JP2016092340A - Cleaning method and device for substrate - Google Patents

Cleaning method and device for substrate Download PDF

Info

Publication number
JP2016092340A
JP2016092340A JP2014228466A JP2014228466A JP2016092340A JP 2016092340 A JP2016092340 A JP 2016092340A JP 2014228466 A JP2014228466 A JP 2014228466A JP 2014228466 A JP2014228466 A JP 2014228466A JP 2016092340 A JP2016092340 A JP 2016092340A
Authority
JP
Japan
Prior art keywords
micro
nano bubble
substrate
bubble water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014228466A
Other languages
Japanese (ja)
Inventor
中島 秀之
Hideyuki Nakajima
秀之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2014228466A priority Critical patent/JP2016092340A/en
Publication of JP2016092340A publication Critical patent/JP2016092340A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the cleaning method and device of a substrate capable of sharply increasing cleaning effects by micro nano bubbles, and efficiently removing various foreign matters such as particles, metal and organic materials from the substrate.SOLUTION: A cleaning device includes: a micro nano bubble water supply source 6 for supplying micro nano bubble water; a micro nano bubble water nozzle 7 for discharging micro nano bubble water to be supplied from the micro nano bubble water supply source 6 to a substrate 9; and a fluid nozzle 8 for discharging at least either water or gas to the substrate 9. In the cleaning method of the substrate 9 using the micro nano bubble water as cleaning liquid by using this cleaning device, at least either water or gas is added to the micro nano bubble water.SELECTED DRAWING: Figure 10

Description

本発明は、高い洗浄度が求められるシリコン基板、ガラス基板等の洗浄方法及び装置に関するものである。   The present invention relates to a cleaning method and apparatus for silicon substrates, glass substrates and the like that require a high degree of cleaning.

半導体用のシリコン基板や液晶用のガラス基板等の電子材料は、高い洗浄度が求められ、洗浄液としては、除去すべき汚染物質(異物)の性質によって、アンモニアと過酸化水素水の混合物、塩酸と過酸化水素水の混合物、硫酸と過酸化水素水の混合物、フッ酸等が用いられる。しかし、これらの薬品は、人体にとって危険であり、使用後の処理にかかる手間やコストが問題となる。
この問題に対し、一部の工程ではオゾンが用いられる。オゾンは、時間の経過と共に自己分解し、最後には酸素になるので、人体にとって安全であり、使用後の処理にかかる手間やコストが抑えられる。しかし、オゾンは、上記した薬品に比べると酸化力が小さく、濃度を高めるにも限界がある。
このような課題に対し、近年、マイクロナノバブル水の研究が進んでいる。この作用は、マイクロナノバブル水を被洗浄物の表面に接触させることにより、マイクロナノバブルが異物に付着して異物が取り除かれるというものであり、この原理を活用した洗浄装置が提案されている(特許文献1参照)。
しかし、マイクロナノバブル水は、被洗浄物である基板に付着しやすく離れにくい性質があること、また、マイクロナノバブル水に含まれる気泡が小さくなるほど水が凝縮し基板に対して弾きやすくなる性質をもつことから、洗浄効果は高くなかった。また、マイクロバブル水と超音波振動子とを組み合せた装置の提案も過去にあった(特許文献2参照)。
しかしながら、超音波は被洗浄物に衝撃を与えるので、基板上の回路パターンが微細化された場合には、その回路パターンに超音波の衝撃が加わり、基板の損傷を招くという問題点があった。
Electronic materials such as silicon substrates for semiconductors and glass substrates for liquid crystals are required to have a high degree of cleaning. Depending on the nature of the contaminant (foreign matter) to be removed, the cleaning liquid may be a mixture of ammonia and hydrogen peroxide, hydrochloric acid And a mixture of hydrogen peroxide and sulfuric acid, a mixture of sulfuric acid and hydrogen peroxide, hydrofluoric acid, and the like. However, these chemicals are dangerous for the human body, and there is a problem in labor and cost for processing after use.
For this problem, ozone is used in some processes. Ozone self-decomposes over time and eventually becomes oxygen, so it is safe for the human body and the labor and cost for processing after use can be reduced. However, ozone has a lower oxidizing power than the chemicals described above, and there is a limit to increasing the concentration.
In recent years, research on micro / nano bubble water has been progressing in response to such problems. This action is that micro-nano bubbles are attached to foreign matter by bringing micro-nano bubble water into contact with the surface of the object to be cleaned, and the foreign matter is removed, and a cleaning device utilizing this principle has been proposed (patent) Reference 1).
However, the micro-nano bubble water has the property that it is easy to adhere to the substrate that is the object to be cleaned and is difficult to leave, and the smaller the bubbles contained in the micro-nano bubble water, the more the water will condense and the easier it will be to play against the substrate. Therefore, the cleaning effect was not high. There has also been a proposal of a device that combines microbubble water and an ultrasonic vibrator (see Patent Document 2).
However, since the ultrasonic wave gives an impact to the object to be cleaned, there is a problem that when the circuit pattern on the substrate is miniaturized, the ultrasonic wave is applied to the circuit pattern and the substrate is damaged. .

