JP2016097373A - Sludge dehydration treatment method and sludge dehydration treatment system - Google Patents
Sludge dehydration treatment method and sludge dehydration treatment system Download PDFInfo
- Publication number
- JP2016097373A JP2016097373A JP2014237580A JP2014237580A JP2016097373A JP 2016097373 A JP2016097373 A JP 2016097373A JP 2014237580 A JP2014237580 A JP 2014237580A JP 2014237580 A JP2014237580 A JP 2014237580A JP 2016097373 A JP2016097373 A JP 2016097373A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- fibrous material
- supply device
- mixed
- mixing tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 339
- 238000011282 treatment Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 19
- 208000005156 Dehydration Diseases 0.000 title abstract description 30
- 230000018044 dehydration Effects 0.000 title abstract description 30
- 238000006297 dehydration reaction Methods 0.000 title abstract description 30
- 239000002657 fibrous material Substances 0.000 claims abstract description 102
- 238000004062 sedimentation Methods 0.000 claims abstract description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 62
- 238000002156 mixing Methods 0.000 claims description 70
- 239000000835 fiber Substances 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 230000005484 gravity Effects 0.000 claims description 12
- 239000006228 supernatant Substances 0.000 claims description 8
- 238000011221 initial treatment Methods 0.000 claims description 4
- 238000012388 gravitational sedimentation Methods 0.000 abstract 2
- 239000000701 coagulant Substances 0.000 description 11
- 239000010865 sewage Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000015271 coagulation Effects 0.000 description 7
- 238000005345 coagulation Methods 0.000 description 7
- 244000005700 microbiome Species 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
この発明は、繊維状物を含有する被処理水を最初沈殿池で重力沈殿させた初沈汚泥と、最終沈殿池で重力沈殿させた余剰汚泥とを混合して脱水処理する汚泥脱水処理方法および汚泥脱水処理システムに関するものである。 The present invention relates to a sludge dewatering method in which dewatering treatment is performed by mixing primary sludge obtained by gravity sedimentation of water to be treated containing fibrous materials in a first sedimentation basin and surplus sludge obtained by gravity sedimentation in a final sedimentation basin, and The present invention relates to a sludge dewatering system.
下水処理場に流入する被処理水は、日間変動、季節変動、天候等により、流入量や被処理水中の成分が変動する。 The treated water flowing into the sewage treatment plant varies in inflow and components in the treated water due to daily fluctuations, seasonal fluctuations, weather, and the like.
最初沈殿池ではその影響を受けて初沈汚泥の発生量や成分が変動するが、最終沈殿池では、処理水が反応槽を経て流入してくるため、余剰汚泥は発生量や成分の変動が少ない。 In the first sedimentation basin, the amount and components of the initial sludge are affected, but in the final sedimentation basin, the treated water flows in through the reaction tank. Few.
初沈汚泥は、主に固形の有機物や土砂等の無機成分からなっており、一般的に脱水性がよい。 Primary sedimentation sludge is mainly composed of inorganic components such as solid organic matter and earth and sand, and generally has good dewaterability.
一方、余剰汚泥は、微生物が分泌した多糖類、タンパク質、核酸からなっており、著しく脱水性が悪いことが知られている。 On the other hand, surplus sludge is composed of polysaccharides, proteins, and nucleic acids secreted by microorganisms, and is known to have extremely poor dewaterability.
最初沈殿池で発生する初沈汚泥や最終沈殿池で発生する余剰汚泥は、脱水工程での効率改善を図るため、それぞれ備え付けた濃縮設備で一定の濃度に濃縮している。 The initial sludge generated in the first sedimentation basin and the surplus sludge generated in the final sedimentation basin are concentrated to a certain concentration by the respective concentration equipment provided in order to improve the efficiency in the dehydration process.
それぞれの濃縮汚泥を所定の比率で混合して脱水機に供給し、脱水機で生成した脱水ケーキは焼却あるいは埋立処分される。 Each concentrated sludge is mixed at a predetermined ratio and supplied to a dehydrator, and the dehydrated cake produced by the dehydrator is incinerated or disposed of in landfill.
脱水ケーキを搬送、処分するためのランニングコストを低減するために、安定的に低含水率の脱水ケーキを生成することが望まれている。 In order to reduce the running cost for transporting and disposing of the dehydrated cake, it is desired to stably produce a dehydrated cake having a low water content.
混合汚泥に繊維状物や、おがくず、籾殻などの植物素材を脱水助材として混合して脱水することが古くから知られ、多くの下水処理場で実施されている。 It has long been known that mixed sludge is mixed with fibrous materials, sawdust, rice husks, and other plant materials as a dehydrating aid, and has been practiced in many sewage treatment plants.
このように、混合汚泥に繊維状物(脱水助材)を混合して脱水すると、低含水率の脱水ケーキが得られ、かつ、加圧脱水の場合には脱水ケーキの剥離性が改善される。 Thus, when a fibrous material (dehydration aid) is mixed and dehydrated in the mixed sludge, a dehydrated cake having a low water content is obtained, and in the case of pressure dehydration, the delamination property of the dehydrated cake is improved. .
しかしながら、大量の脱水助材を用意しなければならないため、ランニングコストが増大し、また、脱水助材の備蓄・供給設備を設置しなければならないため、イニシャルコストが増大するという問題があった。 However, since a large amount of dehydration aid has to be prepared, the running cost increases, and since a storage and supply facility for the dehydration aid has to be installed, the initial cost increases.
また、濃縮設備では初沈汚泥を1日〜3日滞留させるが、この滞留期間中に初沈汚泥内の有機分が腐敗して脱水性の悪い汚泥へと性状変化することがあった。 In addition, in the concentrating facility, the primary sedimentation sludge is retained for 1 to 3 days. During this residence period, the organic content in the primary sedimentation sludge may rot and change to a sludge having poor dewaterability.
初沈汚泥に含有される繊維状物も同様に腐敗し、脱水助材として機能し難い性状に変化することがあった。 The fibrous material contained in the first settling sludge also rots in the same way, and sometimes changes to a property that does not function as a dehydration aid.
さらに、濃縮設備の維持管理のためのランニングコストやプラント工事のためのイニシャルコストが増大するという問題があった。 Furthermore, there has been a problem that the running cost for maintenance and management of the concentration facility and the initial cost for plant construction increase.
そこで、汚水処理プロセスの最初沈殿池で発生する生汚泥である初沈汚泥から繊維分を分離、回収し、余剰汚泥または消化汚泥などの難脱水汚泥に回収した繊維分を添加して脱水処理することが提案されている(例えば、特許文献1参照)。 Therefore, the fiber content is separated and recovered from the primary sedimentation sludge that is raw sludge generated in the initial sedimentation basin of the sewage treatment process, and the recovered fiber content is added to the difficult-to-dehydrate sludge such as excess sludge or digested sludge for dehydration treatment. Has been proposed (see, for example, Patent Document 1).
また、初沈汚泥と余剰汚泥との混合比率を調整して脱水処理することも提案されている(例えば、特許文献2、特許文献3参照)。 In addition, it has also been proposed to perform a dehydration treatment by adjusting the mixing ratio of the initial settling sludge and excess sludge (see, for example, Patent Document 2 and Patent Document 3).
このように、初沈汚泥から分離、回収した繊維分を脱水助材とすることにより、ランニングコストを低減することができる。 Thus, running cost can be reduced by using the fiber part isolate | separated and collect | recovered from the initial settling sludge as a dehydration aid.
しかしながら、特許文献1に記載されている汚泥脱水処理方法、汚泥脱水処理システムでは、初沈汚泥から繊維分を分離、回収する設備を用意する必要があるとともに、繊維分を備蓄する備蓄設備が必要になるという問題がある。 However, in the sludge dewatering method and the sludge dewatering system described in Patent Document 1, it is necessary to prepare equipment for separating and recovering the fiber from the first settled sludge, and a storage facility for storing the fiber is required. There is a problem of becoming.
また、特許文献2に記載されている汚泥脱水処理方法、汚泥脱水処理システムは、初沈汚泥と余剰汚泥との接触時間を短くすることによってリン濃度の低減を目的とするものである。 In addition, the sludge dewatering method and the sludge dewatering system described in Patent Document 2 are intended to reduce the phosphorus concentration by shortening the contact time between the primary sedimentation sludge and the excess sludge.
なお、特許文献2には、未濃縮状態の混合汚泥の脱水性の改善に関して、脱水性の悪い余剰汚泥に脱水性のよい初沈汚泥を混合させる旨の記載はなく、具体性に欠けるものである。 In addition, in Patent Document 2, there is no description of mixing the first sludge with good dewatering property with the excess sludge with poor dewatering property, and there is a lack of concreteness regarding the improvement of the dewatering property of the unconcentrated mixed sludge. is there.
