JP2016091880A - Connection structure of superconductive wire, superconductive wire, and connection method - Google Patents

Connection structure of superconductive wire, superconductive wire, and connection method Download PDF

Info

Publication number
JP2016091880A
JP2016091880A JP2014226839A JP2014226839A JP2016091880A JP 2016091880 A JP2016091880 A JP 2016091880A JP 2014226839 A JP2014226839 A JP 2014226839A JP 2014226839 A JP2014226839 A JP 2014226839A JP 2016091880 A JP2016091880 A JP 2016091880A
Authority
JP
Japan
Prior art keywords
superconducting
conductor layer
wire
superconducting conductor
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014226839A
Other languages
Japanese (ja)
Other versions
JP6356046B2 (en
Inventor
昭暢 中井
Akinobu Nakai
昭暢 中井
俊昭 天野
Toshiaki Amano
俊昭 天野
弘之 福島
Hiroyuki Fukushima
弘之 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2014226839A priority Critical patent/JP6356046B2/en
Publication of JP2016091880A publication Critical patent/JP2016091880A/en
Application granted granted Critical
Publication of JP6356046B2 publication Critical patent/JP6356046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive wire which has high connection strength and is adequately conducted; a connection structure thereof; and a connection method thereof.SOLUTION: In a connection structure 100 in which two superconductive wires 10 having a superconductor layer 3 formed on one face side of a substrate 1 through an intermediate layer 2 are connected to each other on mutual connection ends. the superconductor layers of the two superconductive wires are aligned along the same plane, and the substrates of the two superconductive wires are aligned along the same plane. The connection structure 100 includes a first intermediate superconductor layer 32 which is grown and formed in any range between the end surface on the connection end side of one superconductive wire to the end surface of the connection end side of the other superconductive wire. Any one of the positions of the end surfaces on the connection end side of the substrate of the two superconductive wires is out-of-range of the first intermediate superconductor layer in the longitudinal direction of the two superconductive materials.SELECTED DRAWING: Figure 2

Description

本発明は、超電導線材の接続構造、超電導線材及び接続方法に関する。   The present invention relates to a superconducting wire connecting structure, a superconducting wire, and a connecting method.

近年、臨界温度(Tc)が液体窒素温度(約77K)よりも高い酸化物超電導体として、例えば、YBCO系(イットリウム系)の高温酸化物超電導体が注目されている。
この高温酸化物超電導線材は、長尺でフレキシブルな金属などの基板上に酸化物超電導膜を堆積したり、単結晶基板上に酸化物超電導膜を堆積したりして超電導導体層が形成されたものが知られている。また、基板と超電導導体層との間には、必要に応じて中間層が設けられることもある。
In recent years, for example, YBCO-based (yttrium-based) high-temperature oxide superconductors have attracted attention as oxide superconductors whose critical temperature (Tc) is higher than the liquid nitrogen temperature (about 77 K).
In this high-temperature oxide superconducting wire, a superconducting conductor layer is formed by depositing an oxide superconducting film on a substrate of a long and flexible metal or by depositing an oxide superconducting film on a single crystal substrate. Things are known. An intermediate layer may be provided between the substrate and the superconducting conductor layer as necessary.

上記YBCO系の高温酸化物超電導体はいわゆるab面(CuO面)に沿って電流が流れやすく、これに垂直なc軸方向には電流が流れにくい性質を有している。そして、YBCO系の高温酸化物超電導体による超電導線材は、その線材の長手方向がab面に平行であって、超電導導体層がab面に沿うように形成される。
従って、上記超電導線材を接続する場合、一方の超電導線材の超電導導体層と他方の超電導線材の超電導導体層とを重ね合わすように超電導導体層の平面同士を対向させて接続すると、超電導線材の接続部ではc軸方向に電流を流すことになり、電流が流れにくくなって超電導特性が低下する。
The YBCO-based high-temperature oxide superconductor has a property that current easily flows along a so-called ab plane (CuO 2 plane), and current hardly flows in the c-axis direction perpendicular thereto. A superconducting wire made of a YBCO-based high-temperature oxide superconductor is formed so that the longitudinal direction of the wire is parallel to the ab surface and the superconducting conductor layer is along the ab surface.
Therefore, when connecting the superconducting wire, if the superconducting conductor layers of one superconducting wire and the superconducting conductor layer of the other superconducting wire are overlapped and connected with the planes of the superconducting conductors facing each other, the connection of the superconducting wires In the portion, current flows in the c-axis direction, and it becomes difficult for current to flow, so that the superconducting characteristics are deteriorated.

このため、特許文献1では、互いの超電導線材の接続端部側の超電導導体層を除去し、基材の接続端部の端面同士を接続し、それぞれの超電導線材の超電導導体層が除去された部分に新たに超電導導体層を成長させて形成する接続方法が提案されている。
また、特許文献2では、接続する超電導線材同士の先端を離間させて配置し、それぞれの超電導線材の超電導導体層に対向するように基板を重ね合わせて接続し、この基板の超電導導体層に対向する面上であって、超電導導体層と超電導導体層との間の部分に超電導導体層を新たに形成し、超電導線材同士を接続する接続方法が提案されている。
For this reason, in patent document 1, the superconducting conductor layer of the connection end part side of a mutual superconducting wire was removed, the end surfaces of the connection end part of a base material were connected, and the superconducting conductor layer of each superconducting wire was removed. A connection method has been proposed in which a superconducting conductor layer is newly grown on the portion.
Moreover, in patent document 2, the front-end | tips of superconducting wire to connect are arrange | positioned apart, the board | substrate is overlapped and connected so that it may oppose the superconducting conductor layer of each superconducting wire, and it opposes the superconducting conductor layer of this board | substrate. There has been proposed a connection method in which a superconducting conductor layer is newly formed in a portion between the superconducting conductor layer and the superconducting conductor layer, and the superconducting wires are connected to each other.

これらの接続方法によれば、互いに接続する超電導線材の超電導導体層と新たに形成された超電導導体層とが同一平面上に並んで接続されるので、ab面に沿って電流を流すことができ、超電導特性を向上することができる。   According to these connection methods, since the superconducting conductor layer of the superconducting wire connected to each other and the newly formed superconducting conductor layer are connected side by side on the same plane, current can flow along the ab plane. The superconducting characteristics can be improved.

特開2001−319750号公報JP 2001-319750 A 特開2005−063695号公報Japanese Patent Laying-Open No. 2005-063695

しかし、特許文献1の接続方法は、接続された基材の間に段差が生じると、その上に超電導導体層の成長不良が起こりやすくなるため、ミクロンオーダーで上面を揃えて基材を接続しなければならず、接続作業が非常に困難性を伴うものとなっていた。   However, in the connection method of Patent Document 1, if a step is generated between the connected base materials, the superconducting conductor layer is liable to grow poorly on the connected base materials. The connection work has been very difficult.

また、特許文献2の接続方法は、基材の段差の問題は生じないが、超電導線材の基材同士が直接接続されていないので、相互の接続強度が低くなるという問題があった。
またこの接続方法では、あらたに超電導導体層に形成する位置が基材の端部に近いことから、基材端部からの金属拡散により超電導導体層の超電導特性が低下するという問題も生じていた。
Moreover, although the connection method of patent document 2 does not produce the problem of the level | step difference of a base material, since the base materials of the superconducting wire were not connected directly, there existed a problem that a mutual connection strength became low.
In addition, in this connection method, since the position to be formed on the superconducting conductor layer is close to the end of the base material, there has also been a problem that the superconducting characteristics of the superconducting conductor layer deteriorate due to metal diffusion from the end of the base material. .

本発明の目的は、接続強度が高く、良好に電流を流すことができる超電導線材の接続構造、超電導線材及び接続方法を提供することである。   An object of the present invention is to provide a superconducting wire connecting structure, a superconducting wire, and a connecting method that have high connection strength and allow a current to flow well.

請求項1記載の発明は、
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材が互いの接続端部で接続された接続構造であって、
前記二本の超電導線材の超電導導体層が同一平面に沿って並ぶと共に、前記二本の超電導線材の基材が同一平面に沿って並び、
一方の前記超電導線材の超電導導体層の接続端部側の端面から他方の前記超電導線材の超電導導体層の接続端部側の端面までの間のいずれかの範囲に成長形成された第一の中間超電導導体層を備え、
前記二本の超電導線材の基材の接続端部側の端面の位置がいずれも前記二本の超電導線材の長手方向について、前記第一の中間超電導導体層の範囲外であることを特徴とする。
The invention described in claim 1
A connection structure in which two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer are connected to each other at connection ends,
The superconducting conductor layers of the two superconducting wires are arranged along the same plane, and the base materials of the two superconducting wires are arranged along the same plane,
A first intermediate formed in any range between the end surface on the connection end portion side of the superconducting conductor layer of one of the superconducting wires and the end surface on the connection end portion side of the superconducting conductor layer of the other superconducting wire. With a superconducting conductor layer,
The positions of the end surfaces of the two superconducting wires on the connecting end side of the base material are both outside the range of the first intermediate superconducting conductor layer in the longitudinal direction of the two superconducting wires. .

請求項2記載の発明は、請求項1記載の超電導線材の接続構造において、
一方の前記超電導線材の超電導導体層の接続端部側の端面から他方の前記超電導線材の超電導導体層の接続端部側の端面までの間のいずれかの範囲に、基材と当該基材の片面側に形成された超電導導体層とを備える第一の接続用線材の超電導導体層からなる第二の中間超電導導体層が配置され、
前記二本の超電導線材の長手方向について、前記二本の超電導線材及び前記第一の接続用線材の超電導導体層の接続端部の端面の位置が、いずれも、前記二本の超電導線材の基材の接続端部側の端面の位置と異なることを特徴とする。
The invention described in claim 2 is the superconducting wire connecting structure according to claim 1,
The base material and the base material of the base material are in any range between the end surface on the connection end portion side of the superconducting conductor layer of one of the superconducting wires and the end surface on the connection end portion side of the superconducting conductor layer of the other superconducting wire. A second intermediate superconducting conductor layer comprising a superconducting conductor layer of the first connecting wire provided with a superconducting conductor layer formed on one side,
With respect to the longitudinal direction of the two superconducting wires, the positions of the end faces of the connection end portions of the superconducting conductor layers of the two superconducting wires and the first connecting wire are both based on the two superconducting wires. It is different from the position of the end surface on the connection end side of the material.

請求項3記載の発明は、請求項1記載の超電導線材の接続構造において、
前記二本の超電導線材の基材の間にこれらの基材と同一平面に沿って並ぶ他の基材が介在し、
前記二本の超電導線材の長手方向について、前記他の基材の両側の端面の位置が前記超電導導体層の端面の位置と異なることを特徴とする。
The invention according to claim 3 is the connection structure of the superconducting wire according to claim 1,
Between the base materials of the two superconducting wires, other base materials arranged along the same plane as these base materials are interposed,
In the longitudinal direction of the two superconducting wires, the positions of the end faces on both sides of the other base material are different from the positions of the end faces of the superconducting conductor layer.

請求項4記載の発明は、請求項1記載の超電導線材の接続構造において、
前記二本の超電導線材の長手方向について、一方の前記超電導線材の中間層の端面の位置が前記二本の超電導線材の基材の接続端部側の端面の位置よりも他方の前記超電導線材側に位置することを特徴とする。
The invention described in claim 4 is the superconducting wire connecting structure according to claim 1,
With respect to the longitudinal direction of the two superconducting wires, the position of the end face of the intermediate layer of one of the superconducting wires is on the other superconducting wire side than the position of the end face on the connecting end side of the base material of the two superconducting wires It is located in.

請求項5記載の発明は、請求項4記載の超電導線材の接続構造において、
前記二本の超電導線材の長手方向について、少なくとも一方の前記超電導線材の前記超電導導体層の端面の位置を含む所定の範囲で前記中間層の厚みが他の部位よりも厚い部位があることを特徴とする。
The invention according to claim 5 is the superconducting wire connecting structure according to claim 4,
In the longitudinal direction of the two superconducting wires, there is a portion where the thickness of the intermediate layer is thicker than other portions within a predetermined range including the position of the end surface of the superconducting conductor layer of at least one of the superconducting wires. And

請求項6記載の発明は、請求項1から5のいずれか一項に記載の超電導線材の接続構造において、
前記二本の超電導線材の長手方向について、前記二本の超電導線材の超電導導体層の接続端部の端面の位置と前記二本の超電導線材の基材の接続端部の端面の位置とが少なくとも1[μm]以上離れていることを特徴とする。
The invention according to claim 6 is the connection structure of the superconducting wire according to any one of claims 1 to 5,
With respect to the longitudinal direction of the two superconducting wires, at least the position of the end surface of the connecting end portion of the superconducting conductor layer of the two superconducting wires and the position of the end surface of the connecting end portion of the base material of the two superconducting wires are at least 1 [μm] or more apart.

請求項7記載の発明は、超電導線材において、
請求項1から6のいずれか一項に記載の接続構造を備えることを特徴とする。
The invention according to claim 7 is a superconducting wire,
A connection structure according to any one of claims 1 to 6 is provided.

請求項8記載の発明は、超電導線材の接続方法において、
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
前記二本の超電導線材の接続端部の超電導導体層を厚さ方向に一部又は全部除去する第一の除去工程と、
前記二本の超電導線材の基材の接続端部同士を接合する接合工程と、
前記超電導導体層が除去された部分に、基材と当該基材の片面側に形成された超電導導体層とを備える第一の接続用線材を、前記二本の超電導線材の超電導導体層と前記第一の接続用線材の超電導導体層とが同一平面上に位置するように配置する第一の配置工程と、
前記二本の超電導線材の超電導導体層のそれぞれの接続端部側の端面と前記第一の接続用線材の超電導導体層からなる第二の中間超電導導体層の両端部の端面との間に第一の中間超電導導体層を新たに形成する第一の形成工程とを含むことを特徴とする。
The invention according to claim 8 is a method for connecting a superconducting wire,
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A first removal step of removing a part or all of the superconducting conductor layer at the connecting end of the two superconducting wires in the thickness direction;
A joining step for joining the connection ends of the base materials of the two superconducting wires; and
A first connecting wire provided with a base material and a superconducting conductor layer formed on one side of the base material in a portion where the superconducting conductor layer is removed, the superconducting conductor layer of the two superconducting wires and the A first disposing step of disposing the superconducting conductor layer of the first connecting wire so as to be positioned on the same plane;
The second superconducting conductor layer of the two superconducting wire rods is connected between the end surface of each of the connecting end portions and the end surfaces of the second intermediate superconducting conductor layer composed of the superconducting conductor layer of the first connecting wire rod. And a first forming step of newly forming one intermediate superconducting conductor layer.

請求項9記載の発明は、超電導線材の接続方法において、
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
前記二本の超電導線材の接続端部の基材を除去する第二の除去工程と、
基材と当該基材の片面側に位置する中間層とを備える第二の接続用線材の中間層が、前記第二の除去工程により露出した前記二本の超電導線材の中間層に接すると共に前記二本の超電導線材の基材と前記第二の接続用線材の基材とが同一平面上に位置するように前記第二の接続用線材を配置する第二の配置工程と、
一方の前記超電導線材の超電導導体層の接続端部側の端面と他方の前記超電導線材の超電導導体層の接続端部側の端面との間に第一の中間超電導導体層を新たに成形成する第二の形成工程とを含むことを特徴とする。
The invention according to claim 9 is a method for connecting a superconducting wire,
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A second removal step of removing the base material at the connection end of the two superconducting wires;
An intermediate layer of a second connecting wire comprising a base material and an intermediate layer located on one side of the base material is in contact with the intermediate layer of the two superconducting wires exposed by the second removal step, and A second disposing step of disposing the second connecting wire so that the base material of the two superconducting wires and the base material of the second connecting wire are located on the same plane;
A first intermediate superconducting conductor layer is newly formed between an end surface of the superconducting conductor layer of one of the superconducting wires and an end surface of the other superconducting wire on the side of the connecting end of the superconducting conductor layer. And a second forming step.

請求項10記載の発明は、超電導線材の接続方法において、
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
一方の前記超電導線材の接続端部の超電導導体層を厚さ方向に一部又は全部除去する第三の除去工程と、
他方の前記超電導線材の接続端部の基材を除去する第四の除去工程と、
前記一方の超電導線材の残存する前記超電導導体層又は露出した前記中間層と前記他方の超電導線材の露出した前記中間層とを重合するように前記二本の超電導線材を配置する第三の配置工程と、
一方の前記超電導線材の超電導導体層の接続端部側の端面と他方の前記超電導線材の超電導導体層の接続端部側の端面との間に第一の中間超電導導体層を成形成する第三の形成工程とを含むことを特徴とする。
The invention according to claim 10 is a method of connecting a superconducting wire,
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A third removal step of removing part or all of the superconducting conductor layer at the connection end of the one superconducting wire in the thickness direction;
A fourth removal step of removing the base material of the connection end of the other superconducting wire;
A third disposing step of disposing the two superconducting wires so that the superconducting conductor layer or the exposed intermediate layer of the one superconducting wire remains and the exposed intermediate layer of the other superconducting wire are polymerized. When,
A third intermediate superconducting conductor layer is formed between the end face on the connection end side of the superconducting conductor layer of one of the superconducting wires and the end face on the connection end side of the superconducting conductor layer of the other superconducting wire. And a forming step.

