JP2016088827A - Method for producing vanadium dioxide - Google Patents

Method for producing vanadium dioxide Download PDF

Info

Publication number
JP2016088827A
JP2016088827A JP2014229055A JP2014229055A JP2016088827A JP 2016088827 A JP2016088827 A JP 2016088827A JP 2014229055 A JP2014229055 A JP 2014229055A JP 2014229055 A JP2014229055 A JP 2014229055A JP 2016088827 A JP2016088827 A JP 2016088827A
Authority
JP
Japan
Prior art keywords
vanadium
vanadium dioxide
carbon
carbon source
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014229055A
Other languages
Japanese (ja)
Other versions
JP6501103B2 (en
Inventor
哲男 土屋
Tetsuo Tsuchiya
哲男 土屋
晴朗 石崎
Haruaki Ishizaki
晴朗 石崎
智彦 中島
Tomohiko Nakajima
智彦 中島
健太郎 篠田
Kentaro Shinoda
健太郎 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014229055A priority Critical patent/JP6501103B2/en
Publication of JP2016088827A publication Critical patent/JP2016088827A/en
Application granted granted Critical
Publication of JP6501103B2 publication Critical patent/JP6501103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an industrially useful vanadium dioxide simply and inexpensively.SOLUTION: A mixture containing vanadium pentoxide and a carbon source is fired in an inert gas atmosphere such as argon, nitrogen or the like at a temperature of 500 to 1,000°C for 10 to 300 minutes. Preferably, a mixture having a chemical stoichiometrical ratio of the vanadium pentoxide and the carbon source of around 2:1 is fired. In the case when a mixture containing vanadium pentoxide, a carbon source and an oxide or an ion of a metal different from vanadium is fired under the same conditions as mentioned above, vanadium dioxide to which a dissimilar metal is added is produced. As a carbon source, carbon itself such as carbon black, acetylene black or the like may be used or a compound such as paraffin, an ethylene/vinyl acetate or the like which is decomposed and carbonized before it volatilizes upon heating with vanadium pentoxide may be used.SELECTED DRAWING: None

Description

本発明は、産業上有用な二酸化バナジウムを、簡便かつ安価に製造する方法に関する。   The present invention relates to a method for producing industrially useful vanadium dioxide in a simple and inexpensive manner.

二酸化バナジウムは、比較的室温に近い70℃前後で金属−半導体転位を起こし、電気伝導性が可逆的に大きく変わることが報告されている(非特許文献1)。この金属−半導体転位は、低温側の単斜晶構造と高温側の正方晶構造が相互に構造変化することに伴うものだと言われている。この金属−半導体転位では、透過率や反射率等の光学的特性が変化するサーモクロミック現象も起こす。このサーモクロミック現象では、可視光域の変化は小さいが、特に高温側での赤外線透過率が大きく減少する。このため、近年の省エネルギーの気運から、いわゆるスマートガラスや自動調光ガラスと呼ばれるものへの応用研究が盛んに行われている。また、二酸化バナジウムは、転位に伴い体積が変わることを利用したマイクロアクチュエーターや抵抗変化メモリー素子などへの応用も研究されている。   It has been reported that vanadium dioxide causes a metal-semiconductor dislocation at around 70 ° C., which is relatively close to room temperature, and the electrical conductivity reversibly changes significantly (Non-Patent Document 1). This metal-semiconductor dislocation is said to be accompanied by a structural change between the monoclinic structure on the low temperature side and the tetragonal structure on the high temperature side. This metal-semiconductor dislocation also causes a thermochromic phenomenon in which optical characteristics such as transmittance and reflectance change. In this thermochromic phenomenon, the change in the visible light region is small, but the infrared transmittance particularly on the high temperature side is greatly reduced. For this reason, application research to what is called smart glass and automatic light control glass has been actively conducted in recent years due to energy saving. The application of vanadium dioxide to microactuators and resistance-change memory devices using the change in volume accompanying dislocation has also been studied.

スマートガラスへの応用として、スパッタ法で二酸化バナジウムを透明基板に成膜する方法が特許文献1に開示されている。しかし、スパッタ法によるスマートガラスの製造は、大きな電力を使用する上、スマートガラスを既存の建物に採用する場合にガラスの交換が必要となる問題があった。二酸化バナジウムを粉体として得ることができれば、塗料化して、二酸化バナジウムをガラスへ塗布、または二酸化バナジウムを塗布したフィルムをガラスに貼合することで、スマートガラスに変えることができる。   As an application to smart glass, Patent Document 1 discloses a method of forming a film of vanadium dioxide on a transparent substrate by a sputtering method. However, the production of smart glass by the sputtering method has a problem that, when using a large amount of electric power, the glass needs to be replaced when the smart glass is adopted in an existing building. If vanadium dioxide can be obtained as a powder, it can be converted into a smart glass by coating it and applying vanadium dioxide to glass, or bonding a film coated with vanadium dioxide to glass.

特許文献2には、二酸化バナジウム粉体を製造する方法が開示されている。これは、メタバナジン酸アンモニウム(NH4VO3)の温度と圧力を制御することで、二酸化バナジウムを製造する方法だが、反応の副産物として有毒なアンモニアガスが発生する上、加熱しながら圧力を制御するという複雑な操作が必要であり、簡便な方法とは言えない。特許文献3には、不活性ガス雰囲気下で、バナジウムを含む溶液にレーザーを照射して二酸化バナジウムを製造する方法が開示されている。しかし、これもまたレーザーという大きな電力を使用するという問題があった。 Patent Document 2 discloses a method for producing vanadium dioxide powder. This is a method for producing vanadium dioxide by controlling the temperature and pressure of ammonium metavanadate (NH 4 VO 3 ). Toxic ammonia gas is generated as a byproduct of the reaction, and the pressure is controlled while heating. Therefore, it is not a simple method. Patent Document 3 discloses a method for producing vanadium dioxide by irradiating a solution containing vanadium with a laser in an inert gas atmosphere. However, this also has a problem of using a large electric power of a laser.

特許文献4には、バナジウムアルコキシドを含む溶液と塩基性水溶液を反応させて前駆体を作成し、この前駆体を水素雰囲気で還元焼成することによって二酸化バナジウムを製造する方法が開示されている。この方法ではバナジウムアルコキシドという高価な薬剤を使用する上、水素中で還元するため、爆発の危険性があるという問題があった。また、二酸化バナジウムは、五酸化バナジウムを水素などの還元ガス内で加熱することで工業的に製造されるが、特許文献4記載の方法と同様に水素中で還元するため爆発の危険性がある。また、五酸化バナジウムの融点が690℃と比較的低いことから、高温で還元を行うと五酸化バナジウムが溶融するため、粉砕および分級工程が必要となる、逆に、低温で還元を行うと還元時間が長くなり、エネルギーおよび還元ガスの消費が大きくなるという問題があった。   Patent Document 4 discloses a method for producing vanadium dioxide by reacting a solution containing vanadium alkoxide with a basic aqueous solution to prepare a precursor, and reducing and firing the precursor in a hydrogen atmosphere. In this method, there is a problem that there is a risk of explosion because an expensive chemical called vanadium alkoxide is used and reduction is performed in hydrogen. In addition, vanadium dioxide is industrially produced by heating vanadium pentoxide in a reducing gas such as hydrogen. However, vanadium dioxide is reduced in hydrogen as in the method described in Patent Document 4, and thus there is a risk of explosion. . In addition, since vanadium pentoxide has a relatively low melting point of 690 ° C., reduction at a high temperature causes melting of vanadium pentoxide, so a pulverization and classification process is required. There was a problem that time was increased and consumption of energy and reducing gas was increased.

特開2000−137251号公報JP 2000-137251 A 特表平10−509942号公報Japanese National Patent Publication No. 10-509942 特開2014−94881号公報JP 2014-94881 A 特開2013−71859号公報JP 2013-71859 A

F. J. Morin, PHYSICAL REVIEW LETTERS, 1959年, vol.3, p.34-36F. J. Morin, PHYSICAL REVIEW LETTERS, 1959, vol.3, p.34-36

本発明は、このような事情に鑑みてなされたものであり、産業上有用な二酸化バナジウムを簡便かつ安価に製造することを目的とする。また、異種金属を添加した二酸化バナジウムを簡便かつ安価に製造することを目的とする。さらに、これらの方法によって製造された二酸化バナジウムを用いたサーモクロミック基板などの製品を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at manufacturing industrially useful vanadium dioxide simply and cheaply. Another object of the present invention is to easily and inexpensively produce vanadium dioxide to which a different metal is added. Furthermore, it aims at providing products, such as a thermochromic board | substrate using the vanadium dioxide manufactured by these methods.

本発明者は鋭意検討を重ねた結果、五酸化バナジウム粉と炭素粉の混合物を不活性ガス雰囲気下で焼成することで五酸化バナジウムを還元し、所望の二酸化バナジウム粉が得られることを見出し、本発明の完成に至った。   As a result of intensive studies, the present inventors have found that vanadium pentoxide is reduced by firing a mixture of vanadium pentoxide powder and carbon powder in an inert gas atmosphere, and a desired vanadium dioxide powder can be obtained. The present invention has been completed.

本発明の二酸化バナジウムの製造方法は、バナジウムを含む酸化物と炭素源とを含有する混合物を焼成する。本発明の二酸化バナジウムの製造方法において、バナジウムを含む酸化物が五酸化バナジウムであることが好ましい。本発明の二酸化バナジウムの製造方法において、五酸化バナジウムに対する炭素源中の炭素の化学量論比が0.475〜1であることが好ましく、0.475〜0.55であることがより好ましい。本発明の二酸化バナジウムの製造方法において、炭素源が炭素または炭素化合物であることが好ましい。   In the method for producing vanadium dioxide of the present invention, a mixture containing an oxide containing vanadium and a carbon source is fired. In the method for producing vanadium dioxide of the present invention, the oxide containing vanadium is preferably vanadium pentoxide. In the method for producing vanadium dioxide of the present invention, the stoichiometric ratio of carbon in the carbon source to vanadium pentoxide is preferably 0.475 to 1, and more preferably 0.475 to 0.55. In the method for producing vanadium dioxide of the present invention, the carbon source is preferably carbon or a carbon compound.

本発明の二酸化バナジウムの製造方法において、ヘリウム、ネオン、アルゴン、および窒素から選択される1以上のガス雰囲気下で混合物を焼成することが好ましく、窒素ガス雰囲気下で混合物を焼成することがより好ましい。本発明の二酸化バナジウムの製造方法において、500〜1000℃の温度で混合物を焼成することが好ましく、600〜800℃の温度で混合物を焼成することがより好ましい。   In the method for producing vanadium dioxide of the present invention, the mixture is preferably fired in one or more gas atmospheres selected from helium, neon, argon, and nitrogen, and more preferably fired in the nitrogen gas atmosphere. . In the manufacturing method of vanadium dioxide of this invention, it is preferable to bake a mixture at the temperature of 500-1000 degreeC, and it is more preferable to bake the mixture at the temperature of 600-800 degreeC.

本発明の異種金属添加二酸化バナジウムの製造方法は、バナジウムを含む酸化物と、炭素源と、バナジウム以外の金属の化合物とを含有する混合物を焼成する。本発明の他の態様の異種金属添加二酸化バナジウムの製造方法は、バナジウムを含む酸化物と、炭素源と、バナジウム以外の金属の酸化物またはこの金属のイオン溶液とを含有する混合物を焼成する。   In the method for producing a dissimilar metal-added vanadium dioxide of the present invention, a mixture containing an oxide containing vanadium, a carbon source, and a compound of a metal other than vanadium is fired. In another aspect of the present invention, a method for producing a dissimilar metal-added vanadium dioxide includes firing an oxide containing vanadium, a carbon source, an oxide of a metal other than vanadium, or an ion solution of the metal.

本発明のサーモクロミック製品は、本発明の製造方法で製造された二酸化バナジウムまたは異種金属添加二酸化バナジウムを有する。   The thermochromic product of this invention has vanadium dioxide manufactured by the manufacturing method of this invention, or a different metal addition vanadium dioxide.

本発明によれば、二酸化バナジウムが簡便かつ安価に得られる。また、本発明の他の態様によれば、異種金属を添加した二酸化バナジウムが簡便かつ安価に得られる。さらに、これらの二酸化バナジウムおよび異種金属添加二酸化バナジウムを原料として、サーモクロミック基板など、二酸化バナジウムの金属−半導体転位による光学的、物理的、磁気的特性を利用した製品を安価に製造することが可能になる。   According to the present invention, vanadium dioxide can be obtained simply and inexpensively. Moreover, according to the other aspect of this invention, the vanadium dioxide which added the different metal can be obtained simply and cheaply. Furthermore, using these vanadium dioxide and dissimilar metal-added vanadium dioxide as raw materials, it is possible to inexpensively manufacture products that use optical, physical, and magnetic properties due to metal-semiconductor dislocations of vanadium dioxide, such as thermochromic substrates. become.

実施例で用いた焼成炉の模式断面図である。It is a schematic cross section of the firing furnace used in the examples. 実施例1で得られた二酸化バナジウムおよび実施例19で得られた異種金属添加二酸化バナジウムの温度−抵抗特性である。FIG. 3 shows temperature-resistance characteristics of the vanadium dioxide obtained in Example 1 and the dissimilar metal-added vanadium dioxide obtained in Example 19. FIG.

以下、本発明の製造方法ついて、図面を参照しながら実施形態と実施例に基づいて詳細に説明する。なお、重複説明は適宜省略する。また、2つの数値の間に「〜」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれるものとする。   Hereinafter, the manufacturing method of the present invention will be described in detail based on embodiments and examples with reference to the drawings. Note that repeated explanation is omitted as appropriate. In addition, when “˜” is described between two numerical values to represent a numerical range, the two numerical values are also included in the numerical range.

本発明の二酸化バナジウムの製造方法は、バナジウムを含む酸化物と炭素源とを含有する混合物を焼成する。具体例として、バナジウムを含む酸化物の粉体と、炭素源の粉体とを混ぜ合わせて成形し、炉内で焼成する方法が挙げられる。バナジウムを含む酸化物は五酸化バナジウム(V25)であることが好ましい。五酸化バナジウムは、一般にウランを製造する際の副産物として、または石油を燃料とする工場の煙塵などから得られるが、特にその製法を限定するものではない。炭素源は、炭素そのものまたは炭素化合物であることが好ましい。 In the method for producing vanadium dioxide of the present invention, a mixture containing an oxide containing vanadium and a carbon source is fired. As a specific example, there is a method in which an oxide powder containing vanadium and a carbon source powder are mixed and molded and fired in a furnace. The oxide containing vanadium is preferably vanadium pentoxide (V 2 O 5 ). Vanadium pentoxide is generally obtained as a by-product in the production of uranium or from the dust of factories that use petroleum as fuel, but the production method is not particularly limited. The carbon source is preferably carbon itself or a carbon compound.

カーボンブラック、アセチレンブラック、ファーネスブラック、グラファイトなどの炭素そのものを炭素源として用いるのが簡明だが、五酸化バナジウムとともに加熱すると揮発する前に分解して炭化する化合物や焼成温度で炭素以外の不純物を残さない有機化合物を炭素源として用いることも可能である。このような化合物として、パラフィン、エチレン酢酸ビニル、セルロース、ポリエチレンオキサイド、ステアリン酸などが挙げられる。   It is easy to use carbon itself such as carbon black, acetylene black, furnace black, graphite, etc. as a carbon source. However, when heated with vanadium pentoxide, it decomposes and carbonizes before it volatilizes, and impurities other than carbon remain at the firing temperature. It is also possible to use non-organic compounds as carbon sources. Examples of such compounds include paraffin, ethylene vinyl acetate, cellulose, polyethylene oxide, and stearic acid.

これらの化合物が還元雰囲気で炭化する際は、炭化水素やフランなどの低分子量の多種多様な成分となって揮発することが知られている。このため、五酸化バナジウムと混合するこれらの化合物の量を、反応条件などに合わせる必要がある。したがって、炭素源として炭素自体を使用することが簡便である。焼成は大気中でも可能だが、二酸化バナジウムの再酸化を防ぐために、ヘリウム、ネオン、アルゴンなどの希ガス、および窒素から選択される1以上のガス雰囲気下で焼成することが好ましい。これらの中で最も安価なことから、窒素ガス雰囲気下で焼成することがより好ましい。   It is known that when these compounds are carbonized in a reducing atmosphere, they volatilize as a wide variety of low molecular weight components such as hydrocarbons and furans. For this reason, it is necessary to match the amount of these compounds mixed with vanadium pentoxide to the reaction conditions. Therefore, it is convenient to use carbon itself as a carbon source. Baking is possible in the air, but in order to prevent reoxidation of vanadium dioxide, it is preferable to bake in one or more gas atmospheres selected from rare gases such as helium, neon, and argon, and nitrogen. Since these are the cheapest of these, firing in a nitrogen gas atmosphere is more preferable.

不活性ガスは、混合物の周囲に存在する酸素による炭素源の酸化を防止する。このため、焼成時の雰囲気ガスとして、ヘリウム、ネオン、アルゴンなどの希ガスを使うことも可能だが、コスト面から窒素を使うことが適当である。また、本発明の二酸化バナジウムの製造方法では、副生成物が二酸化炭素だけなので、特別な回収・処理設備を必要としない。このため、本発明の二酸化バナジウムの製造方法は、産業的規模で実施可能である。   The inert gas prevents oxidation of the carbon source by oxygen present around the mixture. For this reason, it is possible to use a rare gas such as helium, neon, or argon as the atmospheric gas during firing, but it is appropriate to use nitrogen from the viewpoint of cost. Further, in the method for producing vanadium dioxide of the present invention, since the by-product is only carbon dioxide, no special recovery / treatment facility is required. For this reason, the manufacturing method of vanadium dioxide of this invention can be implemented on an industrial scale.

五酸化バナジウムと炭素源から二酸化バナジウムを製造するときの化学反応を式で表すと、2V25+C→4VO2+CO2となり非常にシンプルである。この化学反応を進めるためには加熱が必要である。五酸化バナジウムと炭素源とを含有する混合物を焼成するときの温度は、500〜1000℃が好ましく、600〜800℃がより好ましい。焼成温度が低過ぎると、得られる二酸化バナジウムの結晶性が低かったり、反応に時間がかかったりする問題ある。焼成温度が高過ぎると、加熱のためのエネルギー消費の増大、バナジウムの昇華によるロス、二酸化バナジウム以外の酸化バナジウムの生成などが起こりうる。 When the chemical reaction when producing vanadium dioxide from vanadium pentoxide and a carbon source is expressed by a formula, it is very simple as 2V 2 O 5 + C → 4VO 2 + CO 2 . Heating is necessary to advance this chemical reaction. 500-1000 degreeC is preferable and, as for the temperature when baking the mixture containing vanadium pentoxide and a carbon source, 600-800 degreeC is more preferable. When the calcination temperature is too low, there is a problem that the crystallinity of the obtained vanadium dioxide is low or the reaction takes time. If the firing temperature is too high, an increase in energy consumption for heating, loss due to sublimation of vanadium, production of vanadium oxide other than vanadium dioxide, and the like may occur.

本発明のように、焼成による無機合成で副産物が生じない場合は、一般的に焼成時間とともに結晶が成長するものの、その成長は飽和する傾向にある。このため、短時間焼成では結晶成長が十分に行われず、長時間焼成ではエネルギー消費が増大することが知られている。したがって、本発明の製造方法では、結晶成長が十分に行われる時間だけ焼成すればよい。   As in the present invention, when no by-product is produced by inorganic synthesis by firing, crystals generally grow with firing time, but the growth tends to be saturated. For this reason, it is known that crystal growth does not occur sufficiently in short-time firing, and energy consumption increases in long-time firing. Therefore, in the manufacturing method of the present invention, the firing may be performed only for a time during which crystal growth is sufficiently performed.

混合物中の五酸化バナジウムと炭素源中の炭素の化学量論比は、化学反応式上2:1が理想だが、不活性ガス雰囲気下での加熱焼成が少なからず還元傾向にあることから、炭素が化学量論比より少ない場合でも、五酸化バナジウムが二酸化バナジウムに還元される。また、混合物中の炭素が化学量論比より多過ぎる場合には、二酸化バナジウム以外の酸化バナジウムの生成が起こったり、生成後の二酸化バナジウムに炭素が残留したりする。このため、五酸化バナジウムと炭素源中の炭素の化学量論比、すなわち物質量比(いわゆるモル比)は、五酸化バナジウム:炭素が2:0.95〜2:2であることが好ましく、2:0.95〜2:1.1であることがより好ましい。換言すると、五酸化バナジウムに対する炭素源中の炭素の化学量論比が0.475〜1であることが好ましく、0.475〜0.55であることがより好ましい。   The stoichiometric ratio of vanadium pentoxide in the mixture to carbon in the carbon source is ideally 2: 1 in terms of the chemical reaction formula, but since there is a considerable tendency to reduce heat and calcination in an inert gas atmosphere, carbon Is less than the stoichiometric ratio, vanadium pentoxide is reduced to vanadium dioxide. Moreover, when there is too much carbon in a mixture than a stoichiometric ratio, the production | generation of vanadium oxides other than vanadium dioxide will occur, or carbon will remain in the vanadium dioxide after production | generation. Therefore, the stoichiometric ratio of vanadium pentoxide to carbon in the carbon source, that is, the substance amount ratio (so-called molar ratio) is preferably vanadium pentoxide: carbon of 2: 0.95 to 2: 2. It is more preferable that it is 2: 0.95-2: 1.1. In other words, the stoichiometric ratio of carbon in the carbon source to vanadium pentoxide is preferably 0.475 to 1, and more preferably 0.475 to 0.55.

例えばスマートガラスの被覆層は、二酸化バナジウム自体の転位温度約70℃より室温に近い転位温度を有する物質から構成されることが望まれる。バナジウムの安定酸化状態である二酸化バナジウム中のバナジウムの価数4価よりも、安定酸化状態での価数が高いニオビウムやタングステンなどが二酸化バナジウムの結晶格子内に存在すると、すなわち二酸化バナジウムにドープされていると、転移温度が70℃より下がることが知られている。   For example, the coating layer of smart glass is desirably made of a material having a transition temperature closer to room temperature than the transition temperature of about 70 ° C. of vanadium dioxide itself. Niobium or tungsten having a higher valence in the stable oxidation state than vanadium in the vanadium dioxide, which is the stable oxidation state of vanadium, is present in the crystal lattice of vanadium dioxide, that is, vanadium dioxide is doped. The transition temperature is known to fall below 70 ° C.

本発明の異種金属添加二酸化バナジウムの製造方法は、バナジウムを含む酸化物と、炭素源と、バナジウム以外の金属の化合物を含有する混合物を焼成する方法である。また、本発明の他の異種金属添加二酸化バナジウムの製造方法は、バナジウムを含む酸化物と、炭素源と、バナジウム以外の金属の酸化物またはこの金属のイオンを含有する混合物を焼成する方法である。具体例として、バナジウムを含む酸化物の粉体と、炭素源の粉体と、安定酸化状態での価数が4価より高い金属の酸化物、この金属の塩、またはこの金属のイオン溶液とを混ぜ合わせた後に成形し、炉内で焼成する方法が挙げられる。これらの方法によって、転移温度が70℃より低い異種金属添加二酸化バナジウムが得られる。   The manufacturing method of the dissimilar metal addition vanadium dioxide of this invention is a method of baking the mixture containing the oxide of vanadium, the carbon source, and the compound of metals other than vanadium. In addition, another method for producing a different kind of metal-added vanadium dioxide of the present invention is a method of firing a mixture containing an oxide containing vanadium, a carbon source, an oxide of a metal other than vanadium, or an ion of this metal. . As specific examples, an oxide powder containing vanadium, a carbon source powder, a metal oxide having a valence higher than tetravalent in a stable oxidation state, a salt of the metal, or an ion solution of the metal And a method of forming and baking in an oven. By these methods, dissimilar metal-added vanadium dioxide having a transition temperature lower than 70 ° C. is obtained.

なお、安定酸化状態での価数が4価より高い金属に代えて、安定酸化状態での価数が4価以下の金属、例えば安定酸化状態での価数が3価のガリウムを用いて、これらの異種金属添加二酸化バナジウムの製造方法を行ってもよい。安定酸化状態での価数が3価の金属を添加すると、転移温度が高くなる場合が多いが、転移温度が低くなる場合もあるからである。また、転移温度が高い異種金属添加二酸化バナジウムは、例えばガスセンサに使用できる。   In place of a metal having a valence in the stable oxidation state higher than tetravalent, a metal having a valence in the stable oxidation state of 4 or less, for example, gallium having a valence in the stable oxidation state of trivalent, You may perform the manufacturing method of these different metal addition vanadium dioxide. This is because when a metal having a valence of 3 in a stable oxidation state is added, the transition temperature is often increased, but the transition temperature may be lowered. Moreover, the dissimilar metal addition vanadium dioxide with a high transition temperature can be used for a gas sensor, for example.

本発明の製造方法で得られる二酸化バナジウムまたは異種金属添加二酸化バナジウムの懸濁液を透明基板に塗布・乾燥することで、サーモクロミック性に優れた基板を作製することが可能であり、この簡便かつ安価な製造方法によって更なる用途拡大の可能性が高くなる。自動調光ガラスを代表とする本発明のサーモクロミック製品は、本発明の製造方法で得られる二酸化バナジウムまたは異種金属添加二酸化バナジウムを有している。具体的には、この二酸化バナジウムまたは異種金属添加二酸化バナジウムが、ガラスの表面に被覆されている。   By applying and drying a suspension of vanadium dioxide or a dissimilar metal-added vanadium dioxide obtained by the production method of the present invention on a transparent substrate, it is possible to produce a substrate having excellent thermochromic properties. The possibility of further application expansion is increased by an inexpensive manufacturing method. The thermochromic product of the present invention typified by an automatic light control glass has vanadium dioxide or a dissimilar metal-added vanadium dioxide obtained by the production method of the present invention. Specifically, the vanadium dioxide or the dissimilar metal added vanadium dioxide is coated on the surface of the glass.

以下に実施例を掲げて本発明の態様をさらに詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。図1は、本発明の製造方法の焼成に用いる炉を模式的に示している。なお、図面上の炉の寸法および寸法比は、実物の寸法および寸法比と必ずしも一致していない。   Examples of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. FIG. 1 schematically shows a furnace used for firing in the production method of the present invention. In addition, the dimension and dimension ratio of the furnace on drawing do not necessarily correspond with the dimension and dimension ratio of a real thing.

1.二酸化バナジウムおよび異種金属添加二酸化バナジウムの製造
(実施例1〜16)
まず、表1に示す化学量論比で、五酸化バナジウム(和光純薬工業社製)と、炭素源として炭素であるCarbon Black(Alfa Aesar社製)とを乳鉢で混合して混合物である混合粉を調製した。つぎに、この混合粉を錠剤成形機に入れて加圧成形し、ペレットを得た。そして、図1に示す管状の炉内にサンプルであるこのペレットを入れ、窒素をフローしながら毎時500℃の昇温速度で表1に示す焼成温度まで上昇させ、この焼成温度で表1に示す焼成時間だけ保持した後、自然放冷にて室温まで下げて焼成ペレットを得た。つぎに、この焼成ペレットを乳鉢で粉砕して焼成粉を得た。
1. Production of vanadium dioxide and dissimilar metal-added vanadium dioxide (Examples 1 to 16)
First, vanadium pentoxide (manufactured by Wako Pure Chemical Industries, Ltd.) and Carbon Black (manufactured by Alfa Aesar) as a carbon source are mixed in a mortar at a stoichiometric ratio shown in Table 1, and the mixture is a mixture Powder was prepared. Next, this mixed powder was put into a tablet molding machine and subjected to pressure molding to obtain pellets. And this pellet which is a sample is put in the tubular furnace shown in FIG. 1, and it raises to the calcination temperature shown in Table 1 with the temperature increase rate of 500 degreeC / hour, flowing nitrogen, and shows in Table 1 with this calcination temperature. After holding only the firing time, it was cooled to room temperature by natural cooling to obtain fired pellets. Next, the fired pellets were pulverized in a mortar to obtain fired powder.

(実施例17)
まず、炭素源であるパラフィン(和光純薬製)0.2gをトルエン2mLに溶解してパラフィン溶液を作製した。つぎに、五酸化バナジウム(和光純薬工業社製)0.50gにこのパラフィン溶液0.40mLを加えた後、溶剤臭がなくなるまで加温しながら乳鉢で混合して、混合物である混合粉を調製した。そして、この混合粉を実施例1と同様にして成型、焼成、粉砕し、パラフィン系焼成粉を得た。
なお、パラフィンの化学式をCn2n+2として化学量論比V25:Cを算出した。
(Example 17)
First, 0.2 g of paraffin (manufactured by Wako Pure Chemical Industries, Ltd.) as a carbon source was dissolved in 2 mL of toluene to prepare a paraffin solution. Next, after adding 0.40 mL of this paraffin solution to 0.50 g of vanadium pentoxide (manufactured by Wako Pure Chemical Industries, Ltd.), the mixture is mixed in a mortar while heating until the solvent odor disappears. Prepared. The mixed powder was molded, fired and pulverized in the same manner as in Example 1 to obtain a paraffin-based fired powder.
The stoichiometric ratio V 2 O 5 : C was calculated with the chemical formula of paraffin as C n H 2n + 2 .

(実施例18)
まず、炭素源であるポリエチレングリコール(関東化学製 重合度6,000)0.066gを五酸化バナジウム(和光純薬工業社製)0.50gに加えて、乳鉢で混合して混合物である混合粉を調製した。つぎに、この混合粉を実施例1と同様にして成型、焼成、粉砕し、PEG系焼成粉を得た。なお、PEGの化学式をC2n4n+2nとして化学量論比V25:Cを算出した。
(Example 18)
First, 0.066 g of polyethylene glycol as a carbon source (polymerization degree 6,000, manufactured by Kanto Chemical Co., Ltd.) is added to 0.50 g of vanadium pentoxide (manufactured by Wako Pure Chemical Industries, Ltd.) and mixed in a mortar to form a mixed powder. Was prepared. Next, this mixed powder was molded, fired, and pulverized in the same manner as in Example 1 to obtain a PEG-based fired powder. Incidentally, the stoichiometric ratio of PEG formula as C 2n H 4n + 2 O n V 2 O 5: was calculated C.

(実施例19、20)
まず、実施例1で調製した混合粉2.066gに、Nb源であるNb系ディップコート液(高純度化学研究所社製、SYM−NB05)を0.444mL(実施例19)または1.36mL(実施例20)を加えた後、溶剤臭がなくなるまで加温しながら乳鉢で混合して、混合物である混合粉を調製した。つぎに、この混合粉を実施例1と同様にして成型、焼成、粉砕し、Nb1%添加焼成粉(実施例19)またはNb3%添加焼成粉(実施例20)を得た。
(Examples 19 and 20)
First, 0.444 mL (Example 19) or 1.36 mL of Nb-based dip coat solution (manufactured by Kojundo Chemical Laboratory Co., Ltd., SYM-NB05) as an Nb source was added to 2.066 g of the mixed powder prepared in Example 1. (Example 20) was added, and then mixed in a mortar while heating until the solvent odor disappeared to prepare a mixed powder as a mixture. Next, this mixed powder was molded, fired, and pulverized in the same manner as in Example 1 to obtain Nb 1% added fired powder (Example 19) or Nb 3% added fired powder (Example 20).

(実施例21)
まず、実施例1で調製した混合粉1.033gに、Ga源であるガリウムアセチルアセトナート(Alfer Aesar社製、Ga(acac)3)を0.0824g加えた後、乳鉢で混合して、混合物である混合粉を調製した。つぎに、この混合粉を実施例1と同様にして成型、焼成(700℃で5時間)、粉砕し、Ga2%添加焼成粉を得た。
(Example 21)
First, 0.0824 g of gallium acetylacetonate (Alfer Aesar, Ga (acac) 3 ) as a Ga source was added to 1.033 g of the mixed powder prepared in Example 1, and then mixed in a mortar. A mixed powder was prepared. Next, the mixed powder was molded, fired (at 700 ° C. for 5 hours) and pulverized in the same manner as in Example 1 to obtain a Ga 2% -added fired powder.

(比較例)
五酸化バナジウム(和光純薬工業社製)0.5gを、実施例1と同様にして成型、焼成、粉砕し、五酸化バナジウム焼成粉を得た。
(Comparative example)
In the same manner as in Example 1, 0.5 g of vanadium pentoxide (manufactured by Wako Pure Chemical Industries, Ltd.) was molded, fired, and pulverized to obtain a burned vanadium pentoxide powder.

2.評価と検討
(評価−1:結晶性)
XRD(Rigaku社製、Smart Lab)を用いたX線回折法で、実施例および比較例で得られた二酸化バナジウムおよび異種金属添加二酸化バナジウムの焼成粉の結晶構造を特定した。なお、測定条件は、電圧40kV、電流30mA、スキャン速度2°/min、回折角2θ=10〜70°とした。綺麗なVO2のピーク((011)面、2θ=27.8°など)のみが確認された場合を「○」、VO2のピークに加えてV25など他の酸化物のピークが確認された場合、またはVO2の結晶性が明らかに悪い場合を「△」、VO2のピークが確認されない場合、または試料が回収できなかった場合を「×」とした。その結果を表1に示す。
2. Evaluation and examination (Evaluation-1: Crystallinity)
The crystal structure of the burned powders of vanadium dioxide and dissimilar metal-added vanadium dioxide obtained in Examples and Comparative Examples was identified by X-ray diffraction using XRD (manufactured by Rigaku, Smart Lab). The measurement conditions were as follows: voltage 40 kV, current 30 mA, scan speed 2 ° / min, diffraction angle 2θ = 10 to 70 °. When only a beautiful VO 2 peak ((011) plane, 2θ = 27.8 °, etc.) is confirmed, “◯”, in addition to the VO 2 peak, other oxide peaks such as V 2 O 5 When it was confirmed, or when the crystallinity of VO 2 was clearly poor, “Δ” was given, and when the VO 2 peak was not confirmed or when the sample could not be collected, “x” was given. The results are shown in Table 1.

(評価−2:金属−半導体転位温度)
実施例および比較例で得られた二酸化バナジウムおよび異種金属添加二酸化バナジウムの焼成粉を加圧成形後、ペルチェヒーター(アンペール社製、UTC−100)とデジタルソースメーター(Keithley社製、2400型汎用ソースメータ)を用いて、温度−抵抗特性を測定した。なお、測定条件は、温度範囲を−10℃から114℃、温度ステップを4℃、測定電流を1mAとした。実施例1で得られた二酸化バナジウムおよび実施例19で得られた異種金属添加二酸化バナジウムの温度−抵抗特性を図2に示す。また、温度−抵抗特性で、昇温時の抵抗の変曲点を金属−半導体転位温度とした。その結果も表1に示す。
(Evaluation-2: Metal-semiconductor dislocation temperature)
After pressure-molding the burned powder of vanadium dioxide and dissimilar metal-added vanadium dioxide obtained in Examples and Comparative Examples, Peltier heater (Amper, UTC-100) and digital source meter (Keithley, 2400 type general-purpose source) The temperature-resistance characteristics were measured using a meter. The measurement conditions were a temperature range of −10 ° C. to 114 ° C., a temperature step of 4 ° C., and a measurement current of 1 mA. The temperature-resistance characteristics of the vanadium dioxide obtained in Example 1 and the dissimilar metal-added vanadium dioxide obtained in Example 19 are shown in FIG. In addition, in the temperature-resistance characteristics, the inflection point of the resistance at the time of temperature rise was defined as the metal-semiconductor transition temperature. The results are also shown in Table 1.

Figure 2016088827
Figure 2016088827

(混合粉中の五酸化バナジウムと炭素の化学量論比の検討)
表1に示すように、五酸化バナジウムと炭素源を不活性ガス雰囲気下で焼成することにより、二酸化バナジウムが生成することがわかった。実施例1および実施例3〜5より、焼成温度700℃の場合、五酸化バナジウムと炭素源中の炭素の化学量論比は、五酸化バナジウム:炭素=2:0.95〜2:2のときに、X線回折で綺麗なVO2のピークのみが検出された。五酸化バナジウム:炭素=2:3である実施例6では、生成したVO2の結晶性が良くなかった。五酸化バナジウム:炭素=2:0.9である実施例2では、X線回折で原料のV25のピークが認められた。したがって、好ましい五酸化バナジウムと炭素源中の炭素の化学量論比の範囲は、五酸化バナジウム:炭素=2:0.95〜2:2である。
(Study of stoichiometric ratio of vanadium pentoxide and carbon in mixed powder)
As shown in Table 1, it was found that vanadium dioxide was produced by firing vanadium pentoxide and a carbon source in an inert gas atmosphere. From Example 1 and Examples 3-5, when the calcination temperature is 700 ° C., the stoichiometric ratio of vanadium pentoxide to carbon in the carbon source is vanadium pentoxide: carbon = 2: 0.95 to 2: 2. Occasionally only a clean VO 2 peak was detected by X-ray diffraction. In Example 6 where vanadium pentoxide: carbon = 2: 3, the crystallinity of the produced VO 2 was not good. In Example 2 where vanadium pentoxide: carbon = 2: 0.9, the peak of the raw material V 2 O 5 was observed by X-ray diffraction. Therefore, the preferred stoichiometric ratio of vanadium pentoxide to carbon in the carbon source is vanadium pentoxide: carbon = 2: 0.95 to 2: 2.

なお、焼成温度が700℃のときにはVO2のみが生成される五酸化バナジウム:炭素=2:1.25の化学量論比の混合粉を900℃で焼成した実施例16では、X線回折において、VO2よりもバナジウムが還元されているバナジウム酸化物と思われるピークが出現した。炭素源の量が多く、反応温度が高くなって還元力も高まった結果と考えられる。一方、五酸化バナジウム:炭素=2:1.1の混合粉を900℃で焼成した実施例15では、VO2のみが生成された。したがって、より好ましい五酸化バナジウムと炭素源中の炭素の化学量論比の範囲は、五酸化バナジウム:炭素=2:0.95〜2:1.1である。五酸化バナジウムと炭素源中の炭素の最も好ましい化学量論比は、五酸化バナジウム:炭素がほぼ2:1のときであると言える。 In Example 16 in which a mixed powder having a stoichiometric ratio of vanadium pentoxide: carbon = 2: 1.25 in which only VO 2 is generated when the firing temperature is 700 ° C. is fired at 900 ° C. A peak that appears to be vanadium oxide in which vanadium is reduced rather than VO 2 appeared. This is probably because the amount of carbon source was large, the reaction temperature was high, and the reducing power was increased. On the other hand, in Example 15 where the mixed powder of vanadium pentoxide: carbon = 2: 1.1 was fired at 900 ° C., only VO 2 was produced. Therefore, a more preferable range of the stoichiometric ratio of vanadium pentoxide to carbon in the carbon source is vanadium pentoxide: carbon = 2: 0.95 to 2: 1.1. The most preferred stoichiometric ratio of vanadium pentoxide to carbon in the carbon source can be said to be when vanadium pentoxide: carbon is approximately 2: 1.

(焼成温度の検討)
実施例8〜13からわかるように、五酸化バナジウム:炭素=2:1の化学量論比の混合粉を600〜1000℃で焼成すれば、VO2のみが生成した。実施例7の焼成温度550℃でもVO2が生成したが、結晶性は良くなかった。焼成温度550℃で焼成時間を延長すれば結晶性が良くなる可能性はあるものの、簡便かつ安価にVO2を製造するためには、焼成温度は600℃以上が好ましい。また、この混合粉を1000℃より高温で焼成してもVO2のみが生成すると思われるが、エネルギー消費抑制のため焼成温度は1000℃以下が好ましく、800℃以下がより好ましい。
(Examination of firing temperature)
As can be seen from Examples 8 to 13, when a mixed powder having a stoichiometric ratio of vanadium pentoxide: carbon = 2: 1 was fired at 600 to 1000 ° C., only VO 2 was produced. Although VO 2 was produced even at the firing temperature of Example 7 at 550 ° C., the crystallinity was not good. Although the crystallinity may be improved if the baking time is extended at a baking temperature of 550 ° C., the baking temperature is preferably 600 ° C. or higher in order to produce VO 2 easily and inexpensively. Moreover, even if this mixed powder is fired at a temperature higher than 1000 ° C., only VO 2 appears to be produced, but the firing temperature is preferably 1000 ° C. or lower, and more preferably 800 ° C. or lower for suppressing energy consumption.

(焼成時間の検討)
五酸化バナジウム:炭素=2:1の化学量論比の混合粉を700℃で焼成した実施例1、実施例12、および実施例13から、焼成時間の好ましい範囲を検討した。実用的と思われる焼成時間10分〜10時間で結晶性の違いが多少見られたものの、いずれもVO2のみが生成したことから、焼成時間の範囲は特に限定されるものではなかった。
(Examination of firing time)
From Example 1, Example 12, and Example 13 in which a mixed powder having a stoichiometric ratio of vanadium pentoxide: carbon = 2: 1 was calcined at 700 ° C., a preferable range of calcining time was examined. Although some difference in crystallinity was observed at a firing time of 10 minutes to 10 hours that seemed to be practical, since only VO 2 was produced in each case, the range of the firing time was not particularly limited.

(炭素源の種類の検討)
実施例17および実施例18では、炭素源をパラフィンおよびポリエチレングリコールに変更してもVO2が生成するか調べた。いずれの炭素源でもVO2が生成した。したがって、炭素源は炭素に限定されず、混合粉の焼成温度で炭化して炭素源として残存する物質、すなわち高温の還元雰囲気で炭素が残る物質であればよいと考えられる。
(Examination of types of carbon sources)
In Example 17 and Example 18, it was examined whether VO 2 was generated even when the carbon source was changed to paraffin and polyethylene glycol. VO 2 was produced with any carbon source. Therefore, it is considered that the carbon source is not limited to carbon, and may be any substance that carbonizes at the firing temperature of the mixed powder and remains as a carbon source, that is, a substance in which carbon remains in a high-temperature reducing atmosphere.

(異種金属の添加の検討)
実施例19および実施例20では、焼成粉中のバナジウムと異種金属のモル比が99:1および97:3となるようにニオビウムをドープして異種金属添加二酸化バナジウムを得た。表1に示すように、実施例1の二酸化バナジウムの転移温度は、ほぼ文献通りの72℃であったのに対し、実施例19の異種金属添加二酸化バナジウムの転移温度は56℃に、実施例20の異種金属添加二酸化バナジウムの転移温度は40℃にそれぞれ下がっている。これはVO2の格子内にニオビウムがドープされたことを示している。したがって、本発明の二酸化バナジウムの製造方法において、焼成前の混合粉に異種金属の溶液等を混ぜることで、簡単に異種金属をドープした二酸化バナジウム、すなわち異種金属添加二酸化バナジウムが生成できることがわかった。
(Examination of addition of different metals)
In Example 19 and Example 20, niobium was doped so that the molar ratio of vanadium to the different metal in the fired powder was 99: 1 and 97: 3 to obtain a different metal-added vanadium dioxide. As shown in Table 1, the transition temperature of vanadium dioxide of Example 1 was 72 ° C., almost as described in the literature, whereas the transition temperature of dissimilar metal-added vanadium dioxide of Example 19 was 56 ° C. The transition temperature of 20 different metal added vanadium dioxides is lowered to 40 ° C., respectively. This indicates that niobium is doped in the VO 2 lattice. Therefore, in the method for producing vanadium dioxide of the present invention, it was found that vanadium dioxide doped with a different metal, that is, vanadium dioxide added with a different metal, can be easily generated by mixing a mixed metal solution or the like into the mixed powder before firing. .

(総括)
以上、実施形態および実施例に基づいて本発明を説明したが、ここに示した物質、組成、構成、および使用方法などは本発明を限定するものではなく、2V25+C→4VO2+CO2の化学反応を起こさせる原材料、炉などの設備、および環境などがあればよい。
(Summary)
The present invention has been described based on the embodiments and examples. However, the materials, compositions, configurations, usage methods, and the like shown here do not limit the present invention, and 2V 2 O 5 + C → 4VO 2 + CO It only needs to have raw materials, furnaces, and environments that can cause chemical reactions.

本発明によれば、安価な原材料を元に、特殊な装置や特殊なガスなどを使わずに、簡便かつ安価に二酸化バナジウムおよび異種金属添加二酸化バナジウムを提供することができる。二酸化バナジウムの金属−絶縁体転位による特性の変化を利用したアプリケーションには、例えばサーモクロミック特性を利用した自動調光ガラスなどがある。本発明の製造方法で製造された二酸化バナジウムおよび異種金属添加二酸化バナジウムは、転移温度での物理特性の変化を利用した自動調光ガラスを代表とするサーモクロミック製品などに利用可能である。しかし、アプリケーションや使用条件によって求められる転移温度が変わることは想像に難くない。本発明では、異種金属のドープも可能、すなわち、転位点の変更も可能である。したがって、自動調光ガラスへの応用を念頭に置いてきたが、簡便なプロセスであることから新規分野への展開の可能性が広がる。   ADVANTAGE OF THE INVENTION According to this invention, vanadium dioxide and a dissimilar-metal addition vanadium dioxide can be provided simply and cheaply without using a special apparatus, special gas, etc. based on an inexpensive raw material. Examples of applications using the change in characteristics of vanadium dioxide due to metal-insulator dislocation include automatic light control glass using thermochromic characteristics. The vanadium dioxide and the dissimilar metal-added vanadium dioxide produced by the production method of the present invention can be used for thermochromic products typified by automatic light control glass utilizing the change in physical properties at the transition temperature. However, it is not difficult to imagine that the required transition temperature varies depending on the application and use conditions. In the present invention, it is possible to dope different metals, that is, change the dislocation point. Therefore, the application to automatic light control glass has been kept in mind, but since it is a simple process, the possibility of expanding into new fields is expanded.

Claims (12)

バナジウムを含む酸化物と炭素源とを含有する混合物を焼成する二酸化バナジウムの製造方法。   A method for producing vanadium dioxide, comprising firing a mixture containing an oxide containing vanadium and a carbon source. 請求項1において、
前記バナジウムを含む酸化物が五酸化バナジウムである二酸化バナジウムの製造方法。
In claim 1,
A method for producing vanadium dioxide, wherein the oxide containing vanadium is vanadium pentoxide.
請求項2において、
前記五酸化バナジウムに対する前記炭素源中の炭素の化学量論比が0.475〜1である二酸化バナジウムの製造方法。
In claim 2,
The manufacturing method of vanadium dioxide whose stoichiometric ratio of the carbon in the said carbon source with respect to the said vanadium pentoxide is 0.475-1.
請求項2において、
前記五酸化バナジウムに対する前記炭素源中の炭素の化学量論比が0.475〜0.55である二酸化バナジウムの製造方法。
In claim 2,
A method for producing vanadium dioxide, wherein the stoichiometric ratio of carbon in the carbon source to vanadium pentoxide is 0.475 to 0.55.
請求項1から4のいずれかにおいて、
前記炭素源が炭素または炭素化合物である二酸化バナジウムの製造方法。
In any one of Claim 1-4,
A method for producing vanadium dioxide, wherein the carbon source is carbon or a carbon compound.
請求項1から5のいずれかにおいて、
ヘリウム、ネオン、アルゴン、および窒素から選択される1以上のガス雰囲気下で前記混合物を焼成する二酸化バナジウムの製造方法。
In any one of Claim 1 to 5,
A method for producing vanadium dioxide, comprising firing the mixture under one or more gas atmospheres selected from helium, neon, argon, and nitrogen.
請求項1から5のいずれかにおいて、
窒素ガス雰囲気下で前記混合物を焼成する二酸化バナジウムの製造方法。
In any one of Claim 1 to 5,
A method for producing vanadium dioxide, wherein the mixture is fired in a nitrogen gas atmosphere.
請求項6または7において、
600〜1000℃の温度で前記混合物を焼成する二酸化バナジウムの製造方法。
In claim 6 or 7,
A method for producing vanadium dioxide, comprising firing the mixture at a temperature of 600 to 1000 ° C.
請求項6または7において、
600〜800℃の温度で前記混合物を焼成する二酸化バナジウムの製造方法。
In claim 6 or 7,
A method for producing vanadium dioxide, comprising firing the mixture at a temperature of 600 to 800 ° C.
バナジウムを含む酸化物と、炭素源と、バナジウム以外の金属の化合物とを含有する混合物を焼成する異種金属添加二酸化バナジウムの製造方法。   The manufacturing method of the dissimilar metal addition vanadium dioxide which bakes the mixture containing the oxide containing vanadium, a carbon source, and the compound of metals other than vanadium. バナジウムを含む酸化物と、炭素源と、バナジウム以外の金属の酸化物または前記金属のイオン溶液とを含有する混合物を焼成する異種金属添加二酸化バナジウムの製造方法。   The manufacturing method of the dissimilar metal addition vanadium dioxide which bakes the mixture containing the oxide containing vanadium, a carbon source, and the oxide of metals other than vanadium, or the ion solution of the said metal. 請求項1から9のいずれかの製造方法で製造された二酸化バナジウム、または請求項10もしくは11の製造方法で製造された異種金属添加二酸化バナジウムを有するサーモクロミック製品。   The thermochromic product which has vanadium dioxide manufactured with the manufacturing method in any one of Claim 1 to 9, or the dissimilar metal addition vanadium dioxide manufactured with the manufacturing method of Claim 10 or 11.
JP2014229055A 2014-11-11 2014-11-11 Method of producing vanadium dioxide Active JP6501103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229055A JP6501103B2 (en) 2014-11-11 2014-11-11 Method of producing vanadium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229055A JP6501103B2 (en) 2014-11-11 2014-11-11 Method of producing vanadium dioxide

Publications (2)

Publication Number Publication Date
JP2016088827A true JP2016088827A (en) 2016-05-23
JP6501103B2 JP6501103B2 (en) 2019-04-17

Family

ID=56015826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229055A Active JP6501103B2 (en) 2014-11-11 2014-11-11 Method of producing vanadium dioxide

Country Status (1)

Country Link
JP (1) JP6501103B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108570A (en) * 2014-11-26 2016-06-20 新日本電工株式会社 Method for producing vanadium dioxide based heat storage material
JP2017190377A (en) * 2016-04-12 2017-10-19 新日本電工株式会社 Manufacturing method of vanadium dioxide-based heat storage material
JP2018064444A (en) * 2016-10-12 2018-04-19 ツィンファ ユニバーシティ Bionic arm and robot employing bionic arm
JP2018064445A (en) * 2016-10-12 2018-04-19 ツィンファ ユニバーシティ Actuator and method of producing the same
CN108300002A (en) * 2016-08-12 2018-07-20 中国科学院上海硅酸盐研究所 A kind of hypovanadic oxide-based thermochromism solid-liquid compound material and its preparation method and application
US10431408B2 (en) 2016-10-12 2019-10-01 Tsinghua University Temperature sensitive system
WO2020026806A1 (en) * 2018-07-31 2020-02-06 日本化学工業株式会社 Method for producing vanadium dioxide
US10641252B2 (en) 2016-10-12 2020-05-05 Tsinghua University Actuator based on carbon nanotubes and actuating system using the same
US10807713B2 (en) 2016-10-12 2020-10-20 Tsinghua University Biomimetic insect

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110356B1 (en) * 1970-08-26 1976-04-03
JPS5244035B1 (en) * 1966-08-25 1977-11-04
JP2004168560A (en) * 2002-11-15 2004-06-17 Sumitomo Electric Ind Ltd Method for producing vanadium compound, and method for producing vanadium electrolytic solution
JP2004346260A (en) * 2003-05-26 2004-12-09 Toagosei Co Ltd Thermochromic film and thermochromic glass
WO2010090274A1 (en) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 Fine particles, process for producing same, and coating material, film and ink each containing the fine particles
JP2010190522A (en) * 2009-02-19 2010-09-02 Sumitomo Heavy Ind Ltd Vanadium recovering device and vanadium recovering system
WO2012133074A1 (en) * 2011-03-28 2012-10-04 株式会社村田製作所 Resistor and resistor element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244035B1 (en) * 1966-08-25 1977-11-04
JPS5110356B1 (en) * 1970-08-26 1976-04-03
JP2004168560A (en) * 2002-11-15 2004-06-17 Sumitomo Electric Ind Ltd Method for producing vanadium compound, and method for producing vanadium electrolytic solution
JP2004346260A (en) * 2003-05-26 2004-12-09 Toagosei Co Ltd Thermochromic film and thermochromic glass
WO2010090274A1 (en) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 Fine particles, process for producing same, and coating material, film and ink each containing the fine particles
JP2010190522A (en) * 2009-02-19 2010-09-02 Sumitomo Heavy Ind Ltd Vanadium recovering device and vanadium recovering system
WO2012133074A1 (en) * 2011-03-28 2012-10-04 株式会社村田製作所 Resistor and resistor element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108570A (en) * 2014-11-26 2016-06-20 新日本電工株式会社 Method for producing vanadium dioxide based heat storage material
JP2017190377A (en) * 2016-04-12 2017-10-19 新日本電工株式会社 Manufacturing method of vanadium dioxide-based heat storage material
CN108300002A (en) * 2016-08-12 2018-07-20 中国科学院上海硅酸盐研究所 A kind of hypovanadic oxide-based thermochromism solid-liquid compound material and its preparation method and application
CN108300002B (en) * 2016-08-12 2020-03-17 中国科学院上海硅酸盐研究所 Vanadium dioxide-based thermochromic solid-liquid composite material and preparation method and application thereof
US10661448B2 (en) 2016-10-12 2020-05-26 Tsinghua University Biomimetic limb and robot using the same
US10431408B2 (en) 2016-10-12 2019-10-01 Tsinghua University Temperature sensitive system
JP2018064445A (en) * 2016-10-12 2018-04-19 ツィンファ ユニバーシティ Actuator and method of producing the same
US10641252B2 (en) 2016-10-12 2020-05-05 Tsinghua University Actuator based on carbon nanotubes and actuating system using the same
JP2018064444A (en) * 2016-10-12 2018-04-19 ツィンファ ユニバーシティ Bionic arm and robot employing bionic arm
US10807713B2 (en) 2016-10-12 2020-10-20 Tsinghua University Biomimetic insect
WO2020026806A1 (en) * 2018-07-31 2020-02-06 日本化学工業株式会社 Method for producing vanadium dioxide
JPWO2020026806A1 (en) * 2018-07-31 2021-08-05 日本化学工業株式会社 Production method of vanadium dioxide
JP7225238B2 (en) 2018-07-31 2023-02-20 日本化学工業株式会社 Method for producing vanadium dioxide

Also Published As

Publication number Publication date
JP6501103B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6501103B2 (en) Method of producing vanadium dioxide
Boumezoued et al. ZnO nanopowders doped with bismuth oxide, from synthesis to electrical application
Ye et al. Preparation, characterization and properties of thermochromic tungsten-doped vanadium dioxide by thermal reduction and annealing
Marrero-López et al. Synthesis and transport properties in La2− xAxMo2O9− δ (A= Ca2+, Sr2+, Ba2+, K+) series
Wang et al. Thermodynamics of cesium lead halide (CsPbX3, x= I, Br, Cl) perovskites
Jung et al. X-ray photoelectron study on Ba 0.5 Sr 0.5 Co x Fe 1− x O 3− δ (BSCF: x= 0.2 and 0.8) ceramics annealed at different temperature and p O 2
Orfila et al. Thermochemical hydrogen production using manganese cobalt spinels as redox materials
Patzsch et al. Synthesis, characterization and p–n type gas sensing behaviour of CuFeO 2 delafossite type inorganic wires using Fe and Cu complexes as single source molecular precursors
CN105926029A (en) Method for quick synthesis of zinc oxide whiskers by means of microwaves
Zhang et al. Low temperature synthesis of Yb doped SrCeO3 powders by gel combustion process
Macias et al. Synthesis and preliminary study of La4BaCu5O13+ δ and La6. 4Sr1. 6Cu8O20±δ ordered perovskites as SOFC/PCFC electrode materials
KR101509332B1 (en) Preparation of copper selenide compound controlling particle size and composition
Benchikhi et al. Investigation of structural transition in molybdates CuMo1-xWxO4 prepared by polymeric precursor method
Biswas et al. Synthesis of nanocrystalline yttria doped ceria powder by urea–formaldehyde polymer gel auto-combustion process
Lu et al. Structure, chemical stability and electrical conductivity of perovskite La0. 6Sr0. 4M0. 3Fe0. 7O3− δ (M= Co, Ti) oxides
Singh et al. Effect of partial substitution of Sn4+ by M4+ (M= Si, Ti, and Ce) on sinterability and ionic conductivity of SnP2O7
WO2017138643A1 (en) Ruthenium oxide and method for producing ruthenium oxide
Du et al. Low‐temperature synthesis of bismuth titanate by an aqueous sol–gel method
JP2006100683A (en) Thermoelectric conversion material for titanium oxide
JP6632455B2 (en) Method for producing vanadium dioxide based heat storage material
Bonet et al. Synthesis of LaCrO 3 and La 0.9 Ca 0.1 CrO 3 by modified glycine nitrate process
Baharuddin et al. Thermal Decomposition of Cobalt-free SrFe0. 9Ti0. 1O3-δ Cathode for Intermediate Temperature Solid Oxide Fuel Cell
JP6173778B2 (en) Thermal barrier coating materials
CN105603527A (en) Preparation method of zinc oxide nano monocrystals
Shafiekhani et al. Influence of Fe@ MnAl2O4 and synthesis of novel compound Mn0. 83Fe0. 21Al1. 96O4

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190306

R150 Certificate of patent or registration of utility model

Ref document number: 6501103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250