 μm to 15.0 μm, and the substantially C-shaped cross-sectional yarn is an elastic fiber. A composite yarn characterized by being mixed, twisted or covered at a loop height of 300 μm to 5000 μm. 該C型断面糸の中空率が55〜80%である、請求項1記載の複合糸。   The composite yarn according to claim 1, wherein the hollowness of the C-shaped cross-sectional yarn is 55 to 80%. 該C型断面糸の単糸繊度が、0.1〜50デシテックスである、請求項1又は2に記載の複合糸。   The composite yarn according to claim 1 or 2, wherein the single yarn fineness of the C-shaped cross-sectional yarn is 0.1 to 50 dtex. 該C型断面糸が仮撚糸である、請求項1〜3のいずれか1項に記載の複合糸。   The composite yarn according to any one of claims 1 to 3, wherein the C-shaped cross-sectional yarn is a false twisted yarn. 該弾性繊維がポリウレタン系である、請求項1〜4のいずれか1項に記載の複合糸。   The composite yarn according to any one of claims 1 to 4, wherein the elastic fiber is polyurethane. 該略C型断面糸が、芯成分と鞘成分を有する複合糸の芯部分を溶出することによって中空部分が形成される、請求項1〜5のいずれか1項に記載の複合糸。   The composite yarn according to any one of claims 1 to 5, wherein the substantially C-shaped cross-sectional yarn elutes a core portion of the composite yarn having a core component and a sheath component to form a hollow portion. 該弾性繊維が、該複合糸中に1〜70質量%含まれる、請求項1〜6のいずれか1項に記載の複合糸。   The composite yarn according to any one of claims 1 to 6, wherein the elastic fiber is contained in the composite yarn in an amount of 1 to 70% by mass. 請求項1〜7のいずれかに記載の複合糸を用いて作られた布帛。   A fabric made using the composite yarn according to any one of claims 1 to 7. 該布帛が織物であり、織物の伸長率が5%以上、伸長回復率が80%以上である、請求項8に記載の布帛。   The fabric according to claim 8, wherein the fabric is a woven fabric, and the stretch rate of the woven fabric is 5% or more and the stretch recovery rate is 80% or more. 該布帛が編地であり、編地の伸長率が90%以上、伸長回復率が80%以上である、請求項8に記載の布帛。   The fabric according to claim 8, wherein the fabric is a knitted fabric, and the stretch rate of the knitted fabric is 90% or more and the stretch recovery rate is 80% or more. 該複合糸の総繊度が10デシテックス以上500デシテックス以下である、請求項8〜10のいずれか1項に記載の布帛。   The fabric according to any one of claims 8 to 10, wherein the total fineness of the composite yarn is 10 dtex or more and 500 dtex or less. 該布帛が起毛されている、請求項8〜11のいずれか1項に記載の布帛。   The fabric according to any one of claims 8 to 11, wherein the fabric is raised.
JP2014233416A 2014-11-18 2014-11-18 Composite yarn and fabric using the same Active JP6578650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014233416A JP6578650B2 (en) 2014-11-18 2014-11-18 Composite yarn and fabric using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014233416A JP6578650B2 (en) 2014-11-18 2014-11-18 Composite yarn and fabric using the same

Publications (2)

Publication Number Publication Date
JP2016098439A true JP2016098439A (en) 2016-05-30
JP6578650B2 JP6578650B2 (en) 2019-09-25

Family

ID=56075623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014233416A Active JP6578650B2 (en) 2014-11-18 2014-11-18 Composite yarn and fabric using the same

Country Status (1)

Country Link
JP (1) JP6578650B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116691A (en) * 2017-12-26 2019-07-18 東レ株式会社 Hollow fiber
CN111041698A (en) * 2019-12-31 2020-04-21 江苏恒力化纤股份有限公司 Preparation method of blanket

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310254A (en) * 1994-05-16 1995-11-28 Unitika Ltd Method for producing shrinkable web
JP2010203016A (en) * 2009-03-05 2010-09-16 Toray Opelontex Co Ltd Loop yarn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310254A (en) * 1994-05-16 1995-11-28 Unitika Ltd Method for producing shrinkable web
JP2010203016A (en) * 2009-03-05 2010-09-16 Toray Opelontex Co Ltd Loop yarn

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116691A (en) * 2017-12-26 2019-07-18 東レ株式会社 Hollow fiber
JP7006254B2 (en) 2017-12-26 2022-01-24 東レ株式会社 Hollow fiber
CN111041698A (en) * 2019-12-31 2020-04-21 江苏恒力化纤股份有限公司 Preparation method of blanket
CN111041698B (en) * 2019-12-31 2022-01-28 江苏恒力化纤股份有限公司 Preparation method of blanket

Also Published As

Publication number Publication date
JP6578650B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
KR100386006B1 (en) Lining cloth and method for producing the same
TWI250239B (en) A composite sheet used for artificial leather with low elongation and excellent softness
JP2003041462A (en) Woven/knitted fabric with air self-regulating permeability function
MXPA02007495A (en) Woven stretch fabric.
JP7297264B2 (en) Textiles, their manufacturing methods, and textile products containing said fabrics
JP2015108204A (en) Woven fabric made of composite spun yarn
JP2004124348A (en) Composite woven fabric
JP2006214056A (en) Woven fabric
JP6431637B1 (en) Knitted fabric for outer clothing having a pattern
JP2014227612A (en) Light-weight knitted or woven fabric
JP6578650B2 (en) Composite yarn and fabric using the same
JP2010095813A (en) Woven and knitted fabric of multilayer structure and textile product
JP2021183732A (en) Polyester false twisted yarn and knitted fabric
JP5216970B2 (en) Polyester knitted fabric, production method thereof and textile product
JP2006077338A (en) Stretchable shirting fabric
JP6932217B1 (en) Spinned yarn fabric
JP2016056485A (en) Polyamide fiber woven or knitted fabric and method for producing the same
JP7006254B2 (en) Hollow fiber
JP2019137926A (en) Anti-snagging knitted fabric using false-twisted yarn
JP2014005574A (en) Polyamide fiber woven or knitted fabric
JP6455094B2 (en) fabric
JP2005344219A (en) Knitted fabric for underwear
JP7383424B2 (en) Warp knitted fabric
JP6638437B2 (en) Mixed yarn, woven or knitted fabric using the same, and suede-like woven or knitted fabric
JP6969326B2 (en) Polyester mixed yarn fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R151 Written notification of patent or utility model registration

Ref document number: 6578650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151