請求項11記載の発明は、超電導線材の接続方法において、
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
一方の前記超電導線材の接続端部の超電導導体層を厚さ方向に一部又は全部除去する第五の除去工程と、
他方の前記超電導線材の接続端部の基材を除去する第六の除去工程と、
一方の前記超電導線材の前記超電導導体層が一部又は全部除去された部分に、他方の前記超電導線材を、前記超電導導体層を前記一方の超電導線材側に向けた状態で、前記二本の超電導線材の超電導導体層が同一平面上に位置するように配置する第四の配置工程と、
前記二本の超電導線材の超電導導体層のそれぞれの接続端部側の端面の間に他の超電導導体層を新たに形成する第四の形成工程とを含むことを特徴とする。
The invention according to claim 11 is a method of connecting a superconducting wire.
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A fifth removal step of removing part or all of the superconducting conductor layer at the connection end of one of the superconducting wires in the thickness direction;
A sixth removal step of removing the base material at the connection end of the other superconducting wire;
In one of the superconducting wires, the two superconducting wires are placed in a state where the superconducting conductor layer is partially or entirely removed, with the other superconducting wire facing the one superconducting wire. A fourth arrangement step for arranging the superconducting conductor layer of the wire to be located on the same plane;
And a fourth forming step of newly forming another superconducting conductor layer between the end faces on the connecting end side of the superconducting conductor layers of the two superconducting wires.

上記発明では、上記の構成により、電流を良好に流すことが可能な超電導線材の接続構造、接続方法及び超電導線材を提供することが可能となる。   In the said invention, it becomes possible to provide the connection structure of the superconducting wire which can flow an electric current favorably, the connection method, and a superconducting wire with said structure.

超電導線材の斜視図である。It is a perspective view of a superconducting wire. 図2(A)〜図2(C)は第一の実施形態である超電導線材の接続構造を形成する接続方法を示した断面図である。2A to 2C are cross-sectional views showing a connection method for forming a connection structure of superconducting wires according to the first embodiment. Niの自己拡散係数の温度依存性を示す線図である。It is a diagram which shows the temperature dependence of the self-diffusion coefficient of Ni. 図4(A)〜図4(C)は第二の実施形態である超電導線材の接続構造を形成する接続方法を示した断面図である。4A to 4C are cross-sectional views showing a connection method for forming a connection structure for a superconducting wire according to the second embodiment. 図5(A)〜図5(C)は第三の実施形態である超電導線材の接続構造を形成する接続方法を示した断面図である。FIGS. 5A to 5C are cross-sectional views showing a connection method for forming a connection structure for a superconducting wire according to a third embodiment. 図6(A)〜図6(C)は第四の実施形態である超電導線材の接続構造を形成する接続方法を示した断面図である。6 (A) to 6 (C) are cross-sectional views showing a connection method for forming a superconducting wire connection structure according to the fourth embodiment.

[第一の実施形態]
以下に、本発明を実施するための好ましい第一の実施の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付し、重複した説明を適宜省略する。さらに、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
[First embodiment]
Hereinafter, a preferred first embodiment for carrying out the present invention will be described with reference to the drawings. However, the embodiments described below are given various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples. In the drawings, the same or corresponding elements are denoted by the same reference numerals as appropriate, and repeated descriptions are omitted as appropriate. Furthermore, it should be noted that the drawings are schematic, and dimensional relationships between elements may differ from actual ones. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included.

[超電導線材]
図1は、本発明の第1実施形態に係る超電導線材の斜視図である。
図1に示すように、超電導線材10は、超電導成膜用基材1(以下、「基材1」とする)の厚み方向の一方の主面(以下、成膜面11という)に、中間層2及び酸化物超電導導体層3がこの順に積層されている。即ち、超電導線材10は、基材1、中間層2、酸化物超電導導体層3(以下、「超電導導体層3」とする)による積層構造を有している。
[Superconducting wire]
FIG. 1 is a perspective view of a superconducting wire according to the first embodiment of the present invention.
As shown in FIG. 1, a superconducting wire 10 is placed on one main surface (hereinafter referred to as a film-forming surface 11) in the thickness direction of a substrate 1 for superconducting film formation (hereinafter referred to as “base material 1”). Layer 2 and oxide superconducting conductor layer 3 are laminated in this order. That is, the superconducting wire 10 has a laminated structure including a base material 1, an intermediate layer 2, and an oxide superconducting conductor layer 3 (hereinafter referred to as “superconducting conductor layer 3”).

基材1は、テープ状の低磁性の金属基板やセラミックス基板が用いられる。金属基板の材料としては、例えば、強度及び耐熱性に優れた、Co、Cu、Cr、Ni、Ti、Mo、Nb、Ta、W、Mn、Fe、Ag等の金属又はこれらの合金が用いられる。特に、耐食性及び耐熱性が優れているという観点からハステロイ(登録商標)、インコネル(登録商標)等のNi基合金、またはステンレス鋼等のFe基合金を用いることが好ましい。
また、これら各種金属材料上に各種セラミックスを配してもよい。また、セラミックス基板の材料としては、例えば、MgO、SrTiO、又はイットリウム安定化ジルコニア等が用いられる。その他にも、サファイアを基材として用いてもよい。
As the substrate 1, a tape-like low magnetic metal substrate or ceramic substrate is used. As the material of the metal substrate, for example, a metal such as Co, Cu, Cr, Ni, Ti, Mo, Nb, Ta, W, Mn, Fe, and Ag, which is excellent in strength and heat resistance, or an alloy thereof is used. . In particular, from the viewpoint of excellent corrosion resistance and heat resistance, it is preferable to use Ni-based alloys such as Hastelloy (registered trademark) and Inconel (registered trademark), or Fe-based alloys such as stainless steel.
Various ceramics may be arranged on these various metal materials. Moreover, as a material of the ceramic substrate, for example, MgO, SrTiO 3 , yttrium stabilized zirconia, or the like is used. In addition, sapphire may be used as a base material.

成膜面11は、略平滑な面とされており、例えば成膜面11の表面粗さが10nm以下とされていることが好ましい。
なお、表面粗さとは、JISB-0601-2001において規定する表面粗さパラメータの「高さ方向の振幅平均パラメータ」における算術平均粗さRaである。
The film formation surface 11 is a substantially smooth surface, and for example, the surface roughness of the film formation surface 11 is preferably 10 nm or less.
The surface roughness is the arithmetic average roughness Ra in the “amplitude average parameter in the height direction” of the surface roughness parameter defined in JISB-0601-2001.

中間層2は、超電導導体層3において例えば高い2軸配向性を実現するための層である。このような中間層2は、例えば、熱膨張率や格子定数等の物理的な特性値が基材1と超電導導体層3を構成する超電導体との中間的な値を示す。
また、中間層2は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、非晶質のGdZr7−δ(δは酸素不定比量)やAl或いはY等を含むベッド層と、結晶質のMgO等を含みIBAD(Ion Beam Assisted Deposition)法により成形された強制配向層と、LaMnO3+δ(δは酸素不定比量)を含むLMO層と、を順に積層した構成となっていてもよい。また、LMO層の上にCeO2等を含むキャップ層をさらに設けてもよい。
上記各層の厚さは、LMO層を30nm、強制配向層のMgO層を40nm、ベッド層のY層を7nm、Al層を80nmとする。なお、これらの数値はいずれも一例である。
The intermediate layer 2 is a layer for realizing, for example, high biaxial orientation in the superconducting conductor layer 3. For such an intermediate layer 2, for example, physical characteristic values such as a coefficient of thermal expansion and a lattice constant indicate intermediate values between the substrate 1 and the superconductor constituting the superconducting conductor layer 3.
The intermediate layer 2 may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of layers are not limited, but a bed layer containing amorphous Gd 2 Zr 2 O 7-δ (δ is an oxygen non-stoichiometric amount), Al 2 O 3, Y 2 O 3, or the like. And a forced alignment layer formed by IBAD (Ion Beam Assisted Deposition) method including crystalline MgO and the like, and an LMO layer including LaMnO 3 + δ (δ is an oxygen non-stoichiometric amount) are sequentially stacked. May be. Further, a cap layer containing CeO 2 or the like may be further provided on the LMO layer.
The thickness of each of the above layers is 30 nm for the LMO layer, 40 nm for the MgO layer for forced alignment layer, 7 nm for the Y 2 O 3 layer for bed, and 80 nm for the Al 2 O 3 layer. These numerical values are only examples.

この中間層2の表面には、超電導導体層3が積層している。超電導導体層3は、酸化物超電導体、特に銅酸化物超電導体を含んでいることが好ましい。銅酸化物超電導体としては、高温超電導体としてのREBaCu7−δ(以下、RE系超電導体と称す)が好ましい。なお、RE系超電導体中のREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,YbやLuなどの単一の希土類元素又は複数の希土類元素である。また、δは、酸素不定比量であって、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。 A superconducting conductor layer 3 is laminated on the surface of the intermediate layer 2. The superconducting conductor layer 3 preferably contains an oxide superconductor, particularly a copper oxide superconductor. As the copper oxide superconductor, REBa 2 Cu 3 O 7-δ (hereinafter referred to as RE superconductor) as a high-temperature superconductor is preferable. Note that RE in the RE-based superconductor is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Further, δ is an oxygen non-stoichiometric amount and is, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint that the superconducting transition temperature is high. The oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.

また、超電導導体層3には、その表面(中間層2とは逆側の面)を覆う安定化層を形成しても良い。また、超電導導体層3の表面に限らず、安定化層によって、積層状態の基材1、中間層2及び超電導導体層3の表面全体を覆ってもよい。
この安定化層は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、銀からなる銀安定化層と、銅からなる銅安定化層を順に積層した構成となっていてもよい。
Further, the superconducting conductor layer 3 may be formed with a stabilization layer covering the surface (the surface opposite to the intermediate layer 2). Moreover, you may cover the whole surface of the base material 1, the intermediate | middle layer 2, and the superconducting conductor layer 3 of a laminated state not only by the surface of the superconducting conductor layer 3, but by the stabilization layer.
The stabilization layer may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of the layers are not limited, but a silver stabilization layer made of silver and a copper stabilization layer made of copper may be laminated in order.

[超電導線材の接続構造]
本実施形態は、超電導線材の接続構造100と当該超電導線材の接続構造100を有する超電導線材と超電導線材の接続方法とを示すものである。なお、「超電導線材の接続構造100を有する超電導線材」とは、接続構造100により接続された第一と第二の超電導線材10A,10Bを有する超電導線材を示す。
[Connection structure of superconducting wire]
This embodiment shows a superconducting wire connecting structure 100, a superconducting wire having the superconducting wire connecting structure 100, and a superconducting wire connecting method. The “superconducting wire having the superconducting wire connection structure 100” refers to a superconducting wire having the first and second superconducting wires 10A and 10B connected by the connection structure 100.

本実施形態である超電導線材の接続構造100は、図2(C)に示すように、第一と第二の超電導線材10A,10Bの接続端部同士を突き合わせた状態で後述する接続方法によって接続することにより形成される。但し、超電導線材の接続構造100は、後述する接続方法によって形成されるものに限定されず、他の接続方法によって形成しても良い。
第一と第二の超電導線材10A,10Bは上記超電導線材10と同一構造であり、各層1〜3については超電導線材10と同じ符号を使用する。
また、ここでは、一例として、基材1の厚みをおよそ50μm、中間層2の厚みをおよそ200nm、超電導導体層3の厚みをおよそ1μmとする。なお、この値については一例であり、中間層2が超電導導体層3よりも薄いことを前提とすれば、これらの数値に限定されず、任意に変更可能である。
As shown in FIG. 2C, the superconducting wire connecting structure 100 according to the present embodiment is connected by a connecting method described later in a state where the connecting ends of the first and second superconducting wires 10A and 10B are abutted to each other. It is formed by doing. However, the superconducting wire connecting structure 100 is not limited to one formed by a connecting method described later, and may be formed by another connecting method.
The first and second superconducting wires 10A and 10B have the same structure as the superconducting wire 10, and the same reference numerals as those of the superconducting wire 10 are used for the layers 1 to 3.
Here, as an example, the thickness of the substrate 1 is approximately 50 μm, the thickness of the intermediate layer 2 is approximately 200 nm, and the thickness of the superconducting conductor layer 3 is approximately 1 μm. This value is an example, and is not limited to these values and can be arbitrarily changed as long as the intermediate layer 2 is thinner than the superconducting conductor layer 3.

この接続構造100は、第一及び第二の超電導線材10A,10Bの接続端部の基材1,1同士が溶接により接合され、第一及び第二の超電導線材10A,10Bの接続端部の超電導導体層3,3同士が第一の接続用線材10Cの超電導導体層3Cを介して接続されている。   In this connection structure 100, the base materials 1 and 1 of the connection ends of the first and second superconducting wires 10A and 10B are joined together by welding, and the connection ends of the first and second superconducting wires 10A and 10B are joined. The superconducting conductor layers 3 and 3 are connected to each other via the superconducting conductor layer 3C of the first connecting wire 10C.

即ち、各超電導線材10A,10Bのそれぞれの基材1,1及び中間層2,2は、各々の接続端部側の端面12,12,21,21同士を対向させた状態とし、基材1,1同士が接続端部側の端面12,12で溶接により接合されている。
また、各超電導線材10A,10Bの接続端部側の超電導導体層3,3は、接続された各超電導線材10A,10Bの長手方向L(以下、単に「長手方向L」とする)について所定の長さで除去されており、各超電導線材10A,10Bにおける超電導導体層3,3の除去された部分に第一の接続用線材10Cが配置されている。
That is, the base materials 1 and 1 and the intermediate layers 2 and 2 of the respective superconducting wires 10A and 10B are in a state in which the end surfaces 12, 12, 21, and 21 on the connection end side face each other. , 1 are joined together by welding at the end faces 12, 12 on the connection end side.
In addition, the superconducting conductor layers 3 and 3 on the connection end side of each superconducting wire 10A and 10B are predetermined in the longitudinal direction L (hereinafter simply referred to as “longitudinal direction L”) of each connected superconducting wire 10A and 10B. The first connecting wire 10C is disposed in the portion where the superconducting conductor layers 3 and 3 are removed from each of the superconducting wires 10A and 10B.

この第一の接続用線材10Cは、基材1Cの片面側に中間層2Cを介して超電導導体層3Cが形成されている。第一の接続用線材10Cの基材1C,中間層2C及び超電導導体層3Cは、それぞれ、超電導線材10の基材1,中間層2及び超電導導体層3と同一材料から形成されている。
なお、超電導導体層3Cは、超電導導体層3と同一材料ではなく、同種の超電導導体層であっても良い。ここで、同種の超電導導体層とは、超電導導体層3と同系統の材料を意味する。例えば、超電導導体層3をY(イットリウム)系の高温銅酸化物超電導体とした場合には、超電導導体層3CはY系の高温銅酸化物超電導体であれば良く、物質が完全に一致しなくとも良い。また、超電導導体層3Cを同種材料から形成した場合には、中間層2Cも超電導導体層3Cに応じて適宜材料を変更しても良い。
また、第一の接続用線材10Cの基材1C,中間層2C及び超電導導体層3Cの厚さは前述した第一と第二の超電導線材10A,10Bの基材1,中間層2及び超電導導体層3の厚さと等しくすることが望ましいが、これらが近似していれば、異なる厚さを選択しても良い。
In the first connecting wire 10C, a superconducting conductor layer 3C is formed on one side of the substrate 1C via an intermediate layer 2C. The base material 1C, intermediate layer 2C, and superconducting conductor layer 3C of the first connecting wire 10C are made of the same material as the base material 1, intermediate layer 2, and superconducting conductor layer 3 of the superconducting wire 10, respectively.
Superconducting conductor layer 3C is not the same material as superconducting conductor layer 3, but may be the same type of superconducting conductor layer. Here, the same kind of superconducting conductor layer means a material of the same system as the superconducting conductor layer 3. For example, when the superconducting conductor layer 3 is a Y (yttrium) -based high-temperature copper oxide superconductor, the superconducting conductor layer 3C may be a Y-based high-temperature copper oxide superconductor, and the substances are completely matched. Not necessary. When the superconducting conductor layer 3C is formed from the same material, the material of the intermediate layer 2C may be appropriately changed according to the superconducting conductor layer 3C.
The thicknesses of the base material 1C, the intermediate layer 2C and the superconducting conductor layer 3C of the first connecting wire 10C are the same as those of the base material 1, the intermediate layer 2 and the superconducting conductor of the first and second superconducting wires 10A and 10B described above. Although it is desirable to make it equal to the thickness of the layer 3, a different thickness may be selected as long as they are approximate.

