JP2016090975A - 距離検出装置、撮像装置、距離検出方法、およびプログラム - Google Patents

距離検出装置、撮像装置、距離検出方法、およびプログラム Download PDF

Info

Publication number
JP2016090975A
JP2016090975A JP2014229130A JP2014229130A JP2016090975A JP 2016090975 A JP2016090975 A JP 2016090975A JP 2014229130 A JP2014229130 A JP 2014229130A JP 2014229130 A JP2014229130 A JP 2014229130A JP 2016090975 A JP2016090975 A JP 2016090975A
Authority
JP
Japan
Prior art keywords
image
image data
shift amount
pupil region
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014229130A
Other languages
English (en)
Inventor
和哉 野林
Kazuya Nohayashi
和哉 野林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014229130A priority Critical patent/JP2016090975A/ja
Publication of JP2016090975A publication Critical patent/JP2016090975A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高精度な距離検出を高速に行える距離検出装置を提供する。
【解決手段】結像光学系の射出瞳内の第1の瞳領域を通過した光束に基づく第1の画像データと、前記射出瞳内の第2の瞳領域を通過した光束に基づく第2の画像データと、前記第1の瞳領域と前記第2の瞳領域を内包する第3の瞳領域を通過した光束に基づく第3の画像データのうち、少なくとも前記第1および第3の画像データに基づき被写体までの距離情報を検出する距離検出装置であって、前記第1の画像データと第3の画像データとの像ズレ量である第1の像ズレ量を取得し、前記第1の像ズレ量に基づき、前記第1の画像データの像形状を修正した第1の修正画像データを生成し、前記第1の修正画像データと、前記第2の画像データまたは前記第3の画像データとに基づく像ズレ量である第3の像ズレ量を取得する。
【選択図】図4

