JP2016096203A - Hot-processed magnet and base powder thereof, compact formed of the base powder and manufacturing method thereof - Google Patents

Hot-processed magnet and base powder thereof, compact formed of the base powder and manufacturing method thereof Download PDF

Info

Publication number
JP2016096203A
JP2016096203A JP2014230486A JP2014230486A JP2016096203A JP 2016096203 A JP2016096203 A JP 2016096203A JP 2014230486 A JP2014230486 A JP 2014230486A JP 2014230486 A JP2014230486 A JP 2014230486A JP 2016096203 A JP2016096203 A JP 2016096203A
Authority
JP
Japan
Prior art keywords
hot
raw material
material powder
magnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230486A
Other languages
Japanese (ja)
Other versions
JP6472640B2 (en
Inventor
義行 中澤
Yoshiyuki Nakazawa
義行 中澤
龍太郎 加藤
Ryutaro Kato
龍太郎 加藤
治彦 清水
Haruhiko Shimizu
治彦 清水
健太郎 井上
Kentaro Inoue
健太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014230486A priority Critical patent/JP6472640B2/en
Priority to CN201510671650.3A priority patent/CN105609225B/en
Publication of JP2016096203A publication Critical patent/JP2016096203A/en
Application granted granted Critical
Publication of JP6472640B2 publication Critical patent/JP6472640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot-processed magnet formed of fine crystal grains with few coarse particles which is capable of a high orientation and superior in magnetic characteristics.SOLUTION: A molten metal of an alloy which contains an RE (rare-earth element), Fe and B as major components is allowed to be swiftly cooled while in contact with a rotary roll 1 to prepare a tissue base powder 4 of amorphous or a mixture of crystalline and amorphous. The base powder or a compact 8, which is formed of the base powder in a cold treatment, is swiftly heated to a temperature higher than a crystallization start temperature at a temperature rising speed of 400°C/minute or more.SELECTED DRAWING: Figure 1

Description

本発明は、熱間加工磁石とその原料粉末および該原料粉末を成形した成形体ならびにそれらの製造方法に係り、特に、粗大粒の少ない微細な結晶粒とする技術に関する。   The present invention relates to a hot-working magnet, a raw material powder thereof, a molded body obtained by molding the raw material powder, and a method for producing the same, and particularly to a technique for forming fine crystal grains with few coarse grains.

熱間加工磁石としては例えば特許文献1に開示されたものがある。この熱間加工磁石は、RE−Fe−B系合金(REは希土類元素)の溶湯を急速冷却して凝固させ、無定形ないし微細結晶性の固体材料を高温で加圧して結晶配向させたものであり、そのような製造方法は熱間塑性加工法と呼ばれ、焼結法に対する技術とされている。   An example of the hot-working magnet is disclosed in Patent Document 1. This hot-working magnet is obtained by rapidly cooling and solidifying a molten RE-Fe-B alloy (RE is a rare earth element), and pressing an amorphous or fine crystalline solid material at a high temperature to cause crystal orientation. Such a manufacturing method is called a hot plastic working method and is a technique for a sintering method.

熱間塑性加工法は、希土類永久磁石の一般的な製造方法である焼結法と比較して結晶粒径を小さくすることが可能なため、ディスプロシウムのような希少かつ高価な材料を用いなくても保磁力を高めることができる。しかしながら、焼結法では、原料粉末を磁界配向させることで結晶配向させるのに対して、熱間塑性加工法では、結晶回転及び結晶異方成長を利用して結晶配向させるため高配向化が難しく、それによる磁気特性の低さから実用化は進んでいるとは言えない。   The hot plastic working method uses a rare and expensive material such as dysprosium because the crystal grain size can be reduced compared to the sintering method, which is a general manufacturing method of rare earth permanent magnets. The coercive force can be increased without it. However, in the sintering method, the raw material powder is crystallized by magnetic field orientation, whereas in the hot plastic working method, crystal orientation is made by utilizing crystal rotation and crystal anisotropic growth, making it difficult to achieve high orientation. Therefore, it cannot be said that the practical application is progressing due to the low magnetic properties.

熱間塑性加工法では、結晶回転及び結晶異方成長を利用して結晶配向させるため、600〜800℃程度の温度で熱間塑性加工を施すことで結晶配向することが知られている。配向のし易さは結晶粒の異方性に依存するため、より高温側で熱間塑性加工を施すことで高配向化し易いが、高温で結晶粒が大きく成長すると保磁力が低下してしまう。さらに、結晶粒が粗大になり過ぎてしまうと、隣り合う結晶粒が阻害となり結晶回転が困難になってしまう。   In the hot plastic working method, since crystal orientation is performed by utilizing crystal rotation and crystal anisotropic growth, it is known that crystal orientation is performed by performing hot plastic working at a temperature of about 600 to 800 ° C. Since the ease of orientation depends on the anisotropy of the crystal grains, it is easy to achieve high orientation by performing hot plastic working on the higher temperature side, but the coercive force decreases when the crystal grains grow large at high temperatures. . Furthermore, if the crystal grains become too coarse, adjacent crystal grains are obstructed and crystal rotation becomes difficult.