特開2013−248582号公報JP 2013-248582 A 特開2005−093873号公報Japanese Patent Laid-Open No. 2005-093873

上記の問題点に鑑み、本発明者は、鋭意研究の結果、マイクロナノバブル水を洗浄液として用いる基板の洗浄工程において、マイクロナノバブル水に水又はガスを添加する基板の洗浄方法及び装置の発明をするに至った。   In view of the above problems, as a result of earnest research, the present inventors have invented a substrate cleaning method and apparatus for adding water or gas to micro / nano bubble water in a substrate cleaning process using micro / nano bubble water as a cleaning liquid. It came to.

本発明は、マイクロナノバブル水を洗浄液として用いる基板の洗浄方法において、マイクロナノバブル水に水又はガスの少なくとも1つを添加することを第一の特徴とする。   The first feature of the present invention is that in a substrate cleaning method using micro / nano bubble water as a cleaning liquid, at least one of water or gas is added to the micro / nano bubble water.

また、本発明は、前記水又は前記ガスを添加する場所が、前記基板の表面であることを第二の特徴とする。   In addition, the present invention is characterized in that the place where the water or the gas is added is the surface of the substrate.

更に、本発明は、前記ガスが空気、酸素、窒素、水素、不活性ガスの少なくともいずれか1つであることを第三の特徴とし、添加する前記ガスによって生成されるバブル水の気泡の径が、前記マイクロナノバブル水の気泡の径よりも大きいことを第四の特徴とする。   Furthermore, the present invention has a third feature that the gas is at least one of air, oxygen, nitrogen, hydrogen, and an inert gas, and the bubble diameter of bubble water generated by the gas to be added Is larger than the diameter of the bubbles of the micro-nano bubble water.

また、本発明は、前記マイクロナノバブル水がオゾンを含むことを第五の特徴とする。   Moreover, this invention makes it the 5th characteristic that the said micro nano bubble water contains ozone.

本発明は、マイクロナノバブル水を供給するマイクロナノバブル水供給源と、前記マイクロナノバブル水供給源から供給される前記マイクロナノバブル水を基板に吐出するマイクロナノバブル水ノズルと、水又はガスの少なくとも1つを前記基板に吐出する流体ノズルとを備えたことを第六の特徴とし、前記流体ノズルが、前記マイクロナノバブル水ノズルに配管を接続することによって構成され、前記配管を通して水又はガスの少なくとも1つを供給することにより、前記マイクロナノバブル水と前記水又はガスの少なくとも1つを混合して前記基板に吐出することを第七の特徴とする。   The present invention includes a micro / nano bubble water supply source for supplying micro / nano bubble water, a micro / nano bubble water nozzle for discharging the micro / nano bubble water supplied from the micro / nano bubble water supply source to a substrate, and at least one of water or gas. The fluid nozzle for discharging to the substrate is a sixth feature, wherein the fluid nozzle is configured by connecting a pipe to the micro-nano bubble water nozzle, and at least one of water or gas is passed through the pipe. According to a seventh feature of the present invention, by supplying, the micro-nano bubble water and at least one of the water or gas are mixed and discharged onto the substrate.

また、本発明は、基板が浸漬される槽と、マイクロナノバブル水を供給するマイクロナノバブル水供給源と、前記マイクロナノバブル水供給源からの前記マイクロナノバブル水を前記槽内に上から供給するマイクロナノバブル水ノズルと、水又はガスの少なくとも1つを前記基板に吐出する流体ノズルとを備えたことを第八の特徴とし、基板が浸漬される槽と、マイクロナノバブル水を供給するマイクロナノバブル水供給源と、前記マイクロナノバブル水供給源と前記槽との間に介在され、前記マイクロナノバブル水供給源からの前記マイクロナノバブル水を前記槽内に供給するマイクロナノバブル水供給用配管と、水又はガスの少なくとも1つを前記基板に吐出する流体ノズルとを備えたことを第九の特徴とする。   The present invention also provides a bath in which the substrate is immersed, a micro / nano bubble water supply source for supplying micro / nano bubble water, and a micro / nano bubble for supplying the micro / nano bubble water from the micro / nano bubble water supply source into the bath from above. A water nozzle and a fluid nozzle for discharging at least one of water or gas to the substrate are eighth features, a tank in which the substrate is immersed, and a micro / nano bubble water supply source for supplying micro / nano bubble water A micro-nano bubble water supply pipe that is interposed between the micro-nano bubble water supply source and the tank, and supplies the micro-nano bubble water from the micro-nano bubble water supply source into the tank, and at least water or gas A ninth feature is that a fluid nozzle for discharging one to the substrate is provided.

本発明に係る基板の洗浄方法及び装置によれば、マイクロナノバブルによる洗浄効果が格段に高くなり、パーティクル、金属、有機物などの種々の異物を被洗浄物である基板上から効率的に除去することが可能となる。   According to the substrate cleaning method and apparatus of the present invention, the cleaning effect by the micro / nano bubbles is remarkably enhanced, and various foreign matters such as particles, metals, and organic substances are efficiently removed from the substrate to be cleaned. Is possible.

マイクロナノバブル水の基板に対する特性(撥水性)を模式的に示した図である。It is the figure which showed typically the characteristic (water repellency) with respect to the board | substrate of micro nano bubble water. 本発明の第一の実施形態におけるマイクロナノバブル水に水を投入したことによる作用を模式的に示した図である。It is the figure which showed typically the effect | action by throwing water into the micro nano bubble water in 1st embodiment of this invention. マイクロナノバブル水の基板に対する特性(微細バブルの吸着性)を模式的に示した図である。It is the figure which showed typically the characteristic (adsorbability of a fine bubble) with respect to the board | substrate of micro nano bubble water. 本発明の第二の実施形態におけるマイクロナノバブル水にガスを投入したことによる作用を模式的に示した図である。It is the figure which showed typically the effect | action by throwing gas into the micro nano bubble water in 2nd embodiment of this invention. 本発明の実施例1におけるガラス基板の縁に付着した粘着剤が除去されたことを示した図(写真)である。It is the figure (photograph) which showed that the adhesive adhering to the edge of the glass substrate in Example 1 of this invention was removed. 比較例1におけるガラス基板の縁に付着した粘着剤が除去されなかったことを示した図(写真)である。It is the figure (photograph) which showed that the adhesive adhering to the edge of the glass substrate in the comparative example 1 was not removed. 本発明の実施例2と実施例3及び比較例2と比較例3におけるレジスト除去速度を示した図である。It is the figure which showed the resist removal rate in Example 2 and Example 3 of this invention, and Comparative Example 2 and Comparative Example 3. FIG. 本発明の実施例2と実施例3及び比較例2と比較例3における60分洗浄後のレジスト除去量を示した図である。It is the figure which showed the resist removal amount after 60-minute washing | cleaning in Example 2, Example 3, and Comparative Example 2 and Comparative Example 3 of this invention. 試験に用いるマイクロナノバブル水装置を示した図である。It is the figure which showed the micro nano bubble water apparatus used for a test. 本発明の第一及び第二の実施形態における洗浄装置の構成を示した図である。It is the figure which showed the structure of the washing | cleaning apparatus in 1st and 2nd embodiment of this invention. 本発明の第一及び第二の実施形態における洗浄装置の他の構成を示した図である。It is the figure which showed the other structure of the washing | cleaning apparatus in 1st and 2nd embodiment of this invention. 本発明の第一及び第二の実施形態における洗浄装置の更なる他の構成を示した図である。It is the figure which showed the further another structure of the washing | cleaning apparatus in 1st and 2nd embodiment of this invention.

まず、本発明の第一の実施形態について図1、図2及び図9を基に説明するが、本発明が本実施形態に限定されないことはいうまでもない。   First, the first embodiment of the present invention will be described with reference to FIGS. 1, 2, and 9. Needless to say, the present invention is not limited to this embodiment.

[第一の実施形態]
図1に示すように、マイクロナノバブル水1は、水の凝集力が大きくなり濡れ性が乏しく、被洗浄物である基板2に対する接触面が小さいため、基板2上の汚れ(異物)を除去することはできない。
これに対し、図2に示すように、マイクロナノバブル水1に水5を添加することにより、マイクロナノバブル水1の表面張力が小さくなり、濡れ性を向上させることができる。その結果、基板2に対するマイクロナノバブル水1の接触面が増大し、マイクロナノバブルを効率的に被洗浄物である基板2に作用させることができるので、基板2上の汚れ(異物)を効率的に除去することができる。
本発明でいうマイクロナノバブル水とは、マイクロバブルとナノバブルを含む水である。マイクロバブル水とは、直径が0.1μm〜50μmの気泡を含む水であり、ナノバブル水とは、直径が100nm未満の気泡を含む水である。
また、マイクロナノバブル水に添加する水としては、純水、超純水、アルカリ電解水などがある。
水の添加の仕方は図9に示すようなマイクロナノバブル水装置によって生成されたマイクロナノバブル水に図10に示す洗浄装置を用いて並用して添加してもよいし、バッチ処理の場合には図11に示すように被洗浄物である基板9が浸漬された槽内に直接水を送り込んでもよい。さらに、図12に示すように、マイクロナノバブル水に添加し混合して、被洗浄物である基板9に吐出してもよい。なお、図10〜図12中、6はマイクロナノバブル水を供給するマイクロナノバブル水供給源、7はマイクロナノバブル水供給源6から供給されるマイクロナノバブル水を基板9に吐出するマイクロナノバブル水ノズル、8は水又はガスの少なくとも1つを基板9に吐出する流体ノズル、10は(水又はガスの)配管、11は基板9が浸漬される槽、12はマイクロナノバブル水供給源6からのマイクロナノバブル水を槽11内に上から供給するマイクロナノバブル水ノズル、13はマイクロナノバブル水供給源6と槽11との間に介在され、マイクロナノバブル水供給源6からのマイクロナノバブル水を槽11内に供給するマイクロナノバブル水供給用配管をそれぞれ示している。
また、水の量は送り込む場所によって任意に変えることができるが、水を送り込む場所を、被洗浄物である基板9の近傍にすれば、少ない量で足りる。更に、生成されるマイクロナノバブル水がオゾンを含むようにすれば、酸化速度が増大し速やかな有機物の除去が可能となる。
また、超音波と組み合せてもよい。
[First embodiment]
As shown in FIG. 1, the micro-nano bubble water 1 has a high water cohesive force and poor wettability, and has a small contact surface with the substrate 2 that is the object to be cleaned, and therefore removes dirt (foreign matter) on the substrate 2. It is not possible.
On the other hand, as shown in FIG. 2, by adding water 5 to the micro / nano bubble water 1, the surface tension of the micro / nano bubble water 1 is reduced and wettability can be improved. As a result, the contact surface of the micro / nano bubble water 1 with respect to the substrate 2 is increased, and the micro / nano bubbles can be efficiently applied to the substrate 2 that is the object to be cleaned, so that dirt (foreign matter) on the substrate 2 can be efficiently removed. Can be removed.
The micro / nano bubble water referred to in the present invention is water containing micro bubbles and nano bubbles. Microbubble water is water containing bubbles having a diameter of 0.1 μm to 50 μm, and nanobubble water is water containing bubbles having a diameter of less than 100 nm.
Examples of water added to the micro / nano bubble water include pure water, ultrapure water, and alkaline electrolyzed water.
The method of adding water may be added to the micro / nano bubble water generated by the micro / nano bubble water device as shown in FIG. 9 using the cleaning device shown in FIG. 10 or in the case of batch processing. As shown in FIG. 11, water may be directly fed into a bath in which a substrate 9 as an object to be cleaned is immersed. Furthermore, as shown in FIG. 12, it may be added to micro / nano bubble water, mixed, and discharged onto the substrate 9 which is the object to be cleaned. 10 to 12, 6 is a micro / nano bubble water supply source for supplying micro / nano bubble water, 7 is a micro / nano bubble water nozzle for discharging micro / nano bubble water supplied from the micro / nano bubble water supply source 6 to the substrate 9, 8 Is a fluid nozzle for discharging at least one of water or gas to the substrate 9, 10 is a pipe (for water or gas), 11 is a tank in which the substrate 9 is immersed, and 12 is micro-nano bubble water from the micro-nano bubble water supply source 6. Is provided between the micro-nano bubble water supply source 6 and the tank 11 and supplies the micro-nano bubble water from the micro-nano bubble water supply source 6 into the tank 11. The pipes for supplying micro-nano bubble water are shown.
Further, the amount of water can be arbitrarily changed depending on the place where the water is fed. However, if the place where the water is fed is in the vicinity of the substrate 9 to be cleaned, a small amount is sufficient. Furthermore, if the generated micro / nano bubble water contains ozone, the oxidation rate increases and organic substances can be removed quickly.
Moreover, you may combine with an ultrasonic wave.

次に、本発明の第二の実施形態について図3、図4及び図9を基に説明するが、本発明が本実施形態に限定されないことはいうまでもない。   Next, although 2nd embodiment of this invention is described based on FIG.3, FIG.4 and FIG.9, it cannot be overemphasized that this invention is not limited to this embodiment.

[第二の実施形態]
図3に示すように、マイクロナノバブル水1は、微細バブルの特性上、基板2に付着したまま離れにくい性質があり、マイクロナノバブル3が付着したままだと汚れ(異物)を除去することができない。
これに対し、図4に示すように、マイクロナノバブル水1にガス4を添加することにより、浮力の大きな気泡が生じ、 当該気泡の浮力で基板2に付着しやすいマイクロナノバブル3を除去することができる。その結果、新鮮なマイクロナノバブル3を次から次へと被洗浄物である基板2に作用させることができるので、基板2上の汚れ(異物)を効率的に除去することができる。
ガスの添加の仕方は図9に示すようなマイクロナノバブル水装置によって生成されたマイクロナノバブル水に図10に示す洗浄装置を用いて並用して添加してもよいし、バッチ処理の場合には図11に示すように被洗浄物である基板9が浸漬された槽内に直接ガスを送り込んでもよい。さらに、図12に示すように、マイクロナノバブル水に添加し混合して、被洗浄物である基板9に吐出してもよい。
また、ガスの種類やガスの量は送り込む場所によって任意に変えることができるが、ガスを送り込む場所を、被洗浄物である基板9の近傍にすれば、少ない量で足りる。更に、生成されるマイクロナノバブル水がオゾンを含むようにすれば、酸化速度が増大し速やかな有機物の除去が可能となる。
また、超音波と組み合せてもよい。
[Second Embodiment]
As shown in FIG. 3, the micro-nano bubble water 1 has a property that it is difficult to leave while adhering to the substrate 2 due to the characteristics of fine bubbles, and dirt (foreign matter) cannot be removed if the micro-nano bubble 3 remains attached. .
On the other hand, as shown in FIG. 4, by adding the gas 4 to the micro / nano bubble water 1, bubbles having large buoyancy are generated, and the micro / nano bubbles 3 that easily adhere to the substrate 2 can be removed by the buoyancy of the bubbles. it can. As a result, fresh micro / nano bubbles 3 can be applied to the substrate 2 that is the object to be cleaned one after another, so that dirt (foreign matter) on the substrate 2 can be efficiently removed.
The method of adding gas may be added to the micro / nano bubble water generated by the micro / nano bubble water device as shown in FIG. 9 using the cleaning device shown in FIG. 10 or in the case of batch processing. As shown in FIG. 11, the gas may be directly fed into a tank in which the substrate 9 that is the object to be cleaned is immersed. Furthermore, as shown in FIG. 12, it may be added to micro / nano bubble water, mixed, and discharged onto the substrate 9 which is the object to be cleaned.
Further, the type of gas and the amount of gas can be arbitrarily changed depending on the place where the gas is fed, but if the place where the gas is fed is in the vicinity of the substrate 9 to be cleaned, a small amount is sufficient. Furthermore, if the generated micro / nano bubble water contains ozone, the oxidation rate increases and organic substances can be removed quickly.
Moreover, you may combine with an ultrasonic wave.

[実施例1]
図9に示すマイクロナノバブル水装置(シグマテクノロジー社製、型式PM-5)と図10又は図12に示す洗浄装置を用いて、ガラス基板の縁に付着した粘着剤の除去を行った。方法としては、マイクロナノバブル水装置に酸素(純度99.5%以上)を投入して酸素マイクロナノバブル水を生成し、これを600ml/minの流速でガラス基板に掛け流すと同時に、超純水(比抵抗18.2MΩ・cm,TOC3ppb,28.5℃)を100ml/minの流速で同じガラス基板に掛け流す方法を採用した。
その結果、図5(写真)に示すように、洗浄開始10分で粘着剤が柔らかくなり、綿棒で軽く擦ると粘着剤は取れた。
[Example 1]
Using the micro / nano bubble water device (manufactured by Sigma Technology, model PM-5) shown in FIG. 9 and the cleaning device shown in FIG. 10 or FIG. 12, the adhesive adhered to the edge of the glass substrate was removed. As a method, oxygen (purity 99.5% or more) is introduced into a micro / nano bubble water device to generate oxygen micro / nano bubble water, which is sprinkled on a glass substrate at a flow rate of 600 ml / min, and at the same time, ultrapure water ( A specific resistance of 18.2 MΩ · cm, TOC 3 ppb, 28.5 ° C.) was applied to the same glass substrate at a flow rate of 100 ml / min.
As a result, as shown in FIG. 5 (photograph), the adhesive became soft 10 minutes after the start of washing, and the adhesive was removed by rubbing lightly with a cotton swab.

[実施例2]
図9に示すマイクロナノバブル水装置(シグマテクノロジー社製、型式PM-5)と図11に示す洗浄装置を用いて、シリコン基板に塗布されたレジストの除去を行った。この場合、マイクロナノバブル水装置にオゾンガス(濃度180g/m)を投入してオゾンマイクロナノバブル水を生成し(オゾン水濃度30mg/L)、シリコン基板を浸漬した500mlビーカーの中に600ml/minの流速でオゾンマイクロナノバブル水を投入すると共に、超純水(比抵抗18.2MΩ・cm,TOC3ppb,26.5℃)を150ml/minの流速でシリコン基板を浸漬したビーカーに投入して、60分間洗浄処理を行った。
その結果、図7に示すようにレジスト除去速度は128nm/minとなり、図8に示すようにレジスト除去量は7680nmとなった。
[Example 2]
The resist applied to the silicon substrate was removed using the micro / nano bubble water device (manufactured by Sigma Technology, Model PM-5) shown in FIG. 9 and the cleaning device shown in FIG. In this case, ozone gas (concentration 180 g / m 3 ) is introduced into the micro-nano bubble water device to generate ozone micro-nano bubble water (ozone water concentration 30 mg / L), and 600 ml / min in a 500 ml beaker in which the silicon substrate is immersed. Ozone micro / nano bubble water was added at a flow rate, and ultrapure water (specific resistance 18.2 MΩ · cm, TOC 3 ppb, 26.5 ° C.) was added to a beaker in which a silicon substrate was immersed at a flow rate of 150 ml / min for 60 minutes. A washing treatment was performed.
As a result, the resist removal rate was 128 nm / min as shown in FIG. 7, and the resist removal amount was 7680 nm as shown in FIG.

[実施例3]
図9に示すマイクロナノバブル水装置(シグマテクノロジー社製、型式PM-5)と図11に示す洗浄装置を用いて、シリコン基板に塗布されたレジストの除去を行った。この場合、マイクロナノバブル水装置にオゾンガス(濃度180g/m)を投入してオゾンマイクロナノバブル水を生成し(オゾン水濃度30mg/L)、シリコン基板を浸漬した500mlビーカーの中に600ml/minの流速でオゾンマイクロナノバブル水を投入すると共に、シリコン基板を浸漬したビーカーの中に酸素ガスを供給(2L/min)して、60分間洗浄処理を行った。
その結果、図7に示すようにレジスト除去速度は99nm/minとなり、図8に示すようにレジスト除去量は5940nmとなった。
[Example 3]
The resist applied to the silicon substrate was removed using the micro / nano bubble water device (manufactured by Sigma Technology, Model PM-5) shown in FIG. 9 and the cleaning device shown in FIG. In this case, ozone gas (concentration 180 g / m 3 ) is introduced into the micro-nano bubble water device to generate ozone micro-nano bubble water (ozone water concentration 30 mg / L), and 600 ml / min in a 500 ml beaker in which the silicon substrate is immersed. While supplying ozone micro / nano bubble water at a flow rate, oxygen gas was supplied (2 L / min) into a beaker in which a silicon substrate was immersed, and cleaning treatment was performed for 60 minutes.
As a result, the resist removal rate was 99 nm / min as shown in FIG. 7, and the resist removal amount was 5940 nm as shown in FIG.

[比較例1]
図9に示すマイクロナノバブル水装置(シグマテクノロジー社製、型式PM-5)を用いて、ガラス基板の縁に付着した粘着剤の除去を行った。方法としては、マイクロナノバブル水装置に酸素(純度99.5%以上)を投入して酸素マイクロナノバブル水を生成し、これを600ml/minの流速で30分間、ガラス基板に掛け流す方法を採用した。
その結果、図6(写真)に示すように、粘着剤は取れなかった。
[Comparative Example 1]
The pressure-sensitive adhesive adhered to the edge of the glass substrate was removed using a micro / nano bubble water apparatus (manufactured by Sigma Technology, model PM-5) shown in FIG. As a method, oxygen (purity 99.5% or more) was introduced into a micro / nano bubble water device to generate oxygen micro / nano bubble water, and this was applied to a glass substrate at a flow rate of 600 ml / min for 30 minutes. .
As a result, as shown in FIG. 6 (photograph), the adhesive could not be removed.

[比較例2]
オゾン水を用いて、シリコン基板に塗布されたレジストの除去を行った。この場合、オゾン水(30mg/L)を生成し、シリコン基板を浸漬した500mlビーカーの中に600ml/minの流速でオゾン水を投入して、60分間洗浄処理を行った。
その結果、図7に示すようにレジスト除去速度は18nm/minであり、図8に示すようにレジスト除去量は実施例2の場合よりも少量の1080nmであった。
[Comparative Example 2]
The resist applied to the silicon substrate was removed using ozone water. In this case, ozone water (30 mg / L) was generated, ozone water was introduced at a flow rate of 600 ml / min into a 500 ml beaker in which a silicon substrate was immersed, and cleaning treatment was performed for 60 minutes.
As a result, the resist removal rate was 18 nm / min as shown in FIG. 7, and the resist removal amount was 1080 nm, which is smaller than that in Example 2, as shown in FIG.

[比較例3]
図9に示すマイクロナノバブル水装置を用いて、シリコン基板に塗布されたレジストの除去を行った。この場合、マイクロナノバブル水装置にオゾンガス(濃度180g/m)を投入してオゾンマイクロナノバブル水を生成し(オゾン水濃度30mg/L)、シリコン基板を浸漬した500mlビーカーの中に600ml/minの流速でオゾンマイクロナノバブル水を投入して、60分間洗浄処理を行った。
その結果、図7に示すようにレジスト除去速度は65nm/minであり、図8に示すようにレジスト除去量は実施例3の場合よりも少量の3900nmであった。
[Comparative Example 3]
The resist applied to the silicon substrate was removed using the micro / nano bubble water device shown in FIG. In this case, ozone gas (concentration 180 g / m 3 ) is introduced into the micro-nano bubble water device to generate ozone micro-nano bubble water (ozone water concentration 30 mg / L), and 600 ml / min in a 500 ml beaker in which the silicon substrate is immersed. Ozone micro / nano bubble water was added at a flow rate, and washing was performed for 60 minutes.
As a result, the resist removal rate was 65 nm / min as shown in FIG. 7, and the resist removal amount was 3900 nm, which is smaller than that in Example 3, as shown in FIG.

1…マイクロナノバブル水
2…基板
3…マイクロナノバブル
4…ガス
5…水
6…マイクロナノバブル水供給源
7…マイクロナノバブル水ノズル
8…流体ノズル
9…基板
10…(水又はガスの)配管
11…槽
12…マイクロナノバブル水ノズル
13…マイクロナノバブル水供給用配管
DESCRIPTION OF SYMBOLS 1 ... Micro nano bubble water 2 ... Substrate 3 ... Micro nano bubble 4 ... Gas 5 ... Water 6 ... Micro nano bubble water supply source 7 ... Micro nano bubble water nozzle 8 ... Fluid nozzle 9 ... Substrate 10 ... (water or gas) piping 11 ... Tank 12 ... Micro / Nano bubble water nozzle 13 ... Micro / Nano bubble water supply pipe

Claims (9)

マイクロナノバブル水を洗浄液として用いる基板の洗浄方法において、マイクロナノバブル水に水又はガスの少なくとも1つを添加することを特徴とする基板の洗浄方法。   A substrate cleaning method using micro-nano bubble water as a cleaning liquid, wherein at least one of water or gas is added to micro-nano bubble water. 前記水又は前記ガスを添加する場所が、前記基板の表面であることを特徴とする請求項1に記載の基板の洗浄方法。   The method for cleaning a substrate according to claim 1, wherein the place where the water or the gas is added is a surface of the substrate. 前記ガスが空気、酸素、窒素、水素、不活性ガスの少なくともいずれか1つであることを特徴とする請求項1又は2に記載の基板の洗浄方法。   The substrate cleaning method according to claim 1, wherein the gas is at least one of air, oxygen, nitrogen, hydrogen, and an inert gas. 添加する前記ガスによって生成されるバブル水の気泡の径が、前記マイクロナノバブル水の気泡の径よりも大きいことを特徴とする請求項1乃至3のいずれか1項に記載の基板の洗浄方法。   The method for cleaning a substrate according to any one of claims 1 to 3, wherein a bubble diameter of bubbles generated by the gas to be added is larger than a diameter of bubbles of the micro / nano bubble water. 前記マイクロナノバブル水がオゾンを含むことを特徴とする請求項1乃至4のいずれか1項に記載の基板の洗浄方法。   The substrate cleaning method according to claim 1, wherein the micro / nano bubble water contains ozone. マイクロナノバブル水を供給するマイクロナノバブル水供給源と、前記マイクロナノバブル水供給源から供給される前記マイクロナノバブル水を基板に吐出するマイクロナノバブル水ノズルと、水又はガスの少なくとも1つを前記基板に吐出する流体ノズルとを備えたことを特徴とする基板の洗浄装置。   Micro-nano bubble water supply source for supplying micro-nano bubble water, micro-nano bubble water nozzle for discharging the micro-nano bubble water supplied from the micro-nano bubble water supply source to the substrate, and discharging at least one of water or gas to the substrate An apparatus for cleaning a substrate, comprising: a fluid nozzle. 前記流体ノズルが、前記マイクロナノバブル水ノズルに配管を接続することによって構成され、前記配管を通して水又はガスの少なくとも1つを供給することにより、前記マイクロナノバブル水と前記水又はガスの少なくとも1つを混合して前記基板に吐出することを特徴とする請求項6に記載の基板の洗浄装置。   The fluid nozzle is configured by connecting a pipe to the micro-nano bubble water nozzle, and supplying at least one of water or gas through the pipe, thereby supplying at least one of the micro-nano bubble water and the water or gas. The substrate cleaning apparatus according to claim 6, wherein the substrate is mixed and discharged onto the substrate. 基板が浸漬される槽と、マイクロナノバブル水を供給するマイクロナノバブル水供給源と、前記マイクロナノバブル水供給源からの前記マイクロナノバブル水を前記槽内に上から供給するマイクロナノバブル水ノズルと、水又はガスの少なくとも1つを前記基板に吐出する流体ノズルとを備えたことを特徴とする基板の洗浄装置。   A tank in which the substrate is immersed, a micro-nano bubble water supply source for supplying micro-nano bubble water, a micro-nano bubble water nozzle for supplying the micro-nano bubble water from the micro-nano bubble water supply source into the tank from above, water or A substrate cleaning apparatus, comprising: a fluid nozzle that discharges at least one gas to the substrate. 基板が浸漬される槽と、マイクロナノバブル水を供給するマイクロナノバブル水供給源と、前記マイクロナノバブル水供給源と前記槽との間に介在され、前記マイクロナノバブル水供給源からの前記マイクロナノバブル水を前記槽内に供給するマイクロナノバブル水供給用配管と、水又はガスの少なくとも1つを前記基板に吐出する流体ノズルとを備えたことを特徴とする基板の洗浄装置。   A bath in which the substrate is immersed, a micro-nano bubble water supply source for supplying micro-nano bubble water, and a micro-nano bubble water supply source interposed between the micro-nano bubble water supply source and the bath. An apparatus for cleaning a substrate, comprising: a micro / nano bubble water supply pipe to be supplied into the tank; and a fluid nozzle for discharging at least one of water or gas to the substrate.
JP2014228466A 2014-11-10 2014-11-10 Cleaning method and device for substrate Pending JP2016092340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014228466A JP2016092340A (en) 2014-11-10 2014-11-10 Cleaning method and device for substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014228466A JP2016092340A (en) 2014-11-10 2014-11-10 Cleaning method and device for substrate

Publications (1)

Publication Number Publication Date
JP2016092340A true JP2016092340A (en) 2016-05-23

Family

ID=56017240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228466A Pending JP2016092340A (en) 2014-11-10 2014-11-10 Cleaning method and device for substrate

Country Status (1)

Country Link
JP (1) JP2016092340A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098592A (en) * 2016-06-20 2016-11-09 北京七星华创电子股份有限公司 The system and method for micro-nano bubbling-cleaning wafer
CN107166461A (en) * 2017-06-15 2017-09-15 杭州老板电器股份有限公司 A kind of lampblack absorber without dismantling and cleaning of micro-nano bubbling -cleaning technology
JP2019094392A (en) * 2017-11-20 2019-06-20 大同メタル工業株式会社 Cleaning liquid
CN110473773A (en) * 2019-08-22 2019-11-19 北京北方华创微电子装备有限公司 Method for cleaning wafer and wafer cleaning equipment
WO2020075844A1 (en) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 Fine-bubble cleaning device and fine-bubble cleaning method
JP2021021603A (en) * 2019-07-26 2021-02-18 橋本 博之 Radiation treatment method
US11505717B2 (en) * 2017-06-01 2022-11-22 Jgc Catalysts And Chemicals Ltd. Nanobubble-containing inorganic oxide fine particle and abrasive containing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098592A (en) * 2016-06-20 2016-11-09 北京七星华创电子股份有限公司 The system and method for micro-nano bubbling-cleaning wafer
US11505717B2 (en) * 2017-06-01 2022-11-22 Jgc Catalysts And Chemicals Ltd. Nanobubble-containing inorganic oxide fine particle and abrasive containing same
CN107166461A (en) * 2017-06-15 2017-09-15 杭州老板电器股份有限公司 A kind of lampblack absorber without dismantling and cleaning of micro-nano bubbling -cleaning technology
JP2019094392A (en) * 2017-11-20 2019-06-20 大同メタル工業株式会社 Cleaning liquid
WO2020075844A1 (en) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 Fine-bubble cleaning device and fine-bubble cleaning method
JP2021021603A (en) * 2019-07-26 2021-02-18 橋本 博之 Radiation treatment method
CN110473773A (en) * 2019-08-22 2019-11-19 北京北方华创微电子装备有限公司 Method for cleaning wafer and wafer cleaning equipment
CN110473773B (en) * 2019-08-22 2022-03-22 北京北方华创微电子装备有限公司 Wafer cleaning method and wafer cleaning equipment

Similar Documents

Publication Publication Date Title
JP2016092340A (en) Cleaning method and device for substrate
JP5585076B2 (en) Cleaning method
JP4948508B2 (en) Method for wet chemical processing of semiconductor wafers
JP2760418B2 (en) Semiconductor wafer cleaning solution and method for cleaning semiconductor wafer using the same
TWI405621B (en) Cleaning liquid and cleaning method for electronic material
JP5081809B2 (en) Method for removing particles from a semiconductor surface
JP2008300429A (en) Method and apparatus for semiconductor substrate cleaning, and apparatus for mixing air bubbles into liquid
CN101939826A (en) Method for cleaning semiconductor wafer and device for cleaning semiconductor wafer
KR100319119B1 (en) Clean water for electronic materials
WO2014069203A1 (en) Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials
JP2012143708A (en) Washing method
JP2008221144A (en) Cleaning method of ultrapure water producing system
JP2002261062A (en) Method and device for removing particle on semiconductor wafer
CN104550100A (en) Cleaning method of semiconductor wafer
JP5910226B2 (en) Cleaning method for fine particles
JP4619971B2 (en) Waste water treatment method and waste water treatment equipment
JP2013136024A (en) Device and method for generating processing liquid, and apparatus and method for processing substrate
JP2000216130A (en) Washing water and method for electronic material
JP5736567B2 (en) Semiconductor wafer cleaning method
JP4554377B2 (en) Cleaning liquid and cleaning method
TW201600183A (en) Clean method, clean water supply device and clean device for element Ge substrate
JP2005074413A (en) Cleaning method for substrate for electronic industry
JP2007141888A (en) Cleaning liquid and cleaning method for removing polyimide film
TWI301075B (en) Apparatus for removing ozone and method thereof
JPH11176794A (en) Wet cleaning device for electronic material