Description

本発明は、距離検出装置に関し、特にデジタルカメラやデジタルビデオカメラなどに用いられる距離検出装置に関するものである。
デジタルスチルカメラやデジタルビデオカメラにおいて、撮像素子の一部あるいは全部の画素に測距機能を有する画素(以下、「測距画素」ともいう。)を配置し、位相差方式で被写体までの距離を検出するようにした固体撮像素子が特許文献1に提案されている。測距画素は、複数の光電変換部を備え、撮影レンズの瞳上の異なる領域を通過した光束が、異なる光電変換部に導かれるように構成される。
各測距画素に含まれる光電変換部により生成された電気信号から、異なる瞳領域を通過した光束により生成される光像(以下、それぞれ「A像」、「B像」とも呼ぶ。)に基づく画像データ(以降、A像に基づく画像データをA像データ、B像に基づく画像データをB像データと呼ぶ。)が取得される。このA像データとB像データの相対的な位置ズレ量である視差量(像ズレ量ともいう)が算出される。
視差量の算出には、テンプレートマッチングと呼ばれる領域ベースの対応点探索技術が多く用いられる。従来のテンプレートマッチングでは、A像データまたはB像データの一方の画像データを基準画像データとして用い、他方の画像データを参照画像データとして用いる。基準画像データ上に、注目点を中心とする基準領域(基準ウィンドウともいう)を設定すると共に、参照画像データ上にて注目点と対応する参照点に対しても参照領域(参照ウィンドウともいう)を設定する。参照点を順次移動させながら、基準領域内の画像データと参照領域内の画像データの相関が最も高くなる参照点を探索する。この相関が最も高くなる参照点のことを、対応点と呼ぶ。注目点と対応点の相対的な位置ズレ量を用いて視差量が算出される。一般に、探索領域のサイズを小さくすると、局所演算に起因する視差量の算出誤差が発生するため、比較的大きな領域サイズ(例えば、9画素×9画素など)が用いられている。
算出した視差量に変換係数を掛けてデフォーカス量に変換することで、被写体までの距離を算出できる。このような測距手法によると、従来のコントラスト方式とは異なり、距離を測定するためにレンズを動かす必要が無いため、高速高精度な測距が可能となる。
測距精度は、視差量を正確に求めることで向上する。視差量の誤差が発生する要因の1つに、光量バランスの崩れが上げられる。光量バランスの崩れは、撮影レンズのレンズ枠などによる光束のケラレや測距画素感度の角度特性などにより、A像とB像の光量比が像高に応じて変化する現象である。
特許文献2では、像高が高くなった時に撮影レンズの口径食によって生じるA像とB像の光量バランスの崩れを補正する技術が開示されている。
特許第4027113号公報 特開2004−191629号公報
上述の特許文献2では、取得した画像データに対して線像分布関数に基づき生成したフィルタを畳込み演算することで、口径食によって生じるA像とB像の形状の非対称性を修正している。
A像の像形状の修正に用いるフィルタを、A像に対するB像の像ズレ量に応じて生成することで、より精度良くA像の像形状を修正することができる。また、B像の像形状の修正に用いるフィルタを、B像に対するA像の像ズレ量に応じて生成することで、より精度良くB像の像形状を修正することができる。したがって、A像とB像の非対称性を精度良く修正するためには、A像を基準とした像ズレ量とB像を基準とした像ズレ量を算出する必要があり、演算量が増えるという課題がある。
そこで本発明は、高精度な距離検出を高速に行える距離検出装置を提供することを目的とする。
本発明の第一態様は、結像光学系の射出瞳内の第1の瞳領域を通過した光束に基づく第1の画像データと、前記射出瞳内の第2の瞳領域を通過した光束に基づく第2の画像データと、前記第1の瞳領域と前記第2の瞳領域を内包する第3の瞳領域を通過した光束に基づく第3の画像データのうち、少なくとも前記第1および第3の画像データに基づき被写体までの距離情報を検出する距離検出装置であって2つの画像データの間の像ズレ量を取得する取得手段と、像ズレ量に基づいて画像データの像形状を修正する像修正手段と、を有し、前記取得手段によって、前記第1の画像データと第3の画像データとの像ズレ量である第1の像ズレ量を取得し、前記像修正手段によって、前記第1の像ズレ量に基づき、前記第1の画像データの像形状を修正した第1の修正画像データを生成し、前記取得手段によって、前記第1の修正画像データと、前記第2の画像データまたは前記第3の画像データとに基づく像ズレ量である第3の像ズレ量を取得する。
本発明の第二態様は、結像光学系の射出瞳内の第1の瞳領域を通過した光束に基づく第1の画像データと、前記射出瞳内の第2の瞳領域を通過した光束に基づく第2の画像データと、前記第1の瞳領域と前記第2の瞳領域を内包する第3の瞳領域を通過した光束に基づく第3の画像データのうち、少なくとも前記第1および第3の画像データに基づき被写体までの距離情報を検出する距離検出装置が行う距離検出方法であって、前記第1の画像データと前記第3の画像データとの像ズレ量である第1の像ズレ量を取得する第1取得ステップと、前記第1の像ズレ量に基づき、前記第1の画像データの像形状を修正した第1の修正画像データを生成する第1像修正ステップと、前記第1の修正画像データと、前記第2の画像データまたは前記第3の画像データとに基づく像ズレ量である第3の像ズレ量を取得する第3取得ステップと、を含む。
本発明では、被写体までの距離を算出する距離検出装置において、演算量を削減しつつも高精度に像ズレ量を算出することにより、高精度かつ高速に被写体距離を検出することができる。
実施形態1に係る距離検出装置を備えたデジタルカメラの構成図。 光電変換部が受光する光束の説明図。 A像とB像が並進非対称となる理由とその補正方法を説明する図。 実施形態1における距離検出処理の流れを説明する図。 2つの画像間の像ズレ量の取得方法を説明する図。 像形状修正処理のための像ズレ量算出を高速化できる理由を説明する図。 実施形態2における撮像素子および距離算出処理を説明する図。 実施形態3における距離検出処理の流れを説明する図。 実施形態4における撮像素子を説明する図。 デジタルカメラの動作を示すフローチャート。
以下、図を参照しながら本発明の実施形態について詳細に説明する。以下の説明では、本発明の距離検出装置を備えた撮像装置の一例として、デジタルカメラを用いて説明するが、本発明の適用はこれに限定されるものではない。尚、図を参照した説明においては、図番は異なっても原則として同一部位を示す部位には、同一の符号を付すこととし、なるべく重複した説明は避ける。
(実施形態1)
<デジタルカメラの構成>
図1(A)は、本実施形態に係る距離検出装置110を備えたデジタルカメラ100を示す図である。デジタルカメラ100は、結像光学系120、撮像素子101、距離検出装置110、画像生成部(不図示)、レンズ駆動制御部(不図示)が、カメラ筐体130の内部に配置され、構成される。距離検出装置110は、さらに、像ズレ量取得部102、像修正部104、距離変換部106から構成される。距離検出装置110は論理回路を用いて構成することができる。距離検出装置110の別の形態として中央演算処理装置(CPU)と演算処理プログラムを格納するメモリとから構成してもよい。
結像光学系120は、デジタルカメラ100の撮影レンズであり、被写体の像を結像光学系120の予定焦点面に配置された撮像素子101に形成する機能を有する。結像光学系120は複数のレンズ群(不図示)、絞り(不図示)から構成され、撮像素子101から所定距離離れた位置に射出瞳130を有する。尚、図1(A)中には、結像光学系120の光軸140が示されている。本発明書中では光軸140はz軸と平行とする。さらに、x軸とy軸は互いに垂直であり、且つ光軸140と垂直な軸とする。
ここで、このデジタルカメラ100の動作例について説明しておく。ただし、以下は、あくまで一例である。図10はデジタルカメラ100のメイン電源が入り、シャッターボタン(不図示)が所謂半押しされた後の動作フローを説明する図である。まず、ステップS1001にて、デジタルカメラ100は、結像光学系120の情報(焦点距離、絞り値など)を読み出し、メモリ部(不図示)に保存する。次に、デジタルカメラ100は、ステップS1002、S1003、S1004の処理を行い、焦点調節を行う。すなわち、ステップS1002では、撮像素子101から出力される画像データに基づき、図4を用いて後述する距離検出手順を用いてデフォーカス量が算出される。ステップS1003では、算出されたデフォーカス量に基づき、結像光学系120が合焦状態かどうか判別される。合焦していない場合は、ステップS1004にて、レンズ駆動制御部がデフォーカス量に基づき結像光学系120内のフォーカスレンズを合焦位置へ駆動したのち、ステップS1002へ戻る。ステップS1003にて合焦していると判定された場合は、ステップS1005にて、シャッターボタン(不図示)の操作によりシャッターがレリーズ(所謂全押し)されたか否かの判定が行われる。レリーズされていないと判定された場合は、ステップS1002へ戻り、上述の処理を繰り返す。ステップS1005にてシャッターがレリーズされたと判定された場合には、撮像素子101から画像データを読み出し、メモリ部(不図示)に保存する。メモリ部に保存された画像データに画像生成部が現像処理を施すことで、観賞用画像を生成することができる。また、メモリ部に保存された画像データに、図4を用いて後述する距離検出手順を適用することで、観賞用画像と対応した距離画像(距離分布)を生成することができる。
<撮像素子の構成>
撮像素子101はCMOS(相補型金属酸化膜半導体)やCCD(電荷結合素子)から構成される。結像光学系120を介して撮像素子101上に結像した被写体像は、撮像素子101により光電変換され、被写体像に基づく画像データが生成される。以下、本実施形態における撮像素子101について、図1を用いてより詳細に説明する。
図1(B)は、撮像素子101のxy断面図である。撮像素子101は、2行×2列の画素群150が複数配列することで構成される。画素群150は、対角方向に緑画素150G1及び150G2、他の2画素に赤画素150R及び青画素150Bが配置され、構成されている。撮像素子101の全ての画素が画素群150として構成されてもよいし、撮像素子101の一部のみに画素群150が離散的に配置され、その他は通常の撮像用画素のみで構成された画素群が配置されても構わない。
図1(C)は、画素群150のI−I’断面を模式的に示した図である。各画素は受光層182と導光層181を含む。受光層182には、受光した光を光電変換するための2つの光電変換部(第1の光電変換部161、第2の光電変換部162)が配置される。導光層181には、画素へ入射した光束を光電変換部へ効率良く導くためのマイクロレンズ170、所定の波長帯域の光を通過させるカラーフィルタ(不図示)、画像読み出し用及び画素駆動用の配線(不図示)などが配置される。
<距離検出の原理説明>
本実施形態の、距離検出装置110における距離検出の原理について説明する。
まず、図2(A)(B)を用いて撮像素子101内の第1の光電変換部161及び第2の光電変換部162が受光する光束について説明する。図2(A)は、結像光学系120の射出瞳130と、撮像素子101中に配置される緑画素150G1のみについて示した概略図である。図2(A)(B)においては、説明のために光軸140がマイクロレンズ170の中心を通るように図示している。
マイクロレンズ170は、射出瞳130と受光層182が光学的に共役関係になるように配置されている。その結果、図2(A)に示すように、射出瞳内の第1の瞳領域210を通過した光束が第1の光電変換部に入射する。一方、射出瞳内の第2の瞳領域220を通過した光束は、第2の光電変換部162に入射する。
複数の画素に含まれる複数の第1の光電変換部は、受光した光束を光電変換して第1の画像データ(A像データ)を生成する。また同様に、複数の画素に含まれる複数の第2の光電変換部は、受光した光束を光電変換して第2の画像データ(B像データ)を生成する。従って、第1の画像データから、第1の瞳領域210を主に通過した光束が撮像素子101上に形成する像(A像)の強度分布を得ることができる。同様に、第2の画像データから第2の瞳領域220を主に通過した光束が撮像素子101上に形成する像(B像)の強度分布を得ることができる。第1の画像データと第2の画像データを合成した第3の画像データ(A+B像データ)は、図2(A)に示す第1の瞳領域210と第2の瞳領域220を内包する第3の瞳領域230を通過した光束が撮像素子101上に形成する像(A+B像)の強度分布となる。
図2(B)は光軸140と撮像素子101の交点(いわゆる中心像高)から、結像光学系120の射出瞳130を見た図である。第1の瞳領域210の重心位置を211で示し、第2の瞳領域220の重心位置を221で示し、第3の瞳領域230の重心位置を231で示している。本実施形態においては、第1の重心位置211は、第3の重心位置23
1から第1の軸200に沿って+x方向に沿って偏心(シフト)している。一方、第2の重心位置221は、第3の重心位置231から第1の軸300に沿って、第1の重心位置211とは逆の方向に偏心(シフト)している。本実施形態においては、第1の光電変換部161を緑画素150G1のxy面内の中心から−x方向にシフトしているため、第1の重心位置211は第1の軸に沿って+x方向に偏心している。一方、第2の光電変換部162を緑画素150G1のxy面内の中心から+x方向にシフトしているため、第2の重心位置221は第1の軸に沿って−x方向に偏心している。
第1の画像データ(A像データ)と第2の画像データ(B像データ)の相対的な位置ズレ量である像ズレ量は、被写体までの距離に応じた量となる。よって、第1の画像データと第2の画像データ間の像ズレ量を後述の手法によって算出することで、被写体までの距離を得ることができる。なお、距離検出装置110が出力する距離情報は、フォーカス位置からの相対距離であってもよいし、撮影時の撮像装置からの絶対距離であってもよい。また、絶対距離あるいは相対距離は、像面側での距離、物体側での距離のどちらであってもよい。また、距離は、実空間の距離で表されてもよいし、デフォーカス量や像ズレ量など実空間の距離に換算できる量で表されてもよい。
図2(B)において、第1の瞳領域210はx座標が正の領域とし、第2の瞳領域220はx座標が負の領域として図示したが、実際には受光層182に到達する光は、光の回折現象により一定の拡がりを有する。また、受光層182内部におけるキャリアのクロストークによっても、一定の拡がりを有する。すなわち、x座標が負の領域を通過した光束が第2の光電変換部162に入射する場合においても、第1の光電変換部161は低感度ながらも受光感度を有する。従って、第1の瞳領域と第2の瞳領域は明確に区分することはできず、重複した領域を有することになる。本実施形態においては、便宜的に第1の瞳領域と第2の瞳領域を明確に区分した形で説明する。
<A像とB像の像形状が非対称になる要因並びに像形状の修正方法>
以下、A像とB像の像形状が非対象になる要因について、図3(A)〜3(E)を参照しながら詳細に説明する。
図3(A)は、画素感度の入射角度依存性を示している。横軸は、画素へ入射する光線がz軸となす角度であり、縦軸は、画素感度を示している。また、実線301は第1の光電変換部161の感度を、破線302は第2の光電変換部162の感度を示している。
図3(B)は、光電変換部が図3(A)に示す感度の入射角度依存性を有する際の、線像分布関数を示している。実線311は第1の瞳領域210を通過した光束の線像分布関数(第1の線像分布関数)であり、破線312は第2の瞳領域220を通過した光束の線像分布関数(第2の線像分布関数)である。図3(B)から、第1の線像分布関数311と第2の線像分布関数312が並進対称性を有さないことが分かる。像ズレ量の算出では並進対称性が重要であることから、以下では単に対称性といった場合は並進対称性を指すものとする。例えば、第1の線像分布関数311と第2の線像分布関数312は非対称な形状である、などと表現する。
第1の線像分布関数311と第2の線像分布関数312の形状が非対称になる主な要因として、結像光学系120のレンズ枠などによるケラレの影響が挙げられる。一般に、中心像高における射出瞳130の形状は、図2(B)に示すように円形になる。したがって射出瞳130をx方向に分割した第1の瞳領域210と第2の瞳領域220は並進対称性を有さない。図3(B)に示すように、各瞳領域210,220の形状を反映して、線像分布関数311,312の形状は、非対称な形状になる。
A像は、第1の線像分布関数311の形状を反映した像形状となる。また、B像は、第2の線像分布関数312の形状を反映した像形状となる。したがって、A像とB像は、結像光学系120のレンズ枠などのケラレにより、非対称な像形状を有することになる。すなわち、A像に基づく第1の画像データと、B像に基づく第2の画像データの像形状は、非対称になる。
A像とB像間における像形状の非対称性を修正する方法の1つとして、第1の画像データ(A像)と第2の線像分布関数に基づくフィルタの畳込み積分を行い、第2の画像データ(B像)と第1の線像分布関数に基づくフィルタの畳込み積分を行う方法がある。図3
(C)に、被写体の輝度分布を実線320にて示している。図3(D)は、図3(C)に示す被写体を撮影した画像データを示す。図3(D)における実線331は第1の画像データであり、破線332は第2の画像データである。第1の画像データと第2の画像データに対して像形状の非対称性を修正した結果を、図3(E)に示す。図3(E)において、実線341は第1の修正画像データであり、破線342は第2の修正画像データである。図3(E)から、第1の修正画像データと第2の修正画像データが対称形状を有することが分かる。
説明のために、第1の画像データと第2の画像データの両方の像形状を修正する例を示したが、第1の画像データにのみ像形状の修正処理を行っても構わない。いずれの場合においても、A像とB像間の類似度をより高めるためには、像形状修正フィルタを生成する前に、第1の画像データと第2の画像データの間の像ズレ量(以降、暫定像ズレ量)を算出することが必要である。これは、線像分布関数の形状は、像ズレ量に依存して変化するためである。予め暫定像ズレ量を算出しておくことで、第1の修正画像データと第2の修正画像データ間の類似度が高くなり、高精度に像ズレ量の算出を行うことができる。
なお、ここでは線像分布関数を用いて像形状修正フィルタを生成する例を説明したが、点像分布関数を用いても同様に像形状の修正処理が行える。
<距離検出手順の説明>
以下、本実施形態の距離検出手順について、図4(A)(B)を参照しながら詳細に説明する。図4(A)は、撮像素子101にて画像データを取得し、デフォーカス量を算出するまでの処理の流れを説明するフローチャートであり、図4(B)はデータの流れを示す図である。
ステップS401では、撮像素子101にて第1の画像データ(A像データ)411及び第2の画像データ(B像データ)412を取得し、距離検出装置110に伝送する。
ステップS402は撮像素子101から伝送された画像データに基づき、第3の画像データ(A+B像データ)413を生成するための工程である。本工程では、画像生成部が、第1の画像データ411と第2の画像データ412を合成し、第3の画像データ413を生成する。第1の画像データ411は、第1の瞳領域201(図2(B)参照)を主として通過した光束による像であり、第2の画像データ412は、第2の瞳領域220を主として通過した光束による像である。従って、第1の画像データ411と第2の画像データ412を加算することで第3の瞳領域230を通過した光束による像の強度分布を表す第3の画像データ413を生成することができる。後述するステップS403における第1の像ズレ量取得工程にて相関度を正しく算出するためには、相互相関演算を行う画像データ間で画素値の範囲が略等しいことが望まれる。従って、望ましくは第1の画像データ411と第2の画像データ412の加算平均によって第3の画像データ413を生成することが好ましい。
ステップS403(第1の像ズレ量取得工程)では、像ズレ量取得部102が、第1の画像データ411に対する第3の画像データ413の相対的な位置ズレ量である第1の像ズレ量414を取得する。ここで、2つの画像データの間の像ズレ量の算出方法について、図5を用いて説明する。図5は像ズレ量算出方法を説明する図であり、第1の画像データ411と第3の画像データ413を縦に並べて示している。像ズレ量取得部102は、第1の画像データ411に対して、注目点510を設定し、注目点510を中心に基準領域520を設定する。一方、像ズレ量取得部102は、第3の画像データ413に対して、注目点510と対応する位置に参照点511を設定し、参照点511を中心に参照領域521を設定する。像ズレ量取得部102は、参照点511を所定の探索範囲内で、第1の軸(図2(B)の第1の軸200)に沿って順次移動させながら、基準領域520内の第1の画像データ411と参照領域521内の第3の画像データ413の相関度を算出する。像ズレ量取得部102は、最も類似度の高い参照点511を、注目点510に対応する対応点として決定する。注目点510と対応点間の相対的な位置ズレ量が像ズレ量となる。第1の画像データ411における注目点510を順次移動させながら対応点の探索を行うことで、第1の画像データ411内の各データ位置における像ズレ量を算出することができる。相関値の算出方法は公知の手法を用いることができ、例えば、基準領域520内の画像データと参照領域521内の画像データの差の2乗和を評価値とするSSD(Sum of Squared Difference)と呼ばれる手法を用いることができる。以上の説明の通り、本実施形態の第1の像ズレ量取得工程S403においては、第1の画像データ411に基準領域を設定し、第3の画像データ413に参照領域を設定して、第1の像ズレ量414の算出を行っている。
ステップS404(第1の修正像生成工程)では、像修正部104が、ステップS403にて取得された第1の像ズレ量414に基づき、第1の画像データ411の像形状を修正する。像修正部104は、まず、第1の像ズレ量414と対応する第2の線像分布関数(第2の瞳領域を通過した光束の線像分布関数)に基づいて、像形状修正用フィルタを生成する。そして、像修正部104は、このフィルタを第1の画像データ411に適用することにより、第1の修正画像データ(A’像データ)415を生成する。
ステップS405(第2の像ズレ量取得工程)では、像ズレ量取得部102が、第2の画像データ412に対する第3の画像データ413の相対的な位置ズレ量である第2の像ズレ量416を取得する。像ズレ量の算出方法は、ステップS403と同様の手順により行うことができる。
ステップS406(第2の修正像生成工程)では、像修正部104が、ステップS405にて取得した第2の像ズレ量416に基づき、第2の画像データ412の像形状を修正する。像修正部104は、まず、第2の像ズレ量416と対応する第1の線像分布関数(第1の瞳領域を通過した光束の線像分布関数)に基づいて、像形状修正用フィルタを生成する。そして、像修正部104は、このフィルタを第2の画像データ412に適用することにより、第2の修正画像データ(B’像データ)417を生成する。
ステップS407(第3の像ズレ量算出工程)では、像ズレ量取得部102が、第1の修正画像データ(A’像データ)415と第2の修正画像データ(B’像データ)417の間の相対的な位置ズレ量である第3の像ズレ量418を取得する。像ズレ量の算出方法は、ステップS403と同様の手順により行うことができる。なお、2つの修正像の像形状は対称であるため、像ズレ量算出の基準はどちらであっても構わない。
ステップS408(距離変換工程)では、距離変換部106が、第3の像ズレ量418を、結像光学系120の焦点位置と撮像素子101(予定焦点面)の間の距離であるデフォーカス量(距離情報)419へ変換する。距離変換部106は、所定の変換係数を用い
て、第3の像ズレ量418からデフォーカス量419への変換を行う。第3の像ズレ量418をd、変換係数である基線長をw、撮像素子101から射出瞳130までの距離をL、デフォーカス量をΔLとしたとき、以下の数式1により第3の像ズレ量dをデフォーカス量ΔLに変換することができる。
Figure 2016090975
なお、基線長wは、図2(B)に示した第1の重心位置211と第2の重心位置221
間の距離である。
本実施形態では数式1を用いて第3の像ズレ量418をデフォーカス量ΔLに変換したが、数式1にてw>>dとの近似より、以下の数式2によりデフォーカス量ΔLを求めてもよい。
Figure 2016090975
本実施形態の距離変換工程S408では、第3の像ズレ量418をデフォーカス量へ変換したが、デフォーカス量と被写体までの距離は結像光学系120の結像関係を用いて容易に変換可能である。したがって、距離変換工程S408において、デフォーカス量を被写体距離へ変換しても構わないし、第3の像ズレ量を直接被写体距離へ変換しても構わない。いずれの場合でも、第3の像ズレ量を精度よく算出することで、被写体までの距離を高精度に算出することができる。
<像形状の修正に必要な像ズレ量取得の演算量を削減できる理由>
まず、第1の画像データの像形状を修正するために必要な像ズレ量について説明する。図6(A)は、第1の画像データ411と第2の画像データ412を縦に並べて示している。第1の画像データについて像形状を修正するためには、各画素について第1の画像データを基準とした像ズレ量(以降、像ズレ量1Aとする)が必要となる。第1の画像データを基準とした像ズレ量とは、第1の画像データの画素(例えば、位置611Aの画素)を基準とした、当該画素に対応する第2の画像データにおける画素(例えば、位置612Bの画素)の相対的な位置である。
一方、第2の画像データの像形状を修正する際に、像ズレ量1Aを用いると、誤った像ズレ量を用いて像形状を修正することになる。例えば、位置611Aでの像ズレ量1Aは、上述のように第1の画像データの位置611Aと第2の画像データの位置612Bの相対的位置であり、第2の画像データの位置611B(位置611Aと同じ座標)での像ズレ量とは異なる。したがって、第2の画像データの像形状を修正するためには、各画素について第2の画像データを基準とした像ズレ量(以降、像ズレ量1B)が必要となる。第2の画像データを基準とした像ズレ量とは、第2の画像データの画素(例えば、位置611Bの画素)を基準とした、当該画素に対応する第1の画像データにおける画素(例えば、位置613Aの画素)の相対的な位置である。
このように、第1の画像データ411の像形状を修正するためには、第1の画像データ411を基準とした像ズレ量が必要となる。また、第2の画像データ412の像形状を修正するためには、第2の画像データ412を基準とした像ズレ量が必要となる。以上から、第1の画像データ411と第2の画像データ412を修正するためには、像ズレ量を2回算出する必要がある。一方で、像ズレ量1Aと像ズレ量1Bは、像形状修正フィルタを生成するためのみに用いられるので、できるだけ簡易な演算であることが望まれる。
次に、本実施形態の距離検出手順において、第1及び第2の修正画像データの生成に必要な第1及び第2の像ズレ量の演算量を削減できる理由について説明する。
本実施形態の距離検出手順において、ステップS403の第1の像ズレ量算出工程では、第1の画像データ411を基準としたときの第3の画像データ413の相対的な位置ズレ量(第1の像ズレ量)が取得される。図6(B)では、射出瞳130と撮像素子101を模式的に示している。第1の像ズレ量414は、第1の瞳の重心位置211の像面上での位置と、第3の瞳の重心位置231の像面上での位置の間の長さ601となる。一方、第1の画像データ411と第2の画像データ412間の相対的な位置ズレ量は、第1の瞳の重心位置211の像面上での位置と第2の瞳の重心位置221の像面上での位置の間の長さ603となる。これら2つの長さ601、603の比較から、デフォーカス量が同じ場合の像ズレ量は、第1の像ズレ量601の方が短く約半分であることが分かる。これは、第2の像ズレ量を示す長さ602についても同様である。すなわち、本実施形態のステップS403、ステップS405においては、第3の画像データ413に対して参照点を設定し、像ズレ量の算出を行っているため、同じデフォーカス量であっても、像ズレ量が小さくなる。したがって、対応点を探索するために、参照点を順次移動させる範囲(探索範囲)を狭く設定することができるため、より少ない演算量で第1の像ズレ量414と第2の像ズレ量416を算出することができる。
本実施形態の距離検出手順の第3の像ズレ量取得工程S407では、図5を用いて説明したように、注目点510を順次移動させながら各画素について第3の像ズレ量418が算出される。さらに第3の像ズレ量418をデフォーカス量419に変換している。したがって、各画素位置に対応したデフォーカス量分布を算出することができる。また一方で、第3の画像データ413に対して、画像生成部において所定の現像処理を施すことで、観賞用の画像を生成することができる。観賞用画像中の被写体のボケ量は、デフォーカス量に応じて発生する。したがって、観賞用画像に対してデフォーカス量に応じた画像処理を行うことで、例えば撮影後にピント位置を変更するリフォーカス処理を行うことができる。なお、数式2にて説明したように、第3の像ズレ量とデフォーカス量は比例関係にあると近似できる。したがって、第3の像ズレ量からデフォーカス量への変換に係る工程を省き、観賞用画像に対して第3の像ズレ量に応じた画像処理を行っても構わない。その際には、図4(A)の被写体距離検出手順において、ステップS401からステップS407までの工程のみを行えばよい。
いずれの場合においても、本実施形態の距離検出装置は、第1の画像データ及び第2の画像データの像形状を修正するために必要な像ズレ量算出に係る演算量を削減し、より高速に被写体までの距離を高精度に算出することができる。
(実施形態1の変形例)
上記の説明では、A像およびB像の両方の像形状を修正しているが、いずれか一方のみの像形状を修正しても良い。例えば、A像のみ修正する場合は、図4(A)のフローチャートにおいて、ステップS405およびS406の処理が省略され、ステップS407においては、像修正後のA像(A’像)と、像修正していないB像との間で像ズレ量が算出される。A像の像修正処理によって2つの像形状の類似度が高まる。したがって、精度の良い像ズレ量(第3の像ズレ量)算出が可能となる。また、A像とA+B像の間の像ズレ量を算出することで、A像とB像の間の像ズレ量を算出するよりも演算量を削減でき、処理の高速化が図れる。
(実施形態2)
本実施形態は、実施形態1と比較して撮像素子の構成が異なり、またそれに伴って距離
検出方法も異なる。
本実施形態に係るデジタルカメラ100は、実施形態1の撮像素子101の代わりに、図7(A)に示す構成の撮像素子701を備える。図7(A)の撮像素子701は、画素群750が離散的に配置され構成される。画素群750は、画素群750の緑画素の位置に測距画素750D1と測距画素750D2が配置されている。また、画素群150の青画素と赤画素の位置には、通常の撮像用画素(測距機能を有さない画素)である赤画素750Rと青画素750Bを備えている。また、撮像素子701は、画素群750が配置されない領域に、通常の撮像用画素のみで構成された画素群が配置されている。もっとも、撮像素子701の全てが画素群750から構成されても構わない。
測距画素750D1には、第1の光電変換部161が配置されている。第1の光電変換部161は、実施形態1で説明したように、射出瞳130内の第1の瞳領域210(図2(A)(B))を通過した光束を受光および光電変換して第1の画像データを生成する。測距画素750D2には、第3の光電変換部163が配置されている。第3の光電変換部163は、撮像用画素と略等しい開口面積を有し、射出瞳130内の第3の瞳領域230(図2(A)(B))を通過した光束を受光および光電変換して第3の画像データを生成する。この結果、第3の光電変換部163により生成される第3の画像データは、第3の瞳領域230を通過した光束が形成する像の強度分布となる。
本実施形態における距離検出手順における処理の流れとデータの流れを、それぞれ図7(B)および図7(C)に示す。図7(A)に示す撮像素子701を用いた場合には、実施形態1(図4(A))と比較して、第3の画像データ生成工程S402、第2の像ズレ量取得工程ステップS405、第2の修正像生成工程ステップS405を省くことができる。以下では、重複した説明をできるだけ避け、実施形態1における距離検出手順から変更が有る部分について主に説明する。
ステップ701では、撮像素子701にて第1の画像データ(A像)411および第3の画像データ(A+B像)413を取得し、距離検出装置110に伝送する。ステップS703(第1の像ズレ量算出工程)は、実施形態1における第1の像ズレ量算出工程S403と同様である。
ステップS704(第1の修正像生成工程)では、像修正部104が、ステップS703にて取得した第1の像ズレ量414に基づき、第1の修正画像データの生成を行う。本工程では、像修正部104は、第1の像ズレ量414と対応する第2の線像分布関数(第2の瞳領域を通過した光束の線像分布関数)に基づき生成した像形状修正用フィルタを第1の画像データ411に適用して、第1の修正画像データ415を生成する。この際、第3の瞳領域を通過した光束によるA+B像(第3の画像データ)413の形状と略一致するように像形状修正用フィルタを生成すればよい。
ステップS707(第3の像ズレ量取得工程)では、像ズレ量取得部102が、第1の修正画像データ415と第3の画像データ413間の相対的な位置ズレ量である第3の像ズレ量418を取得する。像ズレ量の算出方法は、図5を用いて説明した手法と同様の手法を用いることができる。
ステップS708(距離変換工程)では、距離変換部106が、第3の像ズレ量418を撮像素子701から結像光学系120の焦点までの距離であるデフォーカス量(距離情報)419への変換する。より具体的には、距離変換部106は、数式1または数式2の変換式に基づいて、第3の像ズレ量418をデフォーカス量へ変換する。この際、第3の像ズレ量取得工程S707において、第1の修正画像データ415と第3の画像データ4
13間の像ズレ量を取得していることを考慮して、基線長wとして、第1の重心位置211と第3の重心位置231間の距離を用いる。
このような距離検出手順を用いることで、本実施形態は、デフォーカス量の算出に係る工程数を減らすことができ、より高速に被写体までの距離を算出することができる。また、第3の像ズレ量算出工程S407では、実施形態1で図6(B)を用いて説明したのと同様の理由により、参照点511の探索範囲を狭く設定することができ、より高速に被写体までの距離を算出することができる。
本実施形態においては、画素群750と対応した位置のデフォーカス量分布を所得することができる。また、撮影用画素により生成された画像データに対して、画像生成部において所定の現像処理を行うことで観賞用画像を生成することができる。したがって、撮像素子101を用いた場合と同様に、観賞用画像に対してデフォーカス量分布を用いた画像処理を行うことができる。
なお、撮像素子701から生成される第3の画像データ413と第1の画像データ411の差をとることにより、第2の画像データ412を生成することができる。したがって、撮像素子701を有するデジタルカメラ100においても、実施形態1と同様の距離検出手順を行うことができる。すなわち、図4(A)の距離検出手順のステップS402を、第2の画像データ412を生成する工程に置き換えれば、実施形態1と同様の距離検出手順が本実施形態のデジタルカメラ100でも実施できる。また逆に、撮像素子101を有する実施形態1のデジタルカメラ100において、本実施形態における距離検出手順を実行できることも明らかであろう。
(実施形態3)
本実施形態に係るデジタルカメラは、実施形態2と同様の構成を有する。本実施形態に係るデジタルカメラは図7(A)に示す撮像素子701を有する。本実施形態では、距離検出手順が実施形態2と比較して一部異なっている。
実施形態2の距離検出手順(図7(B))では、第1および第3の画像データ(A像およびA+B像)411,413を用いて距離が検出されるが、第2および第3の画像データ(B像およびA+B像)412、413を用いても同様に距離が検出できる。ところで、撮像素子701面内の像高によっては、結像光学系120のレンズ枠などの口径食(ケラレ)により、第1の瞳領域210と第2の瞳領域220の面積に差がでるため、取得した画像データのSN比(信号雑音比)が低下する恐れがある。このような場合には、第1の瞳領域210の面積と第2の瞳領域220の面積に応じて、第1の画像データ411と第2の画像データ413のどちらを用いて距離検出するかを切り替えることが望ましい。
本実施形態における距離検出手順のフローチャートを図8に示す。図8のフローチャートにおいて、図7(B)と同じ符号を付した工程は、実施形態2と同様であるので、説明を省略する。ステップS801では、像ズレ量取得部102は、第1の瞳領域210の面積と第2の瞳領域220の面積の比較を行い、その後の処理フローを切り替える。像ズレ量取得部102は、第1の瞳領域210の面積が第2の瞳領域220の面積よりも大きい場合には、ステップS703の工程に処理を進める。一方、像ズレ量取得部102は、第1の瞳領域210の面積が第2の瞳領域220の面積よりも小さい場合には、ステップS802に処理を進める。第1の瞳領域210と第2の瞳領域220のどちらが大きいかは、結像光学系120が決まれば画素ごとにあらかじめ求められる。したがって、像ズレ量取得部102は、画素ごとに第1の瞳領域210と第2の瞳領域220のどちらが大きいかをあらかじめ記憶しておく。なお、このような理由から、ステップS801は、像ズレ量算出対象の画素位置に応じてその後の処理フローを切り替える判定と捉えることもでき
る。
ステップS802では、第2の画像データ(B像データ)412を生成する工程である。画像生成部が、第3の画像データ(A+B像データ)413と第1の画像データ(A像データ)411の差を取ることにより、第2の画像データ(B像データ)412を取得できる。ステップS803およびS804は、第1の画像データ411の代わりに第2の画像データ412を用いることを除けば、ステップS703およびS704の処理と同様である。
本実施形態によれば、第1の画像データ411と第2の画像データ412のうち、SN比が高い画像データを用いて第3の像ズレ量418を取得することができるため、実施形態2よりも高精度に第3の像ズレ量418を取得することができる。また、実施形態1と比較すると、第2の画像データの生成処理を一部省略できるので、処理を高速化することができる。
本実施形態では、撮像素子701を有するデジタルカメラを用いて処理を行う例を説明したが、撮像素子101を有するデジタルカメラにおいても本実施形態の距離検出手順を採用することも可能である。
(実施形態4)
本実施形態は、実施形態1と比較して撮像素子の構成が異なり、またそれに伴って距離検出方法も異なる。
本実施形態に係るデジタルカメラ100は、実施形態1の撮像素子101の代わりに、図9(A)に示す構成の撮像素子901を備える。撮像素子901は、2行×2列の画素群950が複数配列されて構成される。画素群950は、対角方向に緑画素950G1及び950G2が、他の2画素に赤画素950R及び青画素950Bが配置され、構成されている。
画素群950内の各画素の受光層には、4つの光電変換部(第1の光電変換部961、第2の光電変換部962、第4の光電変換部964、第5の光電変換部965)が行列状に配置されている。第1の光電変換部961は、受光した光束を光電変換して画像データを生成する。第1の光電変換部961から得られる画像データを、画像データ971と称する。同様に第2の光電変換部962は画像データ972を、第4の光電変換部964は画像データ974を、第5の光電変換部965は画像データ975を生成する。
図9(B)は、図2(B)と同様に結像光学系120の射出瞳130を示す図である。画素群950が備える各画素は、受光部に4つの光電変換部を備えている。この結果、画像データ971は、第1の瞳領域981を通過した光束が撮像素子901上に形成する像の強度分布となる。同様に画像データ972は第2の瞳領域982を、画像データ974は第4の瞳領域984を、画像データ975は第5の瞳領域985を、それぞれ通過した光束による像の強度分布となる。
本実施形態における第1の瞳領域981と第4の瞳領域984を足し合わせた領域が、実施形態1における第1の瞳領域210に相当する。したがって、本実施形態における画像データ971と画像データ974を合成した画像データ(第1の合成画像データと称する)は、実施形態1における第1の画像データに相当する。同様に、本実施形態における画像データ972と画像データ975を合成した画像データ(第2の合成画像データと称する)は、実施形態1における第2の画像データに相当する。また、4つの画像データ971,972,974,975を合成した画像データ(第3の合成画像データと称する)
は、実施形態1における第3の画像データに相当する。
実施形態1の距離検出手順(図4(A))における第1〜第3の画像データとして、本実施形態における第1〜第3の合成画像データを用いることで、被写体までの距離情報を検出することができる。
また、本実施形態における4つの光電変換部から得られる4つの画像データのうち、任意の2つの画像データを用いて距離検出を行うことができる。例えば、画像データ971を第1の画像データとし、画像データ972を第2の画像データとして用いることができる。この際、画像データ971と画像データ972を合成した画像データを、第3の画像データとして用いることができる。あるいは、4つの画像データ971,972,974,975を合成した画像データを第3の画像データとして用いることもできる。第3の画像データは、少なくとも選択された2つの画像データを合成したものであれば、任意であって良い。すなわち、第3の画像データに対応する瞳領域が、第1の画像データに対応する瞳領域と第2の画像データに対応する瞳領域を内包していればよい。
第1の画像データおよび第2の画像データとして用いる画像データの組み合わせを変えることで、2つの画像データの視差の方向を変えることができる。例えば、画像データ971と画像データ972を用いる場合には、第1の瞳領域981と第2の瞳領域982の重心間を結ぶ方向(第1の軸200の方向)に視差が生じる。したがって、第1の軸200方向にコントラスト変化を有する被写体について高精度に距離を検出することができる。一方、第1の軸200と垂直な方向にのみコントラスト変化を有する被写体については、距離検出精度が低下するおそれがある。このような場合に、例えば、画像データ971と画像データ974とを用いて距離検出を行うことで、精度の良い距離検出が可能となる。なお、画像データ971と画像データ975のように斜め方向に並んだ瞳領域を通過した光束に基づく画像を用いても同様に距離検出ができる。被写体のコントラストに応じて距離算出に用いる画像データの組み合わせを変えることで、被写体のコントラスト変化の方向によらず、被写体までの距離を高精度に算出することができる。
(その他の実施例)
上述した本発明の距離検出装置及び方法は、例えば、デジタルカメラやカムコーダなどの撮像装置、或いは撮像装置で得られた画像データに対し画像処理を施す画像処理装置やコンピュータなどに好ましく適用できる。また、このような撮像装置或いは画像処理装置を内蔵する各種の電子機器(携帯電話、スマートフォン、スレート型端末、パーソナルコンピュータを含む)にも本発明の技術を適用可能である。上記実施形態では撮像装置の本体に画像処理装置の機能を組み込んだ構成を示したが、画像処理装置の機能はどのように構成してもよい。例えば、撮像装置を有するコンピュータに画像処理装置を組み込み、撮像装置で撮影した画像をコンピュータが取得して、それに基づいて上記画像処理方法を実行するようにしてもよい。また、有線あるいは無線によりネットワークアクセス可能なコンピュータに画像処理装置が組み込まれて、そのコンピュータがネットワークを介して複数枚の画像を取得し、それに基づいて上記画像処理方法を実行するようにしてもよい。得られた距離情報は、例えば、画像の領域分割、立体画像や奥行き画像の生成、ぼけ効果のエミュレーションなどの各種画像処理に利用することができる。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
110 距離検出装置, 102 像ズレ量取得部, 104 像修正部

Claims (14)

  1. 結像光学系の射出瞳内の第1の瞳領域を通過した光束に基づく第1の画像データと、前記射出瞳内の第2の瞳領域を通過した光束に基づく第2の画像データと、前記第1の瞳領域と前記第2の瞳領域を内包する第3の瞳領域を通過した光束に基づく第3の画像データのうち、少なくとも前記第1および第3の画像データに基づき被写体までの距離情報を検出する距離検出装置であって
    2つの画像データの間の像ズレ量を取得する取得手段と、
    像ズレ量に基づいて画像データの像形状を修正する像修正手段と、
    を有し、
    前記取得手段によって、前記第1の画像データと前記第3の画像データとの像ズレ量である第1の像ズレ量を取得し、
    前記像修正手段によって、前記第1の像ズレ量に基づき、前記第1の画像データの像形状を修正した第1の修正画像データを生成し、
    前記取得手段によって、前記第1の修正画像データと、前記第2の画像データまたは前記第3の画像データとの像ズレ量である第3の像ズレ量を取得する、
    距離検出装置。
  2. 前記像修正手段は、前記第1の像ズレ量と対応する前記第2の瞳領域を通過した光束の点像分布関数または線像分布関数に基づき像形状修正フィルタを生成し、前記像形状修正フィルタを前記第1の画像データに対して畳込み積分することで、前記第1の修正画像データを生成する、
    請求項1に記載の距離検出装置。
  3. 前記取得手段によって、前記第2の画像データと前記第3の画像データとの像ズレ量である第2の像ズレ量を更に取得し、
    前記像修正手段によって、前記第2の像ズレ量に基づき、前記第2の画像データの像形状を修正した第2の修正画像データを更に生成し、
    前記取得手段は、前記第1の修正画像データと前記第2の修正画像データとの像ズレ量を前記第3の像ズレ量として取得する、
    請求項1または2に記載の距離検出装置。
  4. 前記像修正手段は、前記第2の像ズレ量と対応する前記第1の瞳領域を通過した光束の点像分布関数または線像分布関数に基づき像形状修正フィルタを生成し、前記像形状修正フィルタを前記第2の画像データに対して畳込み積分することで、前記第2の修正画像データを生成する、
    請求項3に記載の距離検出装置。
  5. 前記結像光学系の予定焦点面の面内において、前記第1の瞳領域の面積が、前記第2の瞳領域の面積よりも大きい場合には、前記第1の像ズレ量の取得および前記第1の修正画像データの生成を行い、
    前記第1の瞳領域の面積が、前記第2の瞳領域の面積よりも小さい場合には、前記第2の像ズレ量の取得および前記第2の修正画像データの生成を行い、
    前記取得手段は、前記第1の修正画像データまたは前記第2の修正画像データのいずれか一方と、前記第3の画像データとの像ズレ量を前記第3の像ズレ量として取得する、
    請求項3または4に記載の距離検出装置。
  6. 所定の変換係数を用いて、前記第3の像ズレ量を前記結像光学系の焦点位置と予定焦点面の間の距離であるデフォーカス量に変換する変換手段を更に備える、
    請求項1から5のいずれか1項に記載の距離検出装置。
  7. 前記結像光学系と、
    前記第1の瞳領域、前記第2の瞳領域、前記第3の瞳領域のうち、少なくとも2つの瞳領域を通過した光束を受光する少なくとも2つの光電変換部を有する撮像素子と、
    請求項1から6のいずれか1項に記載の距離検出装置と、
    を備える撮像装置。
  8. 結像光学系の射出瞳内の第1の瞳領域を通過した光束に基づく第1の画像データと、前記射出瞳内の第2の瞳領域を通過した光束に基づく第2の画像データと、前記第1の瞳領域と前記第2の瞳領域を内包する第3の瞳領域を通過した光束に基づく第3の画像データのうち、少なくとも前記第1および第3の画像データに基づき被写体までの距離情報を検出する距離検出装置が行う距離検出方法であって、
    前記第1の画像データと前記第3の画像データとの像ズレ量である第1の像ズレ量を取得する第1取得ステップと、
    前記第1の像ズレ量に基づき、前記第1の画像データの像形状を修正した第1の修正画像データを生成する第1像修正ステップと、
    前記第1の修正画像データと、前記第2の画像データまたは前記第3の画像データとに基づく像ズレ量である第3の像ズレ量を取得する第3取得ステップと、
    を含む、距離検出方法。
  9. 前記第1像修正ステップでは、前記第1の像ズレ量と対応する前記第2の瞳領域を通過した光束の点像分布関数または線像分布関数に基づき像形状修正フィルタを生成し、前記像形状修正フィルタを前記第1の画像データに対して畳込み積分することで、前記第1の修正画像データを生成する、
    請求項8に記載の距離検出方法。
  10. 前記第2の画像データと前記第3の画像データとの像ズレ量である第2の像ズレ量を取得する第2取得ステップと、
    前記第2の像ズレ量に基づき、前記第2の画像データの像形状を修正した第2の修正画像データを生成する第2像修正ステップと、
    を更に含み、
    前記第3取得ステップでは、前記第1の修正画像データと前記第2の修正画像データの間の像ズレ量を、前記第3の像ズレ量として取得する、
    請求項8または9に記載の距離検出方法。
  11. 前記第2像修正ステップでは、前記第2の像ズレ量と対応する前記第1の瞳領域を通過した光束の点像分布関数または線像分布関数に基づき像形状修正フィルタを生成し、前記像形状修正フィルタを前記第2の画像データに対して畳込み積分することで、前記第2の修正画像データを生成する、
    請求項10に記載の距離検出方法。
  12. 前記結像光学系の予定焦点面の面内において、前記第1の瞳領域の面積が、前記第2の瞳領域の面積よりも大きい場合には、前記第2取得ステップおよび前記第2像修正ステップとを行わずに、前記第1取得ステップおよび前記第1像修正ステップを行い、
    前記第1の瞳領域の面積が、前記第2の瞳領域の面積よりも小さい場合には、前記第1取得ステップおよび前記第1像修正ステップとを行わずに、前記第2取得ステップおよび前記第2像修正ステップを行い、
    前記第3取得ステップでは、前記第1の修正画像データまたは前記第2の修正画像データのいずれか一方と、前記第3の画像データとの像ズレ量を、前記第3の像ズレ量として取得する、
    請求項10または11に記載の距離検出方法。
  13. 所定の変換係数を用いて、前記第3の像ズレ量を前記結像光学系の焦点位置と予定焦点面の間の距離であるデフォーカス量に変換する変換ステップを更に含む、
    請求項8から12のいずれか1項に記載の距離検出方法。
  14. 請求項8から13のいずれかに1項に記載の方法の各ステップをコンピュータに実行させるためのプログラム。
JP2014229130A 2014-11-11 2014-11-11 距離検出装置、撮像装置、距離検出方法、およびプログラム Pending JP2016090975A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229130A JP2016090975A (ja) 2014-11-11 2014-11-11 距離検出装置、撮像装置、距離検出方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229130A JP2016090975A (ja) 2014-11-11 2014-11-11 距離検出装置、撮像装置、距離検出方法、およびプログラム

Publications (1)

Publication Number Publication Date
JP2016090975A true JP2016090975A (ja) 2016-05-23

Family

ID=56017990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229130A Pending JP2016090975A (ja) 2014-11-11 2014-11-11 距離検出装置、撮像装置、距離検出方法、およびプログラム

Country Status (1)

Country Link
JP (1) JP2016090975A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028358A (ja) * 2017-08-02 2019-02-21 キヤノン株式会社 撮像装置およびその制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028358A (ja) * 2017-08-02 2019-02-21 キヤノン株式会社 撮像装置およびその制御方法
JP7019337B2 (ja) 2017-08-02 2022-02-15 キヤノン株式会社 像ブレ補正装置、レンズ装置およびそれらの制御方法

Similar Documents

Publication Publication Date Title
JP6021780B2 (ja) 画像データ処理装置、距離算出装置、撮像装置および画像データ処理方法
JP2017016103A (ja) 適応性オートフォーカスシステム
JP2014048459A (ja) 距離算出装置
JP2014063142A (ja) 距離検出装置、撮像装置、プログラム、記録媒体および距離検出方法
JP6645682B2 (ja) 距離取得装置、距離画像信号補正装置、撮像装置、距離画像量子化装置、および方法
JP6220148B2 (ja) 撮像装置およびその制御方法
JP2007158825A (ja) 画像入力装置
JP2008026802A (ja) 撮像装置
US20150109520A1 (en) Image capturing apparatus, image processing method, and storage medium
US10904512B2 (en) Combined stereoscopic and phase detection depth mapping in a dual aperture camera
CN105430298A (zh) 通过立体摄像系统同时曝光合成hdr图像的方法
JP2015212772A (ja) 測距装置、撮像装置、測距方法、および測距パラメータ算出方法
JP2019041178A (ja) 撮像素子およびこの撮像素子を用いた撮像装置
JP6173549B2 (ja) 画像データ処理装置、距離算出装置、撮像装置および画像データ処理方法
JP2020021126A (ja) 画像処理装置およびその制御方法、距離検出装置、撮像装置、プログラム
JP2019168479A (ja) 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP6642998B2 (ja) 像ズレ量算出装置、撮像装置、および像ズレ量算出方法
US9794468B2 (en) Image sensor, image capturing apparatus, focus detection apparatus, image processing apparatus, and control method of image capturing apparatus using pupil division in different directions
JP2015203756A (ja) 視差量算出装置、距離算出装置、撮像装置および視差量算出方法
JP2016090975A (ja) 距離検出装置、撮像装置、距離検出方法、およびプログラム
WO2016194576A1 (ja) 情報処理装置および方法
KR101839357B1 (ko) 촬상 장치 및 촬상 방법
US20190089891A1 (en) Image shift amount calculation apparatus and method, image capturing apparatus, defocus amount calculation apparatus, and distance calculation apparatus
JP6632406B2 (ja) 距離算出装置、撮像装置、および距離算出方法
JP6257201B2 (ja) 焦点検出装置、その制御方法、および制御プログラム、並びに撮像装置