また、特許文献3には、初沈汚泥と余剰汚泥との混合比率を調整する技術が記載されており、具体的には、初沈汚泥と余剰汚泥との混合汚泥における固形分中の無機質成分と有機質成分との質量比を、10:90〜40:60にすることが開示されている。 Patent Document 3 describes a technique for adjusting the mixing ratio of primary sedimentation sludge and excess sludge, and specifically, inorganic components in the solid content of the mixed sludge of primary sedimentation sludge and excess sludge. And the mass ratio of the organic component to 10:90 to 40:60.
なお、有機質成分は、主に『タンパク質』、『炭水化物』、『脂質』等からなっており、繊維分は『炭水化物』に含まれるため、特許文献3の技術は、混合汚泥中の繊維分を限定するために、初沈汚泥と余剰汚泥との混合比率を調整する技術である。 The organic component is mainly composed of “protein”, “carbohydrate”, “lipid”, etc., and the fiber content is contained in “carbohydrate”. Therefore, the technology of Patent Document 3 uses the fiber content in the mixed sludge. In order to limit, it is the technique which adjusts the mixing ratio of primary sludge and excess sludge.
しかし、特許文献3に記載されている有機質成分は、脱水性の悪化要因として記載されており、具体的には、最初沈殿池で発生する初沈汚泥は有機質成分の含有量が少ないため脱水性がよく、最終沈殿池で発生する終沈汚泥は有機質成分の含有量が多いため脱水性が悪いと記載されている。 However, the organic component described in Patent Document 3 is described as a factor that deteriorates the dewaterability, and specifically, the initial sedimentation sludge generated in the first sedimentation basin has a low content of organic components and thus is dewaterable. However, it is described that the final sedimentation sludge generated in the final sedimentation basin is poor in dewaterability due to the high content of organic components.
なお、特許文献3には、脱水性を改善するための脱水助材として使用する繊維状物について、記載も示唆もされていない。 In Patent Document 3, there is no description or suggestion of a fibrous material used as a dehydrating aid for improving dewaterability.
この発明は、初沈汚泥に含まれている繊維状物が脱水助材として機能することに着目してなされたもので、下水処理場および汚泥処理にかかるイニシャルコストおよびランニングコストを低減することができるとともに、汚泥の脱水処理を速く行うことのできる汚泥脱水処理方法および汚泥脱水処理システムを提供するものである。 This invention was made by paying attention to the fact that the fibrous material contained in the initial settling sludge functions as a dewatering aid, and can reduce initial costs and running costs for sewage treatment plants and sludge treatment. The present invention provides a sludge dewatering method and a sludge dewatering system capable of performing sludge dewatering at high speed.
この発明の汚泥脱水処理方法は、繊維状物を含有する被処理水を最初沈殿池で重力沈殿させた初沈汚泥と、最終沈殿池で重力沈殿させた余剰汚泥とを混合して混合汚泥とした後、前記混合汚泥を脱水機で脱水処理する汚泥脱水処理方法であって、前記混合汚泥における前記繊維状物の含有率が20%以上になるように前記初沈汚泥と前記余剰汚泥とを混合することを特徴とする。 The sludge dewatering method of the present invention is a mixture of sludge mixed with initial sludge obtained by gravity sedimentation of water to be treated containing fibrous material in a first sedimentation basin and surplus sludge obtained by gravity sedimentation in a final sedimentation basin. Then, the sludge dewatering method of dewatering the mixed sludge with a dehydrator, wherein the initial sludge and the surplus sludge are adjusted so that the content of the fibrous material in the mixed sludge is 20% or more. It is characterized by mixing.
この発明の汚泥脱水処理システムは、繊維状物を含有する被処理水を重力沈殿させる最初沈殿池と、前記最初沈殿池から供給される一次処理水を、生物処理する反応槽と、前記反応槽から供給される処理水を重力沈殿させ、上澄み水を放流する最終沈殿池と、前記最初沈殿池に沈殿した初沈汚泥を混合槽へ供給する初沈汚泥供給装置と、前記最終沈殿池に沈殿した余剰汚泥を前記混合槽へ供給する余剰汚泥供給装置と、前記初沈汚泥供給装置と前記余剰汚泥供給装置とによって前記初沈汚泥と前記余剰汚泥とが供給される前記混合槽と、前記混合槽内の混合汚泥を脱水機へ供給する混合汚泥供給装置と、前記混合汚泥供給装置によって供給された前記混合汚泥を脱水する前記脱水機と、前記初沈汚泥供給装置内の前記初沈汚泥における前記繊維状物の含有率を測定する繊維状物含有率測定装置と、前記繊維状物含有率測定装置の出力に基づいて、前記混合槽内の前記混合汚泥における前記繊維状物の含有率が20%以上になるように前記初沈汚泥供給装置と前記余剰汚泥供給装置とを制御する制御装置と、を有することを特徴とする。 The sludge dewatering treatment system of the present invention includes a first sedimentation basin that gravity-precipitates water to be treated containing fibrous materials, a reaction tank that biologically treats primary treatment water supplied from the first sedimentation basin, and the reaction tank A final sedimentation basin that gravity settles the treated water supplied from the wastewater, discharges the supernatant water, an initial sedimentation sludge supply device that feeds the primary sedimentation sludge settled in the first sedimentation basin to the mixing tank, and sedimentation in the final sedimentation basin The surplus sludge supply device that supplies the surplus sludge to the mixing tank, the mixing tank in which the initial sludge and the surplus sludge are supplied by the initial sludge supply device and the surplus sludge supply device, and the mixing In the mixed sludge supply device for supplying the mixed sludge in the tank to the dehydrator, the dehydrator for dehydrating the mixed sludge supplied by the mixed sludge supply device, and the first settling sludge in the first settling sludge supply device The fiber Based on the output of the fibrous material content measuring device for measuring the content of the fibrous material and the fibrous material content measuring device, the content of the fibrous material in the mixed sludge in the mixing tank is 20%. As mentioned above, it has the control apparatus which controls the said initial sedimentation sludge supply apparatus and the said excess sludge supply apparatus, It is characterized by the above-mentioned.
また、この発明の汚泥脱水処理システムは、繊維状物を含有する被処理水を重力沈殿させる最初沈殿池と、前記最初沈殿池から供給される一次処理水を、生物処理する反応槽と、前記反応槽から供給される処理水を重力沈殿させ、上澄み水を放流する最終沈殿池と、前記最初沈殿池に沈殿した初沈汚泥を混合槽へ供給する初沈汚泥供給装置と、前記最終沈殿池に沈殿した余剰汚泥を前記混合槽へ供給する余剰汚泥供給装置と、前記初沈汚泥供給装置と前記余剰汚泥供給装置とによって前記初沈汚泥と前記余剰汚泥とが供給される前記混合槽と、前記混合槽内の混合汚泥を脱水機へ供給する混合汚泥供給装置と、前記混合汚泥供給装置によって供給された前記混合汚泥を脱水する前記脱水機と、前記混合槽内の前記混合汚泥における前記繊維状物の含有率を測定する繊維状物含有率測定装置と、前記繊維状物含有率測定装置の出力に基づいて、前記混合槽内の前記混合汚泥における前記繊維状物の含有率が20%以上になるように前記初沈汚泥供給装置と前記余剰汚泥供給装置とを制御する制御装置と、を有することを特徴とする。 The sludge dewatering treatment system of the present invention includes a first sedimentation basin for gravity-precipitation of water to be treated containing fibrous materials, a primary treatment water supplied from the first sedimentation basin, a reaction tank for biological treatment, A final sedimentation basin that gravity settles the treated water supplied from the reaction tank and discharges the supernatant water, an initial sedimentation sludge supply device that supplies the primary sedimentation sludge precipitated in the first sedimentation tank to the mixing tank, and the final sedimentation tank Surplus sludge supply device for supplying the surplus sludge precipitated in the mixing tank, the mixing tank in which the initial sludge and the excess sludge are supplied by the initial sludge supply device and the excess sludge supply device, A mixed sludge supply device for supplying mixed sludge in the mixing tank to a dehydrator, the dehydrator for dehydrating the mixed sludge supplied by the mixed sludge supply device, and the fibers in the mixed sludge in the mixing tank Condition The content rate of the fibrous material in the mixed sludge in the mixing tank is 20% or more based on the output of the fibrous material content rate measuring device for measuring the content rate of the fibrous material and the fibrous material content rate measuring device. It has the control apparatus which controls the said initial settling sludge supply apparatus and the said surplus sludge supply apparatus so that it may become.
この発明の汚泥脱水処理方法および汚泥脱水処理システムによれば、混合汚泥における繊維状物の含有率が20%以上になるように初沈汚泥と余剰汚泥とを混合するので、安定した脱水工程を行うための汚泥性状を維持することができる。 According to the sludge dewatering method and the sludge dewatering system of the present invention, the first settling sludge and the excess sludge are mixed so that the content of the fibrous material in the mixed sludge is 20% or more. The sludge properties for performing can be maintained.