上記第一の接続用線材10Cは、超電導導体層3C側が各超電導線材10A,10Bに対向するように配置され、これにより、各超電導線材10A,10Bの超電導導体層3,3と第一の接続用線材10Cの超電導導体層3Cとが長手方向Lに平行な同一平面上に並んだ状態となっている。即ち、第一の接続用線材10Cの超電導導体層3Cは、「第二の中間超電導導体層」として機能する。
なお、「同一平面上に並ぶ」とは、接続する端面同士が厚さ方向一部重複する部分が存在していれば良い。以下、同じとする。また、超電導導体層3,3と超電導導体層3Cは同一直線上に並ぶことがより好ましい。また、後述する基材1,1も同一直線上に並ぶことがより好ましい。
また、第一の接続用線材10Cは長手方向Lにおける長さが、第一及び第二の超電導線材10A、10Bの超電導導体層3,3の除去された部分の長さの合計よりも短くなっている。従って、第一の接続用線材10Cの超電導導体層3Cの両端部における端面31C,31Cは、いずれも、第一及び第二の超電導線材10A、10Bの超電導導体層3,3の接続端部側の端面31,31から離間している(図2(B)参照)。このため、第一の超電導線材10Aの超電導導体層3の接続端部側の端面31と第一の接続用線材10Cの超電導導体層3Cの一方の端面31Cとの間と、第二の超電導線材10Bの超電導導体層3の接続端部側の端面31と第一の接続用線材10Cの超電導導体層3Cの他方の端面31Cとの間とには、それぞれ第一の中間超電導導体層32,32が超電導材料の成長形成により形成されている。
これら第一の中間超電導導体層32,32も、超電導導体層3と同一又は同種の超電導材料から形成される。
The first connecting wire 10C is disposed such that the superconducting conductor layer 3C side faces the superconducting wires 10A and 10B, and thereby the first connecting wire 10C and the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B are connected to the first connecting wire 10C. The superconducting conductor layer 3C of the wire rod 10C is in a state of being arranged on the same plane parallel to the longitudinal direction L. That is, the superconducting conductor layer 3C of the first connecting wire 10C functions as a “second intermediate superconducting conductor layer”.
Note that “aligned on the same plane” is sufficient if there is a portion where the connecting end faces partially overlap in the thickness direction. The same shall apply hereinafter. It is more preferable that the superconducting conductor layers 3 and 3 and the superconducting conductor layer 3C are arranged on the same straight line. Moreover, it is more preferable that the base materials 1 and 1 described later are arranged on the same straight line.
The length of the first connecting wire 10C in the longitudinal direction L is shorter than the total length of the removed portions of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B. ing. Accordingly, the end faces 31C and 31C at both ends of the superconducting conductor layer 3C of the first connecting wire 10C are connected to the connecting end portions of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B. It is spaced apart from the end surfaces 31 and 31 (refer FIG. 2 (B)). For this reason, between the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the first superconducting wire 10A and the one end surface 31C of the superconducting conductor layer 3C of the first connecting wire 10C, and the second superconducting wire. Between the end surface 31 on the connection end side of the 10B superconducting conductor layer 3 and the other end surface 31C of the superconducting conductor layer 3C of the first connecting wire 10C, the first intermediate superconducting conductor layers 32 and 32, respectively. Is formed by growth formation of a superconducting material.
The first intermediate superconducting conductor layers 32 and 32 are also formed of the same or the same kind of superconducting material as the superconducting conductor layer 3.

これにより、各超電導線材10A,10Bの超電導導体層3,3と第一の接続用線材10Cの超電導導体層3Cと第一の中間超電導導体層32,32が長手方向Lに平行な同一平面上に並んだ状態となっている。また、超電導導体層3,3と超電導導体層3Cと第一の中間超電導導体層32,32とは同一直線上に並ぶことがより好ましい。
また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31は第一の中間超電導導体層32,32の一方の端面321,321と接合され、第一の接続用線材10Cの超電導導体層3Cの端面31C,31Cは第一の中間超電導導体層32,32の他方の端面321,321と接合され、各端面31,31,31C,31C,321,321は全て長手方向Lに対しておおむね垂直となっている。
これらによって、第一の超電導線材10Aの超電導導体層3から第二の超電導線材10Bの超電導導体層3までab面に沿って電流を流すことができ、良好な超電導状態を形成することができる。
Thereby, the superconducting conductor layers 3 and 3 of the respective superconducting wires 10A and 10B, the superconducting conductor layer 3C of the first connecting wire 10C, and the first intermediate superconducting conductor layers 32 and 32 are on the same plane parallel to the longitudinal direction L. It is in a state of being lined up. It is more preferable that the superconducting conductor layers 3 and 3, the superconducting conductor layer 3C, and the first intermediate superconducting conductor layers 32 and 32 are arranged on the same straight line.
Further, the end surfaces 31, 31 on the connecting end side of the superconducting conductor layers 3, 3 of each superconducting wire 10A, 10B are joined to one end surfaces 321, 321 of the first intermediate superconducting conductor layers 32, 32, respectively. The end faces 31C and 31C of the superconducting conductor layer 3C of the connecting wire 10C are joined to the other end faces 321 and 321 of the first intermediate superconducting conductor layers 32 and 32, and the end faces 31, 31, 31C, 31C, 321 and 321 are All are generally perpendicular to the longitudinal direction L.
As a result, a current can flow along the ab surface from the superconducting conductor layer 3 of the first superconducting wire 10A to the superconducting conductor layer 3 of the second superconducting wire 10B, and a good superconducting state can be formed.

また、長手方向Lにおける第一の超電導線材10Aの超電導導体層3の接続端部側の端面31の位置、第二の超電導線材10Bの超電導導体層3の接続端部側の端面31の位置、第一の接続用線材10Cの超電導導体層3Cの両端部の端面31C,31Cの位置は、全て、基材1,1の接続端部側の端面12,12の位置と一致せず、十分に離間している。
このため、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31、第一の中間超電導導体層32,32の両端部の端面321,321及び第一の接続用線材10Cの超電導導体層3Cの両端部の端面31C,31Cに対する、各基材1,1の接続端部側の端面からの金属拡散の影響を十分に低減させている。
Also, the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the first superconducting wire 10A in the longitudinal direction L, the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B, The positions of the end surfaces 31C and 31C at both ends of the superconducting conductor layer 3C of the first connecting wire 10C do not coincide with the positions of the end surfaces 12 and 12 on the connecting end side of the base materials 1 and 1, and are sufficiently It is separated.
For this reason, the end surfaces 31, 31 on the connection end side of the superconducting conductor layers 3, 3 of the superconducting wires 10A, 10B, the end surfaces 321, 321 on both ends of the first intermediate superconducting conductor layers 32, 32, and the first connection. The influence of metal diffusion from the end face on the connection end side of each of the base materials 1 and 1 to the end faces 31C and 31C at both ends of the superconducting conductor layer 3C of the wire rod 10C is sufficiently reduced.

図3は基材1に含まれる主要な材料として一般的なNiの自己拡散係数の温度依存性を示す線図である。図3において、横軸はTu/T(TuはNiの融点、Tは加熱温度)、縦軸は自己拡散係数を示している。超電導線材の接続構造100の形成作業における加熱温度は、1000℃未満であるため、この加熱温度を1000℃として図3の関係により自己拡散係数を求めると、加熱時間を1時間とした場合に、Niはおよそ1[μm]の距離まで拡散することになる。
実際には加熱温度は1000℃に満たないことから、基材1の接続端部側の端面12から長手方向Lにおける第一の超電導線材10Aの超電導導体層3の接続端部側の端面31、第二の超電導線材10Bの超電導導体層3の接続端部側の端面31、第一の接続用線材10Cの超電導導体層3Cの両端部の端面31C,31Cのそれぞれの距離を1[μm]以上とすれば、基材1からの拡散の影響を十分に低減することが可能である。そしてこれら各端面31,31,31C、31Cは全て、基材1の接続端部側の端面12から長手方向Lに1[μm]よりも十分に離間しているため、拡散の影響を十分に低減することができる。
FIG. 3 is a diagram showing the temperature dependence of the self-diffusion coefficient of general Ni as a main material contained in the substrate 1. In FIG. 3, the horizontal axis represents Tu / T (Tu is the melting point of Ni, T is the heating temperature), and the vertical axis represents the self-diffusion coefficient. Since the heating temperature in the operation of forming the connection structure 100 of the superconducting wire is less than 1000 ° C., when the heating temperature is set to 1000 ° C. and the self-diffusion coefficient is obtained according to the relationship of FIG. Ni diffuses to a distance of about 1 [μm].
Actually, since the heating temperature is less than 1000 ° C., the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the first superconducting wire 10A in the longitudinal direction L from the end surface 12 on the connection end portion side of the substrate 1; The distance between the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B and the end surfaces 31C and 31C at both ends of the superconducting conductor layer 3C of the first connecting wire 10C is 1 [μm] or more. If so, it is possible to sufficiently reduce the influence of diffusion from the substrate 1. These end faces 31, 31, 31C, 31C are all sufficiently separated from the end face 12 on the connection end portion side of the base material 1 in the longitudinal direction L by more than 1 [μm]. Can be reduced.

また、二つの第一の中間超電導導体層32,32は、いずれも、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置が、長手方向Lについて、第一の中間超電導導体層32,32の範囲外となっている。   Moreover, as for the two 1st intermediate | middle superconducting conductor layers 32 and 32, as for all, the position of the end surfaces 12 and 12 by the side of the connection end part of the base materials 1 and 1 of 1st and 2nd superconducting wire 10A and 10B is, The longitudinal direction L is outside the range of the first intermediate superconducting conductor layers 32 and 32.

[超電導線材の接続方法]
上記接続構造100を形成する超電導線材の接続方法について、図2(A)〜図2(C)に基づいて説明する。
まず、図2(A)に示すように、第一と第二の超電導線材10A,10Bの接続端部の超電導導体層3,3を長手方向Lについて所定の長さで、厚さ方向について全部除去し、中間層2,2の表面を露出させる(第一の除去工程)。これらの除去は、機械的研磨、化学的研磨(例えば、エッチング処理)又はこれらの組み合わせにより行う。
[Connection method of superconducting wire]
A method for connecting the superconducting wires forming the connection structure 100 will be described with reference to FIGS. 2 (A) to 2 (C).
First, as shown in FIG. 2 (A), the superconducting conductor layers 3 and 3 at the connection ends of the first and second superconducting wires 10A and 10B have a predetermined length in the longitudinal direction L and all in the thickness direction. It removes and the surface of the intermediate | middle layers 2 and 2 is exposed (1st removal process). These removals are performed by mechanical polishing, chemical polishing (for example, etching treatment), or a combination thereof.

なお、長手方向Lについて超電導導体層3,3を除去する所定の長さは、この除去範囲に形成される二つの第一の中間超電導導体層32,32の形成作業を個別に行う場合には、第一と第二の超電導線材10A,10Bを個別に加熱槽に格納可能な長さ、例えば、数十[cm]としても良い。また、第一と第二の超電導線材10A,10Bを個別に加熱しない場合には、より短くしても良い。
また、超電導導体層3,3の厚さ方向について全部ではなく一部除去し、一部残存させても良い。各超電導導体層3,3を一部残存させた場合には、後述する第一の中間超電導導体層32,32は、残存する超電導導体層3,3の上に重ねて形成される。
また、超電導導体層3,3を除去した部分の表面粗さは十分小さくしておくことが望ましい。例えば、その表面粗さ(中心線平均粗さRa)は、50nm以下とすることが望ましく、10nm以下とすることがより望ましい。
Note that the predetermined length for removing the superconducting conductor layers 3 and 3 in the longitudinal direction L is such that the two first intermediate superconducting conductor layers 32 and 32 formed in this removal range are individually formed. The first and second superconducting wires 10A and 10B may have a length that can be individually stored in the heating tank, for example, several tens [cm]. Moreover, when not heating 1st and 2nd superconducting wire 10A, 10B separately, you may shorten.
Further, some, but not all, of the superconducting conductor layers 3 and 3 in the thickness direction may be removed and partially left. When a part of each superconducting conductor layer 3, 3 is left, first intermediate superconducting conductor layers 32, 32 to be described later are formed on the remaining superconducting conductor layers 3, 3.
Further, it is desirable that the surface roughness of the portion where the superconducting conductor layers 3 and 3 are removed be sufficiently small. For example, the surface roughness (centerline average roughness Ra) is preferably 50 nm or less, and more preferably 10 nm or less.

さらに、図2(B)に示すように、第一の超電導線材10Aの基材1の接続端部と第二の超電導線材10Bの基材1の接続端部とを対向させる共に互いの接続端部側の端面12,12を溶接により接合する(接合工程)。これにより基材1,1を介して第一の超電導線材10Aと第二の超電導線材10Bとが十分な強度をもって連結される。   Further, as shown in FIG. 2 (B), the connection end of the base material 1 of the first superconducting wire 10A and the connection end of the base material 1 of the second superconducting wire 10B are opposed to each other and the connection ends of each other. The end faces 12 and 12 on the part side are joined by welding (joining process). Thus, the first superconducting wire 10A and the second superconducting wire 10B are connected with sufficient strength through the base materials 1 and 1.

さらに、図2(B)に示すように、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3の除去範囲に、第一の接続用線材10Cを第一と第二の超電導線材10A,10Bの超電導導体層3,3と第一の接続用線材10Cの超電導導体層3Cとが同一平面上に位置するように配置する(第一の配置工程)。   Furthermore, as shown in FIG. 2 (B), the first connecting wire 10C is placed in the first and second superconducting conductor layers 3 and 3 from the first and second superconducting wires 10A and 10B. The superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B and the superconducting conductor layer 3C of the first connecting wire 10C are arranged on the same plane (first arranging step).

なお、この第一の接続用線材10Cは、配置される前に予めその基材1Cの両端部の端面が長手方向Lに長さeだけエッチング処理等により除去される。この除去長さeは1[μm]以上とすることが望ましい。この基材1Cの両端部の除去により、第一の接続用線材10Cの両側における第一の中間超電導導体層32,32の形成において、基材1Cの両端部の端面からの金属拡散の影響を低減することが可能となる。   In addition, before this 1st connection wire 10C is arrange | positioned, the end surface of the both ends of the base material 1C is previously removed by the etching process etc. only in the longitudinal direction L by length e. The removal length e is preferably 1 [μm] or more. By removing both ends of the substrate 1C, in the formation of the first intermediate superconducting conductor layers 32 and 32 on both sides of the first connecting wire 10C, the influence of metal diffusion from the end surfaces of both ends of the substrate 1C is affected. It becomes possible to reduce.

また、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3の除去範囲に第一の接続用線材10Cの超電導導体層3Cを配置する場合には、当該超電導導体層3Cと第一及び第二の超電導線材10A,10Bの中間層2,2との間は、加熱による接合を行っても良い。
また、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3の除去範囲に厚さ方向について一部の超電導導体層3,3を残存させている場合も、第一の接続用線材10Cの超電導導体層3Cと残存する超電導導体層3,3とを加熱により接合しても良い。
Further, when the superconducting conductor layer 3C of the first connecting wire 10C is disposed in the removal range of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B, the superconducting conductor layer 3C and Bonding by heating may be performed between the intermediate layers 2 and 2 of the first and second superconducting wires 10A and 10B.
In addition, even when a part of the superconducting conductor layers 3 and 3 is left in the thickness direction in the removal range of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B, the first connection The superconducting conductor layer 3C of the wire rod 10C and the remaining superconducting conductor layers 3 and 3 may be joined by heating.

次に、図2(C)に示すように、第一と第二の超電導線材10A,10Bの超電導導体層3,3のそれぞれの接続端部側の端面31,31と第一の接続用線材10Cの超電導導体層3Cの両側の端面31C,31Cとの間に第一の中間超電導導体層32,32を新たに形成する(第一の形成工程)。   Next, as shown in FIG. 2C, the end surfaces 31, 31 on the connection end side of the superconducting conductor layers 3, 3 of the first and second superconducting wires 10A, 10B and the first connecting wire. First intermediate superconducting conductor layers 32, 32 are newly formed between the end faces 31C, 31C on both sides of the 10C superconducting conductor layer 3C (first forming step).