また、熱間加工磁石の原料粉末は、一般に、メルトスピニング法やアトマイズ法などの液体急冷法やHDDR(Hydrogenation Decomposition Desorption Recombination)法などにより製造され、原料粉末は成形体に緻密化されて熱間塑性加工が施されるが、熱間塑性加工の温度は焼結法における焼結温度よりも比較的低いため組織の均質化が難しい。特に、熱間加工磁石の原料粉末の境界部において、原料粉末の組織状態に起因した結晶粒の粗大化が生じ易い。原料粉末の境界部に存在する粗大結晶粒は、平常部の結晶粒と比較して結晶回転がし難いため、高配向化が難しく、熱間塑性加工後も等方性のまま残存することがある。さらに、原料粉末の状態によっては、熱間塑性加工方向となる結晶配向方向と直交方向に配向した柱状晶が生じることもある。これら粗大結晶粒は、磁気特性を著しく低下させる要因となる。   In addition, raw material powders for hot-worked magnets are generally manufactured by liquid quenching methods such as melt spinning and atomizing methods and HDDR (Hydrogen Decomposition Desorption Recombination) methods. Although plastic working is performed, the temperature of the hot plastic working is relatively lower than the sintering temperature in the sintering method, so that it is difficult to homogenize the structure. In particular, coarsening of crystal grains due to the texture state of the raw material powder is likely to occur at the boundary portion of the raw material powder of the hot worked magnet. Coarse crystal grains present at the boundary of the raw material powder are difficult to rotate due to the difficulty of crystal rotation compared with the crystal grains in the normal part, and may remain isotropic after hot plastic working. is there. Furthermore, depending on the state of the raw material powder, columnar crystals oriented in the direction orthogonal to the crystal orientation direction, which is the hot plastic working direction, may occur. These coarse crystal grains cause the magnetic characteristics to be remarkably deteriorated.

特開昭60−100402号公報Japanese Patent Laid-Open No. 60-100402

したがって、本発明は、粗大粒の少ない微細な結晶粒を有することにより、高配向化が可能で磁気特性に優れた熱間加工磁石とその原料粉末および該原料粉末を成形した成形体を提供することを目的としている。   Accordingly, the present invention provides a hot-working magnet that has high orientation and is excellent in magnetic properties by having fine crystal grains with few coarse grains, a raw material powder thereof, and a molded body obtained by molding the raw material powder. The purpose is that.

RE−Fe−B系合金の溶湯を回転ロールに接触させ急冷することで急速凝固させると、非晶質または微結晶質と非晶質が混在する組織状態の帯が形成される。本発明者らの検討によれば、帯のロール接触側で成分偏析が生じ、Feが過剰な非晶質組織になっている部位があることが判明した。このFeが過剰な部位は、帯を粉末化した後、熱間成形及び熱間加工する工程において異常粒成長の起点になることが分かった。この場合において、急速凝固させて非晶質を生成することは微細結晶粒を得る上で必須であるため、Feの偏析は避けることができない。   When the melt of the RE-Fe-B alloy is brought into contact with a rotating roll and rapidly solidified by rapid cooling, a band having a structure state in which amorphous or microcrystalline and amorphous are mixed is formed. According to the study by the present inventors, it has been found that there is a site where component segregation occurs on the roll contact side of the belt and Fe has an excessive amorphous structure. This Fe-excess site was found to be the starting point of abnormal grain growth in the hot forming and hot working processes after powdering the band. In this case, segregation of Fe cannot be avoided since it is essential to rapidly solidify to form an amorphous material in order to obtain fine crystal grains.

そこで、本発明者らは、加熱昇温速度を高めて核生成の駆動力を高めることに思い至った。そして、核生成を誘発させて微細かつ均質な結晶を得るべく検討を重ねた結果、400℃/分以上の昇温速度にて結晶化開始温度以上の温度まで急速加熱すると、核生成の駆動力が高く核生成が一気に発生し、微細組織を得ることができることを見出した。   Thus, the present inventors have come up with the idea of increasing the heating temperature increase rate to increase the driving force for nucleation. As a result of repeated studies to induce nucleation to obtain fine and homogeneous crystals, when rapidly heated to a temperature equal to or higher than the crystallization start temperature at a heating rate of 400 ° C./min or higher, the driving force for nucleation It has been found that nucleation occurs at a stretch and a fine structure can be obtained.

本発明は、上記知見に基づいてなされたものであり、RE(希土類元素)、Fe、およびBを主成分とする合金の溶湯を回転ロールに接触させ急冷することで急速凝固させ、非晶質または微結晶質と非晶質が混在する組織状態の原料粉末を作製し、原料粉末、または該原料粉末を冷間で成形した成形体を400℃/分以上の昇温速度にて結晶化開始温度以上の温度まで急速加熱することを特徴とする。   The present invention has been made on the basis of the above knowledge, and rapidly solidifies by bringing a molten alloy of an alloy mainly composed of RE (rare earth element), Fe, and B into contact with a rotating roll and rapidly cooling it. Alternatively, a raw material powder having a structure in which microcrystalline and amorphous materials are mixed is produced, and crystallization of the raw material powder or a molded body obtained by cold molding the raw material powder is started at a temperature rising rate of 400 ° C./min or more. It is characterized by rapid heating to a temperature above the temperature.

ここで、結晶化開始温度は合金の成分に依存する。本発明においては、急速加熱における加熱温度は600〜800℃の温度範囲が望ましい。加熱温度が600℃を下回ると結晶化が不充分となる。一方、加熱温度が800℃を超えると、結晶が粗大化する。また、急速加熱の昇温速度は5000℃/分以上であることが望ましい。急速加熱は1回で行う場合に限らず、同じ条件で複数回あるいは条件を変えて複数回行うこともできる。   Here, the crystallization start temperature depends on the components of the alloy. In the present invention, the heating temperature in rapid heating is preferably in the temperature range of 600 to 800 ° C. When the heating temperature is lower than 600 ° C., crystallization becomes insufficient. On the other hand, when the heating temperature exceeds 800 ° C., the crystal becomes coarse. Moreover, it is desirable that the heating rate of rapid heating is 5000 ° C./min or more. The rapid heating is not limited to being performed once, but can be performed a plurality of times under the same conditions or a plurality of times under different conditions.

急速加熱の加熱手段としては、落下式加熱、誘導加熱、赤外線ランプ加熱、ロータリーキルン、トンネルキルンなど公知の加熱手段を用いることができ、不活性ガス雰囲気で上記の昇温速度を満足するものであれば任意である。ここで、落下式加熱とは、上下方向に向けた筒状体を加熱し、不活性ガス雰囲気とした筒状体の内部に原料粉末を落下させて加熱する方法であり、5000℃/分以上の昇温速度を達成することができる。   As heating means for rapid heating, known heating means such as drop-type heating, induction heating, infrared lamp heating, rotary kiln, tunnel kiln can be used, as long as the above heating rate is satisfied in an inert gas atmosphere. Is optional. Here, the drop-type heating is a method in which the cylindrical body facing in the vertical direction is heated to drop the raw material powder into the inside of the cylindrical body in an inert gas atmosphere, and is heated at 5000 ° C./min or more. Can be achieved.

上記の原料粉末または成形体を熱間成形により真密度近くの密度を有するように緻密化し、これに一軸方向に熱間塑性加工を施して結晶を配向させることで熱間加工磁石を製造することができる。熱間塑性加工の温度は、結晶粒界の融点以上で変形が促進される温度であり、熱間塑性加工の手法は、鍛造、据込み、押出など任意である。   Manufacturing a hot-working magnet by densifying the above raw material powder or molded body so as to have a density close to the true density by hot forming, and subjecting this to uniaxial hot plastic working to orient the crystals. Can do. The temperature of hot plastic working is a temperature at which deformation is accelerated above the melting point of the crystal grain boundary, and the method of hot plastic working is arbitrary such as forging, upsetting, and extrusion.

上記のようにして製造された熱間加工磁石は、結晶粒径が0.5μm以上の粗大結晶粒が面積率で5%以下であり、成分にDyを含まずとも残留磁束密度(kG)と保磁力(kOe)の積が268以上の優れた磁気特性を示す。   The hot-working magnet manufactured as described above has a coarse crystal grain size of 0.5 μm or more and an area ratio of 5% or less, and the residual magnetic flux density (kG) can be obtained without including Dy as a component. Excellent magnetic characteristics with a coercive force (kOe) product of 268 or more.

本発明によれば、粗大粒の少ない微細な結晶粒を有することにより、高配向化が可能で磁気特性に優れた熱間加工磁石とその原料粉末および該原料粉末を成形した成形体が提供される。   According to the present invention, there are provided a hot-working magnet that can be highly oriented and has excellent magnetic properties by having fine grains with few coarse grains, and a raw material powder thereof and a molded body obtained by molding the raw material powder. The

本発明の実施形態における熱間加工磁石の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the hot work magnet in embodiment of this invention. 本発明の比較例の粉末の断面を示すSEM像である。It is a SEM image which shows the cross section of the powder of the comparative example of this invention. 本発明の実施例の粉末の断面を示すSEM像である。It is a SEM image which shows the cross section of the powder of the Example of this invention. 本発明の実施例における保磁力と残留磁束密度との関係を示すグラフである。It is a graph which shows the relationship between the coercive force and the residual magnetic flux density in the Example of this invention. 本発明の実施例における急速加熱処理温度と磁気特性との関係を示すグラフである。It is a graph which shows the relationship between the rapid heat processing temperature and magnetic characteristic in the Example of this invention. 本発明の比較例の熱間加工磁石の断面を示すSEM像である。It is a SEM image which shows the cross section of the hot work magnet of the comparative example of this invention. 本発明の実施例の熱間加工磁石の断面を示すSEM像である。It is a SEM image which shows the cross section of the hot work magnet of the Example of this invention.

1.粉末成形工程
図1は実施形態の熱間加工磁石の製造方法を示す図であり、(A)は液体急冷法により合金の帯を製造する装置を示す。内部に冷却水が流通する回転ロール1の表面に、ノズル2から溶湯をガスとともに噴射し、瞬時に冷却固化して帯3を製造する。この急冷により、帯3の結晶粒径は数十nmとなる。次いで、帯3を粉砕して粉末4とする。合金はRE−Fe−Bを主成分とする合金(REは希土類元素)である。
1. Powder Forming Process FIG. 1 is a view showing a method for producing a hot-working magnet according to an embodiment, and (A) shows an apparatus for producing an alloy band by a liquid quenching method. The molten metal is jetted together with the gas from the nozzle 2 onto the surface of the rotary roll 1 through which the cooling water flows, and the band 3 is manufactured by instantly cooling and solidifying. By this rapid cooling, the crystal grain size of the band 3 becomes several tens of nm. Next, the band 3 is pulverized to form a powder 4. The alloy is an alloy containing RE-Fe-B as a main component (RE is a rare earth element).

2.急速加熱工程
図1(B)は落下式加熱装置を示す図である。落下式加熱装置は、回収箱20の上面に円筒状の金属管21を固定し、図示しない加熱手段によって金属管21を加熱するように構成されている。Arガスなどの不活性雰囲気にして金属管21を600〜800℃に加熱し、粉末4を金属管21の上端開口から落下させて粉末4を急速加熱する。なお、金属管21の長さは数メートルであり、粉末4を自由落下させると約5秒で回収箱20に落下する。
2. Rapid Heating Process FIG. 1B is a diagram showing a drop-type heating device. The drop-type heating device is configured to fix a cylindrical metal tube 21 to the upper surface of the collection box 20 and to heat the metal tube 21 by a heating means (not shown). The metal tube 21 is heated to 600 to 800 ° C. in an inert atmosphere such as Ar gas, and the powder 4 is dropped from the upper end opening of the metal tube 21 to rapidly heat the powder 4. The length of the metal tube 21 is several meters, and when the powder 4 is freely dropped, it falls into the collection box 20 in about 5 seconds.

3.緻密化工程
次に,図1(C)に示すように、粉末4をダイ5、下パンチ6、および上パンチ7で形成されるキャビティに充填し、下パンチ6および上パンチ7で粉末4を圧縮して成形体8とする。圧縮は500〜800℃の温度で行い、気孔率がゼロ近くになるように緻密化する。この場合において、粉末を冷間で成形し、この冷間成形体を上記の温度まで加熱して熱間成形してもよい。
3. Next, as shown in FIG. 1C, the powder 4 is filled into a cavity formed by the die 5, the lower punch 6, and the upper punch 7, and the powder 4 is filled by the lower punch 6 and the upper punch 7. The molded body 8 is compressed. The compression is performed at a temperature of 500 to 800 ° C. and densified so that the porosity is close to zero. In this case, the powder may be cold formed, and the cold formed body may be heated to the above temperature for hot forming.

4.塑性加工工程
次に、図1(D)に示すように、成形体8を下型9および上型10で圧縮する塑性加工を行う。塑性加工は成形体8を700℃前後の温度に加熱して行う。この温度範囲で塑性加工を行うことにより、結晶粒が回転して配向する。具体的には、結晶格子のC軸が圧縮軸に平行になるように配向する。
4). Plastic working process
Next, as shown in FIG. 1D, plastic working is performed in which the molded body 8 is compressed with the lower mold 9 and the upper mold 10. The plastic working is performed by heating the molded body 8 to a temperature of around 700 ° C. By performing plastic working in this temperature range, the crystal grains are rotated and oriented. Specifically, the crystal lattice is oriented so that the C axis is parallel to the compression axis.

1.実施例1
回転ロールを用いた液体急冷法により製造した合金の帯からRE(希土類元素)、FeおよびBを主成分とする原料粉末を製造し、この粉末に赤外線ランプ加熱装置にて表1の各条件の急速加熱処理を施した後、20℃/分の昇温速度で700℃まで昇温させた後10分間保持して熱間加工工程を模擬した熱処理を施した。その原料粉末の結晶組織をFE−SEM(日立ハイテクS−4300SE/N)を用いて複数個所観察し、結晶粒径が0.5μm以上となる粗大粒の存在有無を比較した。 その結果を表1に示す。
1. Example 1
A raw material powder mainly composed of RE (rare earth element), Fe and B is produced from an alloy band produced by a liquid quenching method using a rotating roll, and each powder of each condition shown in Table 1 is formed on this powder by an infrared lamp heating device. After the rapid heating treatment, the temperature was raised to 700 ° C. at a rate of 20 ° C./min, and then held for 10 minutes to perform a heat treatment simulating a hot working process. The crystal structure of the raw material powder was observed at a plurality of locations using FE-SEM (Hitachi High-Tech S-4300SE / N), and the presence or absence of coarse grains having a crystal grain size of 0.5 μm or more was compared. The results are shown in Table 1.

Figure 2016096203
Figure 2016096203

表1に示すとおり、急速加熱処理において昇温速度が400℃/分以上で急速加熱理温度が600℃以上の場合に、結晶粒径が0.5μm以上となる粗大粒が存在しなかった。図2および図3に昇温速度が50℃/分で急速加熱温度が600℃の急速加熱条件のものと昇温速度が400℃/分で急速加熱温度が600℃の急速加熱条件のものの破面のSEM像の一例を示す。SEM像の下側が原料粉末を製造する際に回転ロールに接触した面であり、図2ではこの面に0.5μmを超える粗大結晶粒が存在するが、図3では存在しない。    As shown in Table 1, when the heating rate was 400 ° C./min or more and the rapid heating temperature was 600 ° C. or more in the rapid heat treatment, there were no coarse grains having a crystal grain size of 0.5 μm or more. 2 and 3 show that the heating rate is 50 ° C./min and the rapid heating temperature is 600 ° C. and the rapid heating temperature is 400 ° C./min and the rapid heating temperature is 600 ° C. An example of the SEM image of a surface is shown. The lower side of the SEM image is the surface in contact with the rotating roll when the raw material powder is produced. In FIG. 2, coarse crystal grains exceeding 0.5 μm are present on this surface, but not present in FIG.

2.実施例2
回転ロールを用いた液体急冷法により製造した合金の帯からRE(希土類元素)、FeおよびBを主成分とする原料粉末を製造し、この原料粉末をホットプレス装置を用いて650℃で真密度近くまで熱間成形し、その熱間成形体を一軸方向に70%の圧下率になるように熱間塑性加工することで熱間加工磁石を作製した(比較例1〜7)。なお、圧下率は、(1−塑性加工後高さ/塑性加工前高さ)×100%で定義される。
2. Example 2
A raw material powder mainly composed of RE (rare earth element), Fe and B is produced from an alloy band produced by a liquid quenching method using a rotating roll, and this raw material powder is true density at 650 ° C. using a hot press device. Hot-worked magnets were produced by hot forming to near and hot-plasticizing the hot-formed body so as to have a reduction rate of 70% in the uniaxial direction (Comparative Examples 1 to 7). The rolling reduction is defined as (1−height after plastic working / height before plastic working) × 100%.

次に、原料粉に図1(B)に示す落下式加熱装置を用いた急速加熱処理を施した後、上記と同等の熱間成形および熱間塑性加工することで熱間加工磁石を作製した(実施例1〜6)。また、原料粉を冷間で直径:15mm、高さ:20mmに成形した成形体に不活性ガス雰囲気で誘導加熱装置を用いた急速加熱処理を施した後、上記と同等の熱間成形および熱間塑性加工を行うことで熱間加工磁石を作製した(実施例7〜11)。表2に原料粉末の組成、急速加熱処理条件及び熱間加工温度を示す。   Next, the raw material powder was subjected to a rapid heating process using the drop-type heating device shown in FIG. 1 (B), and then hot-working magnet and hot-plastic machining equivalent to the above were performed to produce a hot-working magnet. (Examples 1-6). Moreover, after subjecting the raw material powder to a cold formed into a diameter of 15 mm and a height of 20 mm, a rapid heating treatment using an induction heating device in an inert gas atmosphere, hot molding and heat equivalent to the above are performed. Hot-working magnets were produced by carrying out hot plastic working (Examples 7 to 11). Table 2 shows the composition of the raw material powder, rapid heat treatment conditions, and hot working temperature.

Figure 2016096203
Figure 2016096203

作製した熱間加工磁石に対して、超電動式振動試料型磁力計(株式会社理研電子製 VSM−5T)を用いて磁気特性を評価した。また、樹脂埋めした熱間加工磁石の試験片を鏡面研磨した後、表面エッチングにより組織を浮き出させたものをFE−SEM(日立ハイテクS−4300SE/N)で組織観察した。   Magnetic characteristics of the produced hot-working magnet were evaluated using a super-electric vibration sample magnetometer (VSM-5T manufactured by Riken Denshi Co., Ltd.). Moreover, after mirror-polishing the test piece of the hot-working magnet filled with the resin, the structure that was raised by surface etching was observed with a FE-SEM (Hitachi High-Tech S-4300SE / N).

図4に作製した熱間加工磁石の保磁力と残留磁化との関係を示す。 図4に示すように、急速加熱処理を施した熱間加工磁石(実施例1〜11)では、急速加熱処理を行わなかった比較例1〜7と比較して磁気特性が優れている。特に、落下式加熱装置を用いて急速加熱処理を施した場合には、昇温速度が非常に速いため、保磁力が優れている。また、落下式加熱装置を用いる場合には、雰囲気中を落下する際に原料粉末全体をまんべんなく加熱することができる。また、回転ロールを用いて帯状に形成された後に粉砕された粉末は、平板状となっているため、板状の表面から短い時間で効率的に加熱することが可能となる。図5に急速加熱処理温度と磁気特性(残留磁束密度×保磁力)との関係を示す。図5において破線は比較例4の値である。図5により、急速加熱処理温度が600〜800℃の場合には、磁気特性に優れることが確認された。   FIG. 4 shows the relationship between the coercive force and the residual magnetization of the hot-worked magnet produced. As shown in FIG. 4, the hot-worked magnets (Examples 1 to 11) subjected to the rapid heating process are superior in magnetic characteristics as compared with Comparative Examples 1 to 7 where the rapid heating process was not performed. In particular, when a rapid heating process is performed using a drop-type heating device, the rate of temperature rise is very fast, and thus the coercive force is excellent. Moreover, when using a drop-type heating apparatus, the whole raw material powder can be heated evenly when dropping in the atmosphere. Moreover, since the powder pulverized after being formed into a strip shape using a rotating roll has a flat plate shape, it can be efficiently heated in a short time from the plate surface. FIG. 5 shows the relationship between the rapid heat treatment temperature and the magnetic characteristics (residual magnetic flux density × coercivity). In FIG. 5, the broken line is the value of Comparative Example 4. From FIG. 5, it was confirmed that when the rapid heat treatment temperature is 600 to 800 ° C., the magnetic properties are excellent.

図6および図7に熱間加工磁石の組織写真を示す。図6に示すように、急速加熱処理を行わなかった比較例では、原料粉末の界面付近に結晶粒径が0.5μm以上の粗大結晶粒が多数存在する。これに対して、図7に示すように、急速加熱処理を施した実施例では粗大結晶粒が存在しない。   6 and 7 show structural photographs of the hot-worked magnet. As shown in FIG. 6, in the comparative example in which the rapid heating treatment was not performed, a large number of coarse crystal grains having a crystal grain size of 0.5 μm or more exist near the interface of the raw material powder. On the other hand, as shown in FIG. 7, there is no coarse crystal grain in the example in which the rapid heating process is performed.

本発明は、モータなどに用いる永久磁石に利用可能である。   The present invention can be used for permanent magnets used in motors and the like.

1 回転ロール
2 ノズル
3 帯
4 粉末
5 ダイ
6 下パンチ
7 上パンチ
8 成形体
9 下型
10 上型
11 熱間加工磁石
20 回収箱
21 金属管
DESCRIPTION OF SYMBOLS 1 Rotating roll 2 Nozzle 3 Band 4 Powder 5 Die 6 Lower punch 7 Upper punch 8 Molded body 9 Lower mold 10 Upper mold 11 Hot work magnet 20 Collection box 21 Metal tube

Claims (8)

RE(希土類元素)、Fe、およびBを主成分とする合金の溶湯を回転ロールに接触させ急冷することで急速凝固させ、非晶質または微結晶質と非晶質が混在する組織状態の原料粉末を作製し、前記原料粉末、または該原料粉末を冷間で成形した成形体を400℃/分以上の昇温速度にて結晶化開始温度以上の温度まで急速加熱することを特徴とする熱間加工磁石の原料粉末または成形体の製造方法。   A raw material in a textured state in which a molten alloy of RE (rare earth element), Fe, and B as a main component is brought into contact with a rotating roll and rapidly solidified by rapid cooling to be amorphous or a mixture of microcrystalline and amorphous Heat produced by preparing powder and rapidly heating the raw material powder or a compact formed from the raw material powder to a temperature higher than the crystallization start temperature at a temperature rising rate of 400 ° C./min or higher. A method for producing a raw powder or compact of an inter-machined magnet. 前記急速加熱において600〜800℃の温度範囲に加熱することを特徴とする請求項1に記載の熱間加工磁石の原料粉末または成形体の製造方法。   The method for producing a raw material powder or molded body of a hot-worked magnet according to claim 1, wherein the rapid heating is performed in a temperature range of 600 to 800 ° C. 前記急速加熱は、上下方向に向けた筒状体を加熱し、不活性ガス雰囲気とした前記筒状体の内部に前記原料粉末を落下させて行うことを特徴とする請求項1または2に記載の熱間加工磁石の原料粉末または成形体の製造方法。   3. The rapid heating is performed by heating the cylindrical body directed in the vertical direction and dropping the raw material powder into the cylindrical body in an inert gas atmosphere. 4. A method for producing a raw powder or compact of a hot-working magnet. 前記急速加熱は、5000℃/分以上の昇温速度にて行うことを特徴とする請求項3に記載の熱間加工磁石の原料粉末または成形体の製造方法。   The said rapid heating is performed with the temperature increase rate of 5000 degreeC / min or more, The manufacturing method of the raw material powder of a hot work magnet or a molded object of Claim 3 characterized by the above-mentioned. 請求項1〜4のいずれかに記載の原料粉末または成形体を熱間成形により緻密化し、これに一軸方向に塑性加工を施して結晶を配向させることを特徴とする熱間加工磁石の製造方法。   A method for producing a hot-working magnet, comprising densifying the raw material powder or molded body according to any one of claims 1 to 4 by hot forming, and subjecting this to plastic processing in a uniaxial direction to orient the crystals. . 請求項1〜5のいずれかによって製造された熱間加工磁石、原料粉末、または成形体。   The hot-working magnet, raw material powder, or molded object manufactured by any one of Claims 1-5. 結晶粒径が0.5μm以上の粗大結晶粒が面積率で5%以下であることを特徴とする請求項6に記載の熱間加工磁石、原料粉末、または成形体。   The hot-working magnet, raw material powder, or molded article according to claim 6, wherein coarse crystal grains having a crystal grain size of 0.5 µm or more are 5% or less in area ratio. 請求項1〜5のいずれかによって製造された熱間加工磁石であって、
成分にDyを含まず、残留磁束密度(kG)と保磁力(kOe)の積が268以上であることを特徴とする熱間加工磁石。
A hot-working magnet manufactured according to any one of claims 1 to 5,
A hot-working magnet characterized in that the component does not contain Dy and the product of residual magnetic flux density (kG) and coercive force (kOe) is 268 or more.
JP2014230486A 2014-11-13 2014-11-13 Hot-worked magnet, raw material powder thereof, molded body formed from the raw material powder, and production method thereof Expired - Fee Related JP6472640B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014230486A JP6472640B2 (en) 2014-11-13 2014-11-13 Hot-worked magnet, raw material powder thereof, molded body formed from the raw material powder, and production method thereof
CN201510671650.3A CN105609225B (en) 2014-11-13 2015-10-16 Hot-working magnet and its raw material powder, by formed body and their manufacturing method made of raw material powder forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014230486A JP6472640B2 (en) 2014-11-13 2014-11-13 Hot-worked magnet, raw material powder thereof, molded body formed from the raw material powder, and production method thereof

Publications (2)

Publication Number Publication Date
JP2016096203A true JP2016096203A (en) 2016-05-26
JP6472640B2 JP6472640B2 (en) 2019-02-20

Family

ID=55989078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230486A Expired - Fee Related JP6472640B2 (en) 2014-11-13 2014-11-13 Hot-worked magnet, raw material powder thereof, molded body formed from the raw material powder, and production method thereof

Country Status (2)

Country Link
JP (1) JP6472640B2 (en)
CN (1) CN105609225B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204072A (en) * 2017-06-06 2018-12-27 Bizyme有限会社 Crystallization heat treatment furnace, and crystallization heat treatment method for alloy solidified by quick chilling of molten metal
DE102021134100A1 (en) 2020-12-22 2022-06-23 Tdk Corporation R-T-B BASED PERMANENT MAGNET

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459395A (en) * 2018-05-07 2019-11-15 本田技研工业株式会社 Hot-working magnet, the raw material powder of hot-working magnet and manufacturing method
JP2023513009A (en) * 2020-01-31 2023-03-30 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Rapid Induction Sinter Forging for Roll-to-Roll Continuous Manufacturing of Thin Films

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266502A (en) * 1985-05-20 1986-11-26 Namiki Precision Jewel Co Ltd Production of raw material powder for permanent magnet
JP2001155913A (en) * 1999-09-16 2001-06-08 Sumitomo Special Metals Co Ltd Nanocomposite magnet powder and method of manufacturing magnet
JP2003139469A (en) * 2001-11-02 2003-05-14 Sukegawa Electric Co Ltd Free fall type heat treatment method and heat treatment furnace
JP2009084125A (en) * 2007-10-02 2009-04-23 Tdk Corp Method for manufacturing ferrite powder, ferrite powder, and magnetic recording medium
JP2010098115A (en) * 2008-10-16 2010-04-30 Daido Steel Co Ltd Method of manufacturing rare earth magnet
JP2012244111A (en) * 2011-05-24 2012-12-10 Toyota Motor Corp Manufacturing method of rare earth magnet
JP2014045139A (en) * 2012-08-28 2014-03-13 Daihatsu Motor Co Ltd Magnetic material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123853A (en) * 1982-01-18 1983-07-23 Fujitsu Ltd Rare earth metal-iron type permanent magnet and its manufacture
JP2010222601A (en) * 2009-03-19 2010-10-07 Honda Motor Co Ltd Rare earth permanent magnet and method for producing the same
CN101717888A (en) * 2009-11-26 2010-06-02 上海大学 Nano-crystalline composite NdFeB permanent magnetic alloy and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266502A (en) * 1985-05-20 1986-11-26 Namiki Precision Jewel Co Ltd Production of raw material powder for permanent magnet
JP2001155913A (en) * 1999-09-16 2001-06-08 Sumitomo Special Metals Co Ltd Nanocomposite magnet powder and method of manufacturing magnet
JP2003139469A (en) * 2001-11-02 2003-05-14 Sukegawa Electric Co Ltd Free fall type heat treatment method and heat treatment furnace
JP2009084125A (en) * 2007-10-02 2009-04-23 Tdk Corp Method for manufacturing ferrite powder, ferrite powder, and magnetic recording medium
JP2010098115A (en) * 2008-10-16 2010-04-30 Daido Steel Co Ltd Method of manufacturing rare earth magnet
JP2012244111A (en) * 2011-05-24 2012-12-10 Toyota Motor Corp Manufacturing method of rare earth magnet
JP2014045139A (en) * 2012-08-28 2014-03-13 Daihatsu Motor Co Ltd Magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204072A (en) * 2017-06-06 2018-12-27 Bizyme有限会社 Crystallization heat treatment furnace, and crystallization heat treatment method for alloy solidified by quick chilling of molten metal
DE102021134100A1 (en) 2020-12-22 2022-06-23 Tdk Corporation R-T-B BASED PERMANENT MAGNET
US11837392B2 (en) 2020-12-22 2023-12-05 Tdk Corporation R-T-B based permanent magnet

Also Published As

Publication number Publication date
CN105609225B (en) 2019-03-08
JP6472640B2 (en) 2019-02-20
CN105609225A (en) 2016-05-25

Similar Documents

Publication Publication Date Title
KR101535487B1 (en) Magnetic substances based on mn-bi, fabrication method thereof, sintered magnet based on mn-bi and its fabrication method
KR102096958B1 (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
JP2010114200A (en) Method of manufacturing rare-earth magnet
JP2010263172A (en) Rare earth magnet and manufacturing method of the same
JP5532745B2 (en) Magnetic anisotropic magnet and manufacturing method thereof
JP5640946B2 (en) Method for producing sintered body as rare earth magnet precursor
JP6472640B2 (en) Hot-worked magnet, raw material powder thereof, molded body formed from the raw material powder, and production method thereof
US10930417B2 (en) Rapid consolidation method for preparing bulk metastable iron-rich materials
JP5691989B2 (en) Method for producing magnetic powder for forming sintered body of rare earth magnet precursor
CN107077935A (en) The magnet and its manufacture method of hot compression deformation comprising nonmagnetic alloy
JP6613730B2 (en) Rare earth magnet manufacturing method
JP5982680B2 (en) R-T-B alloy powder, compound for anisotropic bonded magnet, and anisotropic bonded magnet
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP7358989B2 (en) permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
US20190337051A1 (en) Hot-deformed magnet, method for producing raw material powder for hot-deformed magnet, and method for producing hot-deformed magnet
JP2013145832A (en) Method for manufacturing rare earth magnet
JP6179709B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP2014170859A (en) Magnetic anisotropic magnet and manufacturing method thereof
JP2016076614A (en) Method for manufacturing rare earth magnet
KR101528070B1 (en) Rare-earth permanent sintered magnet and method for manufacturing the same
JP2013247321A (en) Method for manufacturing sintered material for magnet and sintered material for magnet
Filipecka et al. Effect of Tungsten Addition on Phase Constitution and Magnetic Properties of the Bulk Fe_65Pr_9B_26-xW_x Alloys
JP7017757B2 (en) Rare earth permanent magnet
JP2011159898A (en) Magnet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6472640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees