JP2016096237A - Magnetic member and method for manufacturing the same - Google Patents

Magnetic member and method for manufacturing the same Download PDF

Info

Publication number
JP2016096237A
JP2016096237A JP2014231314A JP2014231314A JP2016096237A JP 2016096237 A JP2016096237 A JP 2016096237A JP 2014231314 A JP2014231314 A JP 2014231314A JP 2014231314 A JP2014231314 A JP 2014231314A JP 2016096237 A JP2016096237 A JP 2016096237A
Authority
JP
Japan
Prior art keywords
magnetic member
magnetic
powder
soft magnetic
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014231314A
Other languages
Japanese (ja)
Other versions
JP6415938B2 (en
Inventor
健一 茶谷
Kenichi Chatani
健一 茶谷
奥寺 良
Makoto Okudera
良 奥寺
賢司 池田
Kenji Ikeda
賢司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2014231314A priority Critical patent/JP6415938B2/en
Publication of JP2016096237A publication Critical patent/JP2016096237A/en
Application granted granted Critical
Publication of JP6415938B2 publication Critical patent/JP6415938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a magnetic member which has a desired non-planar shape even with no external force applied thereto while keeping a magnetic property; and a method for manufacturing such a magnetic member.SOLUTION: A magnetic member has elasticity, and is arranged by binding soft magnetic metal powder flat in shape with a binder component including a silicon oxide as a primary component. The magnetic member comprises 55 vol.% or more of the soft magnetic metal powder and 10-25 vol.% of pores. The magnetic member is arranged to have a non-planar part with no external force applied thereto.SELECTED DRAWING: Figure 1

Description

本発明は、磁性部材に関し、特に電磁ノイズ対策が必要な機器の筐体や磁性ヨークに好適な部材に関する。   The present invention relates to a magnetic member, and more particularly to a member suitable for a housing or a magnetic yoke of a device that requires countermeasures against electromagnetic noise.

軟磁性を有する扁平金属粉末とバインダを含む混合物を成型した磁性シートを折り曲げ加工して磁性部材として用いられる技術が知られている。   A technique is known in which a magnetic sheet formed by molding a mixture containing a flat metal powder having soft magnetism and a binder is bent and used as a magnetic member.

特許文献1には、扁平形状を有する軟磁性金属粉末をバインダ成分によって結着させた弾性を有する磁芯であって、55体積%以上の軟磁性金属粉末と10体積%以上、かつ25体積%以下の空孔とを含んでおり、酸化ケイ素を主成分としたバインダ成分を有する平板形状の磁芯に関する技術が記載されている。   Patent Document 1 discloses an elastic magnetic core obtained by binding a soft magnetic metal powder having a flat shape with a binder component, which is 55% by volume or more of soft magnetic metal powder, 10% by volume or more, and 25% by volume. A technique relating to a flat-plate-shaped magnetic core having a binder component containing silicon oxide as a main component is described.

特許文献2には、軟磁性粉末が分散された磁気シールド層と、少なくとも1層の絶縁層が樹脂中に設けられている高抵抗磁気シールド材であって、熱可塑性樹脂または熱硬化性樹脂を用いることにより一定の形状に折り曲げ加工することができる磁気シールド材に関する技術が記載されている。   Patent Document 2 discloses a high-resistance magnetic shield material in which a magnetic shield layer in which soft magnetic powder is dispersed and at least one insulating layer is provided in a resin, and includes a thermoplastic resin or a thermosetting resin. A technique relating to a magnetic shield material that can be bent into a certain shape when used is described.

特許文献3には、扁平形状の軟磁性体粉末と結合剤として塩素化ポリエチレンを用いて構成される筒形状の複合磁性体であって、筒の中心軸方向に磁化困難軸を有するように、軟磁性体粉末を配向した電磁干渉抑制体に関する技術が記載されている。   Patent Document 3 discloses a cylindrical composite magnetic body composed of flat soft magnetic powder and chlorinated polyethylene as a binder, and has a hard axis in the central axis direction of the cylinder. A technique related to an electromagnetic interference suppressor in which soft magnetic powder is oriented is described.

特許第5474251号公報Japanese Patent No. 5474251 特開平6−252586号公報JP-A-6-252586 特開2001−126904号公報JP 2001-126904 A

特許文献1には、平板形状の磁芯を折り曲げて用いるという技術思想が開示されていない。したがって、折り曲げに対する充分な柔軟性を有しておらず、曲面となるように外力を加えた場合、微小な亀裂が生じて、磁気特性が損なわれる可能性を含むという課題がある。   Patent Document 1 does not disclose a technical idea that a flat magnetic core is used while being bent. Therefore, there is a problem that it does not have sufficient flexibility to bend, and when external force is applied so as to form a curved surface, there is a possibility that minute cracks are generated and the magnetic properties are impaired.

特許文献2に記載された磁気シールド材は、熱可塑性樹脂または熱硬化性樹脂の結着によって曲面形状を保持するために、樹脂組成物を一定量必要とする。したがって、軟磁性粉末の体積比率を増やすことには限界があり、一定値以上の磁気特性が得られないという課題がある。   The magnetic shield material described in Patent Document 2 requires a certain amount of a resin composition in order to maintain a curved surface shape by binding a thermoplastic resin or a thermosetting resin. Therefore, there is a limit to increasing the volume ratio of the soft magnetic powder, and there is a problem that magnetic characteristics exceeding a certain value cannot be obtained.

特許文献3に記載された複合磁性体も、軟磁性粉末と樹脂組成物からなり、特許文献2に記載された磁気シールド材と同様の課題を有する。すなわち、軟磁性粉末の体積比率を増やすことには限界があり、用途によっては、充分な磁気特性を確保できないという課題がある。   The composite magnetic material described in Patent Document 3 is also composed of a soft magnetic powder and a resin composition, and has the same problems as the magnetic shield material described in Patent Document 2. That is, there is a limit to increasing the volume ratio of the soft magnetic powder, and there is a problem that sufficient magnetic properties cannot be secured depending on the application.

そこで本発明は、上記課題を解決し、磁気特性を維持したままで、外力を加えない状態でも所望の曲面形状を有する磁性部材およびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above problems and to provide a magnetic member having a desired curved surface shape and a method for manufacturing the same while maintaining magnetic characteristics and applying no external force.

本発明は特許文献1に記載された、扁平形状を有する軟磁性粉末と酸化ケイ素を主成分とするバインダ成分の結着構造およびその製造工程に着目してなされたものである。   The present invention is made by paying attention to a binding structure of a soft magnetic powder having a flat shape and a binder component mainly composed of silicon oxide and a manufacturing process thereof described in Patent Document 1.

軟磁性粉末を樹脂組成物で結着させた複合磁性体は、特許文献2または特許文献3記載の発明に例示されるように、樹脂組成物中に軟磁性粉末が分散されてなる。   The composite magnetic body obtained by binding the soft magnetic powder with the resin composition is formed by dispersing the soft magnetic powder in the resin composition as exemplified in the invention described in Patent Document 2 or Patent Document 3.

このような構造の複合磁性体を、外力を加えない状態においても曲面や屈面を有する立体形状を保持するように形成するために、特許文献2段落0020記載のように熱可塑性樹脂を用いて加熱成形しても良いが、高温での形態安定性に問題があることに加えて、そもそも熱可塑性樹脂では軟磁性粉末の充填率を向上させることができず、透磁率等の磁気特性も充分に得ることができない。   In order to form a composite magnetic body having such a structure so as to maintain a three-dimensional shape having a curved surface or a bent surface even when no external force is applied, a thermoplastic resin is used as described in paragraph 0020 of Patent Document 2. Although it may be heat-molded, in addition to the problem of form stability at high temperatures, thermoplastic resin cannot improve the filling rate of soft magnetic powder in the first place, and magnetic properties such as permeability are sufficient. Can't get to.

また、特許文献3記載の発明のように押し出し成形によって曲面を形成するためには、平板状に形成する以上に充分な分量の樹脂組成物を用いる必要がある。したがって、特許文献2記載の発明と同様に軟磁性粉末の充填率を向上させることができず、透磁率等の磁気特性を充分に得ることができない。   In addition, in order to form a curved surface by extrusion molding as in the invention described in Patent Document 3, it is necessary to use a sufficient amount of the resin composition to form a flat plate. Therefore, like the invention described in Patent Document 2, the filling rate of the soft magnetic powder cannot be improved, and magnetic properties such as magnetic permeability cannot be sufficiently obtained.

一方、特許文献1に記載された酸化ケイ素を主成分とするバインダ成分を有する磁性シートは、バインダの性質上、特許文献2記載の発明のような加熱成形ができず、特許文献3記載の発明のような押し出し成形では、充分な磁気特性を得ることができない。なお、特許文献1に記載された磁性シートは、その構造上、無理に曲げようとすると割れが生ずることから、特許文献2、3の方法により曲面加工することは困難である。   On the other hand, the magnetic sheet having a binder component mainly composed of silicon oxide described in Patent Document 1 cannot be thermoformed as in the invention described in Patent Document 2 due to the nature of the binder, and the invention described in Patent Document 3 In such extrusion molding, sufficient magnetic properties cannot be obtained. In addition, since the magnetic sheet described in Patent Document 1 is cracked when it is forced to bend due to its structure, it is difficult to process a curved surface by the methods of Patent Documents 2 and 3.

本発明者らは、特許文献1記載の磁性シートにおいて、軟磁性粉末を溶媒および増粘剤とともに混合し、一定条件下で加熱し溶媒を揮発させる工程で新たな樹脂材料を加えることなく、磁性シートに曲げ加工を施すことができることを見出した。   In the magnetic sheet described in Patent Document 1, the inventors mixed soft magnetic powder together with a solvent and a thickener, heated under a certain condition, and volatilized the solvent without adding a new resin material. It has been found that the sheet can be bent.

すなわち、その曲面構造を保持しつつ有機成分を熱分解させる熱処理を行うことにより無機物を主とするバインダ成分により軟磁性粉末を結着させ、外力を加えない状態であっても曲面を有する構造が得られることを見出した。   That is, a structure having a curved surface is obtained even when soft magnetic powder is bound by a binder component mainly composed of an inorganic substance by performing a heat treatment for thermally decomposing the organic component while maintaining the curved surface structure, and no external force is applied. It was found that it can be obtained.

したがって、本発明によれば、バインダ成分の体積比率を増すことなく、非平面を含む立体形状を有する磁性部材を得ることができる。   Therefore, according to the present invention, a magnetic member having a three-dimensional shape including a non-planar surface can be obtained without increasing the volume ratio of the binder component.

なお、曲げ加工の際、磁性シート曲面の外周部が伸長され、外周部の表面近傍に微細な亀裂の生ずる場合もあるが、外周部から圧縮力を加えつつ、後工程である有機成分を熱分解させる熱処理を行うことにより、微細な亀裂は修復される。   In the bending process, the outer periphery of the curved surface of the magnetic sheet may be elongated, and fine cracks may occur near the surface of the outer periphery. However, while applying compressive force from the outer periphery, the organic component in the subsequent process is heated. By performing a heat treatment for decomposition, fine cracks are repaired.

本発明の磁性部材は、扁平形状を有する軟磁性金属粉末を、酸化ケイ素を主成分とするバインダ成分によって結着させてなり、弾性を有する磁性部材であって、55体積%以上の前記軟磁性金属粉末と、10体積%以上、25体積%以下の空孔とを含んでおり、外力を加えない状態で曲面や屈曲面といった非平面部を有することを特徴とする。   The magnetic member of the present invention is an elastic magnetic member obtained by binding a soft magnetic metal powder having a flat shape with a binder component containing silicon oxide as a main component, and the soft magnetic content is 55% by volume or more. It contains metal powder and 10% by volume or more and 25% by volume or less of pores, and has a non-planar part such as a curved surface or a bent surface without applying external force.

本発明の磁性部材は、ISO7619−typeDによるゴム硬度が、92以上、96以下であることを特徴とする。   The magnetic member of the present invention has a rubber hardness according to ISO7619-type D of 92 or more and 96 or less.

本発明の磁性部材は、ヤング率が10GPa以上、90GPa以下であることを特徴とする。   The magnetic member of the present invention has a Young's modulus of 10 GPa or more and 90 GPa or less.

本発明の磁性部材は、100Ω・m以上の電気抵抗率を有することを特徴とする。   The magnetic member of the present invention has an electrical resistivity of 100 Ω · m or more.

本発明の磁性部材は、樹脂またはフィルムで被覆してなることを特徴とする。   The magnetic member of the present invention is characterized by being coated with a resin or a film.

本発明の磁性部品は、前記磁性部材を1以上組み合わせてなることを特徴とする。   The magnetic component of the present invention is characterized by combining one or more of the magnetic members.

本発明の磁性部品は、前記磁性部材を筐体形状に形成してなることを特徴とする。   The magnetic component of the present invention is characterized in that the magnetic member is formed in a casing shape.

本発明の磁性部材の製造方法は、扁平形状を有する軟磁性粉末と、酸化ケイ素を主成分としたバインダ成分を含む混合物を塗布し乾燥して予備成形体たる板状体を得る工程と、板状体を少なくとも非平面部を有する面で保持して圧縮成形し成形体を得る工程と、成形体を少なくとも酸素または窒素のいずれかを含有する雰囲気下で非平面部を有する状態に保持して軟磁性粉末を酸化ケイ素で結着させる熱処理工程を含むことを特徴とする。   The method for producing a magnetic member of the present invention includes a step of applying a mixture containing a soft magnetic powder having a flat shape and a binder component mainly composed of silicon oxide and drying to obtain a plate-like body as a preform, A process of obtaining a molded body by compressing and molding the shaped body with a surface having at least a non-planar part, and holding the molded body in a state having a non-planar part in an atmosphere containing at least oxygen or nitrogen. It includes a heat treatment step for binding the soft magnetic powder with silicon oxide.

本発明の磁性部材の製造方法は、扁平形状を有する軟磁性粉末と、酸化ケイ素を主成分としてバインダ成分を含む混合物を塗布し乾燥して予備成形体たる板状体を得る工程と、板状体を平面で挟持して圧縮成形して成形体を得る工程と、成形体を少なくとも酸素または窒素のいずれかを含有する雰囲気下で非平面部を有する状態に保持して軟磁性粉末を酸化ケイ素で結着させる熱処理工程を含むことを特徴とする。   The method for producing a magnetic member of the present invention includes a step of obtaining a plate-like body as a preform by applying a soft magnetic powder having a flat shape and a mixture containing a silicon oxide as a main component and containing a binder component, followed by drying. A step of obtaining a molded body by compressing and molding the body in a plane, and holding the molded body in a state having a non-planar part in an atmosphere containing at least oxygen or nitrogen to form a soft magnetic powder in silicon oxide It includes a heat treatment step of binding with the above.

本発明の磁性部材の製造方法は、ISO7619−typeDによるゴム硬度が、92以上、96以下である前記磁性部材が得られることを特徴とする。   The method for producing a magnetic member of the present invention is characterized in that the magnetic member having a rubber hardness of 92 or more and 96 or less according to ISO7619-type D is obtained.

本発明の磁性部材の製造方法は、ヤング率が10GPa以上、90GPa以下である磁性部材が得られることを特徴とする。   The method for producing a magnetic member of the present invention is characterized in that a magnetic member having a Young's modulus of 10 GPa or more and 90 GPa or less is obtained.

本発明の磁性部材の製造方法は、100Ω・m以上の電気抵抗率を有する磁性部材が得られることを特徴とする。   The magnetic member manufacturing method of the present invention is characterized in that a magnetic member having an electrical resistivity of 100 Ω · m or more is obtained.

本発明の磁性部材の製造方法は、樹脂またはフィルムで被覆してなる磁性部材が得られることを特徴とする。   The method for producing a magnetic member of the present invention is characterized in that a magnetic member formed by coating with a resin or a film is obtained.

本発明によれば、軟磁性粉末の体積比率を減少させることなく、すなわち、磁気特性を維持したままで、外力を加えない状態でも所望の非平面形状を有する磁性部材およびその製造方法が得られる。   According to the present invention, a magnetic member having a desired non-planar shape and a method for manufacturing the same can be obtained without reducing the volume ratio of the soft magnetic powder, that is, while maintaining the magnetic characteristics and without applying an external force. .

また、本発明によれば、携帯機器の筐体や蓋、立体形状を伴う、たとえば、ハイブリッド車のモーター近傍に用いるのに好適な電磁ノイズ対策部品等の磁性部品が得られる。   Further, according to the present invention, a magnetic part such as an electromagnetic noise countermeasure part suitable for use in the vicinity of a motor of a hybrid vehicle, for example, having a three-dimensional shape with a casing or lid of a portable device can be obtained.

本発明の磁性部材における実施の形態を示す斜視図である。It is a perspective view which shows embodiment in the magnetic member of this invention. 本発明の磁性部材における第1の実施の形態を示す説明図で、図2(a)は予備成形体の断面図、図2(b)は成形体の断面図、図2(c)は磁性部材の断面図、図2(d)は磁性部材の構造説明図である。FIG. 2A is an explanatory view showing a first embodiment of the magnetic member of the present invention, FIG. 2A is a sectional view of a preform, FIG. 2B is a sectional view of the molded body, and FIG. Sectional drawing of a member, FIG.2 (d) is structure explanatory drawing of a magnetic member. 本発明の磁性部材における第2の実施の形態を示す説明図で、図3(a)は予備成形体の断面図、図3(b)は成形体の断面図、図3(c)は磁性部材の断面図を示す。FIG. 3A is an explanatory view showing a second embodiment of the magnetic member of the present invention, FIG. 3A is a sectional view of a preform, FIG. 3B is a sectional view of the molded body, and FIG. Sectional drawing of a member is shown.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(第1の実施の形態)
図1は、本発明の磁性部材における実施の形態を示す斜視図である。
図2は、本発明の磁性部材における第1の実施の形態を示す説明図で、図2(a)は予備成形体の断面図、図2(b)は成形体の断面図、図2(c)は磁性部材の断面図、図2(d)は磁性部材の構造説明図である。
(First embodiment)
FIG. 1 is a perspective view showing an embodiment of the magnetic member of the present invention.
2A and 2B are explanatory views showing a first embodiment of the magnetic member of the present invention. FIG. 2A is a sectional view of a preform, FIG. 2B is a sectional view of the molded body, and FIG. FIG. 2C is a cross-sectional view of the magnetic member, and FIG. 2D is an explanatory diagram of the structure of the magnetic member.

磁性部材100は、たとえば携帯機器の蓋として用いることが可能なように、両端に曲面部5を有する。   The magnetic member 100 has curved surface portions 5 at both ends so that it can be used as, for example, a lid of a portable device.

以下に、その製造方法を詳述する。   Below, the manufacturing method is explained in full detail.

扁平形状の軟磁性粉末1と、バインダ成分2を混合してスラリーを作成し、たとえばPET(ポリエチレンテレフタレート)フィルム上に塗布、乾燥して板状の予備成形体を得る。この状態を図2(a)に示す。なお、この段階のバインダ成分2は、塗布された状態で熱硬化性バインダ成分および溶媒、増粘剤を含み、乾燥により溶媒が除去される。   A flat soft magnetic powder 1 and a binder component 2 are mixed to prepare a slurry, which is applied onto, for example, a PET (polyethylene terephthalate) film and dried to obtain a plate-shaped preform. This state is shown in FIG. In addition, the binder component 2 at this stage includes a thermosetting binder component, a solvent, and a thickener in the applied state, and the solvent is removed by drying.

次に、予備成形体を所定の大きさに切断し、必要に応じて複数枚積層し、図示しない治具で挟持して圧縮成形し、成形体を得る。この状態を図2(b)に示す。   Next, the preform is cut into a predetermined size, a plurality of sheets are laminated as necessary, and sandwiched with a jig (not shown) and compression molded to obtain a molded body. This state is shown in FIG.

治具は、たとえば分割金型からなり、図1に示した形状となるように曲面部5を有する。すなわち、予備成形体を曲面で保持して、成形体を得る。   The jig is made of, for example, a split mold and has a curved surface portion 5 so as to have the shape shown in FIG. That is, a preform is obtained by holding the preform with a curved surface.

圧縮成形の条件は、たとえば曲面金型中のシートに、150℃の温度下において、200MPaの成型圧力で1時間の加圧成型を施すのが好ましい。   For compression molding, for example, a sheet in a curved mold is preferably subjected to pressure molding at a molding pressure of 200 MPa for 1 hour at a temperature of 150 ° C.

次に、成形体を、曲面部5を有する治具に固定し、すなわち、曲面で保持したまま、少なくとも酸素または窒素を含有する雰囲気下で熱処理して、磁性部材200を得る。この状態を図2(c)に示す。   Next, the compact is fixed to a jig having the curved surface portion 5, that is, heat-treated in an atmosphere containing at least oxygen or nitrogen while being held on the curved surface, to obtain the magnetic member 200. This state is shown in FIG.

治具は、強度および耐熱性に優れ、かつ成形体を熱処理雰囲気にさらすことが可能な材質からなるものであればいずれも用いることができ、たとえばステンレスからなるメッシュ板を組み合わせたものが好ましい。また、前工程の圧縮成形に用いた分割金型の一部を外して用いてもよい。   Any jig can be used as long as it is made of a material that is excellent in strength and heat resistance and can expose the molded body to a heat treatment atmosphere. For example, a combination of mesh plates made of stainless steel is preferable. Moreover, you may remove and use a part of split mold used for the compression molding of the previous process.

熱処理の条件は、たとえば、窒素雰囲気中で600℃、1時間行うのが好ましい。   For example, the heat treatment is preferably performed in a nitrogen atmosphere at 600 ° C. for 1 hour.

なお、酸素または窒素含有雰囲気下の熱処理により、バインダ成分2に含まれる有機物成分はほとんど熱分解して消失し、主成分たる熱硬化性バインダ成分に含まれる酸化ケイ素を主成分とするガラス質からなるバインダ成分、すなわち無機物成分が残留する。この状態を図2(d)に示す。   Note that the organic component contained in the binder component 2 is almost thermally decomposed by heat treatment in an oxygen or nitrogen-containing atmosphere, and the glass component is mainly composed of silicon oxide contained in the thermosetting binder component as a main component. The binder component, that is, the inorganic component remains. This state is shown in FIG.

すなわち、磁性部材の一部4を拡大し模式化すると、軟磁性粉末1が、無機物成分21により結着され、空孔3を内包する構造となる。   That is, when a part 4 of the magnetic member is enlarged and schematically illustrated, the soft magnetic powder 1 is bound by the inorganic component 21 and has a structure including the pores 3.

上記構造により、磁性部材200は、ISO7619−typeDによるゴム硬度が、92以上、96以下の高い強度を有する。   With the above structure, the magnetic member 200 has a high strength with a rubber hardness of 92 or more and 96 or less according to ISO7619-type D.

上記構造により、磁性部材200は、ヤング率が10GPa以上、90GPa以下の弾性を有する。   With the above structure, the magnetic member 200 has elasticity with a Young's modulus of 10 GPa or more and 90 GPa or less.

上記構造により、磁性部材200は、100Ω・m以上の高い電気抵抗率を有し、同時に良好な絶縁性をも有する。   With the above structure, the magnetic member 200 has a high electrical resistivity of 100 Ω · m or more, and at the same time has good insulating properties.

上記構造により、磁性部材200は、軟磁性粉末の充填率をあげることができ、飽和磁束密度、比透磁率および熱伝導率を向上させることができる。   With the above structure, the magnetic member 200 can increase the filling rate of the soft magnetic powder, and can improve the saturation magnetic flux density, the relative magnetic permeability, and the thermal conductivity.

具体的には、磁気特性を保ちつつ充分な熱伝導率を得るためには、軟磁性粉末の体積比率は55%以上、85体積%以下含まれていることが好ましい。   Specifically, in order to obtain a sufficient thermal conductivity while maintaining magnetic characteristics, the volume ratio of the soft magnetic powder is preferably included in the range of 55% to 85% by volume.

軟磁性粉末の充填率がこの範囲にあるとき、高い飽和磁束密度、高い比透磁率および高い熱伝導率を両立させることができる。   When the filling rate of the soft magnetic powder is within this range, a high saturation magnetic flux density, a high relative magnetic permeability, and a high thermal conductivity can be achieved at the same time.

扁平形状の軟磁性粉末は、公知の材料から適宜選択して用いることができるが、鉄系金属磁性粉末、特にFe-Si-Al系合金が特に好ましい。パーマロイ、Zr-Co-Ta合金等の軟磁性金属粉末も好ましい。   The flat soft magnetic powder can be appropriately selected from known materials and used, but iron-based metal magnetic powder, particularly Fe—Si—Al-based alloy is particularly preferable. Soft magnetic metal powders such as permalloy and Zr—Co—Ta alloys are also preferred.

軟磁性粉末は、扁平形状であれば本発明の効果を奏するが、扁平金属粉末に樹脂を含浸して硬化させ、硬化体を作製し、硬化体を研磨し、走査電子顕微鏡を使用して研磨面上に位置する扁平金属粉末の形状を観察したときのアスペクト比は、曲面の面内方向の透磁率を高めるためにより、10以上が好ましく、粒径は、長径が50μm以上のものが好ましい。   If the soft magnetic powder is in a flat shape, the effect of the present invention is obtained. However, the flat metal powder is impregnated with a resin and cured to produce a cured body, the cured body is polished, and polished using a scanning electron microscope. The aspect ratio when observing the shape of the flat metal powder located on the surface is preferably 10 or more in order to increase the magnetic permeability in the in-plane direction of the curved surface, and the particle diameter is preferably 50 μm or more in major axis.

バインダ成分は、熱硬化性を有し、無機物として酸化ケイ素を主に含むものであれば、公知の材料から適宜選択して用いることができるが、メチル系シリコーンレジンが特に好ましい。   The binder component can be appropriately selected from known materials as long as it has thermosetting properties and mainly contains silicon oxide as an inorganic material, and methyl silicone resin is particularly preferable.

溶媒は、公知の材料から適宜選択して用いることができるが、エタノールが特に好ましい。   The solvent can be appropriately selected from known materials and used, but ethanol is particularly preferable.

増粘剤は、公知の材料から適宜選択して用いることができるが、ポリアクリル酸エステルが特に好ましい。   The thickener can be appropriately selected from known materials, and polyacrylic acid ester is particularly preferable.

なお、強度または意匠性向上のために、磁性部材200を複数重ねて圧着または接着して、磁性部品としてもよい。   In addition, in order to improve strength or designability, a plurality of magnetic members 200 may be stacked and pressed or bonded to form a magnetic component.

同様に、強度または意匠性向上のために、磁性部材または磁性部品の表面に樹脂やフィルムを被覆してもよい。   Similarly, a resin or film may be coated on the surface of the magnetic member or the magnetic component in order to improve the strength or the design.

被覆する樹脂やフィルムは、一般的なコーティング材料から用途や意匠に応じて適宜選択して用いるのが好ましく、特にアクリル系樹脂やポリオフィン系樹脂が好ましい。   The resin or film to be coated is preferably selected from general coating materials according to the application and design, and is preferably an acrylic resin or a polyolefin resin.

(第2の実施の形態)
図3は、本発明の磁性部材における第2の実施の形態を示す説明図で、図3(a)は予備成形体の断面図、図3(b)は成形体の断面図、図3(c)は磁性部材の断面図である。
(Second Embodiment)
FIG. 3 is an explanatory view showing a second embodiment of the magnetic member of the present invention. FIG. 3 (a) is a cross-sectional view of a preform, FIG. 3 (b) is a cross-sectional view of the formed body, and FIG. c) is a cross-sectional view of a magnetic member.

図1に例示した磁性部材100の他の製造方法を以下に詳述する。   Another method for manufacturing the magnetic member 100 illustrated in FIG. 1 will be described in detail below.

扁平形状の軟磁性粉末1と、バインダ成分2を混合してスラリーを作成し、たとえばPETフィルム上に塗布、乾燥して板状の予備成形体を得る。この状態を図3(a)に示す。なお、この段階のバインダ成分2は、塗布された状態で熱硬化性バインダ成分および溶媒、増粘剤を含み、乾燥により溶媒が除去される。   A flat soft magnetic powder 1 and a binder component 2 are mixed to prepare a slurry, which is applied onto a PET film and dried, for example, to obtain a plate-shaped preform. This state is shown in FIG. In addition, the binder component 2 at this stage includes a thermosetting binder component, a solvent, and a thickener in the applied state, and the solvent is removed by drying.

次に、予備成形体を所定の大きさに切断し、図示しない治具で保持して圧縮成形し、成形体を得る。この状態を図3(b)に示す。   Next, the preform is cut into a predetermined size, held with a jig (not shown), and compression molded to obtain a molded body. This state is shown in FIG.

治具は、たとえば平行な1組の平面を有する金型からなる。すなわち、予備成形体を平面で保持して、成形体を得る。   The jig is composed of a mold having a set of parallel planes, for example. That is, the preform is held on a flat surface to obtain a molded body.

なお、本実施の形態における圧縮成形の条件は、実施の形態1と同様とする。   Note that the compression molding conditions in the present embodiment are the same as those in the first embodiment.

次に、成形体を他の曲面を有する、図示しない治具に固定する。すなわち、図1に示した曲面部5を有する形状となるような曲面で保持しつつ、少なくとも酸素または窒素を含有する雰囲気下で熱処理して、磁性部材300を得る。この状態を図3(c)に示す。   Next, the molded body is fixed to a jig (not shown) having another curved surface. That is, the magnetic member 300 is obtained by heat-treating in an atmosphere containing at least oxygen or nitrogen while holding the curved surface having the curved surface portion 5 shown in FIG. This state is shown in FIG.

治具は、強度および耐熱性に優れ、かつ成形体を熱処理雰囲気にさらすことが可能な材質からなるものであればいずれも用いることができ、たとえばステンレスからなるメッシュ板を組み合わせたものが好ましい。   Any jig can be used as long as it is made of a material that is excellent in strength and heat resistance and can expose the molded body to a heat treatment atmosphere. For example, a combination of mesh plates made of stainless steel is preferable.

なお、熱処理の条件は、実施の形態1と同様とする。   Note that the heat treatment conditions are the same as those in the first embodiment.

実施の形態1で説明したように、少なくとも酸素または窒素を含有する雰囲気下の熱処理により、バインダ成分2に含まれる有機物成分はほとんど熱分解して消失し、主成分たる熱硬化性バインダ成分に含まれる酸化ケイ素を主成分とするガラス質からなるバインダ成分、すなわち無機物成分が残留する。   As described in the first embodiment, the organic component contained in the binder component 2 is almost thermally decomposed by the heat treatment in an atmosphere containing at least oxygen or nitrogen, and is contained in the thermosetting binder component as the main component. The binder component consisting of vitreous whose main component is silicon oxide, that is, the inorganic component remains.

磁性部材の一部を拡大し模式化すると、軟磁性粉末が無機物成分により結着され、空孔を内包する構造となる。   When a part of the magnetic member is enlarged and modeled, the soft magnetic powder is bound by an inorganic component and has a structure including pores.

上記構造により、磁性部材300は、ISO7619−typeDによるゴム硬度が、92以上、96以下の高い強度を有する。   With the above structure, the magnetic member 300 has a high strength with a rubber hardness of 92 or more and 96 or less according to ISO7619-type D.

上記構造により、磁性部材300は、ヤング率が10GPa以上、90GPa以下の弾性を有する。   With the above structure, the magnetic member 300 has elasticity with a Young's modulus of 10 GPa or more and 90 GPa or less.

上記構造により、磁性部材300は、100Ω・m以上の高い電気抵抗率を有し、同時に良好な絶縁性をも有する。   With the above structure, the magnetic member 300 has a high electrical resistivity of 100 Ω · m or more and also has good insulation properties.

上記構造により、磁性部材300は、軟磁性粉末の充填率をあげることができ、飽和磁束密度、比透磁率および熱伝導率を向上させることができる。   With the above structure, the magnetic member 300 can increase the filling rate of the soft magnetic powder, and can improve the saturation magnetic flux density, the relative magnetic permeability, and the thermal conductivity.

具体的には、磁気特性を保ちつつ充分な熱伝導率を得るためには、軟磁性粉末の体積比率は55%以上、85体積%以下含まれていることが好ましい。   Specifically, in order to obtain a sufficient thermal conductivity while maintaining magnetic characteristics, the volume ratio of the soft magnetic powder is preferably included in the range of 55% to 85% by volume.

軟磁性粉末の充填率がこの範囲にあるとき、高い飽和磁束密度、高い比透磁率および高い熱伝導率を両立させることができる。   When the filling rate of the soft magnetic powder is within this range, a high saturation magnetic flux density, a high relative magnetic permeability, and a high thermal conductivity can be achieved at the same time.

扁平形状の軟磁性粉末、バインダ成分、溶媒、増粘剤については、実施の形態1で説明したものを用いるのが好ましい。   The flat soft magnetic powder, binder component, solvent, and thickener are preferably those described in the first embodiment.

強度または意匠性向上のために、磁性部材300を複数重ねて圧着または接着して、磁性部品としてもよい。   In order to improve strength or designability, a plurality of magnetic members 300 may be stacked and pressed or bonded to form a magnetic component.

同様に、強度または意匠性向上のために、磁性部材または磁性部品の表面に樹脂やフィルムを被覆してもよい。   Similarly, a resin or film may be coated on the surface of the magnetic member or the magnetic component in order to improve the strength or the design.

被覆する樹脂やフィルムは、一般的なコーティング材料から用途や意匠に応じて適宜選択して用いるのが好ましい。   The resin or film to be coated is preferably appropriately selected from general coating materials according to the application and design.

本実施の形態において、実施の形態1で用いた曲面を有する形状の金型に替えて、平行な平面を有する金型を用いて、成形体を得たのは、以下の理由による。   In this Embodiment, it replaced with the metal mold | die of the shape which has the curved surface used in Embodiment 1, and the molded object was obtained using the metal mold | die which has a parallel plane for the following reasons.

成形体を得るための圧縮成形に、曲面を有する形状の金型を用いると、加圧状態が均一性を欠くおそれがあり、加圧条件を厳密に調整する必要が生じる。   If a mold having a curved surface is used for compression molding to obtain a molded body, the pressurization state may lack uniformity, and it is necessary to strictly adjust the pressurization conditions.

したがって、より複雑な形状を有する成形体を得る場合には、平面状態に保持して、空孔を有する状態で圧縮成形を確実に行うのが好ましい。   Therefore, when obtaining a molded body having a more complicated shape, it is preferable that the compression molding is reliably performed while maintaining a flat state and having pores.

すなわち、曲面部の曲率が小さい成型体を得る場合は、作業工数が少ない実施の形態1の製造方法が好ましく、曲面部の曲率が大きい成型体を得る場合は、本実施の形態の製造方法が好ましい。   That is, when obtaining a molded body with a curved surface portion with a small curvature, the manufacturing method of Embodiment 1 with a small number of work steps is preferable, and when obtaining a molded body with a curved surface portion with a large curvature, the manufacturing method of this embodiment is performed. preferable.

軟磁性金属の原料粉末として、平均粒径D50として55μmを有するFe−Si−Al系合金のガスアトマイズ粉末を用いた。   As a soft magnetic metal raw material powder, a gas atomized powder of Fe—Si—Al alloy having an average particle diameter D50 of 55 μm was used.

粉末形状を扁平化するために、ボールミルを用いて、前記原料粉末を12時間粉砕し、さらに、窒素雰囲気中で700℃、3時間の熱処理を加え、扁平形状を有する粉末を得た。作製した扁平金属粉末の平均長径(Da)は60μmであり、平均最大厚さ(ta)は3μmであり、平均アスペクト比(Da/ta)は20である。   In order to flatten the powder shape, the raw material powder was pulverized for 12 hours using a ball mill, and further subjected to heat treatment at 700 ° C. for 3 hours in a nitrogen atmosphere to obtain a powder having a flat shape. The produced flat metal powder has an average major axis (Da) of 60 μm, an average maximum thickness (ta) of 3 μm, and an average aspect ratio (Da / ta) of 20.

扁平金属粉末のアスペクト比は、圧縮した金属粉末に樹脂を含浸して硬化させ、この硬化体を研磨して、走査電子顕微鏡にて研磨面上にある扁平金属粉末の形状を観察することによって求めた。詳しくは、30個の扁平金属粉末について、長径(D)と、最も厚い部位の厚さ(t)を測定し、アスペクト比(D/t)の平均値を計算した。   The aspect ratio of the flat metal powder is obtained by impregnating a compressed metal powder with a resin and curing it, polishing the cured body, and observing the shape of the flat metal powder on the polished surface with a scanning electron microscope. It was. Specifically, for 30 flat metal powders, the major axis (D) and the thickness (t) of the thickest part were measured, and the average value of the aspect ratio (D / t) was calculated.

つづいて、扁平金属粉末、溶媒、増粘剤及び熱硬化性バインダ成分を混合してスラリーを作製した。具体的には、溶媒、増粘剤及び熱硬化性バインダ成分からなる混合物を、毎分250回転の回転速度で、5時間混合した。次に、スラリーを容器に投入し、毎分100回転の回転速度で、1時間混合した。   Subsequently, a flat metal powder, a solvent, a thickener, and a thermosetting binder component were mixed to prepare a slurry. Specifically, a mixture comprising a solvent, a thickener, and a thermosetting binder component was mixed for 5 hours at a rotational speed of 250 revolutions per minute. Next, the slurry was put into a container and mixed for 1 hour at a rotation speed of 100 revolutions per minute.

溶媒としては、エタノールを使用した。増粘剤としては、ポリアクリル酸エステルを使用した。熱硬化性バインダ成分としては、メチル系シリコーンレジンを使用した。このとき、メチル系シリコーンレジンの固形分の添加量は、金属粉末に対して5重量%である。   Ethanol was used as the solvent. A polyacrylic acid ester was used as the thickener. A methyl silicone resin was used as the thermosetting binder component. At this time, the addition amount of the solid content of the methyl silicone resin is 5% by weight with respect to the metal powder.

ダイスロット法によりPETフィルム上にスラリーを塗布した。その後、60℃で1時間乾燥して溶媒を除去し、板状の予備成形体を作製した。   The slurry was applied on the PET film by the die slot method. Then, it dried at 60 degreeC for 1 hour, the solvent was removed, and the plate-shaped preform was produced.

この予備成形体を、抜型を用いて切断し、横50mm、縦80mmの長方形の複数枚のシートを得た。さらに、これらのシートを15枚積層して、曲面部を2箇所有する金型に入れた。   The preform was cut using a punching die to obtain a plurality of rectangular sheets having a width of 50 mm and a length of 80 mm. Further, 15 sheets of these sheets were stacked and placed in a mold having two curved surface portions.

金型中のシートに、150℃の温度下において、2MPaの成型圧力で1時間の加圧成型を施して、成形体を得た。   The sheet in the mold was subjected to pressure molding for 1 hour at a molding pressure of 2 MPa at a temperature of 150 ° C. to obtain a molded body.

つづいて、成形体を、曲面部を有する金型の内周部側を外して、すなわち、曲面部の外周部側を金型に残した状態で、大気中で700℃、1時間の熱処理を加え、曲面部を2箇所有する厚み1mmの磁性部材を得た。   Subsequently, the molded body was heat-treated at 700 ° C. for 1 hour in the atmosphere with the inner peripheral portion side of the mold having the curved portion removed, that is, with the outer peripheral portion side of the curved portion remaining in the mold. In addition, a magnetic member having a thickness of 1 mm having two curved surface portions was obtained.

この熱処理により、有機成分は、ほぼ完全に熱分解し、磁性部材中に残らなかった。また、この熱処理により、メチル系シリコーンレジンの固形分は、酸化ケイ素を主成分とするガラス質からなるバインダ成分となり、加熱減量した。メチル系シリコーンレジンの固形分の加熱減量は、22重量%であった。   By this heat treatment, the organic component was almost completely pyrolyzed and did not remain in the magnetic member. In addition, by this heat treatment, the solid content of the methyl silicone resin became a binder component composed of a vitreous containing silicon oxide as a main component, and the amount of heat was reduced. The loss on heating of the solid content of the methyl silicone resin was 22% by weight.

磁性部材は、車載機器の筐体の一部として用いたところ、電磁ノイズ対策として有用かつ、耐熱性および形態保持性も良好であった。   When the magnetic member was used as a part of the casing of the in-vehicle device, it was useful as a countermeasure against electromagnetic noise and had good heat resistance and shape retention.

原料粉末として、平均粒径D50が55μmのFe−Si−Al系合金のガスアトマイズ粉末を用意した。原料粉末をボールミルで8時間処理し、さらに、窒素雰囲気中で700℃、3時間の熱処理を加え、軟磁性を有する扁平な金属粉末を作製した。   As a raw material powder, a gas atomized powder of Fe—Si—Al alloy having an average particle diameter D50 of 55 μm was prepared. The raw material powder was treated with a ball mill for 8 hours, and further subjected to heat treatment at 700 ° C. for 3 hours in a nitrogen atmosphere to produce a flat metal powder having soft magnetism.

金属粉末の平均長径(Da)は60μm、平均最大厚さ(ta)は3μm、平均アスペクト比(Da/ta)は20であった。   The metal powder had an average major axis (Da) of 60 μm, an average maximum thickness (ta) of 3 μm, and an average aspect ratio (Da / ta) of 20.

この金属粉末を、増粘剤、及び熱硬化性バインダ成分と混合してスラリーを作製した。溶媒はエタノールを、増粘剤はポリアクリル酸エステルを使用した。熱硬化性バインダ成分としては、メチル系シリコーンレジンを使用した。   This metal powder was mixed with a thickener and a thermosetting binder component to prepare a slurry. The solvent was ethanol, and the thickener was polyacrylate. A methyl silicone resin was used as the thermosetting binder component.

ダイスロット法によって、スラリーをPETフィルム上に塗布した後、60℃の温度下で1時間乾燥して溶媒を除去し、板状の予備成形体を得た。   The slurry was applied on a PET film by the die slot method, and then dried for 1 hour at a temperature of 60 ° C. to remove the solvent, thereby obtaining a plate-shaped preform.

この予備成形体を、抜型を用いて切断し、横30mm縦40mmの長方形の複数枚のシートを得た。これらのシートを10枚積層して板状となるよう、平面形状の金型中に封入した。   This preform was cut using a punching die to obtain a plurality of rectangular sheets having a width of 30 mm and a length of 40 mm. Ten sheets of these sheets were stacked and sealed in a planar mold so as to form a plate.

金型に封入したシートに、150℃、2MPaの成型圧力にて1時間の加圧成形を施した。成形歪を取り除くために、予備成形体を窒素雰囲気中にて、350℃、1時間の条件で加熱処理し、厚さが2.2mmの成形体を得た。   The sheet sealed in the mold was subjected to pressure molding at 150 ° C. and a molding pressure of 2 MPa for 1 hour. In order to remove molding distortion, the preform was heat-treated in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a molded article having a thickness of 2.2 mm.

続いて、成形体を、ステンレスメッシュ板からなる曲面部を有する治具に成形しつつ載置して、窒素雰囲気中で600℃、1時間の条件で熱処理し、磁性部材を得た。   Subsequently, the molded body was placed while being molded on a jig having a curved surface portion made of a stainless mesh plate, and was heat-treated in a nitrogen atmosphere at 600 ° C. for 1 hour to obtain a magnetic member.

磁性部材は、体積抵抗率として100Ω・m以上の値を有していた。また、密度は4.9g/cmであり、この密度から求めた金属成分の体積充填率は、約67%であった。 The magnetic member had a value of 100 Ω · m or more as a volume resistivity. The density was 4.9 g / cm 3 , and the volume filling factor of the metal component determined from this density was about 67%.

この磁性部材の表面にフィルムコーティングを施した。   A film coating was applied to the surface of the magnetic member.

磁性部材は、携帯機器の電池蓋として用いたところ、電磁ノイズ対策に加え、筐体強度および意匠性が増し、耐熱性および形態保持性も良好であった。   When the magnetic member was used as a battery lid of a portable device, in addition to measures against electromagnetic noise, the case strength and design were increased, and the heat resistance and shape retention were good.

上記より、軟磁性粉末の体積比率を減少させることなく、すなわち、磁気特性を維持したままで、外力を加えない状態でも所望の非平面形状を有する磁性部材およびその製造方法が得られた。   From the above, a magnetic member having a desired non-planar shape and a method for producing the same were obtained without reducing the volume ratio of the soft magnetic powder, that is, while maintaining the magnetic characteristics and without applying an external force.

以上、本発明の実施の形態および実施例を説明したが、本発明は、上記に限定されるものではなく、本発明の要旨を逸脱しない範囲で、構成の変更や修正が可能である。すなわち、当業者であれば成し得る各種変形、修正もまた本発明に含まれる。   While the embodiments and examples of the present invention have been described above, the present invention is not limited to the above, and changes and modifications can be made without departing from the gist of the present invention. That is, various changes and modifications that can be made by those skilled in the art are also included in the present invention.

1 軟磁性粉末
2 バインダ成分
21 無機物成分
3 空孔
4 磁性部材の一部
5 曲面部
100,200,300 磁性部材
DESCRIPTION OF SYMBOLS 1 Soft magnetic powder 2 Binder component 21 Inorganic substance component 3 Hole 4 Part of magnetic member 5 Curved surface part 100, 200, 300 Magnetic member

Claims (13)

扁平形状を有する軟磁性金属粉末を、酸化ケイ素を主成分とするバインダ成分によって結着させてなり、弾性を有する磁性部材であって、55体積%以上の前記軟磁性金属粉末と、10体積%以上、25体積%以下の空孔とを含んでおり、外力を加えない状態で非平面部を有することを特徴とする磁性部材。   A soft magnetic metal powder having a flat shape is bound by a binder component mainly composed of silicon oxide, and is a magnetic member having elasticity, which is 55% by volume or more of the soft magnetic metal powder and 10% by volume. As described above, a magnetic member comprising 25% by volume or less of voids and having a non-planar portion without applying an external force. ISO7619−typeDによるゴム硬度が、92以上、96以下であることを特徴とする請求項1記載の磁性部材。   The magnetic member according to claim 1, wherein the rubber hardness according to ISO7619-type D is 92 or more and 96 or less. ヤング率が10GPa以上、90GPa以下であることを特徴とする請求項1または2記載の磁性部材。   The magnetic member according to claim 1 or 2, wherein Young's modulus is 10 GPa or more and 90 GPa or less. 100Ω・m以上の電気抵抗率を有することを特徴とする請求項1ないし3のいずれかに記載の磁性部材。   The magnetic member according to any one of claims 1 to 3, wherein the magnetic member has an electrical resistivity of 100 Ω · m or more. 少なくとも一部を、樹脂またはフィルムで被覆してなることを特徴とする請求項1ないし4のいずれかに記載の磁性部材。   5. The magnetic member according to claim 1, wherein at least a part thereof is covered with a resin or a film. 請求項1ないし5のいずれかに記載の磁性部材を1以上組み合わせてなることを特徴とする磁性部品。   A magnetic component comprising a combination of one or more magnetic members according to claim 1. 請求項1ないし6のいずれかに記載の磁性部材を筐体形状に形成してなることを特徴とする磁性部品。   A magnetic component comprising the magnetic member according to claim 1 formed in a casing shape. 扁平形状を有する軟磁性粉末と、酸化ケイ素を主成分としたバインダ成分を含む混合物を塗布し乾燥して板状体を得る工程と、板状体を少なくとも非平面部を有する面で保持して圧縮成形する工程と、板状体を少なくとも酸素または窒素のいずれかを含有する雰囲気下で非平面部を有する状態に保持して軟磁性粉末を酸化ケイ素で結着させる熱処理工程を含むことを特徴とする磁性部材の製造方法。   Applying a mixture containing a soft magnetic powder having a flat shape and a binder component mainly composed of silicon oxide and drying to obtain a plate-like body, and holding the plate-like body on a surface having at least a non-planar portion And a heat treatment step of holding the plate-like body in a state having a non-planar portion in an atmosphere containing at least oxygen or nitrogen and binding the soft magnetic powder with silicon oxide. A method for producing a magnetic member. 扁平形状を有する軟磁性粉末と、酸化ケイ素を主成分としてバインダ成分を含む混合物を塗布し乾燥して板状体を得る工程と、板状体を平面で保持して圧縮成形する工程と、板状体を少なくとも酸素または窒素を含有する雰囲気下で非平面部を有する状態に保持して軟磁性粉末を酸化ケイ素で結着させる熱処理工程を含むことを特徴とする磁性部材の製造方法。   A step of applying a soft magnetic powder having a flat shape, a mixture containing silicon oxide as a main component and containing a binder component and drying to obtain a plate-like body, a step of holding the plate-like body in a flat surface, and a compression molding step; A method for producing a magnetic member, comprising: a heat treatment step of holding a state body having a non-planar portion in an atmosphere containing at least oxygen or nitrogen and binding a soft magnetic powder with silicon oxide. ISO7619−typeDによるゴム硬度が、92以上、96以下であることを特徴とする請求項8または9記載の磁性部材の製造方法。   The method for producing a magnetic member according to claim 8 or 9, wherein the rubber hardness according to ISO7619-type D is 92 or more and 96 or less. ヤング率が10GPa以上、90GPa以下であることを特徴とする請求項8ないし10のいずれかに記載の磁性部材の製造方法。   The method for producing a magnetic member according to claim 8, wherein Young's modulus is 10 GPa or more and 90 GPa or less. 100Ω・m以上の電気抵抗率を有することを特徴とする請求項8ないし11のいずれかに記載の磁性部材の製造方法。   The method of manufacturing a magnetic member according to claim 8, wherein the magnetic member has an electrical resistivity of 100 Ω · m or more. 樹脂またはフィルムで被覆してなることを特徴とする請求項8ないし12のいずれかに記載の磁性部材の製造方法。   13. The method for producing a magnetic member according to claim 8, wherein the magnetic member is coated with a resin or a film.
JP2014231314A 2014-11-14 2014-11-14 Magnetic member and manufacturing method thereof Active JP6415938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014231314A JP6415938B2 (en) 2014-11-14 2014-11-14 Magnetic member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014231314A JP6415938B2 (en) 2014-11-14 2014-11-14 Magnetic member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016096237A true JP2016096237A (en) 2016-05-26
JP6415938B2 JP6415938B2 (en) 2018-10-31

Family

ID=56071888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014231314A Active JP6415938B2 (en) 2014-11-14 2014-11-14 Magnetic member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6415938B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292905A (en) * 1985-06-21 1986-12-23 Toshiba Corp Manufacture of laminated core
JPH01312899A (en) * 1988-06-10 1989-12-18 Ngk Insulators Ltd Structure of magnetic shield plate using superconductor
JP2004356468A (en) * 2003-05-30 2004-12-16 Mitsui Chemicals Inc Laminated magnetic core and magnetic component
JP2013214610A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Shield case of electronic component
JP2013243330A (en) * 2012-04-25 2013-12-05 Nec Tokin Corp Sheet-like inductor, inductor with built-in lamination substrate, and manufacturing method therefor
JP2014168041A (en) * 2013-02-04 2014-09-11 Nec Tokin Corp Magnetic core and inductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292905A (en) * 1985-06-21 1986-12-23 Toshiba Corp Manufacture of laminated core
JPH01312899A (en) * 1988-06-10 1989-12-18 Ngk Insulators Ltd Structure of magnetic shield plate using superconductor
JP2004356468A (en) * 2003-05-30 2004-12-16 Mitsui Chemicals Inc Laminated magnetic core and magnetic component
JP2013214610A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Shield case of electronic component
JP2013243330A (en) * 2012-04-25 2013-12-05 Nec Tokin Corp Sheet-like inductor, inductor with built-in lamination substrate, and manufacturing method therefor
US20150235753A1 (en) * 2012-09-10 2015-08-20 Nec Tokin Corporation Sheet-shaped inductor, inductor within laminated substrate, and method for manufacturing said inductors
JP2014168041A (en) * 2013-02-04 2014-09-11 Nec Tokin Corp Magnetic core and inductor

Also Published As

Publication number Publication date
JP6415938B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP4613622B2 (en) Soft magnetic material and dust core
JP5490242B2 (en) Composition for composite sheet containing core-shell type filler particles, composite sheet containing the same, and method for producing composite sheet
JP2007088156A (en) Soft magnetic material, manufacturing method thereof, powder magnetic core, and manufacturing method thereof
US9818513B2 (en) RFeB-based magnet and method for producing RFeB-based magnet
JP6265210B2 (en) Reactor dust core
US20140232507A1 (en) Powder magnetic core and production method for same
JP2016086124A (en) Method for manufacturing soft magnetic material
JP3785350B2 (en) Method for manufacturing sheet-like article, method for manufacturing composite magnetic body
JP4837700B2 (en) Powder magnetic core and method for producing the same
JP6280157B2 (en) Near-field noise suppression sheet
JP6519418B2 (en) Soft magnetic metal dust core
JP6627307B2 (en) Manufacturing method of sintered magnet
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP2007235017A (en) Sheet-shaped rare earth bond magnet, its manufacturing method, and motor using it
JP6415938B2 (en) Magnetic member and manufacturing method thereof
JP6515719B2 (en) Flat soft magnetic metal powder for magnetic sheet, magnetic sheet, and antenna coil
JP4909312B2 (en) Soft magnetic material for dust core and dust core
JP7099373B2 (en) Manufacturing method of dust core
CN102360920A (en) Preparation method for neodymium iron boron (NdFeB) permanent magnet
JP2011003662A (en) Permanent magnet and method of manufacturing the same
JP7157946B2 (en) Method for manufacturing magnetic material, method for manufacturing powder magnetic core, and method for manufacturing coil component
JP2006233268A (en) High electric resistance-magnetic powder, its production method, high electric resistance-magnetic powder compact and its production method
KR20140076282A (en) Soft magnetic core and manufacturing method of the same
JP2015122391A (en) MANUFACTURING METHOD OF SmFeN MAGNET AND SmFeN MAGNET
JP7148891B2 (en) Powder magnetic core and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6415938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250