第一の中間超電導導体層32,32の形成は、MOD法(Metal Organic Deposition法/有機金属堆積法)により行われる。即ち、第一の中間超電導導体層32,32の形成箇所にMOD液が塗布される。このMOD液は、例えば、RE(Y(イットリウム)、Gd(ガドリニウム)、Sm(サマリウム)及びHo(ホルミウム)等の希土類元素)とBaとCuとが約1:2:3の割合で含まれているアセチルアセトナート系MOD溶液が使用される。
そして、塗布されたMOD液に含まれる有機成分を除去するための仮焼成工程と、エピタキシャル成長により第一の中間超電導導体層32,32を形成するための本焼成工程とが、所定の加圧環境下で実施される。
具体的な例示としては、仮焼成工程については、第一の中間超電導導体層32,32の形成箇所を400℃以上500℃以下の温度範囲で熱処理し、本焼成工程では、第一の中間超電導導体層32,32の形成箇所を750℃以上830℃以下の温度範囲で熱処理することが望ましい。
The first intermediate superconducting conductor layers 32 and 32 are formed by the MOD method (Metal Organic Deposition method / Organic metal deposition method). That is, the MOD liquid is applied to the locations where the first intermediate superconducting conductor layers 32 and 32 are formed. This MOD liquid contains, for example, RE (rare earth elements such as Y (yttrium), Gd (gadolinium), Sm (samarium), and Ho (holmium)), Ba, and Cu in a ratio of about 1: 2: 3. Acetylacetonate MOD solutions are used.
And the temporary baking process for removing the organic component contained in the apply | coated MOD liquid, and the main baking process for forming the 1st intermediate | middle superconducting conductor layers 32 and 32 by epitaxial growth are predetermined pressure environment. Implemented below.
As a specific example, in the preliminary firing step, the first intermediate superconducting conductor layers 32 and 32 are heat-treated at a temperature range of 400 ° C. or higher and 500 ° C. or lower. It is desirable to heat-treat the portions where the conductor layers 32 and 32 are formed in a temperature range of 750 ° C. or higher and 830 ° C. or lower.

なお、第一の形成工程は、MOD法に限らず、化学気相蒸着法(CVD法) 、レーザー蒸着法(PLD法)等、Y系の超電導導体層の形成を可能とする公知のいずれの方法を用いても良い。   The first forming step is not limited to the MOD method, and any known publicly known method that enables the formation of a Y-based superconducting conductor layer, such as a chemical vapor deposition method (CVD method) or a laser vapor deposition method (PLD method). A method may be used.

また、この第一の形成工程により、第一の中間超電導導体層32,32を形成した後には、当該第一の中間超電導導体層32,32と第一の接続用線材10Cの超電導導体層3C及び第一と第二の超電導線材10A,10Bの超電導導体層3,3の接続端部に対して酸素をドープする酸素アニール処理を行うことが望ましい。この酸素アニール処理は、第一の中間超電導導体層32,32と第一の接続用線材10Cの超電導導体層3C及び第一と第二の超電導線材10A,10Bの超電導導体層3,3の接続端部を酸素雰囲気内に収容し、所定の加熱環境下で実施する。
具体的な例示としては、酸素アニールの対象部位を、350℃以上500℃以下の温度範囲の酸素の雰囲気下に置き、この条件下で酸素ドープを行う。
In addition, after the first intermediate superconducting conductor layers 32 and 32 are formed by the first forming step, the first intermediate superconducting conductor layers 32 and 32 and the superconducting conductor layer 3C of the first connecting wire 10C are formed. In addition, it is desirable to perform oxygen annealing treatment for doping oxygen on the connection end portions of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B. This oxygen annealing treatment is performed by connecting the first intermediate superconducting conductor layers 32 and 32 to the superconducting conductor layer 3C of the first connecting wire 10C and the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B. The end portion is accommodated in an oxygen atmosphere, and is carried out in a predetermined heating environment.
As a specific example, an oxygen annealing target part is placed in an oxygen atmosphere in a temperature range of 350 ° C. or higher and 500 ° C. or lower, and oxygen doping is performed under this condition.

また、さらに、酸素アニール工程の後、接続構造100各超電導導体層3,3,3C,32,32の表面又は接続構造100の全体の表面に対して、銀を蒸着し、または、銀ペーストを塗布した後に焼成することで銀安定化層を形成し、その上に電解めっき法などで銅安定化層を形成する安定化層形成工程を付加しても良い。   Further, after the oxygen annealing step, silver is deposited on the surface of each superconducting conductor layer 3, 3, 3C, 32, 32 of the connection structure 100 or the entire surface of the connection structure 100, or a silver paste is applied. A silver stabilization layer may be formed by baking after coating, and a stabilization layer forming step of forming a copper stabilization layer thereon by electrolytic plating may be added.

これらの各工程により、超電導線材の接続構造100が形成される。   By each of these steps, the superconducting wire connecting structure 100 is formed.

[第一の実施形態の技術的効果]
上記超電導線材の接続構造100は、第一と第二の超電導線材10A,10B及び第一の接続用線材10Cの超電導導体層3,3,3Cが同一平面に沿って並ぶと共に、第一と第二の超電導線材10A,10Bの基材1,1が同一平面に沿って並んでいる。また、超電導線材の接続構造100では、接続された超電導線材10A,10Bの長手方向Lについて、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31及び第一の接続用線材10Cの超電導導体層3Cの端面31C,31Cの各位置(これらは第一の中間超電導導体層32,32の四つの端面321の位置と一致する)と基材1,1の接続端部側の端面12,12の位置とがいずれも1[μm]以上離れた配置となっている。
これらにより、Ni等の金属拡散を生じ得る基材1,1の接続端部側の端面から各超電導導体層3,3,3Cの端面31,31,31C,31Cを全て離間させることができ、基材1,1における金属拡散の影響を低減し、接続構造100において良好な超電導特性で電気抵抗を十分に低減させて通電を行うことが可能となる。
また、上記の接続構造100により、第一の超電導線材10Aと第二の超電導線材10Bとの間で超電導臨界電流密度を十分に大きくすることができ、大電流でも超電導状態を良好に維持することが可能となる。
[Technical effects of the first embodiment]
In the superconducting wire connecting structure 100, the superconducting conductor layers 3, 3, 3C of the first and second superconducting wires 10A, 10B and the first connecting wire 10C are arranged along the same plane, and the first and second superconducting wires 10A, 10B are arranged along the same plane. The base materials 1 and 1 of the two superconducting wires 10A and 10B are arranged along the same plane. Further, in the superconducting wire connecting structure 100, the end surfaces 31 and 31 on the connecting end side of the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B and the first side in the longitudinal direction L of the connected superconducting wires 10A and 10B. Connection of the end surfaces 31C and 31C of the superconducting conductor layer 3C of the connecting wire 10C (which coincides with the positions of the four end surfaces 321 of the first intermediate superconducting conductor layers 32 and 32) and the base materials 1 and 1 The positions of the end faces 12 and 12 on the end side are both separated by 1 [μm] or more.
By these, the end surfaces 31, 31, 31C, 31C of the respective superconducting conductor layers 3, 3, 3C can all be separated from the end surface on the connecting end side of the base material 1, 1 that can cause metal diffusion such as Ni, The influence of metal diffusion in the base materials 1 and 1 can be reduced, and the connection structure 100 can be energized with sufficiently reduced electrical resistance with good superconducting characteristics.
In addition, the connection structure 100 can sufficiently increase the superconducting critical current density between the first superconducting wire 10A and the second superconducting wire 10B, and maintain a superconducting state well even at a large current. Is possible.

また、超電導線材の接続構造100では、各超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置に第一の接続用線材10Cを配置し、基材1,1の境界に跨がるように超電導導体層を形成する必要がないことから、基材1,1を厚さ方向に高精度に位置合わせしなくとも、第一の中間超電導導体層32の成膜に影響を及ぼすことがない。このため、第一と第二の超電導線材10A,10Bの超電導導体層3,3同士を良好に接続し、また、接続構造100の形成作業負担の軽減を図ることが可能となる。   Further, in the superconducting wire connecting structure 100, the first connecting wire 10C is disposed at the positions of the end surfaces 12 and 12 on the connecting end side of the bases 1 and 1 of the superconducting wires 10A and 10B. Since it is not necessary to form the superconducting conductor layer so as to straddle the boundary of 1, the formation of the first intermediate superconducting conductor layer 32 is possible even if the base materials 1, 1 are not accurately aligned in the thickness direction. Does not affect the membrane. For this reason, it becomes possible to connect the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B satisfactorily, and to reduce the burden of forming the connection structure 100.

また、超電導線材の接続構造100では、各超電導線材10A,10Bの基材1,1の接続端部を接合するので、接続構造100の接続強度の向上を図ることが可能となる。
また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31と第一の接続用線材10Cの超電導導体層3Cの端面31C,31Cの間に第一の中間超電導導体層32,32の成膜を行うので、例えば、基材と基材の間などの用に深い凹みの内側に成膜を行う場合と異なり、成膜後の酸素アニールを良好に行うことが可能となる。
また、二つの第一の中間超電導導体層32,32は、いずれも、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置が、長手方向Lについて、第一の中間超電導導体層32,32の範囲外となっている。このため、段差のない平滑面上に第一の中間超電導導体層32,32を良好に形成することができ、各超電導導体層3,3,3Cを良好に接続することが可能である。
Moreover, in the connection structure 100 of the superconducting wire, the connection ends of the base materials 1 and 1 of the superconducting wires 10A and 10B are joined, so that the connection strength of the connection structure 100 can be improved.
Also, a first intermediate between the end surfaces 31 and 31 of the superconducting conductor layers 3 and 3 of each superconducting wire 10A and 10B and the end surfaces 31C and 31C of the superconducting conductor layer 3C of the first connecting wire 10C. Since the superconducting conductor layers 32 and 32 are formed, the oxygen annealing after the film formation is favorably performed unlike the case where the film is formed inside the deep dent, for example, between the substrates. Is possible.
Moreover, as for the two 1st intermediate | middle superconducting conductor layers 32 and 32, as for all, the position of the end surfaces 12 and 12 by the side of the connection end part of the base materials 1 and 1 of 1st and 2nd superconducting wire 10A and 10B is, The longitudinal direction L is outside the range of the first intermediate superconducting conductor layers 32 and 32. For this reason, the first intermediate superconducting conductor layers 32 and 32 can be satisfactorily formed on a smooth surface without a step, and the respective superconducting conductor layers 3, 3, and 3C can be satisfactorily connected.

また、上記超電導線材の接続構造100を、前述した第一の除去工程と接合工程と第一の配置工程と第一の形成工程とによって形成するので、より簡易に接続構造100を形成することが可能となる。   Further, since the superconducting wire connecting structure 100 is formed by the first removing step, the joining step, the first arranging step, and the first forming step, the connecting structure 100 can be formed more easily. It becomes possible.

[第二の実施形態]
図4に第二の実施形態である超電導線材の接続構造100Dを示す。この接続構造100Dについては、前述した接続構造100と同一の構成については同じ符号を付して重複する説明は省略する。
[Second Embodiment]
FIG. 4 shows a superconducting wire connecting structure 100D according to the second embodiment. About this connection structure 100D, about the structure same as the connection structure 100 mentioned above, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

[超電導線材の接続構造]
本実施形態は、超電導線材の接続構造100Dと当該超電導線材の接続構造100Dを有する超電導線材と超電導線材の接続方法とを示すものである。
本実施形態である超電導線材の接続構造100Dは、図4に示すように、第一と第二の超電導線材10A,10Bの接続端部同士を突き合わせた状態で後述する接続方法によって接続することにより形成される。但し、超電導線材の接続構造100Dは、後述する接続方法によって形成されるものに限定されず、他の接続方法によって形成しても良い。
[Connection structure of superconducting wire]
The present embodiment shows a superconducting wire connecting structure 100D and a superconducting wire connecting method 100D and a superconducting wire connecting method.
As shown in FIG. 4, the superconducting wire connecting structure 100D according to the present embodiment is connected by a connecting method described later in a state in which the connecting ends of the first and second superconducting wires 10A and 10B are in contact with each other. It is formed. However, the superconducting wire connecting structure 100 </ b> D is not limited to the connection method described below, and may be formed by other connection methods.

この接続構造100Dは、第一及び第二の超電導線材10A,10Bの接続端部が第二の接続用線材10Dを介して接続されている。
第二の接続用線材10Dは、基材1Dの片面側に中間層2Dが形成されている。第二の接続用線材10Dの基材1Dと中間層2Dは、それぞれ、超電導線材10の基材1と中間層2と同一材料から形成されている。
In the connection structure 100D, the connection end portions of the first and second superconducting wires 10A and 10B are connected via the second connection wire 10D.
As for 2nd connecting wire 10D, intermediate | middle layer 2D is formed in the single side | surface side of base material 1D. The base material 1D and the intermediate layer 2D of the second connecting wire 10D are formed of the same material as the base material 1 and the intermediate layer 2 of the superconducting wire 10, respectively.

上記各超電導線材10A,10Bは、接続端部の基材1,1が長手方向Lについて所定の長さで除去されており、これにより露出した各超電導線材10A,10Bの中間層2,2と第二の接続用線材10Dの中間層2Dとが密着し、なおかつ、各基材1,1の接続端部側の端面12,12と第二の接続用線材10Dの基材1Dの両端部の端面12D,12Dとが溶接により接合されている。
また、第二の接続用線材10Dの長手方向Lの長さは、各超電導線材10A,10Bの接続端部の基材1,1の除去長さの合計よりも長く、これにより、第一の超電導線材10Aの超電導導体層3の接続端部側の端面31と第二の超電導線材10Bの超電導導体層3の接続端部側の端面31との間には隙間が生じる。そして、この隙間には第一の中間超電導導体層32Dが超電導材料の成長形成により形成されている。また、第一の中間超電導導体層32Dは、超電導導体層3と同一又は同種の超電導材料から形成される。
これらの構造により、各超電導線材10A,10Bの超電導導体層3,3と第一の中間超電導導体層32Dとが長手方向Lに平行な同一平面上に並んだ状態となっている。また、各超電導線材10A,10Bの基材1,1と第二の接続用線材10Dの基材1Dも長手方向Lに平行な同一平面上に並んだ状態となっている。なお、超電導導体層3,3と第一の中間超電導導体層32Dは同一直線上となることがより好ましい。また、基材1,1,1Dは同一直線上となることがより好ましい。
また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31は第一の中間超電導導体層32Dの端面321D,321Dと接合され、各端面31,31,321D,321Dは全て長手方向Lに対しておおむね垂直となっている。
これらによって、第一の超電導線材10Aの超電導導体層3から第二の超電導線材10Bの超電導導体層3までab面に沿って電流を流すことができ、良好な超電導状態を形成することができる。
In each of the superconducting wires 10A and 10B, the base materials 1 and 1 at the connection end are removed in a predetermined length in the longitudinal direction L, and the intermediate layers 2 and 2 of the superconducting wires 10A and 10B exposed thereby The intermediate layer 2D of the second connecting wire 10D is in close contact with each other, and the end surfaces 12 and 12 on the connecting end side of each of the substrates 1 and 1 and both ends of the substrate 1D of the second connecting wire 10D. End faces 12D and 12D are joined by welding.
In addition, the length in the longitudinal direction L of the second connecting wire 10D is longer than the total removal length of the base materials 1 and 1 at the connecting end portions of the respective superconducting wires 10A and 10B. There is a gap between the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the superconducting wire 10A and the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B. A first intermediate superconducting conductor layer 32D is formed in this gap by growing a superconducting material. The first intermediate superconducting conductor layer 32D is formed of the same or the same kind of superconducting material as the superconducting conductor layer 3.
With these structures, the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B and the first intermediate superconducting conductor layer 32D are arranged on the same plane parallel to the longitudinal direction L. Further, the base materials 1 and 1 of the superconducting wires 10A and 10B and the base material 1D of the second connecting wire 10D are also arranged on the same plane parallel to the longitudinal direction L. It is more preferable that the superconducting conductor layers 3 and 3 and the first intermediate superconducting conductor layer 32D are on the same straight line. Moreover, it is more preferable that the base materials 1, 1, 1D are on the same straight line.
Further, the end faces 31, 31 on the connection end side of the superconducting conductor layers 3, 3 of the superconducting wires 10A, 10B are joined to the end faces 321D, 321D of the first intermediate superconducting conductor layer 32D, and the end faces 31, 31, 321D are joined. , 321D are generally perpendicular to the longitudinal direction L.
As a result, a current can flow along the ab surface from the superconducting conductor layer 3 of the first superconducting wire 10A to the superconducting conductor layer 3 of the second superconducting wire 10B, and a good superconducting state can be formed.

また、長手方向Lにおける第一の超電導線材10Aの超電導導体層3の接続端部側の端面31の位置及び第二の超電導線材10Bの超電導導体層3の接続端部側の端面31の位置は、いずれも、基材1,1の接続端部側の端面12,12の各位置と一致せず、各々が1[μm]よりも十分に離間している。
このため、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31及び第一の中間超電導導体層32Dの両端部の端面321D,321Dに対する、各基材1,1,1Dの端面12,12Dからの金属拡散の影響を十分に低減させている。
Further, the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the first superconducting wire 10A in the longitudinal direction L and the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B are These do not coincide with the positions of the end surfaces 12 and 12 on the connection end side of the base materials 1 and 1, and are sufficiently separated from each other by 1 [μm].
For this reason, each base material 1 with respect to the end surfaces 31 and 31 on the connection end side of the superconducting conductor layers 3 and 3 of each superconducting wire 10A and 10B and the end surfaces 321D and 321D on both ends of the first intermediate superconducting conductor layer 32D. The influence of metal diffusion from the 1 and 1D end faces 12 and 12D is sufficiently reduced.

また、第一の中間超電導導体層32Dは、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置が、いずれも、長手方向Lについて、第一の中間超電導導体層32Dの範囲外となっている。   In addition, the first intermediate superconducting conductor layer 32D is arranged such that the positions of the end faces 12, 12 on the connection end side of the bases 1, 1 of the first and second superconducting wires 10A, 10B are both in the longitudinal direction L. This is outside the range of the first intermediate superconducting conductor layer 32D.

[超電導線材の接続方法]
上記接続構造100Dを形成する超電導線材の接続方法について、図4(A)〜図4(C)に基づいて説明する。
まず、図4(A)に示すように、第一と第二の超電導線材10A,10Bの接続端部の基材1,1を長手方向Lについて所定の長さで、厚さ方向について全部除去し、中間層2,2の表面を露出させる(第二の除去工程)。これらの除去は、機械的研磨、化学的研磨(例えば、エッチング処理)又はこれらの組み合わせにより行う。
[Connection method of superconducting wire]
A method for connecting the superconducting wires forming the connection structure 100D will be described with reference to FIGS. 4 (A) to 4 (C).
First, as shown in FIG. 4A, the base materials 1 and 1 at the connection ends of the first and second superconducting wires 10A and 10B are removed in a predetermined length in the longitudinal direction L and in the thickness direction. Then, the surfaces of the intermediate layers 2 and 2 are exposed (second removal step). These removals are performed by mechanical polishing, chemical polishing (for example, etching treatment), or a combination thereof.

さらに、図4(B)に示すように、第一の超電導線材10Aの基材1の接続端部と第二の超電導線材10Bの基材1の接続端部とを対向させ、第二の除去工程により露出した各中間層2,2に中間層2Dが接し、基材1,1と基材1Dとが長手方向Lに沿って同一平面上に並ぶように第二の接続用線材10Dを第一の超電導線材10Aの接続端部と第二の超電導線材10Bの接続端部との間に配置する(第二の配置工程)。
また、この時、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12と第二の接続用線材10Dの基材1Dの端面12D,12Dとを個別に溶接により接合する。これにより基材1,1,1Dを介して第一の超電導線材10Aと第二の超電導線材10Bと第二の接続用線材10Dとが十分な強度をもって連結される。
Further, as shown in FIG. 4B, the connection end of the base material 1 of the first superconducting wire 10A and the connection end of the base material 1 of the second superconducting wire 10B are opposed to each other to remove the second. The second connecting wire 10D is arranged so that the intermediate layer 2D is in contact with each of the intermediate layers 2 and 2 exposed in the process, and the base materials 1 and 1 and the base material 1D are aligned on the same plane along the longitudinal direction L. It arrange | positions between the connection end part of 10 A of one superconducting wire, and the connection end part of 10B of 2nd superconducting wire (2nd arrangement | positioning process).
At this time, the end surfaces 12 and 12 of the first and second superconducting wires 10A and 10B on the connection end portion side of the substrates 1 and 1 and the end surfaces 12D and 12D of the substrate 1D of the second connecting wire 10D and Are joined individually by welding. Thus, the first superconducting wire 10A, the second superconducting wire 10B, and the second connecting wire 10D are coupled with sufficient strength through the bases 1, 1, 1D.

上記第二の配置工程により、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3は長手方向Lに沿った同一平面上に位置する状態となる。
そして、図4(C)に示すように、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3の接続端部側の端面31,31の間であって第二の接続用線材10Dの中間層2Dの上面に第一の中間超電導導体層32Dを形成する(第二の形成工程)。
なお、第二の接続用線材10Dの中間層2Dは、配置する前にその表面粗さを十分小さく(例えば、中心線平均粗さRaを50nm以下、より望ましくは10nm以下)しておくことが望ましい。
By the second arrangement step, the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B are positioned on the same plane along the longitudinal direction L.
And as shown in FIG.4 (C), it is between the end surfaces 31 and 31 by the side of the connection end part of each superconducting conductor layer 3 and 3 of 1st and 2nd superconducting wire 10A, 10B, and it is 2nd connection. First intermediate superconducting conductor layer 32D is formed on the upper surface of intermediate layer 2D of wire rod 10D (second forming step).
The intermediate layer 2D of the second connecting wire 10D has a sufficiently small surface roughness (for example, the center line average roughness Ra is 50 nm or less, more preferably 10 nm or less). desirable.

第一の中間超電導導体層32Dの形成は、MOD法により行われる。MOD法の詳細は、第一の実施形態の第一の中間超電導導体層32の形成と同じである。
また、この第一の中間超電導導体層32Dも、MOD法に限らず、CVD法 、PLD法等、Y系の超電導導体層の形成を可能とする公知のいずれの方法を用いても良い。
The formation of the first intermediate superconducting conductor layer 32D is performed by the MOD method. The details of the MOD method are the same as the formation of the first intermediate superconducting conductor layer 32 of the first embodiment.
The first intermediate superconducting conductor layer 32D is not limited to the MOD method, and any known method capable of forming a Y-based superconducting conductor layer such as a CVD method or a PLD method may be used.

また、第一の中間超電導導体層32Dの場合も、その形成後には、第一の中間超電導導体層32の場合と同様に、酸素アニール処理を行い、さらには、安定化層形成工程を付加しても良い。
これらの各工程により、超電導線材の接続構造100Dが形成される。
Also, in the case of the first intermediate superconducting conductor layer 32D, after its formation, oxygen annealing treatment is performed in the same manner as in the case of the first intermediate superconducting conductor layer 32, and a stabilization layer forming step is added. May be.
Through these steps, a superconducting wire connection structure 100D is formed.

[第二の実施形態の技術的効果]
上記超電導線材の接続構造100Dは、第一と第二の超電導線材10A,10Bの超電導導体層3,3及び第一の中間超電導導体層32Dが同一平面に沿って並ぶと共に、第一と第二の超電導線材10A,10Bの基材1,1と第一の接続用線材10Dの基材1Dとが同一平面に沿って並んでいる。
また、超電導線材の接続構造100Dでは、第一と第二の超電導線材10A,10Bの長手方向Lについて、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31の各位置(これらは第一の中間超電導導体層32Dの二つの端面321Dの位置と一致する)と基材1,1の接続端部側の端面12,12の各位置(これらは第一の接続用線材10Dの基材1Dの端面12D,12Dの位置と一致する)とが1[μm]以上離れた配置となっている。
従って、超電導線材の接続構造100Dもまた、超電導線材の接続構造100と同様に、各超電導導体層3,3,32Dに対する金属拡散の影響を低減して、良好な超電導特性で電気抵抗を十分に低減させて通電を行うことが可能となる。
また、上記の接続構造100Dにより、第一の超電導線材10Aと第二の超電導線材10Bとの間で超電導臨界電流密度を十分に大きくすることができ、大電流でも超電導状態を良好に維持することが可能となる。
[Technical effects of the second embodiment]
In the superconducting wire connecting structure 100D, the superconducting conductor layers 3 and 3 and the first intermediate superconducting conductor layer 32D of the first and second superconducting wires 10A and 10B are arranged along the same plane, and the first and second The base materials 1 and 1 of the superconducting wires 10A and 10B and the base material 1D of the first connecting wire 10D are arranged along the same plane.
In the superconducting wire connecting structure 100D, the end surfaces 31, 31 on the connecting end side of the superconducting conductor layers 3, 3 of the superconducting wires 10A, 10B in the longitudinal direction L of the first and second superconducting wires 10A, 10B. (They coincide with the positions of the two end faces 321D of the first intermediate superconducting conductor layer 32D) and the positions of the end faces 12 and 12 on the connecting end side of the substrates 1 and 1 (these are the first positions) The connecting wire 10D is disposed at a distance of 1 [μm] from the end surfaces 12D and 12D of the base 1D.
Accordingly, the superconducting wire connecting structure 100D also reduces the influence of metal diffusion on each of the superconducting conductor layers 3, 3, and 32D in the same way as the superconducting wire connecting structure 100, and has sufficient superconducting characteristics and sufficient electric resistance. It is possible to reduce the power supply.
In addition, the above connection structure 100D can sufficiently increase the superconducting critical current density between the first superconducting wire 10A and the second superconducting wire 10B, and maintain a superconducting state well even at a large current. Is possible.

また、超電導線材の接続構造100Dでは、第二の接続用線材10Dの中間層2Dの表面に第一の中間超電導導体層32Dを形成するので、基材1,1,1Dを厚さ方向に高精度に位置合わせしなくとも、第一の中間超電導導体層32Dの成膜に影響を及ぼすことがない。このため、第一と第二の超電導線材10A,10Bの超電導導体層3,3同士を良好に接続し、また、接続構造100Dの形成作業負担の軽減を図ることが可能となる。   In the superconducting wire connecting structure 100D, the first intermediate superconducting conductor layer 32D is formed on the surface of the intermediate layer 2D of the second connecting wire 10D. Even if it is not aligned with accuracy, the film formation of the first intermediate superconducting conductor layer 32D is not affected. For this reason, it becomes possible to connect the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B satisfactorily, and to reduce the burden of forming the connection structure 100D.

また、超電導線材の接続構造100Dでは、各超電導線材10A,10Bの基材1,1と第二の接続用線材10Dの基材1Dの接続端部を接合するので、接続構造100Dの接続強度の向上を図ることが可能となる。
また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31の間に第一の中間超電導導体層32Dの成膜を行うので、例えば、基材と基材の間などの用に深い凹みの内側に成膜を行う場合と異なり、成膜後の酸素アニールを良好に行うことが可能となる。
また、第一の中間超電導導体層32Dは、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置が、いずれも、長手方向Lについて、第一の中間超電導導体層32Dの範囲外となっている。このため、段差のない平滑面上に第一の中間超電導導体層32Dを良好に形成することができ、各超電導導体層3,3を良好に接続することが可能である。
In the superconducting wire connecting structure 100D, the connection ends of the base materials 1 and 1 of the superconducting wires 10A and 10B and the base material 1D of the second connecting wire 10D are joined. It is possible to improve.
In addition, since the first intermediate superconducting conductor layer 32D is formed between the end surfaces 31 and 31 on the connecting end side of the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B, for example, the base material and the base material Unlike the case where a film is formed inside a deep dent, such as between, the oxygen annealing after the film formation can be performed satisfactorily.
In addition, the first intermediate superconducting conductor layer 32D is arranged such that the positions of the end faces 12, 12 on the connection end side of the bases 1, 1 of the first and second superconducting wires 10A, 10B are both in the longitudinal direction L. This is outside the range of the first intermediate superconducting conductor layer 32D. For this reason, the first intermediate superconducting conductor layer 32D can be satisfactorily formed on a smooth surface without a step, and the respective superconducting conductor layers 3 and 3 can be satisfactorily connected.

また、超電導線材の接続構造100Dでは、長手方向Lについて、第一の超電導線材10Aの基材1の接続端部側の端面12から超電導導体層3の接続端部側の端面31までの範囲と第二の超電導線材10Bの基材1の端面12から超電導導体層3の接続端部側の端面31までの範囲で中間層2,2が第二の接続用線材10Dの中間層2Dと重合し、当該重合部分で中間層の厚みが他の部位よりも厚いので、金属拡散の影響をより効果的に低減することが可能となる。   Moreover, in the connection structure 100D of the superconducting wire, in the longitudinal direction L, the range from the end surface 12 on the connection end portion side of the substrate 1 of the first superconducting wire 10A to the end surface 31 on the connection end portion side of the superconducting conductor layer 3 In the range from the end face 12 of the substrate 1 of the second superconducting wire 10B to the end face 31 on the connecting end side of the superconducting conductor layer 3, the intermediate layers 2 and 2 are superposed on the intermediate layer 2D of the second connecting wire 10D. The thickness of the intermediate layer in the polymerization portion is thicker than that in other portions, so that the influence of metal diffusion can be more effectively reduced.

また、上記超電導線材の接続構造100Dを、前述した第二の除去工程と第二の配置工程と第二の形成工程とによって形成するので、より容易に接続構造100Dを形成することが可能となる。   In addition, since the superconducting wire connecting structure 100D is formed by the second removing step, the second arranging step, and the second forming step, the connecting structure 100D can be formed more easily. .

[第三の実施形態]
図5に第三の実施形態である超電導線材の接続構造100Eを示す。この接続構造100Eについては、前述した接続構造100と同一の構成については同じ符号を付して重複する説明は省略する。
[Third embodiment]
FIG. 5 shows a superconducting wire connecting structure 100E according to the third embodiment. Regarding the connection structure 100E, the same components as those of the connection structure 100 described above are denoted by the same reference numerals and redundant description is omitted.

[超電導線材の接続構造]
本実施形態は、超電導線材の接続構造100Eと当該超電導線材の接続構造100Eを有する超電導線材と超電導線材の接続方法とを示すものである。
本実施形態である超電導線材の接続構造100Eは、図5に示すように、第一と第二の超電導線材10A,10Bの接続端部同士を突き合わせた状態で後述する接続方法によって接続することにより形成される。但し、超電導線材の接続構造100Eは、後述する接続方法によって形成されるものに限定されず、他の接続方法によって形成しても良い。
[Connection structure of superconducting wire]
The present embodiment shows a superconducting wire connecting structure 100E and a superconducting wire connecting method 100E and a superconducting wire connecting method.
As shown in FIG. 5, the superconducting wire connecting structure 100E according to the present embodiment is connected by a connecting method described later in a state where the connecting end portions of the first and second superconducting wires 10A and 10B are abutted to each other. It is formed. However, the superconducting wire connection structure 100E is not limited to the connection method described later, and may be formed by other connection methods.

この接続構造100Eは、第一及び第二の超電導線材10A,10Bの基材1,1同士を接続し、超電導導体層3,3は第一の中間超電導導体層32Eを介して接続されている。   This connection structure 100E connects the base materials 1 and 1 of the first and second superconducting wires 10A and 10B, and the superconducting conductor layers 3 and 3 are connected via the first intermediate superconducting conductor layer 32E. .

第一の超電導線材10Aは、接続端部の超電導導体層3が長手方向Lについて所定の長さで除去されており、第二の超電導線材10Bは、接続端部の基材1が長手方向Lについて第一の超電導線材10Aの超電導導体層3の除去長さよりも短い長さで除去されている。
そして、第一と第二の超電導線材10A,10Bは、互いの基材1,1の接続端部側の端面12,12が溶接により接合されており、第二の超電導線材10Bの中間層2及び超電導導体層3の接続端部は、第一の超電導線材10Aの中間層2の接続端部の上面に載置された状態となっている。
In the first superconducting wire 10A, the superconducting conductor layer 3 at the connection end is removed with a predetermined length in the longitudinal direction L, and in the second superconducting wire 10B, the base 1 at the connecting end is in the longitudinal direction L. Is removed with a length shorter than the removal length of the superconducting conductor layer 3 of the first superconducting wire 10A.
And as for the 1st and 2nd superconducting wire 10A, 10B, the end surfaces 12 and 12 by the side of the connection edge part of the mutual base materials 1 and 1 are joined by welding, The intermediate | middle layer 2 of the 2nd superconducting wire 10B The connection end of the superconducting conductor layer 3 is placed on the upper surface of the connection end of the intermediate layer 2 of the first superconducting wire 10A.

また、長手方向Lについて、第二の超電導線材10Bの中間層2の端面21の位置及び超電導導体層3の接続端部側の端面31の位置が、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置よりも第一の超電導線材10A側に延出されている。これにより、第一の超電導線材10Aの中間層2と第二の超電導線材10Bの中間層2とは一部重合した状態となっている。   In the longitudinal direction L, the position of the end surface 21 of the intermediate layer 2 of the second superconducting wire 10B and the position of the end surface 31 on the connecting end side of the superconducting conductor layer 3 are the first and second superconducting wires 10A, 10B. Are extended to the first superconducting wire 10 </ b> A side from the positions of the end faces 12, 12 on the connecting end side of the base materials 1, 1. As a result, the intermediate layer 2 of the first superconducting wire 10A and the intermediate layer 2 of the second superconducting wire 10B are partially polymerized.