したがって、脱水性が日間変動等で刻々と変化する初沈汚泥を脱水機の前段で濃縮せずに直接脱水機に供給することが可能となり、下水処理場にて迅速な汚泥処理を行うことができるとともに、濃縮設備を削減することができる。 Therefore, it is possible to supply the initial settling sludge whose dewaterability changes every day due to daily fluctuations, etc. directly to the dehydrator without concentrating it at the front stage of the dehydrator, and it is possible to perform the rapid sludge treatment at the sewage treatment plant. In addition, the concentration equipment can be reduced.
また、脱水助材を外部から持ち込んで添加する必要がなくなることにより、イニシャルコストおよびランニングコストを低減することができる。 In addition, the initial cost and running cost can be reduced by eliminating the need to bring in and add a dehydration aid from the outside.
以下、この発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は、この発明の第1実施例である汚泥脱水処理システムの構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a sludge dewatering treatment system according to a first embodiment of the present invention.
図1において、汚泥脱水処理システム1は、繊維状物を含有する被処理水11を重力沈殿させる最初沈殿池31と、この最初沈殿池31から供給される一次処理水13を、生物処理する反応槽33と、この反応槽33から供給される処理水15を重力沈殿させ、上澄み水17を河川などへ放流する最終沈殿池35と、最初沈殿池31に沈殿した初沈汚泥19を混合槽55へ供給する初沈汚泥供給装置37と、最終沈殿池35に沈殿した余剰汚泥21を混合槽55へ供給する余剰汚泥供給装置43と、初沈汚泥供給装置37と余剰汚泥供給装置43とによって初沈汚泥19と余剰汚泥21とが供給される混合槽55と、混合槽55の混合汚泥23を凝集混和槽63へ供給する混合汚泥供給装置57と、この混合汚泥供給装置57によって混合汚泥23が供給される凝集混和槽63と、この凝集混和槽63へ凝集剤25を供給する凝集剤供給装置65と、凝集混和槽63から供給される凝集汚泥27を脱水し、脱水ケーキ29を生成する脱水機(例えば、スクリュープレス)67と、初沈汚泥供給装置37内の初沈汚泥19における繊維状物の含有率を測定する繊維状物含有率測定装置73と、この繊維状物含有率測定装置73の出力に基づいて、混合槽55内の混合汚泥23における繊維状物の含有率が20%以上になるように初沈汚泥供給装置37と余剰汚泥供給装置43とを制御する制御装置75と、を有する。 In FIG. 1, the sludge dewatering treatment system 1 is a reaction for biologically treating a first settling basin 31 for gravity-precipitation of water to be treated 11 containing fibrous materials and a primary treated water 13 supplied from the first settling basin 31. The tank 33, the treated water 15 supplied from the reaction tank 33 is gravity-precipitated, and the final sedimentation basin 35 that discharges the supernatant water 17 to a river or the like, and the initial sedimentation sludge 19 that has settled in the first sedimentation basin 31 are mixed tanks 55. The first settling sludge supply device 37 to be supplied to the final settling tank 35, the excess sludge supply device 43 for supplying the excess sludge 21 settled in the final settling tank 35 to the mixing tank 55, the first settling sludge supply device 37 and the excess sludge supply device 43 The mixing tank 55 to which the settling sludge 19 and the excess sludge 21 are supplied, the mixed sludge supply device 57 for supplying the mixed sludge 23 of the mixing tank 55 to the coagulation mixing tank 63, and the mixed sludge supply device 57 to mix the mixed sludge. The dewatering cake 29 is generated by dewatering the coagulant mixing tank 63 to which the coagulant mixing tank 63 is supplied, the coagulant supplying device 65 for supplying the coagulant 25 to the coagulant mixing tank 63, and the coagulated sludge 27 supplied from the coagulant mixing tank 63. A dehydrator (for example, a screw press) 67, a fibrous material content measuring device 73 for measuring the content of the fibrous material in the initial sludge 19 in the initial sludge supply device 37, and this fibrous material content Based on the output of the measuring apparatus 73, the control apparatus which controls the initial sedimentation sludge supply apparatus 37 and the excess sludge supply apparatus 43 so that the content rate of the fibrous material in the mixed sludge 23 in the mixing tank 55 may be 20% or more. 75.
そして、汚泥脱水処理システム1は、一点鎖線で示すように、余剰汚泥21の一部を反応槽33へ返送させる余剰汚泥返送装置49を備えていてもよい。 And the sludge dewatering processing system 1 may be provided with the surplus sludge return apparatus 49 which returns a part of the surplus sludge 21 to the reaction tank 33, as shown with a dashed-dotted line.
上記した初沈汚泥供給装置37は、最初沈殿池31の、例えば、下部(底)に一端が接続され、他端が混合槽55に接続された供給管39と、この供給管39の途中に設けられ、最初沈殿池31内の初沈汚泥19を吸引して混合槽55内へ圧送するポンプ41とで構成されている。 The first settling sludge supply device 37 described above includes, for example, a supply pipe 39 having one end connected to the lower part (bottom) of the first settling basin 31 and the other end connected to the mixing tank 55, and in the middle of the supply pipe 39. The pump 41 is provided and sucks the first settling sludge 19 in the first settling basin 31 and pumps it into the mixing tank 55.
また、余剰汚泥供給装置43は、最終沈殿池35の、例えば、下部(底)に一端が接続され、他端が混合槽55に接続された供給管45と、この供給管45の途中に設けられ、最終沈殿池35内の余剰汚泥21を吸引して混合槽55内へ圧送するポンプ47とで構成されている。 Moreover, the surplus sludge supply apparatus 43 is provided in the middle of this supply pipe 45, for example, the supply pipe 45 by which one end was connected to the lower part (bottom) of the final sedimentation tank 35, and the other end was connected to the mixing tank 55. The pump 47 is configured to suck the excess sludge 21 in the final sedimentation basin 35 and pump it into the mixing tank 55.
また、余剰汚泥返送装置49は、余剰汚泥供給装置43のポンプ47よりも上流の供給管45に一端が接続され、他端が反応槽33に接続された供給管51と、この供給管51の途中に設けられ、最初沈殿池31内の余剰汚泥21を吸引して反応槽33内へ圧送するポンプ53とで構成されている。 The surplus sludge return device 49 has a supply pipe 51 having one end connected to the supply pipe 45 upstream of the pump 47 of the surplus sludge supply apparatus 43 and the other end connected to the reaction tank 33, and the supply pipe 51 The pump 53 is provided in the middle and sucks the excess sludge 21 in the first sedimentation tank 31 and pumps it into the reaction tank 33.
また、混合汚泥供給装置57は、混合槽55の、例えば、下部(底)に一端が接続され、他端が凝集混和槽63に接続された供給管59と、この供給管59の途中に設けられ、混合槽55内の混合汚泥23を吸引して凝集混和槽63内へ圧送するポンプ61とで構成されている。 The mixed sludge supply device 57 is provided in the middle of the supply pipe 59, for example, a supply pipe 59 having one end connected to the lower part (bottom) of the mixing tank 55 and the other end connected to the coagulation mixing tank 63. And a pump 61 that sucks the mixed sludge 23 in the mixing tank 55 and pumps it into the agglomeration mixing tank 63.
また、反応槽33は、空気を吹き込み微生物の働きによって有機物を分解する曝気槽や、OD法(オキシデーションディッチ法)のOD槽が該当する。 Further, the reaction tank 33 corresponds to an aeration tank that blows air and decomposes organic substances by the action of microorganisms, and an OD tank of the OD method (oxidation ditch method).
次に、個々の構成要素(設備)について説明する。 Next, each component (equipment) will be described.
まず、最初沈殿池31では、流れ込んだ被処理水11が重力分離され、比重の重い固形分は沈降し、比重の軽い固形分および液分(一次処理水13)は次段の反応槽33へ送られ、底部に沈殿した固形分は初沈汚泥19として次段以降で脱水処理される。 First, in the first settling basin 31, the treated water 11 that has flowed in is separated by gravity, the solid content with a high specific gravity settles, and the solid content and the liquid with a low specific gravity (primary treated water 13) go to the reaction tank 33 in the next stage. The solid content that has been sent and settled to the bottom is dehydrated as the first sedimentation sludge 19 in the subsequent stages.
この被処理水11には、多量の繊維状物が含有されている。 The treated water 11 contains a large amount of fibrous material.
この被処理水11中に含有されている繊維状物の大部分は、繊維長さが0.1mm〜5mmで、繊維径が1μm〜50μmのトイレットペーパーに由来する繊維状物であることが判明している。 Most of the fibrous materials contained in the water 11 to be treated are found to be fibrous materials derived from toilet paper having a fiber length of 0.1 mm to 5 mm and a fiber diameter of 1 μm to 50 μm. doing.
図2は、トイレットペーパーと初沈汚泥から回収した繊維状物とを比較するグラフであり、横軸を繊維長(mm)、縦軸をその繊維長が占める割合(%)とした時の、トイレットペーパーを水中に溶解して得られた繊維分と、下水処理場の初沈汚泥から回収した繊維分とを比較している。 FIG. 2 is a graph comparing the toilet paper and the fibrous material collected from the initial settling sludge, where the horizontal axis is the fiber length (mm) and the vertical axis is the ratio (%) of the fiber length. The fiber content obtained by dissolving toilet paper in water is compared with the fiber content recovered from the first settling sludge at the sewage treatment plant.
図2の比較結果より、下水汚泥中の繊維分布(繊維長、割合)がトイレットペーパーと酷似していることが判明した。 From the comparison results in FIG. 2, it was found that the fiber distribution (fiber length, ratio) in the sewage sludge is very similar to that of toilet paper.
また、回収する繊維の性状として、繊維長0.1mm〜5mmとしておくことが好ましいことが分かる。 Moreover, it turns out that it is preferable to set it as the fiber length 0.1mm-5mm as a property of the fiber collect | recovered.
図3は、初沈汚泥が含有する繊維状物を示す参考顕微鏡写真である。 FIG. 3 is a reference photomicrograph showing the fibrous material contained in the initial settling sludge.
図3から分かるように、初沈汚泥19が含有する繊維状物は、トイレットペーパーと同様で繊維径にばらつきはなく、1μm〜50μmの範囲に収まっていることが判明した。 As can be seen from FIG. 3, the fibrous material contained in the initial sedimentation sludge 19 was found to be within the range of 1 μm to 50 μm, with no variation in fiber diameter, similar to toilet paper.
これらのことから、初沈汚泥19が含有する繊維状物の性状分布は、トイレットペーパーの繊維性状と非常に酷似しており、トイレットペーパーの繊維分と同等の性状を有すると判断できるもので、脱水助材として好ましいことが分かる。 From these, the property distribution of the fibrous material contained in the first settling sludge 19 is very similar to the fiber property of toilet paper, and can be determined to have the same properties as the fiber content of toilet paper, It turns out that it is preferable as a dehydration aid.
なお、被処理水11中に含有されている繊維状物には、トイレットペーパー由来の繊維状物以外にも植物由来の繊維状物、あるいは、食物残渣由来の繊維状物もあり、繊維状に細分化している状態であれば脱水助材として機能する。 In addition to the fibrous material derived from toilet paper, the fibrous material contained in the treated water 11 includes a fibrous material derived from plants or a fibrous material derived from food residue, If it is in a subdivided state, it functions as a dehydration aid.
初沈汚泥19には、固形分比で40%〜60%の繊維状物が含有されている。 The initial settling sludge 19 contains 40% to 60% of a fibrous material in solid content ratio.
そして、処理場の規模にもよるが、最初沈殿池31では、被処理水11を1時間〜2時間滞留させる。 And depending on the scale of the treatment plant, in the first settling basin 31, the treated water 11 is retained for 1 to 2 hours.
次に、反応槽33では、最初沈殿池31から供給される一次処理水13に活性汚泥(好気性微生物を多量に含んだ汚泥)を加え、空気を吹き込んで攪拌する。 Next, in the reaction tank 33, activated sludge (sludge containing a large amount of aerobic microorganisms) is added to the primary treated water 13 supplied from the first settling basin 31, and air is blown in and stirred.
空気(酸素)と一次処理水13中の有機物とにより、活性汚泥中の微生物が繁殖して一次処理水13中の有機物(汚れ)が減少するとともに、活性汚泥がフロックを形成し、沈殿し易い状態になり、次段へ流出する。 Microorganisms in the activated sludge are propagated by the air (oxygen) and the organic matter in the primary treated water 13 to reduce the organic matter (dirt) in the primary treated water 13, and the activated sludge forms flocs and easily settles. It becomes a state and flows out to the next stage.
そして、処理場の規模にもよるが、反応槽33では、一次処理水13を6時間〜10時間滞留させる。 And depending on the scale of the treatment plant, in the reaction tank 33, the primary treated water 13 is retained for 6 hours to 10 hours.
次に、最終沈殿池35では、反応槽33から供給された活性汚泥の混入した処理水15を滞留させて重力沈殿を行う。 Next, in the final sedimentation basin 35, the treated water 15 mixed with activated sludge supplied from the reaction tank 33 is retained to perform gravity precipitation.
最終沈殿池35の上澄み水17は、必要に応じて高度処理を施して河川などへ放流する。 The supernatant water 17 of the final sedimentation basin 35 is subjected to advanced treatment as necessary and discharged to a river or the like.
最終沈殿池35の底部に沈殿した余剰汚泥21は、後段において脱水処理される。 The surplus sludge 21 that has settled at the bottom of the final sedimentation basin 35 is dehydrated in the subsequent stage.
この余剰汚泥21は、微生物が分泌した多糖類、タンパク質、核酸からなり、著しく脱水性が悪いることが知られている。 It is known that this excess sludge 21 is composed of polysaccharides, proteins, and nucleic acids secreted by microorganisms, and has extremely poor dehydration properties.
そして、処理場の規模にもよるが、最終沈殿池35では、処理水15を3時間〜4時間滞留させる。 And depending on the scale of the treatment plant, the treated water 15 is retained in the final sedimentation basin 35 for 3 hours to 4 hours.
次に、混合槽55は、初沈汚泥供給装置37によって送られてくる初沈汚泥19と、余剰汚泥供給装置43によって送られてくる余剰汚泥21とを攪拌機構で均一に混合し、混合汚泥23とする。 Next, the mixing tank 55 uniformly mixes the initial settling sludge 19 sent by the first settling sludge supply device 37 and the excess sludge 21 sent by the excess sludge supply device 43 with a stirring mechanism, and mixed sludge. 23.
このように、初沈汚泥19と余剰汚泥21とを均一に攪拌する目的は、初沈汚泥19に含まれる繊維状物を均一に分散させ、繊維状物を凝集の核として機能させるとともに、脱水時に水路を形成する効果を有する脱水助材として機能させるためである。 As described above, the purpose of uniformly stirring the primary sedimentation sludge 19 and the excess sludge 21 is to uniformly disperse the fibrous material contained in the primary sedimentation sludge 19 so that the fibrous material functions as an agglomeration nucleus and dehydrates. This is because it sometimes functions as a dehydrating aid having an effect of forming a water channel.
次に、凝集混和槽63は、混合汚泥供給装置57によって供給される混合汚泥23と、凝集剤供給装置65から供給される凝集剤25とを均一に攪拌しつつ混合し、脱水機67で安定して脱水可能な凝集フロックを形成させる。 Next, the coagulation mixing tank 63 mixes the mixed sludge 23 supplied by the mixed sludge supply device 57 and the coagulant 25 supplied from the coagulant supply device 65 with uniform stirring, and is stabilized by the dehydrator 67. Thus, an agglomerated floc that can be dewatered is formed.
次に、脱水機67は、凝集混和槽63から供給される凝集汚泥27を脱水し、安定した低含水率の脱水ケーキ29を生成する。 Next, the dehydrator 67 dehydrates the coagulated sludge 27 supplied from the coagulation / mixing tank 63 to generate a dehydrated cake 29 having a stable low water content.
この発明は、濃縮設備が不要であり、被処理水11が最初沈殿池31に流入した時点から脱水機67に供給されるまでに要する時間が概ね6時間未満であるので、初沈汚泥19および初沈汚泥19に含有される繊維状物の性状変化がなく、良好な脱水性を維持した汚泥を高機能な脱水助材で脱水することが可能となる。 Since the present invention does not require a concentration facility and the time required from the time when the treated water 11 flows into the settling basin 31 to the time when it is supplied to the dehydrator 67 is generally less than 6 hours, the first settling sludge 19 and There is no change in the properties of the fibrous material contained in the initial settling sludge 19, and it is possible to dehydrate sludge that maintains good dewaterability with a highly functional dewatering aid.
従来、脱水性に影響を与える因子として、汚泥の濃度、有機分、繊維分(繊維状物、脱水助材)が知られている。 Conventionally, as factors affecting dewaterability, the concentration of sludge, the organic content, and the fiber content (fibrous matter, dewatering aid) are known.
そして、その影響度の度合いについては、汚泥の濃度、有機分と比較して繊維分が脱水性に大きな影響を与えることが判明している。 As for the degree of the influence, it has been found that the fiber content has a great influence on the dewaterability compared to the sludge concentration and the organic content.
そして、繊維分が凝集汚泥27(混合汚泥23)中に20%以上含有されていると、脱水工程の前段で汚泥を濃縮せずに低含水率の脱水ケーキ29を効率よく生成することができる。 If the fiber content is 20% or more in the coagulated sludge 27 (mixed sludge 23), the dehydrated cake 29 having a low water content can be efficiently generated without concentrating the sludge before the dehydration step. .
次に、繊維状物含有率測定装置73は、初沈汚泥供給装置37のポンプ41よりも上流の供給管39に一端が接続され、他端が反応槽33に接続された分岐管69の途中に設けられ、初沈汚泥供給装置37から抽出した初沈汚泥19に含まれる繊維状物(脱水助材)の含有率を測定する。 Next, the fibrous material content measuring device 73 is in the middle of the branch pipe 69 with one end connected to the supply pipe 39 upstream of the pump 41 of the initial settling sludge supply apparatus 37 and the other end connected to the reaction tank 33. The content rate of the fibrous material (dehydration aid) contained in the initial settling sludge 19 extracted from the initial settling sludge supply device 37 is measured.
なお、ポンプ41の吸引によって分岐管69に初沈汚泥19が分岐し(供給され)ない場合は、分岐管69の途中に、制御装置75によって制御されるポンプを設け、分岐管69に初沈汚泥19が供給されるようにするとよい。 If the first settling sludge 19 is not branched (supplied) to the branch pipe 69 due to the suction of the pump 41, a pump controlled by the control device 75 is provided in the middle of the branch pipe 69, and the initial settling in the branch pipe 69 is performed. It is preferable that the sludge 19 is supplied.
この繊維状物の含有率を測定する一例としては、フィルタ上に初沈汚泥19を供給し、微小な夾雑物を洗い流し、繊維状物を残留させる。 As an example of measuring the content rate of the fibrous material, the initial settling sludge 19 is supplied onto the filter, the fine impurities are washed away, and the fibrous material remains.
そして、重量で繊維状物の含有率を測定する場合は、フィルタ上に残留した繊維状物の重量を測定し、含有率を算出する。 And when measuring the content rate of a fibrous material by weight, the weight of the fibrous material which remained on the filter is measured, and a content rate is computed.
また、圧力損失で繊維状物の含有率を測定する場合は、フィルタ上に残留した繊維状物に気体を吹き付け、フィルタの上流側と、下流側とで圧力を測定して含有率を算出し、または、フィルタ上に残留した繊維状物に液体を供給し、液体の通過速度、通過量などから含有率を算出する。 In addition, when measuring the content of fibrous material by pressure loss, gas is blown onto the fibrous material remaining on the filter, and the content is calculated by measuring pressure on the upstream side and downstream side of the filter. Alternatively, the liquid is supplied to the fibrous material remaining on the filter, and the content rate is calculated from the passing speed, the passing amount, and the like of the liquid.
また、画像で繊維状物の含有率を測定する場合は、フィルタ上に残留した繊維状物を撮影し、画像分析(輝度、透光率など)することで含有率を算出する。 Moreover, when measuring the content rate of a fibrous material with an image, the content rate is calculated by photographing the fibrous material remaining on the filter and performing image analysis (luminance, translucency, etc.).
なお、被処理水11を最初沈殿池31で重力沈殿させると、被処理水11中の繊維状物の97%位が最初沈殿池31に沈降、沈殿し、残りの3%位の繊維状物は反応槽33で分解されるので、最終沈殿池35には繊維状物が供給されなくなる。 In addition, when the treated water 11 is gravity-precipitated in the first sedimentation basin 31, about 97% of the fibrous material in the treated water 11 settles and settles in the first sedimentation basin 31, and the remaining 3% of the fibrous material. Is decomposed in the reaction tank 33, the fibrous material is not supplied to the final sedimentation basin 35.
そして、最初沈殿池31で沈降する繊維状物と、繊維状物以外の固形物との割合は、40(%):60(%)〜60(%):40(%)である。 And the ratio of the fibrous material which initially settles in the sedimentation basin 31 and solids other than a fibrous material is 40 (%): 60 (%)-60 (%): 40 (%).
また、最終沈殿池35で沈降する繊維状物と、繊維状物以外の固形物との割合は、0(%):100(%)である。 Moreover, the ratio of the fibrous material which settles in the final sedimentation basin 35 and solids other than a fibrous material is 0 (%): 100 (%).
そして、季節、時間変動の受け易い初沈汚泥19を余剰汚泥21と混合する場合、初沈汚泥19における繊維状物が少ないときでも常時20%以上は確保できる可能性が高く、かつ、20%以上の繊維状物を混合汚泥23が含有していれば、汚泥濃度に依存することなく脱水可能で、脱水機67で含水率を十分に低減させることができる。 And when primary sludge 19 which is easy to be subject to seasonal and time fluctuations is mixed with surplus sludge 21, even when there are few fibrous materials in primary sludge 19, it is highly likely that 20% or more can always be secured, and 20% If the mixed sludge 23 contains the above fibrous material, it can be dehydrated without depending on the sludge concentration, and the water content can be sufficiently reduced by the dehydrator 67.
図4は、繊維状物含有率と脱水ケーキ含水率との関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the fibrous material content and the dehydrated cake water content.
初沈汚泥19および余剰汚泥21を濃縮せずに混合した混合汚泥23中の繊維状物の含有率を変化させて脱水したもので、10%の繊維状物含有率で3%、20%の繊維状物含有率で6%程度ケーキ含水率が減少している。 The sludge is dehydrated by changing the content of the fibrous material in the mixed sludge 23 mixed without concentrating the primary sludge 19 and the surplus sludge 21. The fiber content of 10% is 3% and 20%. The cake moisture content has decreased by about 6% in terms of the fibrous content.
例えば、初沈汚泥19の繊維状物が40%で、繊維状物以外の固形物が60%で、余剰汚泥21の繊維状物が0%で、繊維状物以外の固形物が100%のとき、初沈汚泥19と余剰汚泥21とを1:0.8の割合で混合すると、混合汚泥23の繊維状物の割合は、(40/180)×100=22(%)となり、脱水機67で含水率を十分に低減させることができる。 For example, the fibrous material of the initial sludge 19 is 40%, the solid material other than the fibrous material is 60%, the fibrous material of the excess sludge 21 is 0%, and the solid material other than the fibrous material is 100%. When the primary sludge 19 and the excess sludge 21 are mixed at a ratio of 1: 0.8, the ratio of the fibrous material of the mixed sludge 23 is (40/180) × 100 = 22 (%), and the dehydrator 67 can sufficiently reduce the moisture content.
一般的に、下水処理場で発生する脱水ケーキは、含水率が80%以下であると、搬送し易く、焼却、埋立等の後処理にかかるランニングコストも低減できる。 Generally, dehydrated cake generated at a sewage treatment plant is easily transported and has a moisture content of 80% or less, and the running cost for post-treatment such as incineration and landfill can be reduced.
そして、被処理水11の性状変化も考慮して、混合汚泥23中の繊維状物含有率が20%以上であると、脱水ケーキ含水率を80%以下に抑えることが可能となる。 And considering the property change of the water 11 to be treated, when the fibrous material content in the mixed sludge 23 is 20% or more, the dehydrated cake water content can be suppressed to 80% or less.
次に、汚泥脱水処理システム1の動作について説明する。 Next, operation | movement of the sludge dehydration processing system 1 is demonstrated.
まず、繊維状物を含有する被処理水11は最初沈殿池31で重力沈殿させられ、初沈汚泥19が最初沈殿池31に沈殿する。 First, the water to be treated 11 containing fibrous materials is first gravity-deposited in the first sedimentation basin 31, and the initial sedimentation sludge 19 is sedimented in the first sedimentation basin 31.
そして、最初沈殿池31の一次処理水13は反応槽33に供給され、反応槽33で生物処理される。 Then, the primary treated water 13 of the first sedimentation tank 31 is supplied to the reaction tank 33 and biologically treated in the reaction tank 33.
そして、反応槽33の処理水15は最終沈殿池35に供給され、最終沈殿池35で重力沈殿させられ、余剰汚泥21が最終沈殿池35に沈殿し、上澄み水17は河川などへ放流される。 Then, the treated water 15 in the reaction tank 33 is supplied to the final sedimentation basin 35 and gravity-precipitated in the final sedimentation basin 35, the excess sludge 21 is settled in the final sedimentation basin 35, and the supernatant water 17 is discharged to a river or the like. .
このようにして汚水を処理しているときに発生する初沈汚泥19と、余剰汚泥21とを脱水処理する場合は、まず、ポンプ41を制御して最初沈殿池31から初沈汚泥19を吸引して混合槽55へ初沈汚泥19を供給する。 In this way, when dewatering the first settling sludge 19 generated when the sewage is treated and the excess sludge 21, first, the first settling sludge 19 is sucked from the first settling basin 31 by controlling the pump 41. Then, the first settling sludge 19 is supplied to the mixing tank 55.
このようにして初沈汚泥19を混合槽55へ供給する際、初沈汚泥19の一部は分岐管69を介して繊維状物含有率測定装置73へ供給されるので、繊維状物含有率測定装置73によって初沈汚泥19内の繊維状物の含有率が測定され、その含有率は制御装置75へ送られる。 In this way, when the initial settling sludge 19 is supplied to the mixing tank 55, a part of the initial settling sludge 19 is supplied to the fibrous material content measuring device 73 via the branch pipe 69. The measurement device 73 measures the content of the fibrous material in the first settling sludge 19, and the content is sent to the control device 75.
なお、繊維状物の含有率測定に供された初沈汚泥19は、最初沈殿池31へ供給される。 The initial settling sludge 19 that has been used for the measurement of the content of the fibrous material is supplied to the initial settling basin 31.
そして、初沈汚泥19内の繊維状物の含有率を測定した繊維状物含有率測定装置73から含有率の信号が供給された制御装置75は、混合槽55内の混合汚泥23における繊維状物の含有率が20%以上になるように初沈汚泥供給装置37のポンプ41と余剰汚泥供給装置43のポンプ47とを制御する。 And the control apparatus 75 to which the signal of the content rate was supplied from the fibrous material content rate measuring device 73 which measured the content rate of the fibrous material in the first settling sludge 19 is the fibrous material in the mixed sludge 23 in the mixing tank 55. The pump 41 of the first settling sludge supply device 37 and the pump 47 of the surplus sludge supply device 43 are controlled so that the content rate of the product becomes 20% or more.
そして、混合槽55は供給された初沈汚泥19と余剰汚泥21とを均一に混合して混合汚泥23(凝集汚泥)とし、凝集フロックを形成させる。 Then, the mixing tank 55 uniformly mixes the supplied primary sludge 19 and excess sludge 21 to form a mixed sludge 23 (aggregated sludge), thereby forming an aggregated floc.
この混合された混合汚泥23は、混合汚泥供給装置57によって凝集混和槽63へ供給される。 The mixed mixed sludge 23 is supplied to the coagulation mixing tank 63 by the mixed sludge supply device 57.
混合汚泥23が供給される凝集混和槽63には、例えば、制御装置75によって制御された凝集剤供給装置65から凝集剤25が供給されるので、凝集混和槽63は混合汚泥23と凝集剤25とを均一に混合して凝集汚泥27とし、凝集フロックを形成させながら脱水機67へ供給する。 For example, the flocculant 25 is supplied from the flocculant supply device 65 controlled by the control device 75 to the flocculent mixing tank 63 to which the mixed sludge 23 is supplied. Are uniformly mixed to form agglomerated sludge 27 and supplied to the dehydrator 67 while forming agglomerated floc.
凝集汚泥27が供給される脱水機67は、凝集汚泥27を脱水して脱水ケーキ29を生成する。 The dehydrator 67 to which the coagulated sludge 27 is supplied dehydrates the coagulated sludge 27 and generates a dehydrated cake 29.
この発明の第1実施例によれば、初沈汚泥19内の繊維状物を脱水助材として利用しているので、ランニングコストを低減することができるとともに、脱水工程の前段で汚泥を濃縮せずに汚泥の脱水処理を速く行うことができる。 According to the first embodiment of the present invention, since the fibrous material in the initial settling sludge 19 is used as a dewatering aid, the running cost can be reduced and the sludge can be concentrated before the dewatering step. The sludge can be dehydrated quickly.
図5はこの発明の第2実施例である汚泥脱水処理システムの構成を示すブロック図であり、図1と同一部分または相当部分に同一符号を付し、その説明を省略する。 FIG. 5 is a block diagram showing the configuration of the sludge dewatering system according to the second embodiment of the present invention. The same or corresponding parts as those in FIG.
この第2実施例の汚泥脱水処理システム1Aが、第1実施例の汚泥脱水処理システム1と異なるところは、初沈汚泥供給装置37のポンプ41よりも下流の供給管39に一端が接続され、他端が混合槽55に接続された分岐管69Aの途中に繊維状物含有率測定装置73を設けたところである。 The sludge dewatering treatment system 1A of the second embodiment is different from the sludge dewatering treatment system 1 of the first embodiment in that one end is connected to the supply pipe 39 downstream of the pump 41 of the initial settling sludge supply device 37, A fibrous material content measuring device 73 is provided in the middle of the branch pipe 69 </ b> A whose other end is connected to the mixing tank 55.
この第2実施例の汚泥脱水処理システム1Aは、先に説明した第1実施例の汚泥脱水処理システム1と同様に動作し、第1実施例の汚泥脱水処理システム1と同様な効果を得ることができる。 The sludge dewatering system 1A of the second embodiment operates in the same manner as the sludge dewatering system 1 of the first embodiment described above, and obtains the same effects as the sludge dewatering system 1 of the first embodiment. Can do.
図6はこの発明の第3実施例である汚泥脱水処理システムの構成を示すブロック図であり、図1、図5と同一部分または相当部分に同一符号を付し、その説明を省略する。 FIG. 6 is a block diagram showing the configuration of the sludge dewatering treatment system according to the third embodiment of the present invention. The same reference numerals are given to the same or corresponding parts as in FIGS.
この第3実施例の汚泥脱水処理システム1Bが、第1実施例または第2実施例の汚泥脱水処理システム1,1Aと異なるところは、混合槽55の、例えば、下部(底)に一端が接続され、他端が混合槽55に接続された引き込み管69Bに、上流側から下流側へポンプ71、繊維状物含有率測定装置73を設けたところである。 The sludge dewatering treatment system 1B of the third embodiment is different from the sludge dewatering treatment systems 1 and 1A of the first embodiment or the second embodiment in that one end is connected to, for example, the lower part (bottom) of the mixing tank 55. Then, the pump 71 and the fibrous material content measuring device 73 are provided from the upstream side to the downstream side in the drawing pipe 69B whose other end is connected to the mixing tank 55.
この第3実施例の汚泥脱水処理システム1Bは、先に説明した第1実施例または第2実施例の汚泥脱水処理システム1,1Aと同様に動作し、第1実施例または第2実施例の汚泥脱水処理システム1,1Aと同様な効果を得ることができる。 The sludge dewatering treatment system 1B of the third embodiment operates in the same manner as the sludge dewatering treatment systems 1 and 1A of the first embodiment or the second embodiment described above, and the sludge dewatering treatment system 1B of the first embodiment or the second embodiment. The same effect as the sludge dewatering treatment system 1 or 1A can be obtained.
図7はこの発明の第4実施例である汚泥脱水処理システムの要部の構成を示すブロック図であり、図1、図5、図6と同一部分または相当部分に同一符号を付し、その説明を省略する。 FIG. 7 is a block diagram showing the configuration of the main part of the sludge dewatering treatment system according to the fourth embodiment of the present invention. The same or corresponding parts as those in FIGS. 1, 5, and 6 are denoted by the same reference numerals. Description is omitted.
この第4実施例の汚泥脱水処理システム1Cが、第1実施例〜第3実施例の汚泥脱水処理システム1,1A,1Bと異なるところは、混合槽55から混合汚泥23を脱水機67Aへ直接供給し、脱水機(例えば、スクリュープレス、ベルトプレス、遠心脱水機等)67Aで脱水するところである。 The sludge dewatering treatment system 1C of the fourth embodiment is different from the sludge dewatering treatment systems 1, 1A, 1B of the first to third embodiments in that the mixed sludge 23 is directly transferred from the mixing tank 55 to the dehydrator 67A. It is supplied and dehydrated with a dehydrator (for example, screw press, belt press, centrifugal dehydrator, etc.) 67A.
第1実施例〜第3実施例の汚泥脱水処理システム1,1A,1Bでは、脱水機67の脱水を確実にするために、凝集混和槽63で混合汚泥23と凝集剤25とを混合させている。 In the sludge dewatering treatment systems 1, 1 </ b> A, 1 </ b> B of the first to third embodiments, the mixed sludge 23 and the flocculant 25 are mixed in the flocculation mixing tank 63 in order to ensure the dehydration of the dehydrator 67. Yes.
しかしながら、混合槽55内の混合汚泥23は、脱水助材である繊維状物が20%以上であるので、均一に混合させられることによって凝集フロックを形成する。 However, since the mixed sludge 23 in the mixing tank 55 is 20% or more of the fibrous material that is a dehydration aid, the mixed sludge 23 forms an aggregated floc by being mixed uniformly.
したがって、混合槽55から混合汚泥23を脱水機67Aへ供給し、脱水機67Aで混合汚泥23を脱水することにより、安定した低含水率の脱水ケーキ29を生成できる。 Therefore, by supplying the mixed sludge 23 from the mixing tank 55 to the dewatering machine 67A and dehydrating the mixed sludge 23 with the dewatering machine 67A, the dewatered cake 29 having a stable low water content can be generated.
この第4実施例の汚泥脱水処理システム1Cは、先に説明した第1実施例〜第3実施例の汚泥脱水処理システム1,1A,1Bと同様に動作し、第1実施例〜第3実施例の汚泥脱水処理システム1,1A,1Bと同様な効果を得ることができる。 The sludge dewatering treatment system 1C of the fourth embodiment operates in the same manner as the sludge dewatering treatment systems 1, 1A, 1B of the first to third embodiments described above, and the first to third embodiments. The same effect as the sludge dewatering treatment system 1, 1A, 1B of the example can be obtained.
さらに、第4実施例の汚泥脱水処理システム1Cは、凝集混和槽、凝集剤供給装置を設置する必要がなくなることにより、イニシャルコストおよびランニングコストを低減することができる。 Furthermore, the sludge dewatering treatment system 1C of the fourth embodiment can reduce initial costs and running costs by eliminating the need to install a coagulation / mixing tank and a coagulant supply device.
上記した実施例において、最初沈殿池31、最終沈殿池35で発生する初沈汚泥19、余剰汚泥21の発生量が多い場合に備えて、混合槽55の前段に初沈汚泥19あるいは余剰汚泥21を一時的に貯留する調整槽を設けてもよい。 In the embodiment described above, the primary sedimentation sludge 19 or the excess sludge 21 is provided in the preceding stage of the mixing tank 55 in preparation for the case where the amount of primary sedimentation sludge 19 and surplus sludge 21 generated in the first sedimentation basin 31 and the final sedimentation basin 35 is large. You may provide the adjustment tank which stores temporarily.
このように、調整槽を設ける場合、調整槽から混合槽55へ送る初沈汚泥19あるいは余剰汚泥21の量を、混合槽55内の混合汚泥23における繊維状物の含有率が20%以上になるように制御装置75によって制御する必要がある。 Thus, when providing an adjustment tank, the amount of the initial sedimentation sludge 19 or the excess sludge 21 sent from the adjustment tank to the mixing tank 55 is 20% or more in the content of the fibrous material in the mixed sludge 23 in the mixing tank 55. It is necessary to control by the control apparatus 75 so that it may become.
なお、初沈汚泥19の汚泥性状および初沈汚泥19内に含有されている繊維状物の性状変化等を管理できる場合は、初沈汚泥供給装置37に初沈汚泥19の濃縮設備を設けてもよい。 In addition, when the sludge property of the primary sedimentation sludge 19 and the property change of the fibrous material contained in the primary sedimentation sludge 19 can be managed, the primary sedimentation sludge supply device 37 is provided with a concentration facility for the primary sedimentation sludge 19. Also good.
この発明に係る汚泥脱水処理方法および汚泥脱水処理システムは下水処理場に流入した被処理水を重力沈殿した初沈汚泥に含まれる繊維状物を脱水助材として有効活用するもので、処理場内の不要物から脱水助材を調達して汚泥処理を行う自己回収型処理場となり、安定した低含水率の脱水ケーキを生成できるとともに、脱水ケーキの処理が安価で容易となる環境配慮型の汚水脱水処理方法および汚水脱水処理システムとなる。 The sludge dewatering treatment method and the sludge dewatering treatment system according to the present invention effectively utilize as a dewatering aid the fibrous material contained in the first settling sludge in which the water to be treated flowing into the sewage treatment plant is gravity-precipitated. It becomes a self-recovery treatment plant that procures dewatering aids from unnecessary materials and performs sludge treatment, and it can generate dehydrated cake with a stable low moisture content, and at the same time, environmentally friendly sewage dewatering that makes dewatering cake processing cheap and easy. It becomes a processing method and a sewage dehydration processing system.
1 汚泥脱水処理システム
1A 汚泥脱水処理システム
1B 汚泥脱水処理システム
1C 汚泥脱水処理システム
11 被処理水
13 一次処理水
15 処理水
17 上澄み水
19 初沈汚泥
21 余剰汚泥
23 混合汚泥
25 凝集剤
27 凝集汚泥
29 脱水ケーキ
31 最初沈殿池
33 反応槽
35 最終沈殿池
37 初沈汚泥供給装置
39 供給管
41 ポンプ
43 余剰汚泥供給装置
45 供給管
47 ポンプ
49 余剰汚泥返送装置
51 供給管
53 ポンプ
55 混合槽
57 混合汚泥供給装置
59 供給管
61 ポンプ
63 凝集混和槽
65 凝集剤供給装置
67 脱水機
67A 脱水機
69 分岐管
69A 分岐管
69B 引き込み管
71 ポンプ
73 繊維状物含有率測定装置
75 制御装置
DESCRIPTION OF SYMBOLS 1 Sludge dewatering system 1A Sludge dewatering system 1B Sludge dewatering system 1C Sludge dewatering system 11 To-be-treated water 13 Primary treated water 15 Treated water 17 Supernatant water 19 Primary sludge 21 Surplus sludge 23 Mixed sludge 25 Coagulant 27 Aggregated sludge 29 Dewatered cake 31 First sedimentation basin 33 Reaction tank 35 Final sedimentation basin 37 Primary sedimentation sludge supply device 39 Supply pipe 41 Pump 43 Surplus sludge supply device 45 Supply pipe 47 Pump 49 Surplus sludge return device 51 Supply pipe 53 Pump 55 Mixing tank 57 Mixing Sludge supply device 59 Supply pipe 61 Pump 63 Coagulation mixing tank 65 Coagulant supply device 67 Dehydrator 67A Dehydrator 69 Branch pipe 69A Branch pipe 69B Intake pipe 71 Pump 73 Fibrous material content rate measuring device 75 Controller
Claims (6)
前記混合汚泥における前記繊維状物の含有率が20%以上になるように前記初沈汚泥と前記余剰汚泥とを混合する、
ことを特徴とする汚泥脱水処理方法。 After mixing the initial sludge in which the water to be treated containing the fibrous material is gravity-precipitated in the first sedimentation basin and the surplus sludge that has been gravity-precipitated in the final sedimentation basin to make a mixed sludge, the mixed sludge is dehydrated A sludge dewatering method of dewatering with
Mixing the initial settling sludge and the excess sludge so that the content of the fibrous material in the mixed sludge is 20% or more,
A sludge dewatering method characterized by the above.
前記最初沈殿池から供給される一次処理水を、生物処理する反応槽と、
前記反応槽から供給される処理水を重力沈殿させ、上澄み水を放流する最終沈殿池と、
前記最初沈殿池に沈殿した初沈汚泥を混合槽へ供給する初沈汚泥供給装置と、
前記最終沈殿池に沈殿した余剰汚泥を前記混合槽へ供給する余剰汚泥供給装置と、
前記初沈汚泥供給装置と前記余剰汚泥供給装置とによって前記初沈汚泥と前記余剰汚泥とが供給される前記混合槽と、
前記混合槽内の混合汚泥を脱水機へ供給する混合汚泥供給装置と、
前記混合汚泥供給装置によって供給された前記混合汚泥を脱水する前記脱水機と、
前記初沈汚泥供給装置内の前記初沈汚泥における前記繊維状物の含有率を測定する繊維状物含有率測定装置と、
前記繊維状物含有率測定装置の出力に基づいて、前記混合槽内の前記混合汚泥における前記繊維状物の含有率が20%以上になるように前記初沈汚泥供給装置と前記余剰汚泥供給装置とを制御する制御装置と、を有する、
ことを特徴とする汚泥脱水処理システム。 A first sedimentation basin for gravity-treating the water to be treated containing fibrous materials;
A primary treatment water supplied from the first sedimentation basin, a reaction tank for biological treatment;
A final sedimentation basin that gravity settles the treated water supplied from the reaction tank and discharges the supernatant water;
An initial settling sludge supply device for supplying the initial settling sludge precipitated in the first settling basin to the mixing tank;
Surplus sludge supply device for supplying surplus sludge precipitated in the final sedimentation tank to the mixing tank;
The mixing tank in which the initial settling sludge and the excess sludge are supplied by the initial settling sludge supply device and the excess sludge supply device;
A mixed sludge supply device for supplying the mixed sludge in the mixing tank to the dehydrator;
The dehydrator for dehydrating the mixed sludge supplied by the mixed sludge supply device;
A fibrous material content rate measuring device that measures the content rate of the fibrous material in the initial settled sludge in the initial settled sludge supply device;
Based on the output of the fibrous material content rate measuring device, the initial settling sludge supply device and the excess sludge supply device so that the content rate of the fibrous material in the mixed sludge in the mixing tank is 20% or more. And a control device for controlling
A sludge dewatering system characterized by that.
前記最初沈殿池から供給される一次処理水を、生物処理する反応槽と、
前記反応槽から供給される処理水を重力沈殿させ、上澄み水を放流する最終沈殿池と、
前記最初沈殿池に沈殿した初沈汚泥を混合槽へ供給する初沈汚泥供給装置と、
前記最終沈殿池に沈殿した余剰汚泥を前記混合槽へ供給する余剰汚泥供給装置と、
前記初沈汚泥供給装置と前記余剰汚泥供給装置とによって前記初沈汚泥と前記余剰汚泥とが供給される前記混合槽と、
前記混合槽内の混合汚泥を脱水機へ供給する混合汚泥供給装置と、
前記混合汚泥供給装置によって供給された前記混合汚泥を脱水する前記脱水機と、
前記混合槽内の前記混合汚泥における前記繊維状物の含有率を測定する繊維状物含有率測定装置と、
前記繊維状物含有率測定装置の出力に基づいて、前記混合槽内の前記混合汚泥における前記繊維状物の含有率が20%以上になるように前記初沈汚泥供給装置と前記余剰汚泥供給装置とを制御する制御装置と、を有する、
ことを特徴とする汚泥脱水処理システム。 A first sedimentation basin for gravity-treating the water to be treated containing fibrous materials;
A primary treatment water supplied from the first sedimentation basin, a reaction tank for biological treatment;
A final sedimentation basin that gravity settles the treated water supplied from the reaction tank and discharges the supernatant water;
An initial settling sludge supply device for supplying the initial settling sludge precipitated in the first settling basin to the mixing tank;
Surplus sludge supply device for supplying surplus sludge precipitated in the final sedimentation tank to the mixing tank;
The mixing tank in which the initial settling sludge and the excess sludge are supplied by the initial settling sludge supply device and the excess sludge supply device;
A mixed sludge supply device for supplying the mixed sludge in the mixing tank to the dehydrator;
The dehydrator for dehydrating the mixed sludge supplied by the mixed sludge supply device;
A fibrous material content measuring device for measuring the content of the fibrous material in the mixed sludge in the mixing tank;
Based on the output of the fibrous material content rate measuring device, the initial settling sludge supply device and the excess sludge supply device so that the content rate of the fibrous material in the mixed sludge in the mixing tank is 20% or more. And a control device for controlling
A sludge dewatering system characterized by that.
前記脱水機は、スクリュープレス、ベルトプレス、遠心脱水機のいずれか1つである、
ことを特徴とする汚泥脱水処理システム。 In the sludge dewatering treatment system according to claim 2 or claim 3,
The dehydrator is any one of a screw press, a belt press, and a centrifugal dehydrator.
A sludge dewatering system characterized by that.
前記繊維状物は、繊維長が0.1mm〜5mmで、繊維径が1μm〜50μmである、
ことを特徴とする汚泥脱水処理システム。 In the sludge dewatering treatment system according to any one of claims 2 to 4,
The fibrous material has a fiber length of 0.1 mm to 5 mm and a fiber diameter of 1 μm to 50 μm.
A sludge dewatering system characterized by that.
前記繊維状物は、トイレットペーパーに由来する繊維状物である、
ことを特徴とする汚泥脱水処理システム。 In the sludge dewatering treatment system according to any one of claims 2 to 5,
The fibrous material is a fibrous material derived from toilet paper,
A sludge dewatering system characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014237580A JP6309883B2 (en) | 2014-11-25 | 2014-11-25 | Sludge dewatering treatment method and sludge dewatering treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014237580A JP6309883B2 (en) | 2014-11-25 | 2014-11-25 | Sludge dewatering treatment method and sludge dewatering treatment system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016097373A true JP2016097373A (en) | 2016-05-30 |
JP6309883B2 JP6309883B2 (en) | 2018-04-11 |
Family
ID=56076293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014237580A Active JP6309883B2 (en) | 2014-11-25 | 2014-11-25 | Sludge dewatering treatment method and sludge dewatering treatment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6309883B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019202265A (en) * | 2018-05-23 | 2019-11-28 | 王子ホールディングス株式会社 | Water treatment apparatus and water treatment method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5167821A (en) * | 1989-07-03 | 1992-12-01 | Norihito Tambo | Method for thickening and dewatering slurry sludge |
JP2002361300A (en) * | 2001-06-11 | 2002-12-17 | Kurita Water Ind Ltd | Sludge treating method |
JP2003053182A (en) * | 2001-08-20 | 2003-02-25 | Ebara Corp | Dewatering aid and dewatering method using the same |
JP2004216252A (en) * | 2003-01-14 | 2004-08-05 | Kurita Water Ind Ltd | Method for suppressing odor of dehydrated sludge cake |
JP2004278950A (en) * | 2003-03-17 | 2004-10-07 | Tsukishima Techno Mente Service Kk | Incineration method of sewage sludge |
JP2004275541A (en) * | 2003-03-17 | 2004-10-07 | Kurita Water Ind Ltd | Odor retarder and odor suppression method for sludge slurry and sludge dehydrated cake |
JP2006150316A (en) * | 2004-12-01 | 2006-06-15 | Tokyo Metropolitan Sewerage Service Corp | Sewage treatment apparatus and method |
JP2007283225A (en) * | 2006-04-18 | 2007-11-01 | Ebara Engineering Service Co Ltd | Dehydration assistant for sludge and dehydration method/device for sludge using this assistant |
JP2008088612A (en) * | 2006-10-04 | 2008-04-17 | Oji Paper Co Ltd | Household tissue paper and method for producing the same |
JP2010137158A (en) * | 2008-12-11 | 2010-06-24 | Kubota Kankyo Service Kk | Apparatus for measuring fiber concentration in sludge, apparatus for adjusting fiber concentration in sludge, dehydration equipment and dehydration method |
-
2014
- 2014-11-25 JP JP2014237580A patent/JP6309883B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5167821A (en) * | 1989-07-03 | 1992-12-01 | Norihito Tambo | Method for thickening and dewatering slurry sludge |
JP2002361300A (en) * | 2001-06-11 | 2002-12-17 | Kurita Water Ind Ltd | Sludge treating method |
JP2003053182A (en) * | 2001-08-20 | 2003-02-25 | Ebara Corp | Dewatering aid and dewatering method using the same |
JP2004216252A (en) * | 2003-01-14 | 2004-08-05 | Kurita Water Ind Ltd | Method for suppressing odor of dehydrated sludge cake |
JP2004278950A (en) * | 2003-03-17 | 2004-10-07 | Tsukishima Techno Mente Service Kk | Incineration method of sewage sludge |
JP2004275541A (en) * | 2003-03-17 | 2004-10-07 | Kurita Water Ind Ltd | Odor retarder and odor suppression method for sludge slurry and sludge dehydrated cake |
JP2006150316A (en) * | 2004-12-01 | 2006-06-15 | Tokyo Metropolitan Sewerage Service Corp | Sewage treatment apparatus and method |
JP2007283225A (en) * | 2006-04-18 | 2007-11-01 | Ebara Engineering Service Co Ltd | Dehydration assistant for sludge and dehydration method/device for sludge using this assistant |
JP2008088612A (en) * | 2006-10-04 | 2008-04-17 | Oji Paper Co Ltd | Household tissue paper and method for producing the same |
JP2010137158A (en) * | 2008-12-11 | 2010-06-24 | Kubota Kankyo Service Kk | Apparatus for measuring fiber concentration in sludge, apparatus for adjusting fiber concentration in sludge, dehydration equipment and dehydration method |
Non-Patent Citations (1)
Title |
---|
半田大介: "省エネ型遠心脱水技術の実証試験事例報告", 第51回下水道研究発表会講演集, JPN7017003151, 4 July 2014 (2014-07-04), JP, pages 955 - 957, ISSN: 0003651136 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019202265A (en) * | 2018-05-23 | 2019-11-28 | 王子ホールディングス株式会社 | Water treatment apparatus and water treatment method |
JP7119568B2 (en) | 2018-05-23 | 2022-08-17 | 王子ホールディングス株式会社 | Water treatment device and water treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP6309883B2 (en) | 2018-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015012039A1 (en) | Recovery device and recovery method for recovering specific material from sludge, sludge dehydration system, and sludge dehydration method | |
CN103232137B (en) | Paper-making waste water treatment system and treatment process | |
Ansari et al. | Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater | |
JP2008229591A (en) | Water treating method by flocculation pressure floatation separation and water treating apparatus therefor | |
JP6725538B2 (en) | Method and device for purifying domestic or industrial water | |
KR101343930B1 (en) | Method of reutilizing wastewater | |
CN106458669B (en) | Method for clarifying waste water | |
WO2012105847A1 (en) | System and method for the treatment of municipal and industrial wastewater and sludge | |
CN104310720A (en) | Method for treating paper-making wastewater | |
JP6309883B2 (en) | Sludge dewatering treatment method and sludge dewatering treatment system | |
JP2015104712A (en) | Sewage treatment system and method | |
JP4610640B2 (en) | Method and apparatus for treating organic wastewater | |
JP2009172551A (en) | Manufacturing method of recycled water | |
CN203613075U (en) | Wastewater treatment system | |
KR101938024B1 (en) | Sludge-concentrating method and apparatus | |
KR101003460B1 (en) | Advanced treatment apparatus for removing nutrients of sewage using sequencing batch reactor | |
JP6103231B2 (en) | Method and system for dewatering sewage sludge | |
US9650274B2 (en) | Method and installation for processing raw liquid manure and/or fermentation residues from biogas production | |
JP2001017982A (en) | Method and device for treating waste water | |
JP2000350992A (en) | Continuous flocculation of sludge | |
JP6437794B2 (en) | Waste water treatment apparatus and waste water treatment method | |
JP2018099658A (en) | Sludge dehydration system and method | |
JP6699792B2 (en) | Water treatment apparatus, dehydrated sludge production apparatus, water treatment method and dehydrated sludge production method | |
JP2022525034A (en) | Digestion of organic sludge | |
JP6298791B2 (en) | Sludge dewatering device and sludge dewatering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6309883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |