JP2016093119A - Method and device for plant cultivation - Google Patents

Method and device for plant cultivation Download PDF

Info

Publication number
JP2016093119A
JP2016093119A JP2014230719A JP2014230719A JP2016093119A JP 2016093119 A JP2016093119 A JP 2016093119A JP 2014230719 A JP2014230719 A JP 2014230719A JP 2014230719 A JP2014230719 A JP 2014230719A JP 2016093119 A JP2016093119 A JP 2016093119A
Authority
JP
Japan
Prior art keywords
carbon dioxide
plant cultivation
concentration
water
cultivation room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230719A
Other languages
Japanese (ja)
Other versions
JP6389105B2 (en
Inventor
総一郎 林
Soichiro Hayashi
総一郎 林
愼平 林
Shimpei Hayashi
愼平 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAYASHI YOGYOJO KK
Original Assignee
HAYASHI YOGYOJO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAYASHI YOGYOJO KK filed Critical HAYASHI YOGYOJO KK
Priority to JP2014230719A priority Critical patent/JP6389105B2/en
Publication of JP2016093119A publication Critical patent/JP2016093119A/en
Application granted granted Critical
Publication of JP6389105B2 publication Critical patent/JP6389105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve plant growth by enhancing saccharification with photosynthesis by which carbon dioxide is extracted from water for cultivation of fish and shellfish, and the carbon dioxide is supplied to a plant cultivation chamber and absorbed to plants.SOLUTION: A plant cultivation method comprises the steps of: extracting carbon dioxide from water for cultivation of fish and shellfish; mixing the carbon dioxide with air so as to set a concentration of carbon dioxide to a constant concentration of 3 vol.% or less; and supplying air having carbon dioxide higher than that in atmosphere to a plant cultivation chamber and circulating the air. The concentration of carbon dioxide is measured, and the carbon dioxide extracted from the water for cultivation of fish and shellfish is automatically supplied when the concentration of carbon dioxide is equal to or less than the constant concentration.SELECTED DRAWING: Figure 1

Description

本発明は、魚介類養殖池の水中から、魚が排出した炭酸ガスを抽出し、この炭酸ガスを利用して、植物を栽培する方法と装置に関する。   The present invention relates to a method and apparatus for extracting carbon dioxide discharged from fish from the water of a fishery pond and cultivating a plant using the carbon dioxide.

植物の根元にチッソ等の気体を送風することは、例えば特許文献1に開示されている。また、魚介類養殖水の酸素溶存度を効率的に高める装置については、例えば特許文献2に開示されている。   For example, Patent Document 1 discloses that a gas such as nitrogen is blown to the root of a plant. Moreover, about the apparatus which raises the oxygen solubility of seafood culture water efficiently, it is disclosed by patent document 2, for example.

特開2009−95293号公報JP 2009-95293 A 特開2013−31413号公報JP 2013-31413 A

前記、特許文献1に記載の発明によると、苺の苗は、根元を冷やした方が生育がよいという理由で、送風機からダクトによって、冷風をイチゴの根元にかけるというものであり、併せて、植物の育成に適した気体、例えば窒素リッチな気体をかけることも開示されている。
空気中の二酸化炭素量は、約390ppm(0.039vol%=2011年度値)とされているが、この発明には、植物を栽培する場所における、空気中の二酸化炭素量を、増加させるという思想の記載はない。
また特許文献2には、魚介類養殖水中の二酸化炭素の処理に関する記載はない。
一般的に、植物のハウス栽培においては、光度、温度及び肥料管理が適切であるため、植物の発育は旺盛であるが、それに伴い、ハウス内の空気中の二酸化炭素が不足することが知られている。
そのため、炭酸ガスボンベから、二酸化炭素をハウス内に供給することも行われている。
本発明は、魚介類養殖水から抽出される二酸化炭素を、植物のハウス栽培に利用することによって、魚介類養殖と植物栽培との2つの産業に、効用をもたらすことを目的としているものである。
According to the invention described in Patent Document 1, the seedlings of persimmon are those in which cold air is applied to the roots of strawberries by a duct from a blower because of the better growth when the roots are cooled, It is also disclosed to apply a gas suitable for plant growth, such as a nitrogen-rich gas.
The amount of carbon dioxide in the air is about 390ppm (0.039vol% = 2011 value), but this invention is based on the idea of increasing the amount of carbon dioxide in the air at the place where plants are grown. There is no description.
In addition, Patent Document 2 has no description regarding the treatment of carbon dioxide in fishery product aquaculture water.
Generally, in house cultivation of plants, since the light intensity, temperature, and fertilizer management are appropriate, the growth of the plants is vigorous, but it is known that the carbon dioxide in the air in the house is deficient accordingly. ing.
Therefore, carbon dioxide is also supplied into the house from a carbon dioxide gas cylinder.
The object of the present invention is to bring utility to two industries, fish farming and plant cultivation, by using carbon dioxide extracted from fish-cultured water for house cultivation of plants. .

本発明の具体的な内容は、次の通りである。   The specific contents of the present invention are as follows.

(1)魚介類の養殖水から二酸化炭素を抽出する工程と、該二酸化炭素を、空気中に混合して3容量%以下の定量濃度とする工程と、二酸化炭素を自然値よりも多く含む空気を、植物栽培室に供給循環させる工程と、二酸化炭素の濃度を計測し、定量以下を検知した時は、魚介類養殖水由来の二酸化炭素を、自動的に補填供給することからなる植物栽培方法。   (1) A step of extracting carbon dioxide from fishery aquaculture water, a step of mixing the carbon dioxide in air to obtain a quantitative concentration of 3% by volume or less, and an air containing more carbon dioxide than the natural value A plant cultivation method comprising automatically supplying and supplying carbon dioxide derived from seafood aquaculture water when the concentration of carbon dioxide is measured and the following is detected: .

(2) 前記空気中の二酸化炭素濃度を、390ppm〜3000ppmの範囲とする前記(1)に記載の植物栽培方法。   (2) The plant cultivation method according to (1), wherein the carbon dioxide concentration in the air is in the range of 390 ppm to 3000 ppm.

(3)前記植物栽培室内の光度は、当地における標準的な夏日の日照光度を基準とする、前記(1)または(2)に記載の植物栽培方法。   (3) The plant cultivation method according to (1) or (2), wherein the light intensity in the plant cultivation room is based on a standard summer daylight intensity in the area.

(4)前記植物栽培室内の照明に、緑色光(波長500-600nm)を混合する、前記(1)〜(3)のいずれかに記載の植物栽培方法。   (4) The plant cultivation method according to any one of (1) to (3), wherein green light (wavelength: 500 to 600 nm) is mixed with illumination in the plant cultivation room.

(5)前記植物栽培室には、室内の二酸化炭素を分解、減少させる二酸化炭素分解装置を配設しておく、前記(1)〜(4)のいずれかに記載の植物栽培方法。   (5) The plant cultivation method according to any one of (1) to (4), wherein a carbon dioxide decomposition device that decomposes and reduces indoor carbon dioxide is disposed in the plant cultivation room.

(6) 前記植物栽培室が水耕用であるとき、用水中における二酸化炭素の濃度を、10ppm〜100ppmとする、前記(1)〜(5)のいずれかに記載の植物栽培方法。   (6) The plant cultivation method according to any one of (1) to (5), wherein when the plant cultivation room is for hydroponics, the concentration of carbon dioxide in the irrigation water is set to 10 ppm to 100 ppm.

(7)魚介類養殖水中の二酸化炭素を抽出する装置から、植物栽培室に設けたガスタンクにガス管を設け、ガスタンクから植物栽培室内に、ガス管を配設し、ノズルを設けて二酸化炭素の放出を可能とし、ガス管の自動開閉元栓を、二酸化炭素濃度検知装置の、検知数値により自動制御器による自動制御式とし、植物栽培室内の二酸化炭素濃度を、390ppm〜3000ppmの範囲に維持するようにした植物栽培装置。   (7) From a device for extracting carbon dioxide in fish and shellfish aquaculture water, a gas pipe is provided in a gas tank provided in the plant cultivation room, a gas pipe is provided in the plant cultivation room from the gas tank, a nozzle is provided, and carbon dioxide It is possible to release, the automatic opening and closing plug of the gas pipe is automatically controlled by the automatic controller based on the detection value of the carbon dioxide concentration detection device, and the carbon dioxide concentration in the plant cultivation room is maintained in the range of 390 ppm to 3000 ppm Plant cultivation equipment.

本発明によると、次のような効果が奏せられる。   According to the present invention, the following effects can be obtained.

前記(1)に記載の発明によると、魚介類を養殖している水から抽出される無用の二酸化炭素を、大気中に放出させることなく、植物栽培に利用するので、大気中の二酸化炭素を効率良く減少させることができる。
二酸化炭素を植物栽培室に供給すると、植物の葉に吸収されやすく、光エネルギーによって還元されて糖を創り出し、植物の成長を促進させることができる。 また、植物栽培室内の二酸化炭素濃度が低下しても、自動的に補填され、循環させられるので、植物に二酸化炭素を斑なく供給することができ、植物の斑のない生育をさせることができる。
According to the invention described in (1) above, useless carbon dioxide extracted from the water cultivating seafood is used for plant cultivation without being released to the atmosphere. It can be reduced efficiently.
When carbon dioxide is supplied to the plant cultivation room, it can be easily absorbed by the leaves of the plant and can be reduced by light energy to create sugar and promote the growth of the plant. Moreover, even if the carbon dioxide concentration in the plant cultivation room is lowered, it is automatically compensated and circulated, so that carbon dioxide can be supplied to the plant without any spots and the plants can grow without spots. .

前記(2)に記載の発明によると、空気中の二酸化炭素濃度を、390ppm〜3000ppmの範囲として、植物栽培室に充填しているので、植物が活発に生育しても、二酸化炭素不足が生じないし、葉に吸収されやすい。
普通の空気中に含まれている二酸化炭素濃度は、390ppm程度であるから、これを超える濃度とすると、植物に吸収されやすくなる。しかし、二酸化炭素濃度が3容量%を超えると、人の健康に支障が生じる虞があるので、注意が必要となる。
According to the invention described in (2) above, the carbon dioxide concentration in the air is in the range of 390 ppm to 3000 ppm, and the plant cultivation room is filled. Therefore, even if the plant grows actively, carbon dioxide shortage occurs. It is not easily absorbed by the leaves.
Since the concentration of carbon dioxide contained in ordinary air is about 390 ppm, if it exceeds this level, it will be easily absorbed by plants. However, if the carbon dioxide concentration exceeds 3% by volume, there is a risk that human health may be affected, so caution is required.

前記(3)に記載の発明によると、植物栽培室内の光度を、当地の標準的な夏日の日照光度を基準として、光度不足には照明をするので、植物の葉の光合成が十分に行われ、二酸化炭素の糖化が活発化され、植物の生育が効率良く促進される。   According to the invention described in (3) above, since the light intensity in the plant cultivation room is illuminated with insufficient light intensity based on the standard daylight intensity of summer in the area, photosynthesis of the leaves of the plant is sufficiently performed. In other words, saccharification of carbon dioxide is activated, and plant growth is efficiently promoted.

前記(4)に記載の発明によると、植物栽培室内の照明として、緑色光(波長500-600nm)も混合しているので、光度が明るい状態では、葉の中まで入り込むことができる緑色光によって、葉の中における光合成も盛んに行われ、二酸化炭素の糖化が活発化され、植物の生育が促進される。   According to the invention described in (4) above, green light (wavelength 500-600 nm) is also mixed as illumination in the plant cultivation room, so in a bright state, the green light can enter into the leaves. Photosynthesis in the leaves is also actively performed, saccharification of carbon dioxide is activated, and plant growth is promoted.

前記(5)に記載の発明によると、植物栽培室に二酸化炭素分解装置を配設してあるので、必要に応じてこれを作動させて、室内の二酸化炭素を分解して減少させ、身体への影響と空気汚染をなくして、外気中へ放出させることができる。   According to the invention described in (5) above, since the carbon dioxide decomposing apparatus is disposed in the plant cultivation room, it is operated as necessary to decompose and reduce carbon dioxide in the room, and to the body. It can be released into the outside air without the effects of air pollution.

前記(6)に記載の発明は、水耕栽培における水耕用の水に、二酸化炭素を高濃度に含ませるもので、水草の栽培においては、効率のよい成長をさせることができる。   In the invention described in (6) above, the water for hydroponics in hydroponics contains carbon dioxide at a high concentration, and efficient cultivation can be achieved in the cultivation of aquatic plants.

前記(7)に記載の発明は、植物栽培室内の二酸化炭素の濃度を検知し、所定濃度以下になると、魚介類養殖水ゆかりの二酸化炭素を、自動的に補填供給するので、植物栽培室内に、常に一定量の二酸化炭素を維持して、植物に十分吸収させることが出来、かつ葉の中で光合成による糖化を活発化させ、植物の生育を促進させることができる。   The invention described in (7) detects the concentration of carbon dioxide in the plant cultivation room, and when it falls below a predetermined concentration, automatically compensates and supplies carbon dioxide related to seafood aquaculture water. It is possible to maintain a constant amount of carbon dioxide at all times so that the plant can sufficiently absorb it, and to activate saccharification by photosynthesis in the leaves and promote the growth of the plant.

本発明の方法を実施する装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the apparatus which implements the method of this invention. 図1におけるII-II線縦断側面図である。It is the II-II line vertical side view in FIG. 本発明の装置の実施例2を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows Example 2 of the apparatus of this invention.

以下本発明を、図面を参照して説明する。   The present invention will be described below with reference to the drawings.

図1に示す植物栽培室1は、強風や積雪に耐えうる構造と強度を有し、屋根2はガラス張り(弾性合成樹脂板でも可)とし、密閉及び解放が可能としてある。
屋根2の下面には、摺動式の日除幕3が張設されており、日除幕3の開閉により、栽培室内への入射光量を調節し得るようにしてある。室内の光度は、設置される当地における、標準的な夏日の日照光度、及び日照時間を基準としている。
The plant cultivation room 1 shown in FIG. 1 has a structure and strength that can withstand strong winds and snow, and the roof 2 is made of glass (or may be an elastic synthetic resin plate), and can be sealed and released.
A sliding sunscreen 3 is stretched on the lower surface of the roof 2, and the amount of light incident on the cultivation room can be adjusted by opening and closing the sunscreen 3. The indoor light intensity is based on standard summer daylight and daylight hours in the area where the room is installed.

日除幕3の下面適所に、複数の照明灯4が配設されている。基本的に赤色灯である照明灯4に混じって、個別に点滅可能とした緑色灯4A(波長500-600nm)がバランスよく配設されている。緑色灯4Aは、光度が高いときには、植物の葉の内部にまで達し、光合成を助長する特長を有している。   A plurality of illumination lamps 4 are arranged at appropriate positions on the lower surface of the sunscreen 3. Green lamps 4A (wavelengths of 500 to 600 nm) that can be individually blinked are mixed with the illuminating lamp 4 that is basically a red lamp, and are arranged in a well-balanced manner. When the light intensity is high, the green lamp 4A reaches the inside of a plant leaf and has a feature that promotes photosynthesis.

植物栽培室1の外側における魚介類養殖槽15は、養殖水を循環式としてあり、養殖水の中の二酸化炭素除去装置14のほか、図示しない高濃度酸素水供給手段、循環給水路、スクリーンフィルタ、流動床型生物膜処理装置、蛋白質除去装置、清水供給手段等の設備を備えている(例えば特許第5629288号参照)。   The seafood aquaculture tank 15 outside the plant cultivation room 1 has aquaculture water circulation type, in addition to the carbon dioxide removal device 14 in the aquaculture water, high concentration oxygen water supply means (not shown), a circulation water supply channel, a screen filter And a fluidized bed biofilm treatment apparatus, a protein removal apparatus, fresh water supply means, and the like (see, for example, Japanese Patent No. 5629288).

通常の空気中には、約390ppmの二酸化炭素が含まれているが、植物栽培室1においては、植物の生育が活発に行われるため、二酸化炭素が不足し、この量より多い二酸化炭素が必要とされる。
すなわち、植物栽培室1内での二酸化炭素を、390ppm以上3000ppmの範囲とすることによって、どのような植物にも対応させることが出来る。
In normal air, about 390ppm of carbon dioxide is contained, but in the plant cultivation room 1, the growth of plants is active, so carbon dioxide is insufficient, and more carbon dioxide than this amount is required. It is said.
That is, any plant can be accommodated by setting the carbon dioxide in the plant cultivation room 1 to the range of 390 ppm to 3000 ppm.

また、水中の二酸化炭素の量は、一般に0.5ppm前後であるが、魚介類養殖槽15の水中には、魚の種類及び大きさと数量に応じて、魚から排出される相当量の二酸化炭素が溶存されることとなる。   The amount of carbon dioxide in the water is generally around 0.5 ppm, but a considerable amount of carbon dioxide discharged from the fish is dissolved in the water in the fishery tank 15 depending on the type, size and quantity of the fish. Will be.

図1に示す魚介類養殖槽15においては、例えば水1屯当り約5ppmの二酸化炭素が溶存されている。この魚介類養殖槽15において魚100kgを養殖すると、活動時に魚体1kgあたり酸素を約800mg消費毎に、二酸化炭素が1104mg放出される。   In the seafood aquaculture tank 15 shown in FIG. 1, for example, about 5 ppm of carbon dioxide per 1 kg of water is dissolved. When 100 kg of fish is cultivated in this seafood aquaculture tank 15, 1104 mg of carbon dioxide is released for every 800 mg of oxygen consumed per kg of fish.

これによって、水中の溶存酸素の不足を招くこととなる。そのため、魚介類養殖槽15では、曝気式の二酸化炭素除去装置14を配設して、魚介類養殖水中の二酸化炭素を除去し、浄化を行なっている。本発明は、これによって抽出される二酸化炭素を植物栽培に利用するものである。   This leads to a shortage of dissolved oxygen in the water. For this reason, the aquaculture tank 15 is provided with an aeration type carbon dioxide removal device 14 to remove carbon dioxide from the fish culture water for purification. In the present invention, carbon dioxide extracted thereby is used for plant cultivation.

図1において、100m2の植物栽培室1の外側に、二酸化炭素槽11を配設し、魚介類養殖槽15内の、二酸化炭素除去装置14に接続されたガス管13を、バルブ13Aを介して二酸化炭素槽11に連結してある。
植物栽培室1の内部における2m程度の高さの箇所に、ガス管5が水平に設けられ、ガス管5から複数のノズル6が下向きに開口されている。
In FIG. 1, a carbon dioxide tank 11 is disposed outside the 100 m 2 plant cultivation room 1, and a gas pipe 13 connected to a carbon dioxide removing device 14 in the fishery culture tank 15 is connected via a valve 13A. Connected to the carbon dioxide tank 11.
A gas pipe 5 is horizontally provided at a height of about 2 m inside the plant cultivation room 1, and a plurality of nozzles 6 are opened downward from the gas pipe 5.

ガス管5の基端部は送風機7に連結され、自動開閉バルブ8が閉じられた時には、送風機7によって室内空気が循環させられ、空気を循環させることによって二酸化炭素を斑のないように植物全体に供給することができる。   The base end of the gas pipe 5 is connected to the blower 7, and when the automatic opening / closing valve 8 is closed, the indoor air is circulated by the blower 7, and the whole plant is circulated so that carbon dioxide is not spotted by circulating the air. Can be supplied to.

送風機7の吸気管7Aは、冷気と温気の双方を吸気するように、図示しない温度調節器に連結され、切換えることができ、夏期には冷気、冬期には温気を送風機7で送風して、室温調節ができるようになっている。   The intake pipe 7A of the blower 7 is connected to a temperature controller (not shown) so as to suck both cold air and warm air, and can be switched. The blower 7 blows cold air in the summer and warm air in the winter. The room temperature can be adjusted.

また送風機7は、外側に設けた二酸化炭素槽11に、ガス管12を介して連結され、その途中には、自動開閉バルブ8が配設され、自動制御器9の制御により、ガス管12から二酸化炭素を吸引して栽培室内に自動的に送り出し循環させる。
自動開閉バルブ8には、ガスセンサ10のガス濃度検知数値に応じて、開閉をコントロールする自動制御器9が連結されている。
The blower 7 is connected to a carbon dioxide tank 11 provided outside via a gas pipe 12, and an automatic opening / closing valve 8 is disposed in the middle of the blower 7, and is controlled by the automatic controller 9 from the gas pipe 12. It sucks carbon dioxide and automatically sends it out to the cultivation room for circulation.
The automatic open / close valve 8 is connected to an automatic controller 9 that controls opening / closing according to the gas concentration detection value of the gas sensor 10.

上記の植物栽培室1において、トマトを栽培することとして、室内空気中の二酸化炭素の量を計測したところ、389ppmで、普通よりもやや少ない二酸化炭素量であった。   In the plant cultivation room 1, the amount of carbon dioxide in the indoor air was measured as cultivating tomatoes. As a result, the amount of carbon dioxide was 389 ppm, which was slightly less than normal.

植付けは、大玉トマトとミニトマトを半々とし、1m2当り9本の苗を植付けて、室温を日中は20℃〜25℃、夜間は10℃〜20℃で管理した。
湿度は65%〜85%とした。光度は、標準的夏日の日照光度を基準とし、光度不足を補うために、照明灯4、4Aを使用した。
Planting was done in half large tomatoes and cherry tomatoes, and 9 seedlings per 1 m 2 were planted, and the room temperature was controlled between 20 ° C. and 25 ° C. during the day and 10 ° C. to 20 ° C. during the night.
The humidity was 65% to 85%. The luminosity was based on the standard sunshine intensity on a summer day, and the lamps 4 and 4A were used to compensate for the lack of luminosity.

苗の背丈が20cmを超えた時点から、ガス管12のバルブ12Aを開いて、送風機7を稼働させ、ノズル6から二酸化炭素を含む空気を噴出させた。
2時間後にガスセンサ10を見ると、二酸化炭素濃度は450ppmであったので、日中は、これを維持させることとした。
When the height of the seedling exceeded 20 cm, the valve 12A of the gas pipe 12 was opened, the blower 7 was operated, and air containing carbon dioxide was ejected from the nozzle 6.
When the gas sensor 10 was observed after 2 hours, the carbon dioxide concentration was 450 ppm, so this was maintained during the day.

1週間後、花房が認められたので、二酸化炭素の濃度を500ppmに増加させて維持した。外見的に「花飛び現象」は見られず、二酸化炭素の高濃度がトマトのストレスになっていないこと
が確認された。葉の肉厚が認められ、葉の色も濃い緑色であることが視認された。
One week later, flower clusters were observed, and the concentration of carbon dioxide was increased to 500 ppm and maintained. Apparently, no “flower jumping phenomenon” was observed, and it was confirmed that the high concentration of carbon dioxide did not cause stress in tomatoes. The thickness of the leaf was recognized, and it was visually recognized that the color of the leaf was dark green.

植付け2週間後、背丈も150cmを超えて、花房が5段に着き、結実数も目立っていた。また、葉の大きさが普通の葉と比べて大きいことが確認された。これは、光合成が活発化され、それに対応する機能補充作用のためと考えられる。二酸化炭素濃度の増加の必要性を検討したが、当分は現状を維持することとした。   Two weeks after planting, the height exceeded 150 cm, the flower bunches reached 5 tiers, and the number of fruits was conspicuous. Moreover, it was confirmed that the size of the leaf was larger than that of the normal leaf. This is thought to be due to the activation of photosynthesis and the function replenishment action corresponding to it. We examined the necessity of increasing the carbon dioxide concentration, but for the time being we decided to maintain the current situation.

この時点で、二酸化炭素の再供給を5時間停止後における、植物栽培室1の二酸化炭素の濃度は421ppmで、減少していることが認められた。これは、平均的に1時間あたり約16ppmの二酸化炭素の消費があったと考えられる。
ただし、栽培土の水分に吸収された度合いについては、未確認である。
At this time, it was recognized that the concentration of carbon dioxide in the plant cultivation room 1 was 421 ppm after the resupply of carbon dioxide was stopped for 5 hours, and decreased. This is considered to be an average consumption of about 16 ppm of carbon dioxide per hour.
However, the degree of absorption by the moisture of the cultivated soil has not been confirmed.

植付け4週間後、背丈は2mを超え、5段にそれぞれ4〜5個の結実が認められた。5個ある果実の大きさも、粒が揃って他のものと変わらない大きさであった。中には、6段目に結実があるものも認められた。   Four weeks after planting, the height exceeded 2 m, and 4 to 5 fruits were observed on each of the five steps. The size of the five fruits was also the same size as the others with the same grains. Some of them had fruit on the sixth stage.

植付けから55日目、大半の果実が赤く色づいて、収穫可能であった。ミニトマトの中には、まだ開花中のものもあり、生育が盛んなことが認められた。
そこで収穫可能な果実は、収穫することとした。
収穫及び、果実の大きさについては、大玉トマトで平均220g、平均で約12.3%の増加が認められた。ミニトマトでは平均で1果32gであった。
On the 55th day after planting, most fruits turned red and were harvestable. Some of the cherry tomatoes were still flowering, and it was confirmed that the growth was thriving.
Therefore, we decided to harvest the fruits that can be harvested.
As for harvest and fruit size, an increase of 220 g on average for large tomatoes and an average of about 12.3% were observed. The average size of cherry tomatoes was 32g per fruit.

量については、大玉トマトで平均的な量に対して、約14.2%の増加が認められた。ミニトマトでは約17.6%の増加が認められた。糖度は、一般的に大玉トマトで4度前後のところ、平均で5.3度を示し、ミニトマトでは平均で8.7度を示した。   As for the amount, an increase of about 14.2% was observed with respect to the average amount of large tomatoes. About 17.6% increase was observed in cherry tomatoes. The sugar content was generally around 4 degrees for large tomatoes, showing an average of 5.3 degrees, and mini tomatoes showing an average of 8.7 degrees.

この結果から見て、植物栽培室1の、空気中の二酸化炭素の濃度を500ppm前後に維持すると、トマトについては、期待が持てる効果が有ることが認められた。その他の植物として、一般のハウス栽培種のすべてに利用することができる。
ただし、栽培室における栽培では、土壌、肥料、水分、光度、温度が大きく影響するので、そのトータル的な管理が必要である。
From this result, it was recognized that when the concentration of carbon dioxide in the air in the plant cultivation room 1 is maintained at around 500 ppm, the tomato has a promising effect. As other plants, it can be used for all common house cultivars.
However, in the cultivation in the cultivation room, soil, fertilizer, moisture, light intensity, and temperature are greatly affected, so that total management is necessary.

空気中の二酸化炭素の濃度は、一般的には30000ppmを超えると、人も呼吸困難になるとされており、そのような大量を使用する必要性はないが、例えば栽培室内のカビ対策、コケ対策などによっては、高濃度の二酸化炭素の使用も必要となる。その場合には、3000ppm程度までに限らず、高濃度で使用される。   If the concentration of carbon dioxide in the air generally exceeds 30000 ppm, it is said that people will also have difficulty breathing, and there is no need to use such a large amount, but for example, measures against mold and moss in the cultivation room In some cases, it is also necessary to use a high concentration of carbon dioxide. In that case, it is not limited to about 3000 ppm but is used at a high concentration.

二酸化炭素を高濃度で使用する場合、終了後に外気へ放散させることは、空気汚染の点で好ましくないので、必要に応じて二酸化炭素分解装置を設け、高濃度の二酸化炭素を分解し、無害のものとして放出させるようにする。   When carbon dioxide is used at a high concentration, it is not preferable to dissipate it to the outside air after the end because it is not preferable from the viewpoint of air pollution. Let it be released as a thing.

図3は、本発明の実施例2の植物栽培室を示す側面図である。前例と同じ部材には、同じ符号を付して説明を省略する。
この実施例2は、水耕栽培とするもので、水耕用水中の二酸化炭素の濃度を高くするものである。
FIG. 3 is a side view showing a plant cultivation room of Example 2 of the present invention. The same members as those of the previous example are denoted by the same reference numerals and description thereof is omitted.
This Example 2 is intended for hydroponics, and increases the concentration of carbon dioxide in hydroponic water.

一般的に、水中の二酸化炭素の濃度は0.5ppm前後であり、水道水では0.6ppm含まれているものもある。水耕栽培としては、例えばトマトの根先を水中に浸漬して栽培する方法と、水草を水中で栽培する方法との2種類がある。   Generally, the concentration of carbon dioxide in water is around 0.5 ppm, and some tap water contains 0.6 ppm. There are two types of hydroponics, for example, a method of cultivating a tomato root by immersing it in water and a method of cultivating aquatic plants in water.

二酸化炭素の濃度を、水中に増加させて効果の高いのは、水草の栽培である。
トマト等の場合には、空気中と水中の双方に二酸化炭素の濃度を高くすることができる。
It is cultivation of aquatic plants that increases the concentration of carbon dioxide in water and is highly effective.
In the case of tomatoes and the like, the concentration of carbon dioxide can be increased both in the air and in water.

水草としては、例えば観賞用のリシア、ラージパールグラス、グリーンロタラ、ニードルリーフ、ロタラインディカ等があり、また食用としてはスピルリナ、海苔、その他の藻類がある。   Examples of aquatic plants include ornamental lysia, large pearl grass, green rotara, needle leaf, rotaline deca, and edible plants such as spirulina, seaweed, and other algae.

ここでは、鑑賞用ウキゴケ科のリシア(Riccia fluitans)を入れた水量1m3 の水槽を、図3における工場の隅に配置して栽培した。
用水としては、水道水を用い、図示しない金魚飼育用の濾過装置を使用して、図3におけるノズル6から、パイプを濾過装置の吸気口に接続させて供給した。
Here, a 1 m 3 water tank containing Riccia fluitans for viewing was placed in the corner of the factory in FIG. 3 and cultivated.
As the irrigation water, tap water was used, and a goldfish breeding filtration device (not shown) was used and supplied from the nozzle 6 in FIG. 3 with a pipe connected to the suction port of the filtration device.

水道水は概して中性であるが、水草は弱酸性水の方が生育に適している。また二酸化炭素を水に溶存させると、水は弱酸性化するので、水草の生育を水質の点でも助長することとなる。   Tap water is generally neutral, but weakly acidic water is more suitable for growing aquatic plants. In addition, when carbon dioxide is dissolved in water, water is weakly acidified, which promotes the growth of aquatic plants in terms of water quality.

水槽の水中に二酸化炭素を放出して溶存させ、二酸化炭素の濃度が15ppmとなった時、これを維持させることとした。
肥料としては、一般的な水耕用水性肥料を使用し、水温は25℃に設定した。
Carbon dioxide was released and dissolved in the water in the aquarium, and this was maintained when the concentration of carbon dioxide reached 15 ppm.
As the fertilizer, a general hydroponics aqueous fertilizer was used, and the water temperature was set to 25 ° C.

リシアは直径約3cm程度のものを50個、水面に浮かせた状態で栽培することとした。鑑賞用では、網を被せる等により、水槽の底土に定着させるが、栽培においては、拘束されずに自由に発育できる浮遊状態が好ましい。   We decided to cultivate 50 Lithia plants with a diameter of about 3cm, floating on the surface of the water. For appreciation, it is fixed to the bottom soil of the aquarium by covering it with a net or the like. However, in cultivation, a floating state that can grow freely without restriction is preferable.

2週間目、各リシアは、すべての分枝を伸ばし、緑の絨毯のように水面に広がり、葉の間にキラキラ光る気泡が無数に認められた。
リシアは、この宝石のように輝く気泡が、人気の的となっている。葉も厚くなり、緑色も濃くなっていて、光合成が活発に行われていることが認められた。
In the second week, each Lisia stretched all branches, spread to the surface like a green carpet, and countless sparkling bubbles were observed between the leaves.
In Licia, bubbles that shine like this gem have become popular. The leaves were thicker and the green color was darker, indicating that photosynthesis was active.

4週間目、リシアの葉状体の分枝が目立ち、大きさも平面的に当初の4倍近くの広がりを見せ、水中にも葉状体を複雑に絡ませて、立体的に複雑な群体を作った。葉状体の長さは1cm〜5cmにもなり、葉幅は1mmを超え、厚さは0.2mmにもなっていた。   In the 4th week, the branches of Lithia's frond were conspicuous, and the size of the foliage was almost four times larger than the original one, and the frond was intricately entangled in water to form a three-dimensional complex group. The length of the frond body was 1 cm to 5 cm, the leaf width was more than 1 mm, and the thickness was 0.2 mm.

水耕水のpHは6.3で、溶存二酸化炭素の濃度は、5時間供給を停止した状態で約13.2ppmであり、これは、1時間当り二酸化炭素が0.36ppm消費されたことを示している。この消費には、二酸化炭素の空気中への発散も含まれている。
なお、水草は夜間に呼吸をして、光合成した栄養分と肥料とで成長する。
The pH of hydroponic water is 6.3 and the concentration of dissolved carbon dioxide is about 13.2 ppm with the supply stopped for 5 hours, indicating that 0.36 ppm of carbon dioxide was consumed per hour. This consumption includes the emission of carbon dioxide into the air.
In addition, aquatic plants breathe at night and grow with photo-synthesized nutrients and fertilizers.

8週間目、リシアの葉状体の分枝が旺盛で、水槽の水面一面に分枝が広がりを見せた。葉状体の下方への立体的な広がりは、最大10cmにも達していた。これ以上放置すると、透光性が悪化して、葉の色が褪せたり、枯死する部分も生じて商品に向かないので、栽培を中止し、分割して別途栽培することとした。   In the 8th week, the branches of Lithia's frond were vigorous, and the branches spread across the surface of the aquarium. The three-dimensional spread of the fronds down to 10 cm. If left untreated, the translucency deteriorates and the color of the leaves fades or some parts die out, making it unsuitable for the product.

この実験で、リシアの水耕栽培には、二酸化炭素の使用が有効なことが確認された。また、リシアの栽培については、水深を15cm程度とし、底面からも光線を反射させて、下側の葉にも光合成を促すことが好ましい。   In this experiment, it was confirmed that the use of carbon dioxide is effective for hydroponic cultivation of Lisia. In addition, for the cultivation of lysia, it is preferable that the water depth is about 15 cm, light is reflected from the bottom surface, and photosynthesis is also promoted to the lower leaves.

この場合、棚段状に水槽を重ねると、敷地面積あたりの栽培率が向上する。植物の成長は、光度、温度、肥料その他様々な条件によって変化するので、品種に合った条件設定が必要となる。   In this case, when the water tanks are stacked in a shelf shape, the cultivation rate per site area is improved. Plant growth changes depending on various conditions such as light intensity, temperature, fertilizer, etc. Therefore, it is necessary to set conditions suitable for the variety.

水中の二酸化炭素の濃度は、一般には0.6ppm程度であり、これが30ppm以上になると、植物の呼吸がしにくくなり、障害が生じる。
しかし、水耕栽培室において、水中に無用な苔が発生した時等には、その対策として、酸性の二酸化炭素の濃度を、30ppm以上とした弱酸性の水を循環させて、水苔等の除去をさせる。
The concentration of carbon dioxide in water is generally about 0.6 ppm, and if it exceeds 30 ppm, it becomes difficult for the plant to breathe and damage occurs.
However, when useless moss is generated in the hydroponic cultivation room, as a countermeasure, weak acidic water with an acidic carbon dioxide concentration of 30 ppm or more is circulated to Let it be removed.

本発明によると、魚介類の養殖水中に、魚介類由来の炭酸が増加することを防止するために、二酸化炭素を抽出するとともに、この抽出した二酸化炭素を、植物栽培室に供給し、植物の成長を速め、魚介類の養殖と植物栽培の、異なった2っの産業に利用することができる。   According to the present invention, in order to prevent the increase in carbonic acid derived from seafood in the aquaculture water, the carbon dioxide is extracted and supplied to the plant cultivation room, It can be used for two different industries, accelerating growth and aquaculture and plant cultivation.

植物栽培室
2.屋根
3.日除幕
4.照明灯
4A.緑色照明灯
5.ガス管
6.ノズル
7.送風機
7A.吸気管
8.自動開閉バルブ
9.自動制御器
10.ガス濃度センサ
11.二酸化炭素槽
12、13.ガス管
12A、13A.バルブ
14.二酸化炭素除去装置
15.魚介類養殖槽
Plant cultivation room 2. roof Day curtain 4. Illumination lamp 4A. 4. Green illumination light 5. Gas pipe Nozzle 7. Blower 7A. Intake pipe 8. Automatic opening / closing valve9. Automatic controller
Ten. Gas concentration sensor
11. Carbon dioxide tank
12, 13. Gas pipe
12A, 13A. valve
14. Carbon dioxide removal equipment
15. Seafood tank

Claims (7)

魚介類の養殖水から二酸化炭素を抽出する工程と、該二酸化炭素を、空気中に混合して3容量%以下の定濃度とする工程と、二酸化炭素を自然値よりも多く含む空気を、植物栽培室に供給循環させる工程と、二酸化炭素の濃度を計測し、定濃度以下を検知した時は、魚介類養殖水由来の二酸化炭素を、自動的に補填供給することからなることを特徴とする植物栽培方法。 A step of extracting carbon dioxide from the aquaculture water, a step of mixing the carbon dioxide in the air to a constant concentration of 3% by volume or less, and an air containing more carbon dioxide than its natural value The process of supplying and circulating to the cultivation room, and measuring the concentration of carbon dioxide, and when detecting a concentration below a certain level, automatically supplementing and supplying carbon dioxide derived from seafood aquaculture water Plant cultivation method. 前記空気中の二酸化炭素の濃度を、390ppm〜3000ppmの範囲とすることを特徴とする請求項1に記載の植物栽培方法。 The plant cultivation method according to claim 1, wherein the concentration of carbon dioxide in the air is in the range of 390ppm to 3000ppm. 前記植物栽培室内の光度は、当地の標準的な夏日の日照光度を基準とすることを特徴とする請求項1または2に記載の植物栽培方法。 The plant cultivation method according to claim 1 or 2, wherein the light intensity in the plant cultivation room is based on a standard summer daylight intensity in the area. 前記植物栽培室内の照明に、緑色光(波長500-600nm)を混合することを特徴とする前記1〜3のいずれかに記載の植物栽培方法。 4. The plant cultivation method according to any one of 1 to 3, wherein green light (wavelength: 500 to 600 nm) is mixed with illumination in the plant cultivation room. 前記植物栽培室には、室内の二酸化炭素を分解、減少させる二酸化炭素分解装置を配設しておくことを特徴とする請求項1〜4のいずれかに記載の植物栽培方法。 The plant cultivation method according to any one of claims 1 to 4, wherein a carbon dioxide decomposition device for decomposing and reducing indoor carbon dioxide is disposed in the plant cultivation room. 前記植物栽培室が水耕用であるとき、用水中における二酸化炭素の濃度は、10ppm〜100ppmとすることを特徴とする請求項1〜5のいずれかに記載の植物栽培方法。 The plant cultivation method according to any one of claims 1 to 5, wherein when the plant cultivation room is for hydroponics, the concentration of carbon dioxide in the irrigation water is set to 10 ppm to 100 ppm. 魚介類養殖水中の二酸化炭素を抽出する装置から、植物栽培室に設けたガスタンクにガス管を設け、ガスタンクから植物栽培室内にガス管を配設し、ノズルを設けて二酸化炭素の放出を可能とし、ガス管の自動開閉元栓を、ガス濃度検知装置の検知数値により、自動制御器による自動制御式として、植物栽培室内の二酸化炭素の濃度を、390ppm〜3000ppmの範囲に維持するようにしたことを特徴とする植物栽培装置。
From a device that extracts carbon dioxide in seafood aquaculture water, a gas pipe is provided in the gas tank provided in the plant cultivation room, a gas pipe is provided in the plant cultivation room from the gas tank, and a nozzle is provided to enable the release of carbon dioxide. The automatic opening / closing plug of the gas pipe is automatically controlled by the automatic controller based on the detection value of the gas concentration detector, and the concentration of carbon dioxide in the plant cultivation room is maintained in the range of 390ppm to 3000ppm. A plant cultivation device.
JP2014230719A 2014-11-13 2014-11-13 Plant cultivation method and apparatus Active JP6389105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014230719A JP6389105B2 (en) 2014-11-13 2014-11-13 Plant cultivation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014230719A JP6389105B2 (en) 2014-11-13 2014-11-13 Plant cultivation method and apparatus

Publications (2)

Publication Number Publication Date
JP2016093119A true JP2016093119A (en) 2016-05-26
JP6389105B2 JP6389105B2 (en) 2018-09-12

Family

ID=56069656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230719A Active JP6389105B2 (en) 2014-11-13 2014-11-13 Plant cultivation method and apparatus

Country Status (1)

Country Link
JP (1) JP6389105B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200605A (en) * 2016-09-18 2016-12-07 王燕红 The release of gas intelligence, management, control system
JP2018176070A (en) * 2017-04-13 2018-11-15 株式会社トヨタ車体研究所 Method for extraction of carbon dioxide from carbonate spring
JP2020527358A (en) * 2017-06-29 2020-09-10 シーオー2アイ リミティド Environmental control system
CN113079897A (en) * 2021-03-30 2021-07-09 宁夏超娃米业有限公司 Green's seedling culture carbon dioxide concentration detection device
WO2023233956A1 (en) * 2022-05-30 2023-12-07 株式会社西部技研 Carbon dioxide supply device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141327A (en) * 1976-05-21 1977-11-25 Kunihiko Murai Growing device combined vegetable cultivation and fish culture
JP2013255449A (en) * 2012-06-12 2013-12-26 Hayashi Yogyojo:Kk Device and method of culturing fish and shellfish
JP2014161337A (en) * 2013-02-27 2014-09-08 Nippon Ekitan Corp Device and method for applying carbon dioxide gas to crop cultivated in greenhouse, etc.
JP2014207875A (en) * 2013-03-25 2014-11-06 国立大学法人東京農工大学 Strawberry cultivation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141327A (en) * 1976-05-21 1977-11-25 Kunihiko Murai Growing device combined vegetable cultivation and fish culture
JP2013255449A (en) * 2012-06-12 2013-12-26 Hayashi Yogyojo:Kk Device and method of culturing fish and shellfish
JP2014161337A (en) * 2013-02-27 2014-09-08 Nippon Ekitan Corp Device and method for applying carbon dioxide gas to crop cultivated in greenhouse, etc.
JP2014207875A (en) * 2013-03-25 2014-11-06 国立大学法人東京農工大学 Strawberry cultivation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200605A (en) * 2016-09-18 2016-12-07 王燕红 The release of gas intelligence, management, control system
JP2018176070A (en) * 2017-04-13 2018-11-15 株式会社トヨタ車体研究所 Method for extraction of carbon dioxide from carbonate spring
JP2020527358A (en) * 2017-06-29 2020-09-10 シーオー2アイ リミティド Environmental control system
CN113079897A (en) * 2021-03-30 2021-07-09 宁夏超娃米业有限公司 Green's seedling culture carbon dioxide concentration detection device
WO2023233956A1 (en) * 2022-05-30 2023-12-07 株式会社西部技研 Carbon dioxide supply device and method

Also Published As

Publication number Publication date
JP6389105B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
KR100959254B1 (en) Method for Hydroponic Cultivation of Fresh Ginseng root and leaves
JP6389105B2 (en) Plant cultivation method and apparatus
KR101026265B1 (en) Home hydroponic system co-cultivating plants and small fish
CN104521715B (en) Sealing water planting cutting propagation method for gardenias with flower buds
CN103070062A (en) Intelligent LED (Light-Emitting Diode) light supplementing indoor circulating economical planting and breeding system
CN111050541B (en) Plant cultivation method and plant cultivation device
KR102084308B1 (en) Land aquaculture system for laver
Bergstrand et al. Growth, development and photosynthesis of some horticultural plants as affected by different supplementary lighting technologies
CN106472121A (en) A kind of cultural method viewing and admiring the multiple Kiwifruit Cultivars of potted plant Fructus actinidiae chinensiss grafting
KR102013799B1 (en) Cultivation method of mushrooms by supplying nutrient and controlling growth environment to need mushroom growth
CN107637397A (en) The efficiently organic intelligent cultivation solid case of mushroom
JP2017169519A (en) Method for viticulture and lighting apparatus for viticulture
JP2007267645A (en) Method for cultivating flower and ornamental plant, method for cultivating plant, lighting device for flower and ornamental plant cultivation, and lighting device for plant cultivation
Weiss et al. Effect of elevated CO2 on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus
US11582927B1 (en) System and method for rapidly growing a crop
CN110122140B (en) Camellia oleifera planting method
KR20190090948A (en) laver light cultivation device for land farming
CN105191736B (en) A kind of breeding method for seeing the dual-purpose Moringa potted landscape of food
RU2717999C1 (en) Method for field production of minitubers from potato microplants in a protected medium
JP2018143203A (en) Method for controlling form of matricaria recutita l
KR20140076825A (en) Mass growing method for moss
CN108094164B (en) Planting method for ocean ship cabins
KR20160108065A (en) Sprouts wheat cultivation method
JP2006345850A (en) Water-repellent self-water-feeding built-in transplantation production medium
KR102580907B1 (en) Method And Apparatus For Stone Breeding Moss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180816

R150 Certificate of patent or registration of utility model

Ref document number: 6389105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250