また、前述したように、第一の超電導線材10Aの超電導導体層3の除去長さは第二の超電導線材10Bの基材1の除去長さよりも長いので、第一の超電導線材10Aの超電導導体層3の接続端部側の端面31と第二の超電導線材10Bの超電導導体層3の接続端部側の端面31との間には隙間が生じる。そして、この隙間には第一の中間超電導導体層32Eが超電導材料の成長形成により形成されている。この第一の中間超電導導体層32Eは、超電導導体層3と同一又は同種の超電導材料から形成される。   Further, as described above, since the removal length of the superconducting conductor layer 3 of the first superconducting wire 10A is longer than the removal length of the base material 1 of the second superconducting wire 10B, the superconducting conductor of the first superconducting wire 10A. A gap is generated between the end surface 31 on the connection end portion side of the layer 3 and the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B. A first intermediate superconducting conductor layer 32E is formed in the gap by growing the superconducting material. The first intermediate superconducting conductor layer 32E is formed of the same or the same kind of superconducting material as the superconducting conductor layer 3.

これらの構造により、各超電導線材10A,10Bの超電導導体層3,3と第一の中間超電導導体層32Eとが長手方向Lに平行な同一平面上に並んだ状態となっている。また、各超電導線材10A,10Bの基材1,1も長手方向Lに平行な同一平面上に並んだ状態となっている。なお、超電導導体層3,3と第一の中間超電導導体層32Eは同一直線上となることがより好ましい。また、基材1,1は同一直線上となることがより好ましい。
また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31は第一の中間超電導導体層32Eの端面321E,321Eと接合され、各端面31,31,321E,321Eは全て長手方向Lに対しておおむね垂直となっている。
これらによって、第一の超電導線材10Aの超電導導体層3から第二の超電導線材10Bの超電導導体層3までab面に沿って電流を流すことができ、良好な超電導状態を形成することができる。
With these structures, the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B and the first intermediate superconducting conductor layer 32E are arranged on the same plane parallel to the longitudinal direction L. Further, the base materials 1 and 1 of the superconducting wires 10A and 10B are also arranged on the same plane parallel to the longitudinal direction L. It is more preferable that the superconducting conductor layers 3 and 3 and the first intermediate superconducting conductor layer 32E are on the same straight line. Moreover, it is more preferable that the base materials 1 and 1 are on the same straight line.
Further, the end surfaces 31, 31 on the connection end side of the superconducting conductor layers 3, 3 of the superconducting wires 10A, 10B are joined to the end surfaces 321E, 321E of the first intermediate superconducting conductor layer 32E, and the end surfaces 31, 31, 321E are joined. , 321E are generally perpendicular to the longitudinal direction L.
As a result, a current can flow along the ab surface from the superconducting conductor layer 3 of the first superconducting wire 10A to the superconducting conductor layer 3 of the second superconducting wire 10B, and a good superconducting state can be formed.

また、長手方向Lにおける第一の超電導線材10Aの超電導導体層3の接続端部側の端面31の位置及び第二の超電導線材10Bの超電導導体層3の接続端部側の端面31の位置は、いずれも、基材1,1の接続端部側の端面12,12の位置と一致せず、各々が1[μm]よりも十分に離間している。
これにより、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31及び第一の中間超電導導体層32Eの両端部の端面321E,321Eに対する、各基材1,1の接続端部側の端面12,12からの金属拡散の影響を十分に低減させている。
Further, the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the first superconducting wire 10A in the longitudinal direction L and the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B are These do not coincide with the positions of the end surfaces 12 and 12 on the connection end side of the base materials 1 and 1, and are sufficiently separated from each other by 1 [μm].
Thereby, each base material 1, with respect to the end surfaces 31, 31 of the superconducting conductor layers 3, 3 of each superconducting wire 10A, 10B and the end surfaces 321E, 321E of both ends of the first intermediate superconducting conductor layer 32E. The influence of metal diffusion from the end faces 12 and 12 on the side of the connection end 1 is sufficiently reduced.

また、第一の中間超電導導体層32Eは、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置が、長手方向Lについて、第一の中間超電導導体層32Eの範囲外となっている。   Further, the first intermediate superconducting conductor layer 32E has the first and second superconducting wires 10A and 10B whose end surfaces 12 and 12 on the connection end portions side of the bases 1 and 1 are positioned in the first direction in the longitudinal direction L. Of the intermediate superconducting conductor layer 32E.

[超電導線材の接続方法]
上記接続構造100Eを形成する超電導線材の接続方法について、図5(A)〜図5(C)に基づいて説明する。
まず、図5(A)に示すように、第一の超電導線材10Aの接続端部の超電導導体層3を長手方向Lについて所定の長さで、厚さ方向について全部除去し、中間層2の表面を露出させる(第三の除去工程)。また、第二の超電導線材10Bの接続端部の基材1を長手方向Lについて第一の超電導線材10Aの超電導導体層3の除去長さよりも短い長さで、厚さ方向について全部除去し、中間層2の表面(図における下側表面)を露出させる(第四の除去工程)。
第三の除去工程及び第四の除去工程の除去は、機械的研磨、化学的研磨(例えば、エッチング処理)又はこれらの組み合わせにより行う。
なお、第三の除去工程と第四の除去工程はいずれを先に行っても良いし、同時に行ってもよい。
[Connection method of superconducting wire]
A method for connecting the superconducting wires forming the connection structure 100E will be described with reference to FIGS. 5 (A) to 5 (C).
First, as shown in FIG. 5A, the superconducting conductor layer 3 at the connection end of the first superconducting wire 10A is removed in a predetermined length in the longitudinal direction L and in the thickness direction. The surface is exposed (third removal step). Further, the base material 1 at the connection end of the second superconducting wire 10B is removed in the thickness direction in a length shorter than the removal length of the superconducting conductor layer 3 of the first superconducting wire 10A in the longitudinal direction L, The surface (lower surface in the drawing) of the intermediate layer 2 is exposed (fourth removal step).
The removal in the third removal step and the fourth removal step is performed by mechanical polishing, chemical polishing (for example, etching treatment), or a combination thereof.
Note that either the third removal step or the fourth removal step may be performed first or simultaneously.

さらに、図5(B)に示すように、第一の超電導線材10Aの中間層2の接続端部の上に第二の超電導線材10Bの中間層2の接続端部を重合させた状態で互いの基材1,1が長手方向Lに沿って同一平面上に並ぶように第一の超電導線材10Aと第二の超電導線材10Bとを配置する(第三の配置工程)。
また、この時、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12を互いに溶接により接合する。これにより、第一の超電導線材10Aと第二の超電導線材10Bとが十分な強度をもって連結される。
Further, as shown in FIG. 5 (B), the connection end of the intermediate layer 2 of the second superconducting wire 10B is superposed on the connection end of the intermediate layer 2 of the first superconducting wire 10A. The first superconducting wire 10A and the second superconducting wire 10B are arranged so that the base materials 1 and 1 are aligned on the same plane along the longitudinal direction L (third arranging step).
At this time, the end faces 12 and 12 on the connection end side of the bases 1 and 1 of the first and second superconducting wires 10A and 10B are joined together by welding. Thereby, the first superconducting wire 10A and the second superconducting wire 10B are connected with sufficient strength.

上記第三の配置工程により、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3は長手方向Lに沿った同一平面上に位置する状態となる。
そして、図5(C)に示すように、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3の接続端部側の端面31,31の間であって第一の超電導線材10Aの中間層2の上面に第一の中間超電導導体層32Eを形成する(第三の形成工程)。
なお、第一の超電導線材10Aの中間層2は、配置する前にその表面粗さを十分小さく(例えば、中心線平均粗さRaを50nm以下、より望ましくは10nm以下)しておくことが望ましい。
また、第二の超電導線材10Aの接続端部において超電導導体層3は厚さ方向について一部残存させてもよい。その場合も残存した超電導導体層3の表面粗さは十分小さく(例えば、中心線平均粗さRaを50nm以下、より望ましくは10nm以下)しておくことが望ましい。
By the third arrangement step, the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B are positioned on the same plane along the longitudinal direction L.
And as shown in FIG.5 (C), it is between the end surfaces 31 and 31 by the side of the connection edge part of each superconducting conductor layer 3 and 3 of 1st and 2nd superconducting wire 10A, 10B, and it is 1st superconducting. First intermediate superconducting conductor layer 32E is formed on the upper surface of intermediate layer 2 of wire 10A (third forming step).
It is desirable that the intermediate layer 2 of the first superconducting wire 10A has a sufficiently small surface roughness (for example, centerline average roughness Ra is 50 nm or less, more preferably 10 nm or less). .
In addition, the superconducting conductor layer 3 may partially remain in the thickness direction at the connection end of the second superconducting wire 10A. Even in this case, it is desirable that the surface roughness of the remaining superconducting conductor layer 3 is sufficiently small (for example, the center line average roughness Ra is 50 nm or less, more preferably 10 nm or less).

第一の中間超電導導体層32Eの形成は、MOD法により行われる。MOD法の詳細は、第一の実施形態の第一の中間超電導導体層32の形成と同じである。
また、この第一の中間超電導導体層32Eも、MOD法に限らず、CVD法 、PLD法等、Y系の超電導導体層の形成を可能とする公知のいずれの方法を用いても良い。
The formation of the first intermediate superconducting conductor layer 32E is performed by the MOD method. The details of the MOD method are the same as the formation of the first intermediate superconducting conductor layer 32 of the first embodiment.
The first intermediate superconducting conductor layer 32E is not limited to the MOD method, and any known method capable of forming a Y-based superconducting conductor layer, such as a CVD method or a PLD method, may be used.

また、第一の中間超電導導体層32Eの場合も、その形成後には、第一の中間超電導導体層32の場合と同様に、酸素アニール処理を行い、さらには、安定化層形成工程を付加しても良い。
これらの各工程により、超電導線材の接続構造100Eが形成される。
Also, in the case of the first intermediate superconducting conductor layer 32E, after the formation, oxygen annealing treatment is performed in the same manner as in the case of the first intermediate superconducting conductor layer 32, and a stabilization layer forming step is added. May be.
Through these steps, the superconducting wire connection structure 100E is formed.

[第三の実施形態の技術的効果]
上記超電導線材の接続構造100Eは、第一と第二の超電導線材10A,10Bの超電導導体層3,3及び第一の中間超電導導体層32Eが同一平面に沿って並ぶと共に、第一と第二の超電導線材10A,10Bの基材1,1が同一平面に沿って並んでいる。
また、超電導線材の接続構造100Eでは、第一と第二の超電導線材10A,10Bの長手方向Lについて、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31の各位置(これらは第一の中間超電導導体層32Eの二つの端面321Eの位置と一致する)と基材1,1の接続端部側の端面12,12の位置とが1[μm]以上離れた配置配置となっている。
従って、超電導線材の接続構造100Eもまた、超電導線材の接続構造100と同様に、各超電導導体層3,3,32Eに対する金属拡散の影響を低減して、良好な超電導特性で電気抵抗を十分に低減させて通電を行うことが可能となる。
また、上記の接続構造100Eにより、第一の超電導線材10Aと第二の超電導線材10Bとの間で超電導臨界電流密度を十分に大きくすることができ、大電流でも超電導状態を良好に維持することが可能となる。
[Technical effects of the third embodiment]
In the superconducting wire connecting structure 100E, the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B and the first intermediate superconducting conductor layer 32E are arranged along the same plane, and the first and second The base materials 1 and 1 of the superconducting wires 10A and 10B are arranged along the same plane.
Further, in the superconducting wire connecting structure 100E, the end surfaces 31, 31 on the connecting end side of the superconducting conductor layers 3, 3 of the superconducting wires 10A, 10B in the longitudinal direction L of the first and second superconducting wires 10A, 10B. (They coincide with the positions of the two end faces 321E of the first intermediate superconducting conductor layer 32E) and the positions of the end faces 12, 12 on the connecting end side of the substrates 1, 1 are 1 [μm] or more. It is distantly arranged.
Therefore, the superconducting wire connecting structure 100E also reduces the influence of metal diffusion on the superconducting conductor layers 3, 3, and 32E, as well as the superconducting wire connecting structure 100, and has sufficient superconducting characteristics and sufficient electric resistance. It is possible to reduce the power supply.
In addition, with the above connection structure 100E, the superconducting critical current density can be sufficiently increased between the first superconducting wire 10A and the second superconducting wire 10B, and the superconducting state can be satisfactorily maintained even at a large current. Is possible.

また、超電導線材の接続構造100Eでは、第一の超電導線材10Aの中間層2の表面に他の超電導導体層32Fを形成するので、基材1,1を厚さ方向に高精度に位置合わせしなくとも、第一の中間超電導導体層32Eの成膜に影響を及ぼすことがない。このため、第一と第二の超電導線材10A,10Bの超電導導体層3,3同士を良好に接続し、また、接続構造100Eの形成作業負担の軽減を図ることが可能となる。   Further, in the superconducting wire connecting structure 100E, the other superconducting conductor layer 32F is formed on the surface of the intermediate layer 2 of the first superconducting wire 10A, so that the base materials 1 and 1 are aligned with high accuracy in the thickness direction. Even without this, the film formation of the first intermediate superconducting conductor layer 32E is not affected. For this reason, the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B can be satisfactorily connected to each other, and the burden of forming the connection structure 100E can be reduced.

また、超電導線材の接続構造100Eでは、各超電導線材10A,10Bの基材1,1を接合するので、接続構造100Eの接続強度の向上を図ることが可能となる。
また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31の間に第一の中間超電導導体層32Eの成膜を行うので、例えば、基材と基材の間などの用に深い凹みの内側に成膜を行う場合と異なり、成膜後の酸素アニールを良好に行うことが可能となる。
また、第一の中間超電導導体層32Eは、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12の位置が、長手方向Lについて、第一の中間超電導導体層32Eの範囲外となっている。このため、段差のない平滑面上に第一の中間超電導導体層32Eを良好に形成することができ、各超電導導体層3,3を良好に接続することが可能である。
Further, in the superconducting wire connecting structure 100E, the bases 1 and 1 of the superconducting wires 10A and 10B are joined, so that the connection strength of the connecting structure 100E can be improved.
In addition, since the first intermediate superconducting conductor layer 32E is formed between the end surfaces 31 and 31 on the connection end side of the superconducting conductor layers 3 and 3 of the respective superconducting wires 10A and 10B, for example, the base material and the base material Unlike the case where a film is formed inside a deep dent, such as between, the oxygen annealing after the film formation can be performed satisfactorily.
Further, the first intermediate superconducting conductor layer 32E has the first and second superconducting wires 10A and 10B whose end surfaces 12 and 12 on the connection end portions side of the bases 1 and 1 are positioned in the first direction in the longitudinal direction L. Of the intermediate superconducting conductor layer 32E. For this reason, the first intermediate superconducting conductor layer 32E can be satisfactorily formed on a smooth surface without a step, and the respective superconducting conductor layers 3 and 3 can be satisfactorily connected.

また、超電導線材の接続構造100Eでは、長手方向Lについて、第一と第二の超電導線材10A,10Bの基材1,1の接続端部側の端面12,12から第二の超電導線材10Bの超電導導体層3の接続端部側の端面31までの範囲で中間層2,2が重合し、当該重合部分で中間層の厚みが他の部位よりも厚いので、金属拡散の影響をより効果的に低減することが可能となる。   Moreover, in the connection structure 100E of the superconducting wire, in the longitudinal direction L, the second superconducting wire 10B extends from the end surfaces 12, 12 on the connecting end side of the bases 1, 1 of the first and second superconducting wires 10A, 10B. Since the intermediate layers 2 and 2 are polymerized in the range up to the end surface 31 on the connection end side of the superconducting conductor layer 3, and the thickness of the intermediate layer is thicker than other portions in the superposed portion, the influence of metal diffusion is more effective. It becomes possible to reduce it.

また、上記超電導線材の接続構造100Eを、前述した第三及び第四の除去工程と第三の配置工程と第三の形成工程とによって形成するので、より容易に接続構造100Eを形成することが可能となる。   In addition, since the superconducting wire connecting structure 100E is formed by the third and fourth removing steps, the third arranging step, and the third forming step, the connecting structure 100E can be formed more easily. It becomes possible.

[第四の実施形態]
図6に第四の実施形態である超電導線材の接続構造100Fを示す。この接続構造100Fについては、前述した接続構造100と同一の構成については同じ符号を付して重複する説明は省略する。
[Fourth embodiment]
FIG. 6 shows a superconducting wire connecting structure 100F according to the fourth embodiment. Regarding the connection structure 100F, the same components as those of the connection structure 100 described above are denoted by the same reference numerals and redundant description is omitted.

[超電導線材の接続構造]
本実施形態は、超電導線材の接続構造100Fと当該超電導線材の接続構造100Fを有する超電導線材と超電導線材の接続方法とを示すものである。
本実施形態である超電導線材の接続構造100Fは、図6に示すように、第一と第二の超電導線材10A,10Bの接続端部同士を重合させた状態で後述する接続方法によって接続することにより形成される。但し、超電導線材の接続構造100Fは、後述する接続方法によって形成されるものに限定されず、他の接続方法によって形成しても良い。
[Connection structure of superconducting wire]
This embodiment shows a superconducting wire connecting structure 100F, and a superconducting wire connecting method 100F and a superconducting wire connecting method.
As shown in FIG. 6, the superconducting wire connecting structure 100F according to the present embodiment is connected by a connecting method described later in a state where the connecting ends of the first and second superconducting wires 10A and 10B are polymerized. It is formed by. However, the superconducting wire connecting structure 100F is not limited to one formed by a connecting method described later, and may be formed by another connecting method.

この接続構造100Fは、第一及び第二の超電導線材10A,10Bの超電導導体層3,3同士が他の超電導導体層32Fを介して接続されている。   In this connection structure 100F, the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B are connected to each other via another superconducting conductor layer 32F.

第一の超電導線材10Aは、接続端部の超電導導体層3が長手方向Lについて所定の長さで除去されており、第二の超電導線材10Bは、接続端部の基材1が長手方向Lについて第一の超電導線材10Aの超電導導体層3の除去長さよりも短い長さで除去されている。
この第一の超電導線材10Aの超電導導体層3の除去長さは、この除去部分に第二の超電導線材10Bの先端部を重ねて配置するのに十分な長さであればよい。
また、第二の超電導線材10Bの基材1の除去長さは、第一の超電導線材10Aの超電導導体層3の除去部分に第二の超電導線材10Bの接続端部を重ねる長さよりも短くすることが望ましく、また、基材1の接続端部側の端面12の金属拡散の影響が他の超電導導体層32Fに対して十分に低減できる長さとすることが望ましい。例えば、基材1にNiを使用する場合には少なくとも1[μm]以上とすることが望ましい。
In the first superconducting wire 10A, the superconducting conductor layer 3 at the connection end is removed with a predetermined length in the longitudinal direction L, and in the second superconducting wire 10B, the base 1 at the connecting end is in the longitudinal direction L. Is removed with a length shorter than the removal length of the superconducting conductor layer 3 of the first superconducting wire 10A.
The removal length of the superconducting conductor layer 3 of the first superconducting wire 10A only needs to be long enough to place the tip of the second superconducting wire 10B on the removed portion.
Further, the removal length of the base material 1 of the second superconducting wire 10B is made shorter than the length of overlapping the connection end portion of the second superconducting wire 10B on the removed portion of the superconducting conductor layer 3 of the first superconducting wire 10A. In addition, it is desirable that the length of the end face 12 on the connection end portion side of the base material 1 is such that the influence of metal diffusion can be sufficiently reduced with respect to the other superconducting conductor layer 32F. For example, when Ni is used for the base material 1, it is desirable that the thickness be at least 1 [μm].

そして、第二の超電導線材10Bは、基材1に対する超電導導体層3の厚さ方向の配置が第一の超電導線材10Aと逆となるように向きを反転させた状態で、第一と第二の超電導線材10A,10Bの超電導導体層3,3が長手方向Lに沿った同一平面に沿って並ぶように、第二の超電導線材10Bの接続端部が第一の超電導線材10Aの接続端部であって中間層2の上面に載置されるように配置されている。   Then, the second superconducting wire 10B has the first and second in a state in which the orientation of the superconducting conductor layer 3 with respect to the substrate 1 is reversed so that the arrangement in the thickness direction is opposite to that of the first superconducting wire 10A. The connection end of the second superconducting wire 10B is connected to the first superconducting wire 10A so that the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B are aligned along the same plane along the longitudinal direction L. However, it is disposed so as to be placed on the upper surface of the intermediate layer 2.

また、第一の超電導線材10Aの超電導導体層3の接続端部側の端面31と第二の超電導線材10Bの超電導導体層3の接続端部側の端面31との間には隙間が形成され、当該隙間には他の超電導導体層32Fが形成されている。この他の超電導導体層32Fは、超電導導体層3と同一又は同種の超電導材料から形成される。   Further, a gap is formed between the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the first superconducting wire 10A and the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B. The other superconducting conductor layer 32F is formed in the gap. The other superconducting conductor layer 32F is formed of the same or the same kind of superconducting material as the superconducting conductor layer 3.

これらの構造により、各超電導線材10A,10Bの超電導導体層3,3と他の超電導導体層32Fとが長手方向Lに平行な同一平面上に並んだ状態となっている。なお、超電導導体層3,3と他の超電導導体層32Fは同一直線上となることがより好ましい。
また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31は他の超電導導体層32Fの端面321F,321Fと接合され、各端面31,31,321F,321Fは全ておおむね長手方向Lに垂直となっている。
これらによって、第一の超電導線材10Aの超電導導体層3から第二の超電導線材10Bの超電導導体層3までab面に沿って電流を流すことができ、良好な超電導状態を形成することができる。
With these structures, the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B and the other superconducting conductor layer 32F are arranged on the same plane parallel to the longitudinal direction L. It is more preferable that the superconducting conductor layers 3 and 3 and the other superconducting conductor layer 32F are on the same straight line.
Also, the end surfaces 31, 31 on the connection end side of the superconducting conductor layers 3, 3 of each superconducting wire 10A, 10B are joined to the end surfaces 321F, 321F of the other superconducting conductor layer 32F, and the end surfaces 31, 31, 321F, 321F are joined. Are generally perpendicular to the longitudinal direction L.
As a result, a current can flow along the ab surface from the superconducting conductor layer 3 of the first superconducting wire 10A to the superconducting conductor layer 3 of the second superconducting wire 10B, and a good superconducting state can be formed.

また、長手方向Lにおける第一の超電導線材10Aの超電導導体層3の接続端部側の端面31の位置及び第二の超電導線材10Bの超電導導体層3の接続端部側の端面31の位置は、いずれも、基材1,1の接続端部側の端面12,12の位置と一致せず、各々が1[μm]よりも十分に離間している。
これにより、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31及び他の超電導導体層32Fの両端部の端面321F,321Fに対する、各基材1,1の接続端部側の端面12,12からの金属拡散の影響を十分に低減させている。
Further, the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the first superconducting wire 10A in the longitudinal direction L and the position of the end surface 31 on the connection end portion side of the superconducting conductor layer 3 of the second superconducting wire 10B are These do not coincide with the positions of the end surfaces 12 and 12 on the connection end side of the base materials 1 and 1, and are sufficiently separated from each other by 1 [μm].
Thereby, each base material 1 and 1 with respect to the end surfaces 31 and 31 of the connection end part side of the superconducting conductor layers 3 and 3 of each superconducting wire 10A and 10B, and the end surfaces 321F and 321F of the both ends of the other superconducting conductor layer 32F. The influence of metal diffusion from the end faces 12, 12 on the connecting end side is sufficiently reduced.

[超電導線材の接続方法]
上記接続構造100Fを形成する超電導線材の接続方法について、図6(A)〜図6(C)に基づいて説明する。
まず、図6(A)に示すように、第一の超電導線材10Aの接続端部の超電導導体層3を長手方向Lについて所定の長さで、厚さ方向について全部除去し、中間層2の表面を露出させる(第五の除去工程)。また、第二の超電導線材10Bの接続端部の基材1を長手方向Lについて第一の超電導線材10Aの超電導導体層3の除去長さよりも短い長さで、厚さ方向について全部除去し、中間層2の表面を露出させる(第六の除去工程)。
第五の除去工程及び第六の除去工程の除去は、機械的研磨、化学的研磨(例えば、エッチング処理)又はこれらの組み合わせにより行う。
なお、第五の除去工程と第六の除去工程はいずれを先に行っても良いし、同時に行ってもよい。
[Connection method of superconducting wire]
A method of connecting the superconducting wires forming the connection structure 100F will be described with reference to FIGS. 6 (A) to 6 (C).
First, as shown in FIG. 6A, the superconducting conductor layer 3 at the connection end of the first superconducting wire 10A is removed in a predetermined length in the longitudinal direction L and in the thickness direction. The surface is exposed (fifth removal step). Further, the base material 1 at the connection end of the second superconducting wire 10B is removed in the thickness direction in a length shorter than the removal length of the superconducting conductor layer 3 of the first superconducting wire 10A in the longitudinal direction L, The surface of the intermediate layer 2 is exposed (sixth removal step).
The removal in the fifth removal step and the sixth removal step is performed by mechanical polishing, chemical polishing (for example, etching treatment), or a combination thereof.
Note that either the fifth removal step or the sixth removal step may be performed first or simultaneously.

さらに、図6(B)に示すように、第二の超電導線材10Bを厚さ方向について反転させた状態で、第一の超電導線材10Aの中間層2の接続端部の上に第二の超電導線材10Bの接続端部の超電導導体層3を重合させて、互いの超電導導体層3,3が長手方向Lに沿って同一平面上に並ぶように第一の超電導線材10Aと第二の超電導線材10Bとを配置する(第四の配置工程)。   Further, as shown in FIG. 6 (B), the second superconducting wire 10B is inverted over the thickness direction, and the second superconducting wire is formed on the connection end portion of the intermediate layer 2 of the first superconducting wire 10A. The superconducting conductor layer 3 at the connecting end of the wire 10B is polymerized, and the first superconducting wire 10A and the second superconducting wire are arranged so that the superconducting conductor layers 3 and 3 are aligned on the same plane along the longitudinal direction L. 10B is arranged (fourth arrangement step).

そして、図6(C)に示すように、第一及び第二の超電導線材10A,10Bの各超電導導体層3,3の接続端部側の端面31,31の間であって第一の超電導線材10Aの中間層2の上面に他の超電導導体層32Fを形成する(第四の形成工程)。
なお、第一の超電導線材10Aの中間層2は、配置する前にその表面粗さを十分小さく(例えば、中心線平均粗さRaを50nm以下、より望ましくは10nm以下)しておくことが望ましい。
また、第二の超電導線材10Aの接続端部において超電導導体層3は厚さ方向について一部残存させてもよい。その場合も残存した超電導導体層3の表面粗さは十分小さく(例えば、中心線平均粗さRaを50nm以下、より望ましくは10nm以下)しておくことが望ましい。
As shown in FIG. 6 (C), the first superconductivity is provided between the end surfaces 31 and 31 on the connection end portion side of the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B. Another superconducting conductor layer 32F is formed on the upper surface of the intermediate layer 2 of the wire 10A (fourth forming step).
It is desirable that the intermediate layer 2 of the first superconducting wire 10A has a sufficiently small surface roughness (for example, centerline average roughness Ra is 50 nm or less, more preferably 10 nm or less). .
In addition, the superconducting conductor layer 3 may partially remain in the thickness direction at the connection end of the second superconducting wire 10A. Even in this case, it is desirable that the surface roughness of the remaining superconducting conductor layer 3 is sufficiently small (for example, the center line average roughness Ra is 50 nm or less, more preferably 10 nm or less).

他の超電導導体層32Fの形成は、MOD法により行われる。MOD法の詳細は、第一の実施形態の第一の中間超電導導体層32の形成と同じである。
また、この他の超電導導体層32Fも、MOD法に限らず、CVD法 、PLD法等、Y系の超電導導体層の形成を可能とする公知のいずれの方法を用いても良い。
The formation of the other superconducting conductor layer 32F is performed by the MOD method. The details of the MOD method are the same as the formation of the first intermediate superconducting conductor layer 32 of the first embodiment.
Further, the other superconducting conductor layer 32F is not limited to the MOD method, and any known method capable of forming a Y-based superconducting conductor layer, such as a CVD method or a PLD method, may be used.

また、他の超電導導体層32Fの場合も、その形成後には、第一の中間超電導導体層32の場合と同様に、酸素アニール処理を行い、さらには、安定化層形成工程を付加しても良い。
これらの各工程により、超電導線材の接続構造100Fが形成される。
Also, in the case of the other superconducting conductor layer 32F, after the formation, oxygen annealing treatment is performed similarly to the case of the first intermediate superconducting conductor layer 32, and further, a stabilization layer forming step is added. good.
Through these steps, a superconducting wire connecting structure 100F is formed.

[第四の実施形態の技術的効果]
上記超電導線材の接続構造100Fは、第一と第二の超電導線材10A,10Bの超電導導体層3,3及び他の超電導導体層32Fが同一平面に沿って並んでいる。
また、超電導線材の接続構造100Fでは、第一と第二の超電導線材10A,10Bの長手方向Lについて、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31の各位置(これらは他の超電導導体層32Fの二つの端面321Fの位置と一致する)と基材1,1の接続端部側の端面12,12の各位置とが1[μm]以上離れた配置となっている。
従って、超電導線材の接続構造100Fもまた、超電導線材の接続構造100と同様に、各超電導導体層3,3,32Fに対する金属拡散の影響を低減して、良好な超電導特性で電気抵抗を十分に低減させて通電を行うことが可能となる。
また、上記の接続構造100Fにより、第一の超電導線材10Aと第二の超電導線材10Bとの間で超電導臨界電流密度を十分に大きくすることができ、大電流でも超電導状態を良好に維持することが可能となる。
[Technical effects of the fourth embodiment]
In the superconducting wire connecting structure 100F, the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B and the other superconducting conductor layer 32F are arranged along the same plane.
Further, in the superconducting wire connecting structure 100F, the end surfaces 31 and 31 on the connecting end side of the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B in the longitudinal direction L of the first and second superconducting wires 10A and 10B. (They coincide with the positions of the two end faces 321F of the other superconducting conductor layer 32F) and the positions of the end faces 12 and 12 on the connecting end side of the substrates 1 and 1 are separated by 1 [μm] or more. It is arranged.
Therefore, the superconducting wire connecting structure 100F also reduces the influence of metal diffusion on each of the superconducting conductor layers 3, 3, and 32F in the same manner as the superconducting wire connecting structure 100, and has sufficient superconducting characteristics and sufficient electric resistance. It is possible to reduce the power supply.
In addition, the above connection structure 100F can sufficiently increase the superconducting critical current density between the first superconducting wire 10A and the second superconducting wire 10B, and maintain a superconducting state well even at a large current. Is possible.

また、超電導線材の接続構造100Fでは、第一の超電導線材10Aの中間層2の表面に他の超電導導体層32Fを形成するので、基材1,1を厚さ方向に高精度に位置合わせしなくとも、他の超電導導体層32Fの成膜に影響を及ぼすことがない。このため、第一と第二の超電導線材10A,10Bの超電導導体層3,3同士を良好に接続し、また、接続構造100Fの形成作業負担の軽減を図ることが可能となる。   Further, in the superconducting wire connecting structure 100F, the other superconducting conductor layer 32F is formed on the surface of the intermediate layer 2 of the first superconducting wire 10A, so that the base materials 1 and 1 are aligned with high accuracy in the thickness direction. Even if not, it does not affect the film formation of the other superconducting conductor layer 32F. For this reason, it becomes possible to connect the superconducting conductor layers 3 and 3 of the first and second superconducting wires 10A and 10B satisfactorily, and to reduce the burden of forming the connection structure 100F.

また、各超電導線材10A,10Bの超電導導体層3,3の接続端部側の端面31,31の間に他の超電導導体層32Fの成膜を行うので、例えば、基材と基材の間などの用に深い凹みの内側に成膜を行う場合と異なり、成膜後の酸素アニールを良好に行うことが可能となる。   In addition, since the other superconducting conductor layer 32F is formed between the end faces 31, 31 on the connecting end side of the superconducting conductor layers 3 and 3 of the superconducting wires 10A and 10B, for example, between the base material and the base material Unlike the case where a film is formed inside a deep dent for the purpose, oxygen annealing after film formation can be performed satisfactorily.

また、上記超電導線材の接続構造100Fを、前述した第五及び第六の除去工程と第四の配置工程と第四の形成工程とによって形成するので、より容易に接続構造100Fを形成することが可能となる。   Further, since the superconducting wire connecting structure 100F is formed by the fifth and sixth removing steps, the fourth arranging step, and the fourth forming step, the connecting structure 100F can be formed more easily. It becomes possible.

1,1C,1D 基材
2,2C,2D 中間層
3 酸化物超電導導体層
3C 超電導導体層(第二の中間超電導導体層)
32,32D,32E 第一の中間超電導導体層
32F 他の超電導導体層
10,10A,10B 超電導線材
10C 第一の接続用線材
10D 第二の接続用線材
11 成膜面
12,12D,21,31,31C,321,321D,321E,321F 端面
100,100D,100E,100F 接続構造
1,1C, 1D Base material 2,2C, 2D Intermediate layer 3 Oxide superconducting conductor layer 3C Superconducting conductor layer (second intermediate superconducting conductor layer)
32, 32D, 32E First intermediate superconducting conductor layer 32F Other superconducting conductor layers 10, 10A, 10B Superconducting wire 10C First connecting wire 10D Second connecting wire 11 Film forming surfaces 12, 12D, 21, 31 , 31C, 321, 321D, 321E, 321F End face 100, 100D, 100E, 100F Connection structure

Claims (11)

基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材が互いの接続端部で接続された接続構造であって、
前記二本の超電導線材の超電導導体層が同一平面に沿って並ぶと共に、前記二本の超電導線材の基材が同一平面に沿って並び、
一方の前記超電導線材の超電導導体層の接続端部側の端面から他方の前記超電導線材の超電導導体層の接続端部側の端面までの間のいずれかの範囲に成長形成された第一の中間超電導導体層を備え、
前記二本の超電導線材の基材の接続端部側の端面の位置がいずれも前記二本の超電導線材の長手方向について、前記第一の中間超電導導体層の範囲外であることを特徴とする超電導線材の接続構造。
A connection structure in which two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer are connected to each other at connection ends,
The superconducting conductor layers of the two superconducting wires are arranged along the same plane, and the base materials of the two superconducting wires are arranged along the same plane,
A first intermediate formed in any range between the end surface on the connection end portion side of the superconducting conductor layer of one of the superconducting wires and the end surface on the connection end portion side of the superconducting conductor layer of the other superconducting wire. With a superconducting conductor layer,
The positions of the end surfaces of the two superconducting wires on the connecting end side of the base material are both outside the range of the first intermediate superconducting conductor layer in the longitudinal direction of the two superconducting wires. Superconducting wire connection structure.
一方の前記超電導線材の超電導導体層の接続端部側の端面から他方の前記超電導線材の超電導導体層の接続端部側の端面までの間のいずれかの範囲に、基材と当該基材の片面側に形成された超電導導体層とを備える第一の接続用線材の超電導導体層からなる第二の中間超電導導体層が配置され、
前記二本の超電導線材の長手方向について、前記二本の超電導線材及び前記第一の接続用線材の超電導導体層の接続端部の端面の位置が、いずれも、前記二本の超電導線材の基材の接続端部側の端面の位置と異なることを特徴とする請求項1記載の超電導線材の接続構造。
The base material and the base material of the base material are in any range between the end surface on the connection end portion side of the superconducting conductor layer of one of the superconducting wires and the end surface on the connection end portion side of the superconducting conductor layer of the other superconducting wire. A second intermediate superconducting conductor layer comprising a superconducting conductor layer of the first connecting wire provided with a superconducting conductor layer formed on one side,
With respect to the longitudinal direction of the two superconducting wires, the positions of the end faces of the connection end portions of the superconducting conductor layers of the two superconducting wires and the first connecting wire are both based on the two superconducting wires. The superconducting wire connecting structure according to claim 1, wherein the connecting structure is different from the position of the end face on the connecting end side of the material.
前記二本の超電導線材の基材の間にこれらの基材と同一平面に沿って並ぶ他の基材が介在し、
前記二本の超電導線材の長手方向について、前記他の基材の両側の端面の位置が前記超電導導体層の端面の位置と異なることを特徴とする請求項1記載の超電導線材の接続構造。
Between the base materials of the two superconducting wires, other base materials arranged along the same plane as these base materials are interposed,
2. The superconducting wire connection structure according to claim 1, wherein, in the longitudinal direction of the two superconducting wires, the positions of the end faces on both sides of the other base material are different from the positions of the end faces of the superconducting conductor layer.
前記二本の超電導線材の長手方向について、一方の前記超電導線材の中間層の端面の位置が前記二本の超電導線材の基材の接続端部側の端面の位置よりも他方の前記超電導線材側に位置することを特徴とする請求項1記載の超電導線材の接続構造。   With respect to the longitudinal direction of the two superconducting wires, the position of the end face of the intermediate layer of one of the superconducting wires is on the other superconducting wire side than the position of the end face on the connecting end side of the base material of the two superconducting wires The superconducting wire connecting structure according to claim 1, wherein 前記二本の超電導線材の長手方向について、少なくとも一方の前記超電導線材の前記超電導導体層の端面の位置を含む所定の範囲で前記中間層の厚みが他の部位よりも厚い部位があることを特徴とする請求項4記載の超電導線材の接続構造。   In the longitudinal direction of the two superconducting wires, there is a portion where the thickness of the intermediate layer is thicker than other portions within a predetermined range including the position of the end surface of the superconducting conductor layer of at least one of the superconducting wires. The superconducting wire connecting structure according to claim 4. 前記二本の超電導線材の長手方向について、前記二本の超電導線材の超電導導体層の接続端部の端面の位置と前記二本の超電導線材の基材の接続端部の端面の位置とが少なくとも1[μm]以上離れていることを特徴とする請求項1から5のいずれか一項に記載の超電導線材の接続構造。   With respect to the longitudinal direction of the two superconducting wires, at least the position of the end surface of the connecting end portion of the superconducting conductor layer of the two superconducting wires and the position of the end surface of the connecting end portion of the base material of the two superconducting wires are at least The superconducting wire connecting structure according to any one of claims 1 to 5, wherein the connecting structure is separated by 1 [μm] or more. 請求項1から6のいずれか一項に記載の接続構造を備えることを特徴とする超電導線材。   A superconducting wire comprising the connection structure according to any one of claims 1 to 6. 基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
前記二本の超電導線材の接続端部の超電導導体層を厚さ方向に一部又は全部除去する第一の除去工程と、
前記二本の超電導線材の基材の接続端部同士を接合する接合工程と、
前記超電導導体層が除去された部分に、基材と当該基材の片面側に形成された超電導導体層とを備える第一の接続用線材を、前記二本の超電導線材の超電導導体層と前記第一の接続用線材の超電導導体層とが同一平面上に位置するように配置する第一の配置工程と、
前記二本の超電導線材の超電導導体層のそれぞれの接続端部側の端面と前記第一の接続用線材の超電導導体層からなる第二の中間超電導導体層の両端部の端面との間に第一の中間超電導導体層を新たに形成する第一の形成工程とを含むことを特徴とする超電導線材の接続方法。
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A first removal step of removing a part or all of the superconducting conductor layer at the connecting end of the two superconducting wires in the thickness direction;
A joining step for joining the connection ends of the base materials of the two superconducting wires; and
A first connecting wire provided with a base material and a superconducting conductor layer formed on one side of the base material in a portion where the superconducting conductor layer is removed, the superconducting conductor layer of the two superconducting wires and the A first disposing step of disposing the superconducting conductor layer of the first connecting wire so as to be positioned on the same plane;
The second superconducting conductor layer of the two superconducting wire rods is connected between the end surface of each of the connecting end portions and the end surfaces of the second intermediate superconducting conductor layer composed of the superconducting conductor layer of the first connecting wire rod. And a first forming step of newly forming one intermediate superconducting conductor layer. A method for connecting a superconducting wire.
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
前記二本の超電導線材の接続端部の基材を除去する第二の除去工程と、
基材と当該基材の片面側に位置する中間層とを備える第二の接続用線材の中間層が、前記第二の除去工程により露出した前記二本の超電導線材の中間層に接すると共に前記二本の超電導線材の基材と前記第二の接続用線材の基材とが同一平面上に位置するように前記第二の接続用線材を配置する第二の配置工程と、
一方の前記超電導線材の超電導導体層の接続端部側の端面と他方の前記超電導線材の超電導導体層の接続端部側の端面との間に第一の中間超電導導体層を新たに成形成する第二の形成工程とを含むことを特徴とする超電導線材の接続方法。
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A second removal step of removing the base material at the connection end of the two superconducting wires;
An intermediate layer of a second connecting wire comprising a base material and an intermediate layer located on one side of the base material is in contact with the intermediate layer of the two superconducting wires exposed by the second removal step, and A second disposing step of disposing the second connecting wire so that the base material of the two superconducting wires and the base material of the second connecting wire are located on the same plane;
A first intermediate superconducting conductor layer is newly formed between an end surface of the superconducting conductor layer of one of the superconducting wires and an end surface of the other superconducting wire on the side of the connecting end of the superconducting conductor layer. A method for connecting a superconducting wire comprising a second forming step.
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
一方の前記超電導線材の接続端部の超電導導体層を厚さ方向に一部又は全部除去する第三の除去工程と、
他方の前記超電導線材の接続端部の基材を除去する第四の除去工程と、
前記一方の超電導線材の残存する前記超電導導体層又は露出した前記中間層と前記他方の超電導線材の露出した前記中間層とを重合するように前記二本の超電導線材を配置する第三の配置工程と、
一方の前記超電導線材の超電導導体層の接続端部側の端面と他方の前記超電導線材の超電導導体層の接続端部側の端面との間に第一の中間超電導導体層を成形成する第三の形成工程とを含むことを特徴とする超電導線材の接続方法。
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A third removal step of removing part or all of the superconducting conductor layer at the connection end of the one superconducting wire in the thickness direction;
A fourth removal step of removing the base material of the connection end of the other superconducting wire;
A third disposing step of disposing the two superconducting wires so that the superconducting conductor layer or the exposed intermediate layer of the one superconducting wire remains and the exposed intermediate layer of the other superconducting wire are polymerized. When,
A third intermediate superconducting conductor layer is formed between the end face on the connection end side of the superconducting conductor layer of one of the superconducting wires and the end face on the connection end side of the superconducting conductor layer of the other superconducting wire. A method of connecting a superconducting wire, comprising the step of:
基材の片面側に中間層を介して超電導導体層が形成された二本の超電導線材を互いの接続端部で接続する接続方法であって、
一方の前記超電導線材の接続端部の超電導導体層を厚さ方向に一部又は全部除去する第五の除去工程と、
他方の前記超電導線材の接続端部の基材を除去する第六の除去工程と、
一方の前記超電導線材の前記超電導導体層が一部又は全部除去された部分に、他方の前記超電導線材を、前記超電導導体層を前記一方の超電導線材側に向けた状態で、前記二本の超電導線材の超電導導体層が同一平面上に位置するように配置する第四の配置工程と、
前記二本の超電導線材の超電導導体層のそれぞれの接続端部側の端面の間に他の超電導導体層を新たに形成する第四の形成工程とを含むことを特徴とする超電導線材の接続方法。
It is a connection method of connecting two superconducting wires having a superconducting conductor layer formed on one side of a base material via an intermediate layer at each connection end,
A fifth removal step of removing part or all of the superconducting conductor layer at the connection end of one of the superconducting wires in the thickness direction;
A sixth removal step of removing the base material at the connection end of the other superconducting wire;
In one of the superconducting wires, the two superconducting wires are placed in a state where the superconducting conductor layer is partially or entirely removed, with the other superconducting wire facing the one superconducting wire. A fourth arrangement step for arranging the superconducting conductor layer of the wire to be located on the same plane;
And a fourth forming step of newly forming another superconducting conductor layer between the end faces of each of the two superconducting conductors on the side of the connecting end of the superconducting conductor layer. .
JP2014226839A 2014-11-07 2014-11-07 Superconducting wire connection structure, superconducting wire and connection method Active JP6356046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226839A JP6356046B2 (en) 2014-11-07 2014-11-07 Superconducting wire connection structure, superconducting wire and connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226839A JP6356046B2 (en) 2014-11-07 2014-11-07 Superconducting wire connection structure, superconducting wire and connection method

Publications (2)

Publication Number Publication Date
JP2016091880A true JP2016091880A (en) 2016-05-23
JP6356046B2 JP6356046B2 (en) 2018-07-11

Family

ID=56016318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226839A Active JP6356046B2 (en) 2014-11-07 2014-11-07 Superconducting wire connection structure, superconducting wire and connection method

Country Status (1)

Country Link
JP (1) JP6356046B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044783A1 (en) 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 High-temperature superconductor wire connection
WO2020165939A1 (en) * 2019-02-12 2020-08-20 住友電気工業株式会社 Superconducting wire connection structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102881A (en) * 1987-10-15 1989-04-20 Mitsubishi Electric Corp Connection of high temperature superconductor wire
JPH04181664A (en) * 1990-11-14 1992-06-29 Fujikura Ltd Connecting method and connecting device for oxide superconductor
JPH04202047A (en) * 1990-11-30 1992-07-22 Ishikawajima Harima Heavy Ind Co Ltd Production of high temperature superconducting material
JPH0640775A (en) * 1992-04-03 1994-02-15 Nippon Steel Corp Joined body of oxide superconducting material and its production
JPH0883519A (en) * 1994-07-11 1996-03-26 Hitachi Chem Co Ltd Manufacture of high temperature superconducting junction body
JP2001319750A (en) * 2000-05-02 2001-11-16 Fujikura Ltd Connecting method of oxide superconductor
JP2005063695A (en) * 2003-08-18 2005-03-10 Sumitomo Electric Ind Ltd Connection method of superconducting plate-shaped body and connection part of same
JP2008066399A (en) * 2006-09-05 2008-03-21 Sumitomo Electric Ind Ltd Connection structure of superconducting wire rod, superconducting coil, and connecting method of superconducting wire rod
US20110294670A1 (en) * 2008-11-29 2011-12-01 Francis James Mumford Fault current limiter with a plurality of superconducting elements connected in a ring-shaped fashion
JP2013235699A (en) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd Joint method of high temperature superconducting thin film wire and high temperature superconducting thin film wire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102881A (en) * 1987-10-15 1989-04-20 Mitsubishi Electric Corp Connection of high temperature superconductor wire
JPH04181664A (en) * 1990-11-14 1992-06-29 Fujikura Ltd Connecting method and connecting device for oxide superconductor
JPH04202047A (en) * 1990-11-30 1992-07-22 Ishikawajima Harima Heavy Ind Co Ltd Production of high temperature superconducting material
JPH0640775A (en) * 1992-04-03 1994-02-15 Nippon Steel Corp Joined body of oxide superconducting material and its production
JPH0883519A (en) * 1994-07-11 1996-03-26 Hitachi Chem Co Ltd Manufacture of high temperature superconducting junction body
JP2001319750A (en) * 2000-05-02 2001-11-16 Fujikura Ltd Connecting method of oxide superconductor
JP2005063695A (en) * 2003-08-18 2005-03-10 Sumitomo Electric Ind Ltd Connection method of superconducting plate-shaped body and connection part of same
JP2008066399A (en) * 2006-09-05 2008-03-21 Sumitomo Electric Ind Ltd Connection structure of superconducting wire rod, superconducting coil, and connecting method of superconducting wire rod
US20110294670A1 (en) * 2008-11-29 2011-12-01 Francis James Mumford Fault current limiter with a plurality of superconducting elements connected in a ring-shaped fashion
JP2013235699A (en) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd Joint method of high temperature superconducting thin film wire and high temperature superconducting thin film wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044783A1 (en) 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 High-temperature superconductor wire connection
US11177588B2 (en) 2017-08-30 2021-11-16 Riken High-temperature superconducting wire connection assembly
WO2020165939A1 (en) * 2019-02-12 2020-08-20 住友電気工業株式会社 Superconducting wire connection structure

Also Published As

Publication number Publication date
JP6356046B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP5806302B2 (en) Multifilament superconductor with reduced AC loss and its formation method
EP2741370A1 (en) Method for joining second generation rebco high temperature superconductors using partial micro-melting diffusion welding by direct contact of high temperature superconductors and for recovering superconducting characteristics by oxygen supply annealing heat treatment
US20200028061A1 (en) Connection structure
WO2016129469A1 (en) Superconducting wire material production method and superconducting wire material joining member
JP2007266149A (en) Method of connecting superconductive wire rod, and superconductive wire rod
JP2013235699A (en) Joint method of high temperature superconducting thin film wire and high temperature superconducting thin film wire
JP2017050242A (en) Connection structure of oxide superconducting wire rod and method for producing the same
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
WO2007080876A1 (en) Rare earth-containing tape-shaped oxide superconductor
WO2017057483A1 (en) Connection structure for superconductive wire rod
JP6324202B2 (en) Superconducting wire connection structure, connection method, and superconducting wire
JP6356046B2 (en) Superconducting wire connection structure, superconducting wire and connection method
CN105684103B (en) The manufacture method of oxide superconducting wire rod and oxide superconducting wire rod
JP6258775B2 (en) Superconducting wire connection structure and connection method
JP6605942B2 (en) Superconducting wire connection structure and superconducting wire connection method
KR101680405B1 (en) Substrate, process for production of substrate, electrically super-conductive wire material, and process for production of electrically super-conductive wire material
KR101535844B1 (en) METHOD OF SPLICING AND REINFORCING OF SPLICING PART FOR PERSISTENT CURRENT MODE OF 2G ReBCO HIGH TEMPERATURE SUPERCONDUCTORS
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
US20170062097A1 (en) Superconducting wire rod connection structure and connection method, and superconducting wire rod
KR101505851B1 (en) Method of manufacturing double pancake type persistent current mode magnet
JP2012064323A (en) Superconductive current lead
JP2013008556A (en) Superconductive wire material
JP5865426B2 (en) Manufacturing method of oxide superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180613

R151 Written notification of patent or utility model registration

Ref document number: 6356046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350