JP2016097311A - 医用画像処理装置、医用イメージング装置及び医用画像処理方法 - Google Patents

医用画像処理装置、医用イメージング装置及び医用画像処理方法 Download PDF

Info

Publication number
JP2016097311A
JP2016097311A JP2015229034A JP2015229034A JP2016097311A JP 2016097311 A JP2016097311 A JP 2016097311A JP 2015229034 A JP2015229034 A JP 2015229034A JP 2015229034 A JP2015229034 A JP 2015229034A JP 2016097311 A JP2016097311 A JP 2016097311A
Authority
JP
Japan
Prior art keywords
interest
region
sagittal plane
intervertebral disc
horizontal projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015229034A
Other languages
English (en)
Other versions
JP6580956B2 (ja
Inventor
ジン シュイ
Jin Xu
ジン シュイ
チュウイン ドン
Qiuying Dong
チュウイン ドン
パンフェイ リウ
Pengfei Liu
パンフェイ リウ
ジャンチュン ジャオ
Jianchun Zhao
ジャンチュン ジャオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Publication of JP2016097311A publication Critical patent/JP2016097311A/ja
Application granted granted Critical
Publication of JP6580956B2 publication Critical patent/JP6580956B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/50Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone
    • G06T2207/30012Spine; Backbone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • G06V2201/033Recognition of patterns in medical or anatomical images of skeletal patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)

Abstract

【課題】脊柱を通る正中矢状面の矢状面画像を正確に取得する医用画像処理装置を提供する。
【解決手段】医用画像処理装置100は、設置部110と、計算部120と、識別部130とを備える。設置部は、被検体をスキャンして取得された医用画像の複数の矢状面画像それぞれに関心領域を設置する。計算部は、関心領域における各ブロックの画素値変化に関する両極性特徴、及び、各ブロック間の類似性特徴に基づいて、評価指標を計算する。識別部は、計算部が計算した結果に基づいて関心領域を選択し、選択した関心領域が位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として識別する。
【選択図】図1

Description

本発明の実施形態は、医用画像処理装置、医用イメージング装置及び医用画像処理方法に関する。
医用画像処理分野において、医用画像から目標対象を検出することは、一般的に行われている。例えば、人体の一連の矢状面画像(サジタル面画像:sagittal plane image)から、脊柱(脊椎)が位置する矢状面画像(「正中矢状面画像:median sagittal plane image」とも称する)を確定し、確定した矢状面画像から椎間板を検出することは、臨床的な重要性を有する。検出した椎間板の位置や方向等の情報は、より高画質の画像のために、続いて行われる脊柱スキャンの設定に用いられる。
米国特許第6608916号明細書 米国特許第7046830号明細書 米国特許出願公開第2007/0127799号明細書 米国特許第7561728号明細書 米国特許第7672493号明細書 米国特許出願公開第2010/0177946号明細書
本発明が解決しようとする課題は、脊柱を通る正中矢状面の矢状面画像を正確に取得することができる医用画像処理装置、医用イメージング装置及び医用画像処理方法を提供することである。
実施形態の医用画像処理装置は、設置部と、計算部と、識別部とを備える。設置部は、被検体をスキャンして取得された医用画像の複数の矢状面画像それぞれに関心領域を設置する。計算部は、前記関心領域における各ブロックの画素値変化に関する両極性特徴、及び、各ブロック間の類似性特徴に基づいて、評価指標を計算する。識別部は、前記計算部が計算した結果に基づいて関心領域を選択し、選択した関心領域が位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として識別する。
以下の実施形態の説明では、理解を助けるため図面を参考にしながら説明する。図面において、同じ、或いは、類似する技術特徴や各構成については、同じ、或いは、類似する附番や表記を用いて説明する。これらの図面は、以下の詳細な説明も含めて、本実施形態の良好な実施例や本実施形態の原理や優位性についての解説のために、更に例を挙げて説明するためのものである。
図1は、一実施形態に係る医用画像処理装置を示すブロック図である。 図2は、図1に示す医用画像処理装置の作動を示すフローチャートである。 図3Aは、一実施形態に係る両極性特徴の応用原理を示す図である。 図3Bは、一実施形態に係る両極性特徴の応用原理を示す図である。 図4は、一実施形態に係る計算部を示すブロック図である。 図5は、図4に示す計算部の作動を示すフローチャートである。 図6は、他の一実施形態に係る計算部を示すブロック図である。 図7Aは、脊柱の水平投影の分布を示す図である。 図7Bは、脊柱の水平投影の分布を示す図である。 図7Cは、脊柱の水平投影の分布を示す図である。 図8は、他の一実施形態に係る医用画像処理装置を示すブロック図である。 図9は、図8に示す偽目標識別部を示すブロック図である。 図10は、図9に示す偽目標識別部の作動を示すフローチャートである。 図11は、一実施形態に係る設置部を示すブロック図である。 図12は、図11に示す設置部の作動を示すフローチャートである。 図13は、他の一実施形態に係る医用画像処理装置を示すブロック図である。 図14は、図13に示す後処理部を示すブロック図である。 図15は、図14に示す後処理部の作動を示すフローチャートである。 図16は、他の一実施形態に係る医用画像処理装置を示すブロック図である。 図17は、図16に示す損傷識別部を示すブロック図である。 図18は、図17に示す損傷識別部の作動を示すフローチャートである。 図19は、他の一実施形態に係る医用画像処理装置を示すブロック図である。 図20は、図19に示す偽椎間板識別部を示すブロック図である。 図21は、図20に示す偽椎間板識別部の作動を示すフローチャートである。 図22は、一実施形態に係る医用イメージング装置を示すブロック図である。 図23は、実施形態/実施例を実現可能なコンピュータの構成を示すブロック図である。
以下において、本実施形態の基本的理解のために、その幾つかの例の概要について説明する。ただし、この概要は、本実施形態のキーワードや重要な部分を確定するものではなく、本実施形態の範囲を限定するものでもない。その目的は、単に、本実施形態の概念を簡潔に説明するためのものであり、その後に論述する更に詳細な説明の序章にすぎない。
本実施形態の目的は、脊柱を通る正中矢状面の矢状面画像をより正確に取得し、椎間板検出等の後処理の正確度を向上させる医用画像処理装置、方法及び医用イメージング装置を提供することにある。
一実施形態によれば、医用画像処理装置は、被検体をスキャンして取得された医用画像の複数の矢状面画像それぞれに関心領域を設置する設置部と、関心領域における各ブロックの画素値変化に関する両極性特徴、及び、各ブロック間の類似性特徴に基づいて、評価指標を計算する計算部と、計算部が計算した結果に基づいて関心領域を選択し、選択した関心領域が位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として識別する識別部とを備える。
他の一実施形態によれば、医用画像処理方法は、被検体をスキャンして取得された医用画像の複数の矢状面画像それぞれに関心領域を設置し、関心領域における各ブロックの画素値変化に関する両極性特徴、及び、各ブロック間の類似性特徴に基づいて、評価指標を計算し、計算した結果に基づいて関心領域を選択し、選択した関心領域が位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として識別することを含む。
他の実施形態によれば、上記実施形態による医用画像処理装置を含む医用イメージング装置が提供される。
また、他の一実施形態によれば、更に、上記医用画像処理方法を実現するためのコンピュータプログラムが提供される。
また、他の一実施形態によれば、更に、上記医用画像処理方法を実現するためのコンピュータプログラムコードを記録する非一時的なコンピュータ読み取り可能な媒体形式のコンピュータプログラム製品が提供される。
本開示の方法及び装置において、被検体の関心領域の両極性特徴と類似性特徴に基づく評価指標を計算し、かつ該評価指標に基づいて被検体の関心領域が位置した1つの矢状面画像を選択して目標矢状面画像とする。脊柱の椎間板の特有の画像特徴を考慮するので、正中矢状面の矢状面画像をより正確に取得することができ、椎間板検出等の後処理にとって有利となる。
(実施形態)
以下、図面を参照しながら本実施形態について説明をする。なお、説明において、一つの図面や一つの実施形態において記載した構成や特徴は、1つ又は複数の他の図面や1つ又は複数の他の実施形態における構成や特徴と組み合わせることが可能である。なお、説明をわかりやすくするために、図面と説明とにおいて本実施形態と関係の無い内容や、当業者にとって既知の構成や処理に関する表示や説明については省略する。
上述したように、人体の一連の矢状面画像(サジタル面画像:sagittal plane image)から、脊柱が位置する矢状面画像を確定し、確定した矢状面画像から椎間板を検出することは、臨床的な重要性を有する。解剖学的には、矢状面(sagittal plane)は、前後方向に沿って人体を左右の両部分に分ける断面である。前後方向に沿って人体を対等の左右の両部分に分ける断面を正中矢状面(median sagittal plane)と称し、正中面(median plane)と略称する。一般的に、正中矢状面は、脊柱等の重要な組織を通り、通常の矢状面は、脊柱を通らず正中矢状面と平行な人体の断面を通る。このため、以下では、前後方向に沿って人体に対してスキャンを行って取得した画像を矢状面画像と称し、正中矢状面に対応する画像を正中矢状面画像とも称する。上記のスキャンは、現有の医用イメージング装置を使用して人体に対して行われたスキャンであって良く、例えば、磁気共鳴イメージング等である。
まず、椎間板を検出するために、人体に対してスキャンを行って取得した複数の矢状面画像から、脊柱を通る正中矢状面の矢状面画像、即ち、正中矢状面画像を探索する。正中矢状面画像が正確である程、後段で行われる椎間板の検出が正確となる。
図1は、一実施形態に係る医用画像処理装置を示すブロック図である。図1に示すように、医用画像処理装置100は、設置部110、計算部120及び識別部130を備える。図2を参照しながら医用画像処理装置100の作動の流れを説明する。
図2は、図1に示す医用画像処理装置の作動を示すフローチャートであり、即ち、一実施形態に係る医用画像処理方法を示すフローチャートである。図2に示すように、方法P200における、ステップS210では、被検体をスキャンして取得された医用画像の複数の矢状面画像それぞれに関心領域(ROI:Region Of Interest)を設置する。例えば、複数の矢状面画像は、椎間板の位置を確認するために、MRI装置により撮像された位置決め画像である。被検体のROIは、矢状面画像において被検体を含む領域であり、矢状面画像における被検体領域である。適切な公知の技術を用いて、矢状面画像からROIを確定することができる。例えば、設置部110は、各矢状面画像において、信号値の分布から脊柱を含む領域(以下、脊柱領域)を、ROIとして抽出する。例えば、設置部110は、各矢状面画像において、前後軸(anterior-posterior axis)の各位置で信号値を頭尾方向に合計した値を計算することで、信号値の前後方向の分布を求める。前後方向は、矢状面画像の横方向に対応し、頭尾方向は、矢状面画像の縦方向に対応する。椎間板及び椎体を含む脊柱は、頭尾方向に走行しており、例えば、腹部の組織等とは、異なる信号値になる。設置部110は、前後方向の分布において、周囲と異なる分布を示す前後方向の範囲を、脊柱領域とする。なお、設置部110は、上記の処理により、脊柱領域が抽出できなかった矢状面画像を、後段の処理対象から除外しても良い。
ステップS220において、ROIにおける各ブロックの画素値変化に関する両極性特徴、及び、各ブロック間の類似性特徴に基づいて、ROIの評価指標を計算する。
画像処理分野において、両極性特徴は、画像領域における各ブロックの画素値変化の強度を示す。一般的に、1つの画像領域内で黒い画素と白い画素とが著しく交互に入れ替わる場合、該画像領域は、高い両極性(bipolarity)を有する可能性がある。例えば、横断歩道の画像は、通常、高い両極性を有する画像である。図3Aに示すように、黒い輪郭線で描かれた領域において黒い帯と白い帯とが交互に存在するので、該領域内の各画像ブロックの画素値は、激しく変化し、その結果、該領域は、大きな両極性を有する。横断歩道と類似し、図3Bに示すように、脊柱の椎間板は、椎間板と椎間板の間の部分(椎体)と著しいコントラストを成し、即ち、椎間板と、椎間板と椎間板の間の部分とでは、画素値が著しく変化し、加えて、椎間板と、椎間板と椎間板の間の部分とは、交互に分布しているので、脊柱の画像は、横断歩道のように、著しい両極性特徴を有する。一例であり、これに限定されるものではないが、例えば、従来技術の以下の式(1)を用いて、1つの画像ブロックの両極性特徴値を計算することができる。
Figure 2016097311
式(1)において、γは、画像ブロックの両極性特徴値を示し、σ は画像ブロックそのものの分散を示し、μとμとはそれぞれ、黒色領域の平均値と白色領域の平均値とを示す。黒色領域と白色領域とは、画像ブロック内の画素を所定閾値に基づいて分けることで得られる。αは、経験に基づいて推定されたブロック内の黒色領域と白色領域との面積割合を示し、αは、0≦α≦1である。例えば、αは0.5と設定される。上記の式(1)において、γは、0≦γ≦1である。γ=1の時、画像ブロックは、完璧な両極性を有することを示す。γ=0の時、画像ブロックは両極性を有しないことを示す。
類似性特徴は、画像ブロックの間の両極性特徴の類似性を示す。強い類似性特徴を有する複数の相隣る画像ブロック(adjacent image blocks)により、より広範囲で強い両極性特徴を有する領域を確定することができ、孤立して強い両極性特徴を有する領域を排除することができる。一例であり、これに限定されるものではないが、例えば、従来技術の以下の式(2)を用いて、ある画像ブロックの他の画像ブロックに対する類似性を計算することができる。
Figure 2016097311
式(2)において、sは、画像ブロック1の画像ブロック2に対する類似性を示し、μとμとはそれぞれ、画像ブロック1における黒色領域の平均値と白色領域の平均値とを示す。黒色領域と白色領域とは、画像ブロック1内の画素を所定閾値に基づいて分けることで得られる。「チルダ記号付のμ」と「チルダ記号付のμ」とはそれぞれ、画像ブロック2における黒色領域の平均値と白色領域の平均値とを示す。黒色領域と白色領域とは、画像ブロック2内の画素を上記所定閾値に基づいて分けることで得られる。min( )とmax( )とは、それぞれ最小値を取る関数と最大値を取る関数である。
各画像ブロックのサイズは、実際の必要性に応じて設定することができ、ここで限定されていない。例えば、計算部120は、予め設定された数(N)で、ROIを縦方向(頭尾方向)に分割することで、ROIを複数のブロックに分ける。或いは、計算部120は、予め設定されたサイズのブロック(横Xcm、縦Ycm)を、縦方向に沿って、ROI内に配置する。例えば、X及びYの少なくとも一方は、椎間板と椎体の大きさにより設定される。また、例えば、X及びYの少なくとも一方は、検査部位に応じて、変更されても良い。例えば、医用画像処理装置100は、腰椎用の「X,Y」、胸椎用の「X,Y」等を記憶しているメモリを備える。計算部120は、検査部位を取得し、取得した検査部位に対応する「X,Y」を、メモリから取得することで、ブロックを配置する。なお、計算部120は、検査部位ごとに設定された「N」を用いても良い。また、計算部120は、画像処理によりROI内での脊柱が通る曲線を求め、求めた曲線に沿って、ブロックを配置しても良い。
続いて、図2を参照し、ステップS230において、計算結果に基づいてROIを選択する。その後、ステップS240において、選択したROIが位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として識別する。
ここで、ステップS210は、設置部110により実行することができ、ステップS220は、計算部120により実行することができ、ステップS230とS240とは識別部130により実行することができる。
上記実施形態では、関心領域における各画像ブロックの両極性特徴とブロック間の類似性特徴に基づく評価指標を計算し、該評価指標に基づいて、位置する矢状面画像が脊柱を通る正中矢状面の目標矢状面画像となるROIを選択する。画像ブロックの両極性特徴が強い程、該画像ブロックが脊柱に属する可能性が高くなる。脊柱以外の孤立した強い両極性特徴を有する画像ブロックを排除するために、画像ブロックの間の類似性特徴、特に、隣接する画像ブロックの間の類似性特徴を、更に利用する。隣接する画像ブロック間の類似性特徴が強いと、これらが単独で強い両極性特徴を有する画像ブロックではなく、脊柱に属する可能性がより高くなる。そのため、この原理に基づいてROIを選択することができる。
一例として、両極性特徴と類似性特徴に基づいて関心領域のエネルギーを計算し、比較的高いエネルギーを有する関心領域を選択し、選択した関心領域が位置する矢状面画像を脊柱を通る正中矢状面の目標矢状面画像であると識別することができる。これにより正確的に正中矢状面画像を確定することができる。当然ながら、他の方法で定義したこれら2種類の特徴に基づく評価指標を使用することができる。
上記実施形態において、計算部120は、各種の適切な方法を用いて関心領域のエネルギーを計算することができる。一例であり、これに限定されるものではないが、一実施形態では、両極性特徴と類似性特徴とに基づく加重和を使用して関心領域のエネルギーを推定する。図4は、一実施形態に係る計算部を示すブロック図である。図4に示すように、計算部120は、画素エネルギー計算部121と領域エネルギー計算部122とを有する。図5は、図4に示す計算部の作動を示すフローチャートである。図5に示すように、ステップS220は、画素エネルギー計算部121で実行されるステップS221を含む。即ち、ステップS220では、関心領域(ROI)の各画素が位置するブロックの両極性特徴値と、該ブロックと相隣ブロックとの類似性特徴値との加重和を、該画素のエネルギーとして計算する。例えば、画素iのエネルギーEiは、「Ei=a*γ+b*s」により計算される。γは画素iが位置する画像ブロックの両極性特徴値であり、sは、画素iが位置する画像ブロックと相隣の画像ブロック(例えば、相隣の8つの画像ブロック)との類似性特徴値である。aとbとは、それぞれ画素iの両極性特徴と類似性特徴との重みである。重みaとbとは、必要に応じて設定することができる。例えば、計算部120は、上述した方法のいずれかの方法で、ROI内に複数のブロックを固定配置した後、画素ごとのエネルギーを計算する。この場合、同じブロックに位置する各画素のエネルギーは、同じ値となる。或いは、計算部120は、画素ごとに、複数のブロックを配置する。例えば、計算部120は、画素iが中心となる「横Xcm、縦Ycm」のブロックを配置し、このブロックを中心にして、上述した方法のいずれかの方法で、複数のブロックを配置する。図5において、ステップS220は、更に、領域エネルギー計算部122で実行されるステップS222を含む。ステップS222では、関心領域(ROI)における各画素のエネルギーの平均値、又は、中間値を、関心領域のエネルギーとして計算する。
図6は、他の一実施形態による計算部を示すブロック図である。図6に示すように、計算部120Aは、画素エネルギー計算部121、縦方向帯選択部123及び領域エネルギー計算部122Aを備える。縦方向帯選択部123は、縦方向帯(longitudinal band)における各画素のエネルギーの平均値又は中間値を、該縦方向帯のエネルギーとして、各関心領域において最も高いエネルギーを有する縦方向帯を確定する。縦方向帯のサイズは、必要に応じて予め確定することができる。例えば、高さが関心領域と同じであり、幅が関心領域より狭い縦方向帯ウインドウを用いて関心領域をスキャンすることで、異なる位置の縦方向帯を順次取得することができる。領域エネルギー計算部122Aは、縦方向帯選択部123が選択した縦方向帯のエネルギーを、対応する関心領域のエネルギーとする。例えば、計算部120Aは、ROI内で横方向に一定間隔で、縦方向帯ウインドウを動かすことで、複数の位置で縦方向帯を取得する。そして、計算部120Aは、縦方向帯内の各画素のエネルギーを計算することで、縦方向帯のエネルギーを取得する。そして、計算部120Aは、複数の縦方向帯それぞれのエネルギーのうち、例えば、最も高いエネルギーを、ROIのエネルギーとする。計算部120Aは、各矢状面画像で、上記の処理を行う。それによって、識別部130は、比較的高いエネルギーを有するROIが位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として選択する。縦方向帯のサイズが関心領域より小さく、比較的高いエネルギーの縦方向帯を選択することで、脊柱が位置する領域をより正確に選択することができる。ROI内には、脊柱以外の組織も含まれるため、計算対象としてROIより小さい縦方向帯を用いることで、ノイズを除去したエネルギー(評価指標)を求めることができる。
研究によれば、矢状面画像における脊柱の椎間板の水平投影は、一定のルールで分布している。例えば、水平投影は、矢状面画像における信号値の頭尾方向の分布であり、頭尾軸(craniocaudal axis)の各位置で信号値を前後方向に合計した値を計算することで求められる。この水平投影のプロファイルは、脊柱で椎間板と椎体とが交互に配置されていることから、周期性を有する。図7A、図7B及び図7Cは、脊柱の水平投影の分布を示す。図7Aは、脊柱の椎間板のあるグループを示す図である。このグループの椎間板は、4つの椎間板を含み、図7Aでは、各椎間板の上下の2つの辺縁を模式的に示している。図7Bは、図7Aの椎間板を含む矢状面画像の水平投影を示す図である。図7Bにおける水平投影の凸状の波それぞれが、図7Aにおける椎間板にそれぞれ対応する。図7Cは、観察のために、図7Bを反時計回りに90度回転した水平投影を示す図である。図7Cに示すように、水平投影における各ピーク間の間隔Aが近い値(実質的に等しい)であり、各ピークのピーク値B(高さB)も近い値(実質的に等しい)である。これは、脊柱において、各椎間板は、実質的に互いに平行であり、各椎間板の直径が互いに略等しいことによる。
椎間板の水平投影の上記特徴を利用して、識別した目標矢状面から椎間板を含まない偽目標矢状面画像を検出し、偽目標矢状面画像を除去することができる。
図8は、他の一実施形態による医用画像処理装置を示すブロック図である。図8に示すように、医用画像処理装置100Aは、図1に示す設置部110、計算部120及び識別部130の他に、識別部130が識別した目標矢状面画像から偽目標矢状面画像を識別する偽目標識別部140を備える。
図9は、図8に示す偽目標識別部を示すブロック図である。図9に示すように、偽目標識別部140は、投影部141と偽目標確定部142とを備える。図10は、図9に示す偽目標識別部の作動を示すフローチャートである。図10に示すように、偽目標識別過程S240は、ステップS241において、各目標矢状面画像の関心領域(ROI)について、該関心領域(ROI)における所定サイズの各領域の水平投影を取得し、ステップS242において、関心領域(ROI)において所定数の領域の水平投影が所定分布条件に該当しない目標矢状面画像を、偽目標矢状面画像であると確定することを含む。該所定分布条件は、水平投影における複数のピークのピーク値が近く、該水平投影における複数のピーク間の間隔が近いことである。ステップS241は、投影部141により実行可能であり、ステップS242が偽目標確定部142により実行可能である。例えば、投影部141は、上述したように、ROIをN分割したり、ROI内に「横Xcm、縦Ycm」のブロックを配置したりすることで、複数のブロックを設置する。そして、投影部141は、ブロックごとに水平投影を取得する。なお、NやYの値は、少なくとも3つの椎間板がブロック内に含まれる値に設定されることが望ましい。偽目標確定部142は、例えば、分布条件に該当しない水平投影が取得されたブロックが2つ以上存在する目標矢状面画像を、偽目標矢状面画像であると確定する。なお、投影部141は、ROIのエネルギーとされた縦方向帯を、水平投影の取得対象としても良い。
投影部141は、各種の適切な公知技術を用いて、水平投影を行うことができる。例えば、所定の画素閾値を設定することで各領域の水平投影を取得することができる。或いは、目標矢状面画像に対して二値化を行った後、水平投影を行うことができる。例えば、投影部141は、ROIや縦方向帯のエッジ強調画像に対して、水平投影を行うことができる。或いは、例えば、投影部141は、ROIや縦方向帯の二値化画像に対して、水平投影を行うことができる。なお、偽目標識別部140は、ROIや縦方向帯の水平投影の全体的な形状に基づいて、複数の目標矢状面画像から偽目標矢状面画像を選択しても良い。
偽目標矢状面を識別するだけでなく、椎間板の水平投影の分布特徴は、矢状面画像から関心領域を識別することにも用いることができる。図11は、一実施形態に係る設置部を示すブロック図である。関心領域識別部(ROI識別部)として機能する設置部110は、投影部111と関心領域確定部(ROI確定部)112とを備える。図12は、図11に示す関心領域識別部の作動を示すフローチャートである。関心領域識別過程S210において、ステップS211では、各矢状面画像における複数の候補関心領域(候補ROI)の水平投影を取得する。ステップS212において、各矢状面画像の複数の候補関心領域(候補ROI)から、水平投影が分布条件に最も合致する候補関心領域を、該当する矢状面画像の関心領域(ROI)として選択する。該所定分布条件は、水平投影における複数のピークのピーク値が近く、水平投影における複数のピーク間の間隔が近いことである。例えば、投影部111は、脊柱領域として抽出した領域を中心に、複数の領域を設置する。投影部111は、これら複数の領域を、複数の候補ROIとする。そして、投影部111は、投影部141と同様に、候補ROIに複数のブロックを配置し、各ブロックの水平投影を取得する。そして、ROI確定部112は、分布条件に合致する水平投影が取得されたブロックの数が最も多かった候補ROIを、ROIとして確定する。
脊柱を通る正中矢状面の目標矢状面画像を識別した後、目標矢状面画像から椎間板を検出することができる。
図13は、他の一実施形態に係る医用画像処理装置を示すブロック図である。図13に示すように、医用画像処理装置100Bは、図1に示す設置部110、計算部120及び識別部130の他に、目標矢状面に対して後処理を行う後処理部150を更に備える。図14は、図13に示す後処理部を示すブロック図である。後処理部150は、脊柱関心領域識別部(脊柱ROI識別部)151と椎間板検出部152とを有する。図15は、図14に示す後処理部の作動を示すフローチャートである。図15に示すように、後処理過程S250において、ステップS251では、目標矢状面画像において、脊柱関心領域(脊柱ROI)を確定する。その後、ステップS252において、各脊柱関心領域(各脊柱ROI)において、椎間板を検出する。ステップS251は、脊柱ROI識別部151により実行可能であり、ステップS252は、椎間板検出部152により実行可能である。各種の適切な公知技術を用いて、脊柱関心領域の識別と椎間板の検出とを実行することができる。例えば、脊柱ROI識別部151は、目標矢状面画像に対して、再度、脊柱領域の抽出処理を行って、脊柱ROIを確定する。また、例えば、椎間板検出部152は、脊柱ROIに対してエッジ強調処理を行うことで、椎間板を検出する。
椎間板を検出した後、検出した椎間板の位置や方向等の情報は、より高画質の画像のために、続いて行われる脊柱スキャンの設定に用いられる。
更に、検出した椎間板についての水平投影の分布特徴は、椎間板の損傷を識別することに用いることができる。図16は、他の一実施形態に係る医用画像処理装置を示すブロック図である。図16に示すように、医用画像処理装置100Cは、図13に示す設置部110、計算部120、識別部130及び後処理部150の他に、更に、損傷識別部160を備える。図17は、図16に示す損傷識別部を示すブロック図である。図17に示すように、損傷識別部160は、投影部161と損傷確定部162とを有する。図18は、図17に示す損傷識別部の作動を示すフローチャートである。損傷識別過程S260において、ステップS261では、各脊柱関心領域の水平投影を取得する。その後、ステップS262では、脊柱関心領域において検出された各椎間板において、1つの椎間板に対応する水平投影のピークのピーク値が、相隣する椎間板に対応する水平投影のピークのピーク値より、所定の程度まで低い場合、当該1つの椎間板が損傷していると確定する。1つの椎間板に対応する水平投影のピークのピーク値が、相隣椎間板に対応する水平投影のピークのピーク値により、所定の程度まで低い場合、該1つの椎間板の直径が相隣椎間板より小さいことを意味し、従って、該1つの椎間板が損傷されていると確定することができる。ステップS261は、投影部161により実行可能であり、ステップS262は、損傷確定部162により実行可能である。例えば、投影部161は、投影部141と同様に、脊柱ROIに複数のブロックを配置し、各ブロックの水平投影を取得する。そして、例えば、損傷確定部162は、各ブロックで、損傷している椎間板が存在するか否かを判定する。
更に、検出した椎間板についての水平投影の分布特徴は、偽椎間板を識別することに用いることができる。図19は、他の一実施形態に係る医用画像処理装置を示すブロック図である。図19に示すように、医用画像処理装置100Dは、図13に示す設置部110、計算部120、識別部130及び後処理部150の他に、更に、偽椎間板識別部170を備える。図20は、図19に示す偽椎間板識別部を示すブロック図である。図20に示すように、偽椎間板識別部170は、投影部171と偽椎間板確定部172とを有する。図21は、図20に示す偽椎間板識別部の作動を示すフローチャートである。図21に示すように、偽椎間板識別過程S270において、ステップS271では、各脊柱関心領域の水平投影を取得する。その後、ステップS272では、脊柱関心領域において検出された各椎間板において、1つの椎間板に対応する水平投影のピークと、相隣する椎間板に対応する水平投影のピークとの間隔が、当該各椎間板に対応する水平投影のピークの間隔の平均値より、所定の程度まで低い又は高い場合、当該1つの椎間板が偽椎間板であると確定する。通常、脊柱の椎間板は、実質的に等間隔で配列されている。従って、1つの椎間板と相隣椎間板との間隔と、各椎間板の平均間隔との差が大きいと、該1つの椎間板が偽椎間板である可能性がある。ステップS271は、投影部171により実行可能であり、ステップS272は、偽椎間板確定部172により実行可能である。例えば、投影部171は、投影部141と同様に、脊柱ROIに複数のブロックを配置し、各ブロックの水平投影を取得する。そして、例えば、偽椎間板確定部172は、各ブロックで、偽椎間板が存在するか否かを判定する。
以上、図面を参照しながら本開示の実施形態による医用画像処理装置及び医用画像処理方法を説明する。上記医用画像処理装置において、投影部111、141、161及び171は、個々が独立した複数の部であっでも良く、共通の投影部により投影部111、141、161及び171が実現される場合であっても良い。
上述したように、開示した医用画像処理装置及び方法では、被検体の関心領域の両極性特徴と類似性特徴とに基づく評価指標を計算し、該評価指標に基づく特定の関心領域が位置する矢状面画像を目標矢状面画像として選択する。例えば、この評価指標は、関心領域のエネルギーであっでもいい。脊柱の椎間板に特有の画像特徴を考慮することから、正中矢状面における矢状面画像をより正確に取得することができ、これにより椎間板検出のような後処理にとっては有利である。
図22は、一実施形態に係る医用イメージング装置を示すブロック図である。本開示の精神と範囲を明瞭にするために、図22では、医用イメージング装置が備え得る他の部材を省略している。医用イメージング装置300は、医用画像処理装置310を含むことができ、医用イメージング装置300が発生した医用画像に対して処理を行う。医用画像処理装置310は、以上のいずれかの実施形態による医用画像処理装置100、100A〜100Dで良い。医用イメージング装置300は、例えば、磁気共鳴イメージング(MRI)装置等である。
上記医用画像処理装置を医用イメージング装置に設置する時、使用することができる具体的な手段や方式は、当業者にとって周知のものであり、ここでは重複して説明はしない。
一例として、上述した医用画像処理方法の各ステップ及び上述した医用画像処理装置の各構成、及び/又は、部分は、ソフトウエア、ファームウエア、ハードウエア或いはそれらの組み合わせとして実現しても良い。ソフトウエア或いはファームウエアを介して実現する場合、上記方法のソフトウエアプログラムを実施するため、メモリ媒体から、或いは、ネットワークを介して専用のハードウエア構造のコンピュータ(例えば、図23に示す汎用コンピュータ2300)へダウンロードして構成することができ、該コンピュータに各種プログラムがダウンロードされた状態で、各種機能等を実施することができる。
図23は、実施形態/実施例を実現可能なコンピュータの構成を示すブロック図である。図23において、演算処理部(CPU)2301は、読み取り専用メモリ(ROM)2302の中に記憶されているプログラム、或いは、記憶部2308から読み書き兼用メモリ(RAM)2303へ書き込まれたプログラムに基づいて、各種処理を実行する。RAM2303では、必要に応じて、CPU2301が各種処理等を実行するときに必要なデータも記憶しておく。CPU2301、ROM2302及びRAM2303は、バス2304を経由してそれぞれ接続されている。入力/出力インタフェース2305も、バス2304につながっている。
下記の各部は、入力/出力インタフェース2305に接続されている:入力部2306(キーボード、マウス等を含む)、出力部2307(モニタ、例えば、ブラウン管(CRT)、液晶モニタ(LCD)等や、スピーカ等を含む)、記憶部2308(ハードディスクを含む)、通信部2309(ネットワークインターフェースカード、例えば、LANカード、モデム等)。通信部2309は、ネットワーク(例えば、インターネット)を介して通信処理を実行する。必要に応じて、ドライバ2310も入力/出力インタフェース2305に接続可能である。取り外し可能な媒体2311は、例えば、磁気ディスク、光ディスク、MO、半導体メモリ等であって、必要に応じてドライバ2310に装着され、必要に応じてコンピュータプログラムを読み出して、記憶部2308へダウンロードされる。
ソフトウエアを介して上記の一連の処理を実行する場合、ネットワーク(例えば、インターネット)、或いは、記憶媒体(例えば、取り外し可能な媒体2311)からソフトウエアを構成するプログラムをダウンロードしても良い。
当業者にとっては自明であるが、プログラムを記憶し、装置から切り離されてプログラムをユーザに提供するように分配される記憶媒体は、図23に示す取り外し可能な媒体2311に限らない。取り外し可能な媒体2311の例としては、磁気ディスク(フロッピー(登録商標)ディスク、光ディスク(CD−ROMやDVDを含む)、磁気光ディスク(MiDisc(MD、登録商標)を含む)、半導体メモリを含む。また、記憶媒体はROM2302であっても良く、記憶部2308に含まれるハードディスク等、その中にプログラムが記憶され、それらを含む装置からユーザへプログラムが送られる形態でも良い。
本実施形態では、更に、機械読み取り可能なコマンドコードを記憶しているプログラム製品を開示する。上記コマンドコードが機器を介して読み取られると、本実施形態の医用画像処理方法を実行することができる。
従って、上記機械読み取り可能なコマンドコードを記憶しているプログラム製品を保持している非一時的な記憶媒体も、本実施形態の範囲である。その記憶媒体は、ソフトディスク、光ディスク、磁気光ディスク、メモリカード、メモリスティック等を含むが、これらには限定されない。
上記の具体的な実施形態の記載においては、一つの実施形態で記載、及び/又は、図示した構成は、同じ、又は、同様の方法を、一つ或いは複数の他の実施方法の中で適用したり、同様の方法を一つあるいは複数の他の実施方法の中で適用したり、その他の実施方法と組み合わせたり、或いは、その他の実施形態における構成に置き換えるといったことも可能である。
さらに、“包含する/含む”といった用語を使用したときは、構成・要素・ステップ或いは部品の存在を指し示す。ただし、その他の構成・要素・ステップ或いは部品の存在や付加の排除を意味するものではない。
上記実施形態においては、数字構成の図番記号を用いて各ステップや構成を表記している。ただし、これらの図番記号は単なる説明や画図の都合への考慮によるものであって、その順序やいかなる他の限定を表すものではない、と当業者は理解すべきである。
このほか、本実施形態の方法は、詳細な説明の欄において説明された時間順序に沿って実行されるものに限らず、その他の時間順序に沿って、同時に、或いは、独立して実行されても良い。それゆえ、本実施形態の詳細な説明において説明された方法の実行順序は、本実施形態の技術範囲に対する構成を制限するものではない。
以上述べた少なくとも1つの実施形態によれば、脊柱を通る正中矢状面の矢状面画像を正確に取得することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
100 医用画像処理装置
110 設置部
120 計算部
130 識別部

Claims (17)

  1. 被検体をスキャンして取得された医用画像の複数の矢状面画像それぞれに関心領域を設置する設置部と、
    前記関心領域における各ブロックの画素値変化に関する両極性特徴、及び、各ブロック間の類似性特徴に基づいて、評価指標を計算する計算部と、
    前記計算部が計算した結果に基づいて関心領域を選択し、選択した関心領域が位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として識別する識別部と、
    を備える、医用画像処理装置。
  2. 前記計算部は、
    前記関心領域の各画素が位置するブロックの両極性特徴値と、該ブロックと相隣ブロックとの類似性特徴値との加重和を、該画素のエネルギーとして計算する画素エネルギー計算部と、
    前記関心領域における各画素のエネルギーの平均値、又は、中間値を、前記関心領域のエネルギーとして計算する領域エネルギー計算部と、
    を有し、
    前記識別部は、高いエネルギーを有する関心領域を選択し、選択した関心領域が位置する矢状面画像を、前記目標矢状面画像として識別する、請求項1に記載の医用画像処理装置。
  3. 前記計算部は、
    縦方向帯における各画素のエネルギーの平均値又は中間値を、該縦方向帯のエネルギーとして、各関心領域において最も高いエネルギーを有する縦方向帯を確定する縦方向帯選択部、
    を更に有し、
    前記領域エネルギー計算部は、前記縦方向帯選択部が確定した縦方向帯のエネルギーを、対応する関心領域のエネルギーとする、請求項2に記載の医用画像処理装置。
  4. 偽目標識別部、
    を更に備え、
    前記偽目標識別部は、
    各目標矢状面画像の関心領域について、該関心領域における所定サイズの各領域の水平投影を取得する投影部と、
    前記関心領域において所定数の領域の水平投影が分布条件に該当しない目標矢状面画像を、偽目標矢状面画像であると確定する偽目標確定部と、
    を有し、
    前記分布条件は、前記水平投影における複数のピークのピーク値が近く、前記水平投影における複数のピーク間の間隔が近いことである、請求項1に記載の医用画像処理装置。
  5. 前記設置部は、
    各矢状面画像における複数の候補関心領域の水平投影を取得する投影部と、
    各矢状面画像の複数の候補関心領域から、水平投影が分布条件に最も合致する候補関心領域を、該当する矢状面画像の関心領域として選択する関心領域確定部と、
    を有し、
    前記分布条件は、前記水平投影における複数のピークのピーク値が近く、前記水平投影における複数のピーク間の間隔が近いことである、請求項1に記載の医用画像処理装置。
  6. 後処理部、
    を更に備え、
    前記後処理部は、
    前記目標矢状面画像において、脊柱関心領域を確定する脊柱関心領域識別部と、
    各脊柱関心領域において、椎間板を検出する椎間板検出部と、
    を有する、請求項1に記載の医用画像処理装置。
  7. 損傷識別部、
    を更に備え、
    前記損傷識別部は、
    各脊柱関心領域の水平投影を取得する投影部と、
    前記脊柱関心領域において検出された各椎間板において、1つの椎間板に対応する水平投影のピークのピーク値が、相隣する椎間板に対応する水平投影のピークのピーク値より、所定の程度まで低い場合、当該1つの椎間板が損傷していると確定する損傷確定部と、
    を有する、請求項6に記載の医用画像処理装置。
  8. 偽椎間板識別部、
    を更に備え、
    前記偽椎間板識別部は、
    各脊柱関心領域の水平投影を取得する投影部と、
    前記脊柱関心領域において検出された各椎間板において、1つの椎間板に対応する水平投影のピークと、相隣する椎間板に対応する水平投影のピークとの間隔が、当該各椎間板に対応する水平投影のピークの間隔の平均値より、所定の程度まで低い又は高い場合、当該1つの前記椎間板が偽椎間板であると確定する偽椎間板確定部と、
    を有する、請求項6に記載の医用画像処理装置。
  9. 請求項1〜8のいずれか1つに記載の医用画像処理装置を備える、医用イメージング装置。
  10. 被検体をスキャンして取得された医用画像の複数の矢状面画像それぞれに関心領域を設置し、
    前記関心領域における各ブロックの画素値変化に関する両極性特徴、及び、各ブロック間の類似性特徴に基づいて、評価指標を計算し、
    計算した結果に基づいて関心領域を選択し、選択した関心領域が位置する矢状面画像を、脊柱を通る正中矢状面の目標矢状面画像として識別する、
    ことを含む、医用画像処理方法。
  11. 前記評価指標を計算するステップは、
    前記関心領域の各画素が位置するブロックの両極性特徴値と、該ブロックと相隣ブロックとの類似性特徴値との加重和を、該画素のエネルギーとして計算し、
    前記関心領域における各画素のエネルギーの平均値、又は、中間値を、前記関心領域のエネルギーとして計算する、
    ことを含み、
    高いエネルギーを有する関心領域を選択し、選択した関心領域が位置する矢状面画像を、前記目標矢状面画像として識別する、請求項10に記載の医用画像処理方法。
  12. 縦方向帯における各画素のエネルギーの平均値又は中間値を、該縦方向帯のエネルギーとして、各関心領域において最も高いエネルギーを有する縦方向帯を確定し、
    前記縦方向帯のエネルギーを、対応する関心領域のエネルギーとする、
    ことを更に含む、請求項11に記載の医用画像処理方法。
  13. 各目標矢状面画像の関心領域について、該関心領域における所定サイズの各領域の水平投影を取得し、
    前記関心領域において所定数の領域の水平投影が分布条件に該当しない目標矢状面画像を、偽目標矢状面画像であると確定する、
    ことを更に含み、
    前記分布条件は、前記水平投影における複数のピークのピーク値が近く、前記水平投影における複数のピーク間の間隔が近いことである、請求項10に記載の医用画像処理方法。
  14. 各矢状面画像に前記関心領域を設置するステップは、
    各矢状面画像における複数の候補関心領域の水平投影を取得し、
    各矢状面画像の複数の候補関心領域から、水平投影が分布条件に最も合致する候補関心領域を、該当する矢状面像の関心領域として選択する、
    ことを含み、
    前記分布条件は、前記水平投影における複数のピークのピーク値が近く、前記水平投影における複数のピーク間の間隔が近いことである、請求項10に記載の医用画像処理方法。
  15. 前記目標矢状面画像において、脊柱関心領域を確定し、
    各脊柱関心領域において、椎間板を検出する、
    ことを更に含む、請求項10に記載の医用画像処理方法。
  16. 各脊柱関心領域の水平投影を取得し、
    前記脊柱関心領域において検出された各椎間板において、1つの椎間板に対応する水平投影のピークのピーク値が、相隣する椎間板に対応する水平投影のピークのピーク値より、所定の程度まで低い場合、当該1つの椎間板が損傷していると確定する、
    ことを更に含む、請求項15に記載の医用画像処理方法。
  17. 各脊柱関心領域の水平投影を取得し、
    前記脊柱関心領域において検出された各椎間板において、1つの椎間板に対応する水平投影のピークと、相隣する椎間板に対応する水平投影のピークとの間隔が、当該各椎間板に対応する水平投影のピークの間隔の平均値より、所定の程度まで低い又は高い場合、当該1つの前記椎間板が偽椎間板であると確定する、
    ことを更に含む、請求項15に記載の医用画像処理方法。
JP2015229034A 2014-11-26 2015-11-24 医用画像処理装置、医用イメージング装置及び医用画像処理方法 Active JP6580956B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410708751.9A CN105701438B (zh) 2014-11-26 2014-11-26 医学图像处理装置和方法以及医学成像设备
CN201410708751.9 2014-11-26

Publications (2)

Publication Number Publication Date
JP2016097311A true JP2016097311A (ja) 2016-05-30
JP6580956B2 JP6580956B2 (ja) 2019-09-25

Family

ID=56010717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229034A Active JP6580956B2 (ja) 2014-11-26 2015-11-24 医用画像処理装置、医用イメージング装置及び医用画像処理方法

Country Status (3)

Country Link
US (1) US9940537B2 (ja)
JP (1) JP6580956B2 (ja)
CN (1) CN105701438B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195443A1 (ja) * 2022-04-08 2023-10-12 キヤノン株式会社 画像処理装置、画像処理装置の作動方法、およびプログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3662444B1 (en) * 2017-07-31 2022-06-29 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for automatic vertebrae segmentation and identification in medical images
CN109961436B (zh) * 2019-04-04 2021-05-18 北京大学口腔医学院 一种基于人工神经网络模型的正中矢状平面构建方法
US11869226B2 (en) * 2020-10-25 2024-01-09 Pixart Imaging Inc. Computer readable recording medium which can perform image pattern determining method
CN117173050A (zh) * 2021-03-17 2023-12-05 武汉联影智融医疗科技有限公司 图像处理方法、装置、计算机设备和存储介质
CN113240730B (zh) * 2021-05-20 2022-02-08 推想医疗科技股份有限公司 提取椎体中线的方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040215071A1 (en) * 2003-04-25 2004-10-28 Frank Kevin J. Method and apparatus for performing 2D to 3D registration
US20090087052A1 (en) * 2007-10-01 2009-04-02 Louis-Philippe Amiot Construction of a non-imaged view of an object using acquired images
US20100063420A1 (en) * 2008-09-10 2010-03-11 Florian Mahn Method for verifying the relative position of bone structures
WO2010095508A1 (ja) * 2009-02-23 2010-08-26 コニカミノルタエムジー株式会社 正中線決定装置およびプログラム
WO2010150783A1 (ja) * 2009-06-25 2010-12-29 株式会社 日立メディコ 医用画像撮影装置
JP2011087844A (ja) * 2009-10-26 2011-05-06 Tokyo Institute Of Technology 椎間板変性の評価方法、装置及びプログラム
JP2011131040A (ja) * 2009-11-27 2011-07-07 Fujifilm Corp 椎骨セグメンテーション装置、方法及びプログラム
US20130230224A1 (en) * 2010-11-24 2013-09-05 Nocimed, Llc Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy
JP2014121598A (ja) * 2012-11-22 2014-07-03 Toshiba Corp 磁気共鳴イメージング装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046830B2 (en) 2000-01-27 2006-05-16 Koninklijke Philips Electronics, N.V. Method and system for extracting spine geometrical data
US6608916B1 (en) 2000-08-14 2003-08-19 Siemens Corporate Research, Inc. Automatic detection of spine axis and spine boundary in digital radiography
WO2005088520A1 (en) * 2004-03-11 2005-09-22 University Of Cincinnati Automated spine survey iterative scan technique (assist)
US7672493B2 (en) 2005-01-31 2010-03-02 Siemens Medical Solutions Usa, Inc. Method for analyzing medical image data using level set
US7561728B2 (en) * 2005-03-23 2009-07-14 Siemens Medical Solutions Usa, Inc. Detection of intervertebral disk orientation in spine images using curve evolution
US7903851B2 (en) 2005-10-17 2011-03-08 Siemens Medical Solutions Usa, Inc. Method and system for vertebrae and intervertebral disc localization in magnetic resonance images
WO2008141996A2 (en) 2007-05-18 2008-11-27 Nordic Bioscience Imaging A/S Semi-automatic contour detection
JP5599572B2 (ja) * 2009-03-12 2014-10-01 富士フイルム株式会社 症例画像検索装置、方法およびプログラム
JP5428618B2 (ja) * 2009-07-29 2014-02-26 ソニー株式会社 画像処理装置、撮像装置、および画像処理方法、並びにプログラム
US8825131B2 (en) * 2009-10-14 2014-09-02 Nocimed, Llc MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs
US8625869B2 (en) * 2010-05-21 2014-01-07 Siemens Medical Solutions Usa, Inc. Visualization of medical image data with localized enhancement
US9538920B2 (en) * 2014-05-09 2017-01-10 London Health Sciences Centre Research Inc. Standalone annotations of axial-view spine images

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040215071A1 (en) * 2003-04-25 2004-10-28 Frank Kevin J. Method and apparatus for performing 2D to 3D registration
US20090087052A1 (en) * 2007-10-01 2009-04-02 Louis-Philippe Amiot Construction of a non-imaged view of an object using acquired images
US20100063420A1 (en) * 2008-09-10 2010-03-11 Florian Mahn Method for verifying the relative position of bone structures
WO2010095508A1 (ja) * 2009-02-23 2010-08-26 コニカミノルタエムジー株式会社 正中線決定装置およびプログラム
WO2010150783A1 (ja) * 2009-06-25 2010-12-29 株式会社 日立メディコ 医用画像撮影装置
JP2011087844A (ja) * 2009-10-26 2011-05-06 Tokyo Institute Of Technology 椎間板変性の評価方法、装置及びプログラム
JP2011131040A (ja) * 2009-11-27 2011-07-07 Fujifilm Corp 椎骨セグメンテーション装置、方法及びプログラム
US20130230224A1 (en) * 2010-11-24 2013-09-05 Nocimed, Llc Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy
JP2014121598A (ja) * 2012-11-22 2014-07-03 Toshiba Corp 磁気共鳴イメージング装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195443A1 (ja) * 2022-04-08 2023-10-12 キヤノン株式会社 画像処理装置、画像処理装置の作動方法、およびプログラム

Also Published As

Publication number Publication date
CN105701438A (zh) 2016-06-22
US20160148377A1 (en) 2016-05-26
US9940537B2 (en) 2018-04-10
CN105701438B (zh) 2020-06-23
JP6580956B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6580956B2 (ja) 医用画像処理装置、医用イメージング装置及び医用画像処理方法
Bian et al. Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images
JP5643304B2 (ja) 胸部トモシンセシスイメージングにおけるコンピュータ支援肺結節検出システムおよび方法並びに肺画像セグメント化システムおよび方法
US9349176B2 (en) Computer-aided detection (CAD) of intracranial aneurysms
Xu et al. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT
US10056158B2 (en) Determination of enhancing structures in an anatomical body part
US9424460B2 (en) Tumor plus adjacent benign signature (TABS) for quantitative histomorphometry
CN105979847A (zh) 内窥镜图像诊断辅助系统
ES2693369T3 (es) Método y sistema para determinar un fenotipo de un neoplasma en un cuerpo humano o animal
US20140348408A1 (en) Flow diverter detection in medical imaging
KR20210005690A (ko) 정보 처리 장치, 정보 처리 방법, 컴퓨터 프로그램
Natalia et al. Automated measurement of anteroposterior diameter and foraminal widths in MRI images for lumbar spinal stenosis diagnosis
Bodzioch et al. New approach to gallbladder ultrasonic images analysis and lesions recognition
JP6687395B2 (ja) 医用画像処理装置、医用画像処理方法及び医用イメージング装置
US11348229B2 (en) Determining regions of hyperdense lung tissue in an image of a lung
Faisal et al. Computer assisted diagnostic system in tumor radiography
JP5961512B2 (ja) 画像処理装置およびその作動方法並びに画像処理プログラム
JP2014221201A (ja) 撮像制御装置、医用画像診断装置及び撮像制御方法
US20210256697A1 (en) Lymph node detection system and methods for use
CN110023991B (zh) 用于从对象类中识别对象的装置
US20230342994A1 (en) Storage medium, image identification method, image identification device
US11967079B1 (en) System and method for automatically detecting large vessel occlusion on a computational tomography angiogram
Sensakovic et al. Automated segmentation of mucosal change in rhinosinusitis patients
Al-Hamadani A fast template-based technique to extract optic disc from coloured fundus images based on histogram features
Bernal et al. Assessment of PVS Filtering Methods Using a Three-Dimensional Computational Model

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190829

R150 Certificate of patent or registration of utility model

Ref document number: 6580956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150