JP2016087975A - Flow analyzer with resin viscosity calculation function - Google Patents

Flow analyzer with resin viscosity calculation function Download PDF

Info

Publication number
JP2016087975A
JP2016087975A JP2014226684A JP2014226684A JP2016087975A JP 2016087975 A JP2016087975 A JP 2016087975A JP 2014226684 A JP2014226684 A JP 2014226684A JP 2014226684 A JP2014226684 A JP 2014226684A JP 2016087975 A JP2016087975 A JP 2016087975A
Authority
JP
Japan
Prior art keywords
resin
viscosity
curve
heat generation
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014226684A
Other languages
Japanese (ja)
Other versions
JP6259752B2 (en
Inventor
正俊 小林
Masatoshi Kobayashi
正俊 小林
浩志 伊藤
Hiroshi Ito
浩志 伊藤
健太郎 瀧
Kentaro Taki
健太郎 瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014226684A priority Critical patent/JP6259752B2/en
Publication of JP2016087975A publication Critical patent/JP2016087975A/en
Application granted granted Critical
Publication of JP6259752B2 publication Critical patent/JP6259752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow analyzer with a resin viscosity calculation function for a development support device for performing simulation analysis of a behavior when a resin accompanying a plurality of curing reactions is injected to a mold to be molded, which has such a resin viscosity calculation function as to accurately calculate a change of the viscosity of the resin, and accordingly accurately grasp resin flow behavior in the mold and can find out an appropriate molding condition, a mold cavity shape, the number of injection ports, the arrangement and the like, on the side of the flow analysis.SOLUTION: A flow analyzer is configured to: measure a heat quantity of a resin, and measure a synthetic heat generation curve of a first heat generation curve exhibiting a curing reaction by polymerization and a second heat generation curve exhibiting a curing reaction by crystallization (S10); separate (calculate) the synthetic heat generation curve into the first and second heat generation curves, and calculate a degree α of cure of the resin, based on the first heat generation curve (S12); multiply initial viscosity of the resin by a value related to the calculated degree α of cure to calculate a viscosity ηp by polymerization of the resin (S16); and input the viscosity ηp to a development support device (S18).SELECTED DRAWING: Figure 2

Description

この発明は樹脂粘度算出機能を有する流動解析装置に関し、より詳しくは樹脂を金型キャビティに注入して成形するときの挙動をコンピュータによるシミュレーションを介して解析するコンピュータ支援の開発支援装置(Computer Aided Engineering)用の樹脂粘度算出機能を有する流動解析装置に関する。   The present invention relates to a flow analysis apparatus having a resin viscosity calculation function, and more specifically, a computer-aided development support apparatus (Computer Aided Engineering) that analyzes a behavior of a resin injected into a mold cavity through a computer simulation. The present invention relates to a flow analysis apparatus having a resin viscosity calculation function.

コンピュータによるシミュレーションを介して金型設計、商品設計などの開発を支援する装置としては、有限要素法、有限体積法、差分法、境界要素法などを用いて成形中の金型内樹脂流動挙動をシミュレーションする技術が、樹脂部品に対してすでに広く活用されている。   As a device that supports the development of mold design, product design, etc. through computer simulation, the resin flow behavior in the mold during molding using the finite element method, finite volume method, difference method, boundary element method, etc. Simulation technology is already widely used for resin parts.

シミュレーションを行うためには、事前に樹脂物性をコンピュータへ入力しなければならない。必要な樹脂物性としては、粘度、熱伝導率、比熱、密度などがあるが、粘度は流動挙動へ著しく影響を及ぼす重要な物性といえる。   In order to perform the simulation, it is necessary to input resin physical properties to a computer in advance. Necessary resin physical properties include viscosity, thermal conductivity, specific heat, density, and the like. Viscosity is an important physical property that significantly affects the flow behavior.

ところで、成形には、モノマーを高温に温度制御された金型内に流し込みながら、または流し込んだ後で化学反応(架橋、重合など)を伴って賦形されるプロセスもある。例えば、エポキシ樹脂のような熱硬化性樹脂を用いた成形は、架橋による硬化反応を伴う。信頼できる解析結果を得るためには、反応を生じながら時間と共に変化する粘度に対して精度良く合わせた粘度カーブフィッティング式をコンピュータへ入力した後に、金型内樹脂流動挙動をシミュレーションしなければならない。   By the way, in the molding, there is a process in which a monomer is shaped with a chemical reaction (crosslinking, polymerization, etc.) while pouring into a mold controlled at a high temperature or after pouring. For example, molding using a thermosetting resin such as an epoxy resin involves a curing reaction by crosslinking. In order to obtain a reliable analysis result, the resin flow behavior in the mold must be simulated after a viscosity curve fitting equation that accurately matches the viscosity changing with time while producing a reaction is input to the computer.

この硬化反応を伴う樹脂を用いたシミュレーションでは、粘度が複雑に変化するため、下記の特許文献1,2に記載されているように、有限要素法などを用いて流動性樹脂の流動挙動を解析することが知られている。   In the simulation using a resin with a curing reaction, the viscosity changes in a complicated manner. Therefore, as described in Patent Documents 1 and 2 below, the flow behavior of a fluid resin is analyzed using a finite element method or the like. It is known to do.

特開2003−068776号JP 2003-068776 A 特開2014−058049号JP 2014-058049 A

特許文献1,2記載の技術はエポキシ樹脂などの1種類の硬化反応を生じる熱硬化性樹脂のみに対して広く活用されているが、樹脂の中には2種類の硬化反応を生じるものも存在する。例えば、原料モノマーとしてε-カプロラクタムを用いたナイロン6の合成では、第1の硬化反応(短時間側)として重合、第2の硬化反応(長時間側)として結晶化の2種類の硬化反応を生じる。従って、特許文献1,2記載の技術ではこのような複数の硬化反応を伴う樹脂に対応することができなかった。   The technologies described in Patent Documents 1 and 2 are widely used only for thermosetting resins that cause one kind of curing reaction such as epoxy resins, but some resins cause two kinds of curing reactions. To do. For example, in the synthesis of nylon 6 using ε-caprolactam as a raw material monomer, two types of curing reactions, polymerization as the first curing reaction (short time side) and crystallization as the second curing reaction (long time side), are performed. Arise. Therefore, the techniques described in Patent Documents 1 and 2 cannot cope with such a resin having a plurality of curing reactions.

従って、この発明の目的は上記した課題を解決し、複数の硬化反応を伴う樹脂を金型キャビティに注入して成形するときの挙動をコンピュータによるシミュレーションを介して解析する開発支援装置用の樹脂粘度算出機能を有する流動解析装置において、樹脂の粘度変化を精度良く算出し、よって流動解析側において金型キャビティでの樹脂の流動挙動を精度良く把握して適切な成形条件、金型キャビティ形状、注入口数とその配置等を見出すことを可能にした樹脂粘度算出機能を有する流動解析装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and to analyze the behavior when a resin with a plurality of curing reactions is injected into a mold cavity and molded through a computer simulation, the resin viscosity for a development support apparatus In a flow analysis device with a calculation function, the viscosity change of the resin is accurately calculated, so the flow analysis side accurately understands the flow behavior of the resin in the mold cavity, and appropriate molding conditions, mold cavity shape, injection An object of the present invention is to provide a flow analysis apparatus having a resin viscosity calculation function that makes it possible to find out the number and arrangement thereof.

上記した課題を解決するために、請求項1にあっては複数の反応が生じる樹脂原料成分を含む樹脂を金型キャビティに注入して成形するときの挙動をコンピュータによるシミュレーションを介して解析する開発支援装置用の樹脂粘度算出機能を有する流動解析装置において、前記金型キャビティに注入されるべき樹脂の示差走査熱量を測定して昇温開始からm秒後の重合による硬化反応を示す第1発熱カーブと、n(n>m)秒後の結晶化による硬化反応を示す第2発熱カーブとで合成される合成発熱カーブを測定する合成発熱カーブ測定手段と、前記測定された合成発熱カーブを前記第1発熱カーブと第2発熱カーブとに分離(算出)する第1、第2発熱カーブ分離手段と、前記分離された第1発熱カーブに基づいて前記樹脂の硬化度αを算出する硬化度算出手段と、前記樹脂の初期粘度に前記算出された硬化度αに関連した値を乗じて前記樹脂の重合による粘度ηpを算出する粘度算出手段と、前記算出された樹脂の重合による粘度ηpを前記開発支援装置に入力する入力手段とを備える如く構成した。   In order to solve the above-described problems, in claim 1, the development is performed to analyze the behavior when a resin containing a resin raw material component that causes a plurality of reactions is injected into a mold cavity and molded through a computer simulation. In the flow analysis apparatus having a resin viscosity calculation function for a support apparatus, a first exotherm indicating a curing reaction due to polymerization in m seconds after the start of temperature rise by measuring the differential scanning calorific value of the resin to be injected into the mold cavity. A synthetic exothermic curve measuring means for measuring a synthetic exothermic curve composed of a curve and a second exothermic curve showing a curing reaction by crystallization after n (n> m) seconds, and the measured synthetic exothermic curve is First and second heat generation curve separating means for separating (calculating) the first heat generation curve and the second heat generation curve, and the degree of cure α of the resin based on the separated first heat generation curve. A degree-of-curing calculation means, a viscosity calculating means for calculating the viscosity ηp due to the polymerization of the resin by multiplying the initial viscosity of the resin by a value related to the calculated degree of curing α, and the polymerization of the calculated resin And an input means for inputting the viscosity ηp by the development support apparatus.

請求項2に係る樹脂粘度算出機能を有する流動解析装置にあっては、前記第1、第2発熱カーブ分離手段は、前記樹脂の示差走査熱量を測定して昇温開始からo(o>n)秒後の結晶融解による吸熱カーブを測定し、前記測定された吸熱カーブに基づいて前記第2発熱カーブを分離(算出)すると共に、前記合成発熱カーブから前記分離された第2発熱カーブを差し引くことで前記第1発熱カーブを分離する如く構成した。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 2, the first and second exothermic curve separation means measure the differential scanning calorific value of the resin and o (o> n ) Measuring an endothermic curve due to crystal melting after 2 seconds, separating (calculating) the second exothermic curve based on the measured endothermic curve, and subtracting the separated second exothermic curve from the synthetic exothermic curve. Thus, the first heat generation curve is separated.

請求項3に係る樹脂粘度算出機能を有する流動解析装置にあっては、前記第1、第2発熱カーブ分離手段は、前記樹脂の示差走査熱量の測定において、前記合成発熱カーブまで昇温させた後に、一旦冷却させてから、再度昇温して前記吸熱カーブまで測定する如く構成した。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 3, the first and second exothermic curve separating means raise the temperature to the synthetic exothermic curve in the measurement of the differential scanning calorific value of the resin. Later, after cooling, the temperature was raised again and the endothermic curve was measured.

請求項4に係る樹脂粘度算出機能を有する流動解析装置にあっては、前記粘度算出手段は、前記分離された第2発熱カーブに基づいて前記樹脂の結晶化度Xcを算出し、前記硬化度αから算出された樹脂の重合による粘度ηpに前記算出された結晶化度Xcに関連した値を乗じて前記樹脂の重合と結晶化による粘度ηpcを算出すると共に、前記入力手段は、前記算出された樹脂の重合と結晶化による粘度ηpcを前記開発支援装置に入力する如く構成した。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 4, the viscosity calculation means calculates a crystallinity degree Xc of the resin based on the separated second heat generation curve, and the degree of cure. The viscosity ηp due to polymerization of the resin calculated from α is multiplied by the value related to the calculated crystallinity Xc to calculate the viscosity ηpc due to polymerization and crystallization of the resin, and the input means The viscosity ηpc resulting from polymerization and crystallization of the resin was configured to be input to the development support device.

請求項5に係る樹脂粘度算出機能を有する流動解析装置にあっては、前記樹脂の粘度変化曲線を測定する粘度変化測定手段と、前記測定された粘度変化曲線に基づいて前記式(1)の複数のパラメータを変更して前記算出された樹脂の重合による粘度ηpのフィッティング精度が向上するように補正する粘度補正手段を備えると共に、前記入力手段は前記補正された樹脂の重合による粘度ηpを前記開発支援装置に入力する如く構成した。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 5, the viscosity change measuring means for measuring the viscosity change curve of the resin, and the equation (1) based on the measured viscosity change curve Viscosity correction means for correcting so as to improve the fitting accuracy of viscosity ηp due to polymerization of the calculated resin by changing a plurality of parameters, and the input means, the viscosity ηp due to polymerization of the corrected resin is It was configured to input to the development support device.

請求項6に係る樹脂粘度算出機能を有する流動解析装置にあっては、前記樹脂の粘度変化曲線を測定する粘度変化測定手段と、前記測定された粘度変化曲線に基づいて前記式(1a)の複数のパラメータを変更して前記算出された樹脂の重合と結晶化による粘度ηpcのフィッティング精度がさらに向上するように補正する粘度補正手段を備えると共に、前記入力手段は前記補正された樹脂の重合と結晶化による粘度ηpcを前記開発支援装置に入力する如く構成した。   In the flow analysis apparatus having the resin viscosity calculation function according to claim 6, the viscosity change measuring means for measuring the viscosity change curve of the resin, and the equation (1a) based on the measured viscosity change curve Viscosity correction means for correcting so as to further improve the fitting accuracy of viscosity ηpc due to polymerization and crystallization of the calculated resin by changing a plurality of parameters, and the input means includes the polymerization of the corrected resin The viscosity ηpc resulting from crystallization was input to the development support apparatus.

請求項7に係る樹脂粘度算出機能を有する流動解析装置にあっては、前記第1、第2発熱カーブ分離手段は、前記分離された第1発熱カーブと第2発熱カーブとを再び合成して前記合成発熱カーブと一致するか否か検証する検証手段を備える如く構成した。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 7, the first and second heat generation curve separating means synthesize the separated first heat generation curve and second heat generation curve again. A verification means for verifying whether or not it matches the synthetic heat generation curve is provided.

請求項1に係る樹脂粘度算出機能を有する流動解析装置にあっては、金型キャビティに注入されるべき樹脂の示差走査熱量を測定して昇温開始からm秒後の重合による硬化反応を示す第1発熱カーブと、n(n>m)秒後の結晶化による硬化反応を示す第2発熱カーブとで合成される合成発熱カーブを測定し、測定された合成発熱カーブを第1発熱カーブと第2発熱カーブとに分離し、分離された第1発熱カーブに基づいて樹脂の硬化度αを算出し、樹脂の初期粘度に算出された硬化度αに関連した値を乗じて樹脂の重合による粘度ηpを算出すると共に、算出された樹脂の重合による粘度ηpを開発支援装置に入力する如く構成したので、複数の硬化反応を生じる樹脂の粘度変化を適切に算出することができ、流動解析側において金型キャビティでの樹脂の流動挙動を精度良く把握して適切な成形条件、金型キャビティ形状、注入口数とその配置等を見出すことができる。   In the flow analysis apparatus having the resin viscosity calculation function according to claim 1, the differential scanning calorific value of the resin to be injected into the mold cavity is measured to indicate a curing reaction by polymerization after m seconds from the start of temperature increase. A synthetic exothermic curve synthesized with the first exothermic curve and a second exothermic curve showing a curing reaction by crystallization after n (n> m) seconds is measured, and the measured synthetic exothermic curve is defined as a first exothermic curve. The resin is separated into the second heat generation curve, the degree of cure α of the resin is calculated based on the separated first heat generation curve, and the initial viscosity of the resin is multiplied by the value related to the calculated degree of cure α, resulting from the polymerization of the resin. Since the viscosity ηp is calculated and the calculated viscosity ηp due to the polymerization of the resin is input to the development support device, it is possible to appropriately calculate the change in viscosity of the resin that causes multiple curing reactions. In mold cavity It is possible to accurately grasp the flow behavior of the resin and find appropriate molding conditions, mold cavity shape, number of injection ports and their arrangement, and the like.

請求項2に係る樹脂粘度算出機能を有する流動解析装置にあっては、樹脂の示差走査熱量を測定して昇温開始からo(o>n)秒後の結晶融解による吸熱カーブを測定し、測定された吸熱カーブに基づいて第2発熱カーブを分離すると共に、合成発熱カーブから分離された第2発熱カーブを差し引くことで第1発熱カーブを分離する如く構成したので、上記した効果に加え、第1、第2発熱カーブを容易に分離(あるいは算出)することができる。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 2, the differential scanning calorific value of the resin is measured to measure an endothermic curve due to crystal melting after o (o> n) seconds from the start of temperature rise, The second heat generation curve is separated based on the measured endothermic curve, and the first heat generation curve is separated by subtracting the second heat generation curve separated from the combined heat generation curve. The first and second heat generation curves can be easily separated (or calculated).

請求項3に係る樹脂粘度算出機能を有する流動解析装置にあっては、第1、第2発熱カーブ分離手段は、樹脂の示差走査熱量の測定において、合成発熱カーブまで昇温させた後に、一旦冷却させてから、再度昇温して吸熱カーブまで測定する如く構成したので、上記した効果に加え、重合、結晶化による発熱カーブの測定と、結晶融解による吸熱カーブの測定とを別々に行うことも可能となり、試験の自由度を高めることができる。   In the flow analysis apparatus having the resin viscosity calculation function according to claim 3, the first and second exothermic curve separating means temporarily raise the temperature to the synthetic exothermic curve in the measurement of the differential scanning calorific value of the resin. After cooling, the temperature is increased again to measure the endothermic curve. In addition to the above effects, the exothermic curve due to polymerization and crystallization and the endothermic curve due to crystal melting should be measured separately. It is also possible to increase the degree of freedom of testing.

請求項4に係る樹脂粘度算出機能を有する流動解析装置にあっては、分離された第2発熱カーブに基づいて樹脂の結晶化度Xcを算出し、硬化度αから算出された樹脂の重合による粘度ηpに算出された結晶化度Xcに関連した値を乗じて樹脂の重合と結晶化による粘度ηpcを算出すると共に、算出された樹脂の重合と結晶化によるηpcを開発支援装置に入力する如く構成したので、複数の硬化反応を生じる樹脂の粘度変化を一層適切に算出することができ、流動解析側において金型キャビティでの樹脂の流動挙動を精度良く把握して一層適切な成形条件、金型キャビティ形状、注入口数とその配置等を見出すことができる。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 4, the degree of crystallinity Xc of the resin is calculated based on the separated second heat generation curve, and the polymerization of the resin calculated from the degree of cure α is performed. By multiplying the viscosity ηp by the value related to the calculated crystallinity Xc, the viscosity ηpc due to polymerization and crystallization of the resin is calculated, and the calculated ηpc due to polymerization and crystallization of the resin is input to the development support device. Since it is configured, it is possible to more appropriately calculate the viscosity change of the resin that causes multiple curing reactions, and the flow analysis side accurately grasps the flow behavior of the resin in the mold cavity, and more appropriate molding conditions, The mold cavity shape, the number of injection ports and their arrangement can be found.

請求項5に係る樹脂粘度算出機能を有する流動解析装置にあっては、樹脂の粘度変化曲線を測定し、測定された粘度変化曲線に基づいて式(1)の複数のパラメータを変更して算出された樹脂の重合による粘度ηpのフィッティング精度が向上するように補正すると共に、補正された樹脂の重合による粘度ηpを開発支援装置に入力する如く構成したので、上記した効果に加え、粘度変化を一層適切に算出することができる。   In the flow analysis apparatus having the resin viscosity calculation function according to claim 5, the viscosity change curve of the resin is measured, and the calculation is performed by changing a plurality of parameters of the formula (1) based on the measured viscosity change curve. In addition to the effects described above, the viscosity change due to the polymerized resin is corrected so that the fitting accuracy of the viscosity ηp due to the polymerization of the resin is improved and the viscosity ηp due to the polymerization of the corrected resin is input to the development support device. It can be calculated more appropriately.

請求項6に係る樹脂粘度算出機能を有する流動解析装置にあっては、樹脂の粘度変化曲線を測定し、測定された粘度変化曲線に基づいて式(1a)の複数のパラメータを変更して算出された樹脂の重合と結晶化によるηpcのフィッティング精度がさらに向上するように補正すると共に、補正された樹脂の重合と結晶化によるηpcを開発支援装置に入力する如く構成したので、上記した効果に加え、粘度変化を一層適切に算出することができる。   In the flow analysis apparatus having a resin viscosity calculation function according to claim 6, the viscosity change curve of the resin is measured, and the calculation is performed by changing a plurality of parameters of formula (1a) based on the measured viscosity change curve. The ηpc fitting accuracy due to polymerization and crystallization of the corrected resin is corrected to be further improved, and the corrected ηpc due to polymerization and crystallization of the resin is input to the development support apparatus. In addition, the change in viscosity can be calculated more appropriately.

請求項7に係る樹脂粘度算出機能を有する流動解析装置にあっては、分離された第1発熱カーブと第2発熱カーブとを再び合成して合成発熱カーブと一致するか否か検証する如く構成し、一致の程度が不十分な場合は分離を修正することができるので、上記した効果に加え、粘度変化を一層適切に算出することができる。   The flow analysis apparatus having a resin viscosity calculation function according to claim 7 is configured to verify whether or not the separated first heat generation curve and second heat generation curve are combined again to match the combined heat generation curve. In addition, when the degree of coincidence is insufficient, the separation can be corrected. Therefore, in addition to the above effects, the viscosity change can be calculated more appropriately.

この発明の第1実施例に係る粘度算出機能を有する流動解析装置を用いて行われる製品設計から量産までの工程を示す説明図である。It is explanatory drawing which shows the process from the product design performed using the flow analysis apparatus which has a viscosity calculation function which concerns on 1st Example of this invention to mass production. 図1に示す装置の処理を示すフロー・チャートである。It is a flowchart which shows the process of the apparatus shown in FIG. 図2の処理によって得られる熱量カーブ全体の測定結果を示すデータ図である。It is a data figure which shows the measurement result of the whole calorie | heat amount curve obtained by the process of FIG. 図2の処理によって得られる合成発熱カーブから分離された第1発熱カーブと第2発熱カーブの算出結果を示すデータ図である。FIG. 3 is a data diagram showing calculation results of a first heat generation curve and a second heat generation curve separated from a combined heat generation curve obtained by the process of FIG. 2. 図2の処理によって得られる合成発熱カーブと吸熱カーブの測定結果を示すデータ図である。It is a data figure which shows the measurement result of the synthetic | combination exothermic curve and endothermic curve obtained by the process of FIG. 図2の処理によって得られる合成発熱カーブから分離された第1発熱カーブと第2発熱カーブを再び合成して、元の合成発熱カーブと一致するか否か検証した結果を示すデータ図である。FIG. 3 is a data diagram showing a result of verifying whether or not the first heat generation curve and the second heat generation curve separated from the combined heat generation curve obtained by the process of FIG. 図2の処理によって得られる粘度の測定結果と算出結果を示すデータ図である。It is a data figure which shows the measurement result and calculation result of the viscosity obtained by the process of FIG. この発明の第2実施例に係る粘度算出機能を有する流動解析装置の処理を示すフロー・チャートである。It is a flowchart which shows the process of the flow analysis apparatus which has a viscosity calculation function based on 2nd Example of this invention. 図8の処理によって得られる粘度の測定結果と算出結果を示すデータ図である。It is a data figure which shows the measurement result and calculation result of the viscosity obtained by the process of FIG.

以下、添付図面を参照してこの発明に係る粘度算出機能を有する流動解析装置を実施するための形態について説明する。   Hereinafter, an embodiment for carrying out a flow analyzing apparatus having a viscosity calculating function according to the present invention will be described with reference to the accompanying drawings.

図1はこの発明の第1実施例に係る粘度算出機能を有する流動解析装置を用いて行われる製品設計から量産までの工程を示す説明図である。   FIG. 1 is an explanatory view showing steps from product design to mass production performed using a flow analysis apparatus having a viscosity calculation function according to the first embodiment of the present invention.

図1において符号10は粘度算出機能を有する流動解析装置を示し、装置10は開発支援装置(CAE)12用の装置、より具体的には開発支援装置12の一部を構成する装置として構成される。開発支援装置12はコンピュータからなり、金型14内の樹脂流動挙動を解析するための対話形式のシミュレーションプログラム16が格納される。   In FIG. 1, reference numeral 10 denotes a flow analysis device having a viscosity calculation function, and the device 10 is configured as a device for a development support device (CAE) 12, more specifically as a device constituting a part of the development support device 12. The The development support apparatus 12 includes a computer, and stores an interactive simulation program 16 for analyzing the resin flow behavior in the mold 14.

金型14は上型14aと下型14bを備え、その間にキャビティ14cが形成される。キャビティ14cは上型14aに形成される注入路から樹脂20が注入機14dによって注入(充填)される。樹脂20は複数の反応性原料樹脂成分を混合させてなるモノマーからなる。キャビティ14cは減圧ポンプ14eに接続されて減圧(真空引き)可能に構成される。   The mold 14 includes an upper mold 14a and a lower mold 14b, and a cavity 14c is formed therebetween. The resin 14 is injected (filled) into the cavity 14c from an injection path formed in the upper mold 14a by an injection machine 14d. The resin 20 is made of a monomer obtained by mixing a plurality of reactive raw resin components. The cavity 14c is connected to a decompression pump 14e so as to be decompressed (evacuated).

開発支援装置(コンピュータ)12はディスプレイ12aとキーボードやマウスなどの入力手段12bを備え、樹脂20を金型キャビティ14cに注入して成形、より具体的にはRTM(Resin Transfer Molding)法などの成形を行うときの挙動を格納された対話形式のプログラム16によるシミュレーションを介して解析する。   The development support device (computer) 12 includes a display 12a and an input means 12b such as a keyboard and a mouse, and is molded by injecting the resin 20 into the mold cavity 14c, more specifically, molding such as RTM (Resin Transfer Molding) method. The behavior at the time of performing is analyzed through simulation by the stored interactive program 16.

粘度算出機能を有する流動解析装置10は開発支援装置12とシミュレーションプログラム16を共用すると共に、樹脂20のDSC(Differential Scanning Calorimetry。示差走査熱量)を測定するためのDSC分析器22と、樹脂20の粘度を測定するためのレオメータ24からの測定結果が送られる。尚、開発支援装置12は、コンピュータを2台以上用いて、樹脂粘度算出機能用のコンピュータで粘度変化を計算した結果を別の流動解析用のコンピュータに送り解析しても良い。また、DSC分析器22とレオメータ24は具体的には金型キャビティ14cに注入されるべき樹脂20の試料の熱量と粘度を測定する。   The flow analysis apparatus 10 having the viscosity calculation function shares the development support apparatus 12 and the simulation program 16, and the DSC analyzer 22 for measuring the DSC (Differential Scanning Calorimetry) of the resin 20, The measurement result from the rheometer 24 for measuring the viscosity is sent. The development support apparatus 12 may use two or more computers and send the results of calculating the viscosity change by a computer for resin viscosity calculation function to another computer for flow analysis for analysis. Further, the DSC analyzer 22 and the rheometer 24 specifically measure the heat quantity and viscosity of the sample of the resin 20 to be injected into the mold cavity 14c.

流動解析は具体的には製品設計から量産までの工程の一環として行われ、設計者(エンジニア)は、入力装置12bを介してデータを入力し、プログラム16に格納された指示に従い、対話形式で製品モデル26を設計する。   Specifically, the flow analysis is performed as part of the process from product design to mass production, and the designer (engineer) inputs data via the input device 12b and follows the instructions stored in the program 16 in an interactive format. A product model 26 is designed.

CAEにおいては、金型14を用いて製品製造を行う場合、設計者は先ず製品設計工程で製品モデル26を設計し、その作成した製品モデル26を使用して金型設計工程で金型モデル28を設計する。   In CAE, when a product is manufactured using the mold 14, the designer first designs the product model 26 in the product design process, and uses the created product model 26 to mold the mold model 28 in the mold design process. To design.

次いで、設計者は、作成した金型モデル28を使用して金型加工データを作成し、そのデータを使用してNC加工装置30などによって金型14を製造し、製造した金型14を使用してRTM法などの成形を行うことによって製品32を製造する。   Next, the designer creates mold machining data using the created mold model 28, uses the data to produce the mold 14 using the NC machining apparatus 30, and uses the produced mold 14. Then, the product 32 is manufactured by performing molding such as the RTM method.

図2は粘度算出機能を有する流動解析装置10の処理を示すフロー・チャート、図3から図7はそれによって得られる発熱カーブなどの測定結果を示す説明図である。図2フロー・チャートのプログラムは開発支援装置(コンピュータ)12によって実行される。   FIG. 2 is a flow chart showing processing of the flow analysis apparatus 10 having a viscosity calculation function, and FIGS. 3 to 7 are explanatory diagrams showing measurement results such as heat generation curves obtained thereby. 2 is executed by the development support apparatus (computer) 12.

以下説明すると、S10において樹脂20を一定昇温速度条件、例えば4℃/minで加熱しながらDSC分析器22を用いてDSC(示差走査熱量)を測定し、2種類の硬化反応が生じる際の発熱カーブaと結晶融解が生じる際の吸熱カーブdを測定する。樹脂20は具体的には、ナイロン6の合成原料モノマーとして、室温で固体顆粒状のε-カプロラクタム、触媒、重合開始剤等の混合物からなる。   In the following description, DSC (differential scanning calorie) is measured using the DSC analyzer 22 while heating the resin 20 at a constant heating rate condition, for example, 4 ° C./min in S10, and two kinds of curing reactions occur. An exothermic curve a and an endothermic curve d when crystal melting occurs are measured. Specifically, the resin 20 is composed of a mixture of ε-caprolactam, a catalyst, a polymerization initiator and the like that are solid granular at room temperature as a raw material monomer for nylon 6.

図3にその測定結果を示す。同図に示す如く、70℃付近でモノマーが融解して液化することによる吸熱が、120から170℃付近で重合による発熱(第1発熱カーブb)と結晶化による発熱(第2発熱カーブc)が、200から220℃付近でポリマーの結晶が融解して液化することによる吸熱(吸熱カーブd)が見られた。   FIG. 3 shows the measurement results. As shown in the figure, the endotherm due to the melting and liquefaction of the monomer at around 70 ° C. is caused by heat generation due to polymerization (first heat generation curve b) and heat generation due to crystallization (second heat generation curve c) at around 120 to 170 ° C. However, an endotherm (endothermic curve d) due to melting and liquefaction of polymer crystals was observed at around 200 to 220 ° C.

尚、この熱量カーブの測定において、樹脂を結晶化による発熱(第2発熱カーブc)まで昇温させた後、一旦冷却させ、再度昇温させた熱量カーブ測定においても、200から220℃付近で該吸熱(吸熱カーブd)が見られた。   It should be noted that in this calorimetric curve measurement, even in the caloric curve measurement in which the temperature of the resin is raised to the heat generated by crystallization (second exothermic curve c), and then once cooled, the temperature is raised again at around 200 to 220 ° C. The endotherm (endothermic curve d) was observed.

図3において横軸は一定昇温速度で加熱したときの温度を示すことから、発熱カーブaは、時間的に先行する短時間側で(換言すれば昇温開始からm秒後に)生じる第1の硬化反応(重合)の発熱カーブbと、長時間側で(換言すれば昇温開始からn(n>m)秒後に)生じる第2の硬化反応(結晶化)の発熱カーブcとで合成される合成発熱カーブからなる。   In FIG. 3, since the horizontal axis indicates the temperature when heated at a constant rate of temperature increase, the exothermic curve a is the first that occurs on the short time side that precedes in time (in other words, m seconds after the start of temperature increase). And the exothermic curve b of the second curing reaction (crystallization) that occurs on the long time side (in other words, n (n> m) seconds after the start of temperature increase). Composed of a synthetic heat generation curve.

成形は樹脂20が金型キャビティ14c内の末端まで到達できる成形条件(成形品のサイズ、樹脂20の温度、金型14の温度)の範囲で行わなければならない。つまり、樹脂20に十分な流動性が確保されている範囲内で流動(注入)を完了させる必要があるため、シミュレーションのための粘度カーブフィッティングは、先ずは粘度が十分に増加していない、換言すれば硬化反応が十分に進行していない低粘度(短時間)側の精度が重要となる。第1実施例はこの点に着目してなされた。   Molding must be performed within a range of molding conditions (the size of the molded product, the temperature of the resin 20, and the temperature of the mold 14) that allow the resin 20 to reach the end in the mold cavity 14c. That is, since it is necessary to complete the flow (injection) within a range in which sufficient fluidity is ensured in the resin 20, the viscosity curve fitting for the simulation does not increase the viscosity sufficiently. In this case, the accuracy on the low viscosity (short time) side where the curing reaction has not sufficiently progressed becomes important. The first embodiment was made paying attention to this point.

そこで、S12において測定された合成発熱カーブaを第1発熱カーブbと第2発熱カーブcとに分離し、第1発熱カーブbなどから硬化度α(t)を算出する。図4に分離された第1発熱カーブbと第2発熱カーブcを示す。   Therefore, the combined heat generation curve a measured in S12 is separated into the first heat generation curve b and the second heat generation curve c, and the curing degree α (t) is calculated from the first heat generation curve b and the like. FIG. 4 shows the separated first heat generation curve b and second heat generation curve c.

分離について説明すると、上記したように合成発熱カーブaのうちの低温側は重合による硬化反応が、高温側は結晶化による硬化反応が生じていることから、これらより第1発熱カーブbと第2発熱カーブcとに分離(算出)する。   The separation will be described. As described above, the low temperature side of the synthetic exothermic curve a undergoes a curing reaction due to polymerization, and the high temperature side undergoes a curing reaction due to crystallization. Separated (calculated) from the exothermic curve c.

即ち、第2の硬化反応である結晶化による発熱量(第2発熱カーブcの発熱量)は、より高温側(換言すれば昇温開始からo(o>n)秒後)に認められる、形成された結晶の融解による吸熱量(吸熱カーブdの吸熱量)に理論的に等しくなる。従って、合成発熱カーブaの面積をS、第1発熱カーブbの面積をS1、第2発熱カーブcの面積をS2、吸熱カーブdの面積をS3とするとき、図5に示す如く、第2発熱カーブcの面積S2は吸熱カーブdの面積S3と等しくなる。   That is, the amount of heat generated by crystallization as the second curing reaction (the amount of heat generated by the second heat generation curve c) is recognized on the higher temperature side (in other words, o (o> n) seconds after the start of temperature increase). It is theoretically equal to the endothermic amount due to melting of the formed crystal (endothermic amount of the endothermic curve d). Accordingly, when the area of the combined heat generation curve a is S, the area of the first heat generation curve b is S1, the area of the second heat generation curve c is S2, and the area of the heat absorption curve d is S3, the second heat generation curve a is shown in FIG. The area S2 of the exothermic curve c is equal to the area S3 of the endothermic curve d.

尚、吸熱カーブdの面積S3の算出には、熱量カーブの測定において、樹脂を結晶化による発熱(第2発熱カーブc)まで昇温させた後、一旦冷却させ、再度昇温させた熱量カーブ測定で見られる吸熱(吸熱カーブd)を採用しても構わない。   In calculating the area S3 of the endothermic curve d, in the measurement of the calorific value curve, the temperature of the resin is raised to the heat generated by crystallization (second exothermic curve c), then cooled once, and the temperature is raised again. You may employ | adopt the endotherm (endothermic curve d) seen by a measurement.

第1、第2発熱カーブb,cの分離に際しては、統計学で使用される分布曲線(ガウス分布、コーシー分布など)を用いて分離する。実施例の場合、数1に示すガウス分布を用いた(μ:平均値、σ:標準偏差)。即ち、面積S2がS3と等しくなるように左右で半値幅が異なるガウス分布曲線を活用して第2発熱カーブcを算出し、合成発熱カーブaから、算出した第2発熱カーブcを差し引いて、第1発熱カーブbを算出した。尚、これらカーブ形状は左右対称でないことも多いので、左右で半値幅が異なるような分布曲線を用いても良い。   The first and second heat generation curves b and c are separated using distribution curves (Gaussian distribution, Cauchy distribution, etc.) used in statistics. In the case of the example, the Gaussian distribution shown in Equation 1 was used (μ: average value, σ: standard deviation). That is, the second heat generation curve c is calculated by using a Gaussian distribution curve having different half widths on the left and right so that the area S2 is equal to S3, and the calculated second heat generation curve c is subtracted from the combined heat generation curve a. A first exothermic curve b was calculated. Since these curve shapes are often not symmetrical, distribution curves having different half widths on the left and right may be used.

Figure 2016087975
Figure 2016087975

このように、S12においては測定された合成発熱カーブaを第1発熱カーブbと第2発熱カーブcとに分離する。   Thus, in S12, the measured combined heat generation curve a is separated into the first heat generation curve b and the second heat generation curve c.

より具体的には、DSC分析器22を用いて樹脂20の示差走査熱量を測定し、昇温開始からm秒後に生じる第1の硬化反応である重合による第1発熱カーブbとn(n>m)秒後に生じる第2の硬化反応である結晶化による第2発熱カーブcとからなる合成発熱カーブaと、o(o>n)秒後に生じる結晶融解による吸熱カーブdを測定する。次に、合成発熱カーブaを第1発熱カーブbと第2発熱カーブcとに分離する。まず、第2発熱カーブcの面積S2(発熱量)が、吸熱カーブdの面積S3(吸熱量)に等しく、かつ、図5のように合成発熱カーブaの高温側と第2発熱カーブcの高温側がほぼ一致するように分布曲線(式1−1)を設定して第2発熱カーブcを算出する。さらに、算出した第2発熱カーブcを合成発熱カーブaから差し引くことで、第1発熱カーブbが算出される。この手順により第1発熱カーブbと第2発熱カーブcの分離が行われる。   More specifically, the DSC analyzer 22 is used to measure the differential scanning calorific value of the resin 20, and the first exothermic curve b and n (n>) due to polymerization, which is the first curing reaction that occurs m seconds after the start of temperature increase. m) A synthetic exothermic curve a consisting of a second exothermic curve c due to crystallization, which is a second curing reaction occurring after 2 seconds, and an endothermic curve d due to crystal melting occurring after o (o> n) seconds are measured. Next, the combined heat generation curve a is separated into a first heat generation curve b and a second heat generation curve c. First, the area S2 (heat generation amount) of the second heat generation curve c is equal to the area S3 (heat absorption amount) of the endothermic curve d, and the high temperature side of the combined heat generation curve a and the second heat generation curve c as shown in FIG. A distribution curve (Equation 1-1) is set so that the high temperature side substantially matches, and the second heat generation curve c is calculated. Further, the first heat generation curve b is calculated by subtracting the calculated second heat generation curve c from the combined heat generation curve a. By this procedure, the first heat generation curve b and the second heat generation curve c are separated.

S12の処理においては、次いで、算出された第1発熱カーブbなどから硬化度α(t)を算出する。   In the process of S12, the curing degree α (t) is then calculated from the calculated first heat generation curve b and the like.

数2の式2−1(所定の式(1))に硬化度α(t)などを用いて粘度ηp(t)を求める粘度カーブフィッティング式を示す。式2−1の初期粘度ηtp(T,γドット)は式2−2から求められ、硬化反応速度dα/dtは式2−3で表される。   Formula 2-1 (predetermined formula (1)) in Formula 2 shows a viscosity curve fitting formula for obtaining the viscosity ηp (t) using the degree of cure α (t) or the like. The initial viscosity ηtp (T, γ dot) of Formula 2-1 is obtained from Formula 2-2, and the curing reaction rate dα / dt is expressed by Formula 2-3.

Figure 2016087975
Figure 2016087975

数2においてηp:樹脂の重合による粘度、ηtp:初期粘度、t:時間、T:温度、γドット:せん断速度、αgel;ゲル化点における硬化度、α:硬化度、E1,E2,E3,F1,C1,C2,C3,A1,A2,m,nは樹脂の反応粘度パラメータである。   In Equation 2, ηp: viscosity due to polymerization of resin, ηtp: initial viscosity, t: time, T: temperature, γ dot: shear rate, αgel: degree of cure at the gel point, α: degree of cure, E1, E2, E3, F1, C1, C2, C3, A1, A2, m, and n are reaction viscosity parameters of the resin.

このように、第1発熱カーブbと式2−3とから重合のみによる硬化度α(t)を算出する。それらデータに式2−3を適用することで、A1,A2,E1,E2,m,nなど各パラメータの最適値が求まる。   In this way, the degree of cure α (t) based only on polymerization is calculated from the first exothermic curve b and Equation 2-3. By applying Formula 2-3 to these data, the optimum values of each parameter such as A1, A2, E1, E2, m, and n can be obtained.

またS12の処理においては、合成発熱カーブaを第1、第2発熱カーブb,cに分離した後、図6に示す如く、分離された第1発熱カーブbと第2発熱カーブcとを再び合成して合成発熱カーブa’を作成し、測定された(図3に示す)合成発熱カーブaと一致するか否か検証する。   In the process of S12, after separating the combined heat generation curve a into the first and second heat generation curves b and c, the separated first heat generation curve b and second heat generation curve c are again represented as shown in FIG. A combined exothermic curve a ′ is generated by synthesis, and it is verified whether or not it matches the measured synthetic exothermic curve a (shown in FIG. 3).

図2フロー・チャートにあっては次いでS14に進み、レオメータ24を用い、等温加熱かつ一定せん断速度の条件で樹脂20の粘度データの経時変化を測定する。図7に測定された粘度データの経時変化を示す。   In the flow chart of FIG. 2, the process then proceeds to S14, where the rheometer 24 is used to measure the change over time in the viscosity data of the resin 20 under the conditions of isothermal heating and constant shear rate. FIG. 7 shows the change over time of the measured viscosity data.

次いでS16に進み、分離した第1発熱カーブbから数2の式2−3を用いて算出された硬化度α(t)を式2−1(所定の式(1))に代入し、樹脂20の重合による粘度ηp(t)を算出する。式2−1は、概括すると、初期粘度ηtp(T,γドット)に算出された硬化度αに関連した値を乗じることで、重合により硬化した樹脂20の重合による粘度ηp(t)を算出するように構成される。   Next, in S16, the degree of cure α (t) calculated from the separated first heat generation curve b using Equation 2-3 in Equation 2 is substituted into Equation 2-1 (predetermined Equation (1)), and the resin The viscosity ηp (t) due to polymerization of 20 is calculated. Formula 2-1 generally calculates the viscosity ηp (t) due to polymerization of the resin 20 cured by polymerization by multiplying the initial viscosity ηtp (T, γ dots) by a value related to the calculated degree of cure α. Configured to do.

このとき、式2−1で算出される粘度カーブが図7に示す実測データに合うように、数2の式(式2−1,2−2,2−3)のA1,A2,C1,C2,C3,E1,E2,E3,F1,m,nなど各パラメータを決めて粘度カーブフィッティング(曲線あてはめ)を行う。   At this time, A 1, A 2, C 1, and E 2 of Formula 2 (Formulas 2-1 to 2-2, 2-3) so that the viscosity curve calculated by Formula 2-1 matches the actual measurement data shown in FIG. Viscosity curve fitting (curve fitting) is performed by determining parameters such as C2, C3, E1, E2, E3, F1, m, and n.

図7に実施例による粘度カーブフィッティング結果を示す。同図において実線が測定値、破線が第1発熱カーブbから算出されたフィッティング値である。参考までに、一点鎖線で第1発熱カーブbと第2発熱カーブcから算出されたフィッティング値(第2実施例で後述)も示す。図7に示す場合、樹脂20の温度が110℃と低く、第1の硬化反応である重合しか生じていないため、フィッティング値が測定値と経時的に良く一致することが確認された。   FIG. 7 shows the results of viscosity curve fitting according to the example. In the figure, the solid line is the measured value, and the broken line is the fitting value calculated from the first heat generation curve b. For reference, fitting values calculated from the first exothermic curve b and the second exothermic curve c (shown later in the second embodiment) are also shown by a one-dot chain line. In the case shown in FIG. 7, since the temperature of the resin 20 is as low as 110 ° C. and only the first curing reaction has occurred, it has been confirmed that the fitting value agrees well with the measured value over time.

次いでS18に進み、算出された樹脂の重合による粘度ηp(t)を開発支援装置12に入力し、コンピュータによるシミュレーションを通じて金型キャビティ14c内の樹脂流動挙動を解析する。   Next, in S18, the calculated viscosity ηp (t) due to the polymerization of the resin is input to the development support device 12, and the resin flow behavior in the mold cavity 14c is analyzed through a computer simulation.

この実施例は上記の如く構成したので、複数の硬化反応を生じる樹脂20の粘度変化を適切に算出することができ、流動解析側において金型キャビティ14cでの樹脂の流動挙動を精度良く把握して適切な成形条件、金型キャビティ形状、注入口数とその配置等を見出すことができる。   Since this embodiment is configured as described above, the viscosity change of the resin 20 that causes a plurality of curing reactions can be calculated appropriately, and the flow behavior of the resin in the mold cavity 14c can be accurately grasped on the flow analysis side. Therefore, it is possible to find appropriate molding conditions, mold cavity shape, number of injection ports and their arrangement, and the like.

図8はこの発明の第2実施例に係る粘度算出機能を有する流動解析装置10の処理を示す、図2と同様のフロー・チャートである。   FIG. 8 is a flow chart similar to FIG. 2 showing the processing of the flow analyzing apparatus 10 having the viscosity calculating function according to the second embodiment of the present invention.

尚、第2実施例に係る粘度算出機能を有する流動解析装置10の構成は、図1に示す第1実施例と異ならないため、説明は省略する。   In addition, since the structure of the flow analysis apparatus 10 which has the viscosity calculation function which concerns on 2nd Example is not different from 1st Example shown in FIG. 1, description is abbreviate | omitted.

第1実施例においては、比較的低温で粘度が緩やかに増加する(硬化反応が十分に進行していない)条件の低粘度(短時間)側が一致するように粘度カーブをフィッティングしたが、比較的高温で粘度が急激に増加する(硬化反応が十分に進行する)条件においても、低粘度が確保し続けられるタイミングを予測することが必要であるため、低粘度(短時間)側だけでなく高粘度(長時間)側でも粘度カーブをフィッティングできることが望ましい。   In the first example, the viscosity curve was fitted so that the low viscosity (short time) side of the condition where the viscosity slowly increased at a relatively low temperature (the curing reaction did not proceed sufficiently) matched. Even under conditions where the viscosity increases rapidly at a high temperature (the curing reaction proceeds sufficiently), it is necessary to predict when the low viscosity can be secured, so not only the low viscosity (short time) side but also the high It is desirable that the viscosity curve can be fitted on the viscosity (long time) side.

そこで、第2実施例においては、短時間側で生じる硬化反応である重合による第1発熱カーブbと、長時間側で生じる硬化反応である結晶化による第2発熱カーブcとを用いて粘度カーブフィッティングを行うようにした。   Therefore, in the second embodiment, the viscosity curve is obtained by using the first exothermic curve b due to polymerization, which is a curing reaction occurring on the short time side, and the second exothermic curve c due to crystallization, which is the curing reaction occurring on the long time side. Fitting was performed.

図8フロー・チャートを参照して説明すると、図2フロー・チャートのS10からS16までの処理と同様、S100からS106までの処理を行い、S108に進み、分離した第2発熱カーブcなどから結晶化度Xc(t)を算出する。   Referring to the flowchart of FIG. 8, the processing from S100 to S106 is performed in the same manner as the processing from S10 to S16 in the flowchart of FIG. A degree of conversion Xc (t) is calculated.

即ち、第2発熱カーブcが結晶化の場合は数2の式をそのまま使うことはできないため、硬化度α(t)の代替として結晶化度Xc(t)を用いることとした。結晶化度Xc(t)は数3に示す一般化アブラミ式3−1より算出することとした(ρc:結晶部密度、ρl:非結晶部密度、G:核成長速度、N:核生成頻度、V:結晶体積)。   That is, when the second exothermic curve c is crystallized, the formula 2 cannot be used as it is, so the crystallinity Xc (t) is used as an alternative to the curing degree α (t). The crystallinity Xc (t) was calculated from the generalized Abram formula 3-1 shown in Equation 3 (ρc: crystal part density, ρl: amorphous part density, G: nucleus growth rate, N: nucleation frequency. V: crystal volume).

Figure 2016087975
Figure 2016087975

結晶体積Vの算出に必要な球晶サイズrは式3−3で、核成長速度Gと核生成頻度Nは式3−4から3−6で表される(Tm:融点、Tg:ガラス転移点、C1,C2:WLF定数、C3,C4,Gc,Nc:樹脂パラメータ)。   The spherulite size r necessary for calculating the crystal volume V is expressed by the formula 3-3, and the nucleus growth rate G and the nucleation frequency N are expressed by the formulas 3-4 to 3-6 (Tm: melting point, Tg: glass transition). Point, C1, C2: WLF constant, C3, C4, Gc, Nc: resin parameter).

このように、第2実施例においては、第1実施例において第1発熱カーブbと式2−3とから重合のみによる硬化度α(t)を算出したように、第2発熱カーブcと式3−1とから結晶化による結晶化度Xc(t)を算出するようにした。それらデータに数3に示す式を適用することで、核成長速度G、核生成頻度N、球晶サイズr、結晶体積V、樹脂パラメータC3,C4,Gc,Ncなど各パラメータの最適値が求まる。尚、結晶部密度ρc、非晶部密度ρl、融点Tm、ガラス転移点Tg、WLF定数C1,C2は既知の値を使用する。   As described above, in the second embodiment, the second exothermic curve c and the equation are calculated as in the first embodiment, the degree of cure α (t) by only the polymerization is calculated from the first exothermic curve b and the equation 2-3. The crystallinity degree Xc (t) by crystallization was calculated from 3-1. By applying the equation shown in Equation 3 to these data, the optimum values of each parameter such as the nucleus growth rate G, nucleation frequency N, spherulite size r, crystal volume V, resin parameters C3, C4, Gc, and Nc can be obtained. . Known values are used for the crystal part density ρc, the amorphous part density ρl, the melting point Tm, the glass transition point Tg, and the WLF constants C1 and C2.

また、粘度カーブフィッティング式を新たに考案した。即ち、第1の硬化反応による粘度の変化中または変化後に第2の硬化反応が生じるので、第1の硬化反応による粘度変化式2−1で求められる粘度に第2の硬化反応が加わるように式を考案した。数4にその式を示す。   In addition, a new viscosity curve fitting formula has been devised. That is, since the second curing reaction occurs during or after the change of the viscosity due to the first curing reaction, the second curing reaction is added to the viscosity obtained by the viscosity change formula 2-1 by the first curing reaction. Devised a formula. Equation 4 shows the equation.

Figure 2016087975
Figure 2016087975

数4においてηpc:樹脂の重合と結晶化による粘度、ηp:樹脂の重合による粘度、Xcmax:最大結晶化度、Xc:結晶化度、t:時間、E4,F2は樹脂の反応粘度パラメータである。   In Equation 4, ηpc: viscosity due to resin polymerization and crystallization, ηp: viscosity due to resin polymerization, Xcmax: maximum crystallinity, Xc: crystallinity, t: time, E4, F2 are reaction viscosity parameters of the resin .

S108においては、分離した第1発熱カーブbと数2の式2−3を用いて算出された硬化度α(t)と、第2発熱カーブcと数3の式3−1を用いて算出された結晶化度Xc(t)から数4の式4−1(所定の式(1a))を用いて樹脂20の重合と結晶化による粘度ηpc(t)を算出する。式4−1は、概括すると、重合により硬化した樹脂20の粘度ηp(t)に算出された結晶化度Xcに関連した値を乗じることで、結晶化により硬化した樹脂20の重合と結晶化による粘度ηpc(t)を算出するように構成される。   In S108, the degree of cure α (t) calculated using the separated first heat generation curve b and Equation 2-3, and the second heat generation curve c and Equation 3-1, which are calculated, are used. The viscosity ηpc (t) due to polymerization and crystallization of the resin 20 is calculated from the obtained crystallinity Xc (t) using Equation 4-1 (predetermined equation (1a)) of Equation 4. In general, Equation 4-1 can be obtained by multiplying the viscosity ηp (t) of the resin 20 cured by polymerization by a value related to the calculated crystallinity Xc, thereby polymerizing and crystallizing the resin 20 cured by crystallization. It is comprised so that the viscosity (eta) pc (t) by may be calculated.

図9に第2実施例による粘度カーブフィッティング結果を示す。図9において、図7と同様、実線が測定値を、破線が第1発熱カーブbから算出されたフィッティング値ηp(t)を、一点鎖線が第1発熱カーブbと第2発熱カーブcから算出されたフィッティング値ηpc(t)を示す。   FIG. 9 shows the result of viscosity curve fitting according to the second embodiment. In FIG. 9, as in FIG. 7, the solid line represents the measured value, the broken line represents the fitting value ηp (t) calculated from the first heat generation curve b, and the alternate long and short dash line represents the first heat generation curve b and the second heat generation curve c. The fitted value ηpc (t) is shown.

第1実施例に比し、第2実施例の場合は温度が比較的高温の140℃まで昇温されるので、第2の硬化反応である結晶化も進行しているため、第1の硬化反応のみによるフィッティング値ηp(t)は経時的に測定値と乖離するが、第1の硬化反応と第2の硬化反応によるフィッティング値ηpc(t)が測定値と良く一致することを確認することができた。   Compared to the first embodiment, in the case of the second embodiment, since the temperature is raised to a relatively high temperature of 140 ° C., the crystallization, which is the second curing reaction, is also progressing. Although the fitting value ηp (t) due to the reaction alone deviates from the measured value over time, it should be confirmed that the fitting value ηpc (t) due to the first curing reaction and the second curing reaction is in good agreement with the measured value. I was able to.

次いでS110に進み、算出された樹脂の重合と結晶化による粘度ηpc(t)を開発支援装置12に入力し、コンピュータによるシミュレーションを通じて金型キャビティ14c内の樹脂流動挙動を解析する。   Next, in S110, the calculated viscosity ηpc (t) due to polymerization and crystallization of the resin is input to the development support apparatus 12, and the resin flow behavior in the mold cavity 14c is analyzed through a computer simulation.

第2実施例は上記の如く構成したので、2種類以上の硬化反応を生じる樹脂20の粘度変化を一層適切に算出することができ、流動解析側において金型キャビティ14cでの樹脂の流動挙動を精度良く把握して適切な成形条件、金型キャビティ形状、注入口数とその配置等を見出すことができる。   Since the second embodiment is configured as described above, the viscosity change of the resin 20 that causes two or more types of curing reactions can be calculated more appropriately, and the flow behavior of the resin in the mold cavity 14c can be calculated on the flow analysis side. By grasping with high accuracy, it is possible to find appropriate molding conditions, mold cavity shape, number of injection ports and their arrangement, and the like.

上記した如く、この発明の第1、第2実施例にあっては、複数の反応が生じる樹脂原料成分を含む樹脂20を金型キャビティ14cに注入して成形するときの挙動をコンピュータによるシミュレーションを介して解析する開発支援装置12用の樹脂粘度算出機能を有する流動解析装置10において、前記金型キャビティ14cに注入されるべき樹脂20の示差走査熱量を測定して昇温開始からm秒後の重合による硬化反応を示す第1発熱カーブbと、n(n>m)秒後の結晶化による硬化反応を示す第2発熱カーブcとで合成される合成発熱カーブaを測定する合成発熱カーブ測定手段(DSC分析器22,S10,S100)と、前記測定された合成発熱カーブaを前記第1発熱カーブbと第2発熱カーブcとに分離する第1、第2発熱カーブ分離手段(S12,S102)と、前記分離された第1発熱カーブbに基づいて前記樹脂20の硬化度α(t)を算出する硬化度算出手段(S12,S102)と、前記樹脂20の初期粘度ηtp(t)に前記算出された硬化度αに関連した値を乗じて、より具体的には所定の式(1)に基づき、前記樹脂20の重合による粘度ηp(t)を算出する粘度算出手段(S16,S106)と、前記算出された樹脂の重合による粘度ηp(t)を前記開発支援装置12に入力する入力手段(S18,S110)とを備える如く構成したので、複数の硬化反応を生じる樹脂の粘度変化を適切に算出することができ、流動解析側において金型キャビティでの樹脂の流動挙動を精度良く把握して適切な成形条件、金型キャビティ形状、注入口数とその配置等を見出すことができる。   As described above, in the first and second embodiments of the present invention, a computer simulation of the behavior when the resin 20 containing a resin raw material component that causes a plurality of reactions is injected into the mold cavity 14c and molded. In the flow analysis apparatus 10 having a resin viscosity calculation function for the development support apparatus 12 to be analyzed through, the differential scanning calorific value of the resin 20 to be injected into the mold cavity 14c is measured, and m seconds after the start of temperature increase. Synthetic exothermic curve measurement for measuring a synthetic exothermic curve a synthesized from a first exothermic curve b showing a curing reaction by polymerization and a second exothermic curve c showing a curing reaction by crystallization after n (n> m) seconds. Means (DSC analyzers 22, S10, S100) and first and second heat generation curves for separating the measured combined heat generation curve a into the first heat generation curve b and the second heat generation curve c. Separation means (S12, S102), a degree of cure calculation means (S12, S102) for calculating the degree of cure α (t) of the resin 20 based on the separated first heat generation curve b, The initial viscosity ηtp (t) is multiplied by a value related to the calculated degree of cure α, and more specifically, the viscosity ηp (t) due to polymerization of the resin 20 is calculated based on a predetermined formula (1). Since it is configured to include a viscosity calculating means (S16, S106) and an input means (S18, S110) for inputting the calculated viscosity ηp (t) due to polymerization of the resin to the development support apparatus 12, a plurality of curings are provided. The viscosity change of the resin causing the reaction can be calculated appropriately, the flow analysis side accurately grasps the flow behavior of the resin in the mold cavity, and appropriate molding conditions, mold cavity shape, number of injection ports and their arrangement Etc. Can be found.

また、前記第1、第2発熱カーブ分離手段(S12,S102)は、前記樹脂20の示差走査熱量を測定して昇温開始からo(o>n)秒後の結晶融解による吸熱カーブdを測定し、前記測定された吸熱カーブdに基づいて前記第2発熱カーブcを分離すると共に、前記合成発熱カーブaから前記分離された第2発熱カーブcを差し引くことで前記第1発熱カーブbを分離する如く構成したので、上記した効果に加え、第1、第2発熱カーブb,cを容易に分離(あるいは算出)することができる。   The first and second exothermic curve separating means (S12, S102) measure the differential scanning calorific value of the resin 20 to obtain an endothermic curve d due to crystal melting after o (o> n) seconds from the start of temperature rise. Measuring and separating the second heat generation curve c based on the measured heat absorption curve d, and subtracting the separated second heat generation curve c from the combined heat generation curve a to obtain the first heat generation curve b. Since it is configured to be separated, the first and second heat generation curves b and c can be easily separated (or calculated) in addition to the effects described above.

また、前記第1、第2発熱カーブ分離手段(S12,S102)は、前記樹脂20の示差走査熱量の測定において、前記合成発熱カーブaまで昇温させた後に、一旦冷却させてから、再度昇温して前記吸熱カーブdまで測定する如く構成したので、上記した効果に加え、重合、結晶化による発熱カーブの測定と、結晶融解による吸熱カーブの測定とを別々に行うことも可能となり、試験の自由度を高めることができる。   Further, the first and second exothermic curve separating means (S12, S102), in the measurement of the differential scanning calorific value of the resin 20, after raising the temperature to the synthetic exothermic curve a, once cooling it and then increasing again. In addition to the effects described above, it is possible to separately measure the exothermic curve due to polymerization and crystallization and the endothermic curve due to crystal melting in addition to the above effect. Can increase the degree of freedom.

また、前記粘度算出手段(S16,S106)は、前記分離された第2発熱カーブcに基づいて前記樹脂20の結晶化度Xc(t)を算出し、前記硬化度α(t)から算出された樹脂20の重合による粘度ηp(t)に前記算出された結晶化度Xcに関連した値を乗じて、より具体的には所定の式(1a)に基づき、前記樹脂20の重合と結晶化による粘度ηpc(t)を算出すると共に、前記入力手段(S18,S110)は、前記算出された樹脂の重合と結晶化による粘度ηpc(t)を前記開発支援装置12に入力する如く構成したので、複数の硬化反応を生じる樹脂の粘度変化を一層適切に算出することができ、流動解析側において金型キャビティでの樹脂の流動挙動を精度良く把握して一層適切な成形条件、金型キャビティ形状、注入口数とその配置等を見出すことができる。   The viscosity calculating means (S16, S106) calculates the crystallinity Xc (t) of the resin 20 based on the separated second heat generation curve c, and is calculated from the degree of curing α (t). Multiplication of the resin 20 by the viscosity ηp (t) by a value related to the calculated crystallinity Xc, more specifically, the polymerization and crystallization of the resin 20 based on a predetermined formula (1a). And the input means (S18, S110) are configured to input the calculated viscosity ηpc (t) due to polymerization and crystallization of the resin to the development support device 12. It is possible to calculate more appropriately the viscosity change of the resin that causes multiple curing reactions, and accurately understand the flow behavior of the resin in the mold cavity on the flow analysis side, more appropriate molding conditions, mold cavity shape The number of inlets and It can be found the arrangement or the like.

また、前記樹脂20の粘度変化曲線を測定する粘度変化測定手段(レオメータ24,S14,S104)と、前記測定された粘度変化曲線に基づいて前記式(1)の複数のパラメータを変更して前記算出された樹脂の重合による粘度ηp(t)のフィッティング精度が向上するように補正する粘度補正手段(S16,S106)を備えると共に、前記入力手段(S18,S110)は前記補正された樹脂の重合による粘度ηp(t)を前記開発支援装置12に入力する如く構成したので、上記した効果に加え、粘度変化を一層適切に算出することができる。   Further, a viscosity change measuring means (rheometer 24, S14, S104) for measuring a viscosity change curve of the resin 20, and a plurality of parameters of the equation (1) are changed based on the measured viscosity change curve, Viscosity correcting means (S16, S106) for correcting the calculated viscosity ηp (t) due to polymerization of the resin to improve the fitting accuracy is provided, and the input means (S18, S110) is the corrected polymerization of the resin. Since the viscosity ηp (t) is input to the development support apparatus 12, in addition to the effects described above, the viscosity change can be calculated more appropriately.

また、前記樹脂20の粘度変化曲線を測定する粘度変化測定手段(レオメータ24,S104)と、前記測定された粘度変化曲線に基づいて前記式(1a)の複数のパラメータを変更して前記算出された樹脂の重合と結晶化による粘度ηpc(t)のフィッティング精度がさらに向上するように補正する粘度補正手段(S108)を備えると共に、前記入力手段(S110)は前記補正された樹脂の重合と結晶化による粘度ηpc(t)を前記開発支援装置12に入力する如く構成したので、上記した効果に加え、粘度変化を一層適切に算出することができる。   Further, the viscosity change measuring means (rheometer 24, S104) for measuring the viscosity change curve of the resin 20 and the plurality of parameters of the equation (1a) are changed based on the measured viscosity change curve. And a viscosity correction means (S108) for correcting the viscosity ηpc (t) resulting from the polymerization and crystallization of the resin to further improve the fitting accuracy, and the input means (S110) includes the polymerization and crystallization of the corrected resin. Since the configuration is such that the viscosity ηpc (t) resulting from the conversion is input to the development support device 12, in addition to the effects described above, the viscosity change can be calculated more appropriately.

また、前記第1、第2発熱カーブ分離手段(S12,S102)は、前記分離された第1発熱カーブbと第2発熱カーブcとを再び合成して前記合成発熱カーブaと一致するか否か検証する検証手段(S12,S102)を備える如く構成したので、上記した効果に加え、粘度変化を一層適切に算出することができる。   Further, the first and second heat generation curve separating means (S12, S102) again synthesize the separated first heat generation curve b and the second heat generation curve c to determine whether or not they match the combined heat generation curve a. In addition to the effects described above, the viscosity change can be calculated more appropriately because the verification means (S12, S102) is provided.

尚、上記実施例では、ε-カプロラクタムの重合によるナイロン6の合成とその結晶化を例に挙げ、重合と結晶化の二つの硬化反応による発熱カーブの分離を行ったが、対応する吸熱カーブが独立して測定可能な場合には、同様の分離(算出)方法を用いて、三つ以上の発熱反応による合成発熱カーブを分離することもできる。   In the above examples, synthesis of nylon 6 by polymerization of ε-caprolactam and crystallization thereof were taken as examples, and exothermic curves were separated by two curing reactions of polymerization and crystallization. When measurement is possible independently, a synthetic exothermic curve resulting from three or more exothermic reactions can be separated using the same separation (calculation) method.

また、合成吸熱カーブを独立した発熱カーブを利用して分離する場合も同様である。原料や生じる化学反応がこれらに限られないことは、いうまでもない。装置構成も開示したものに限られるものではない。   The same applies to the case where the combined endothermic curve is separated using an independent heat generation curve. It goes without saying that the raw materials and chemical reactions that occur are not limited to these. The apparatus configuration is not limited to the disclosed one.

10 粘度算出機能を有する流動解析装置、12 開発支援装置(コンピュータ)、12a ディスプレイ、12b 入力手段、14 金型、14a 上型、14b 下型、14c キャビティ、14d 注入機、20 樹脂、22 DSC分析器、24 レオメータ   10 Flow Analysis Device with Viscosity Calculation Function, 12 Development Support Device (Computer), 12a Display, 12b Input Means, 14 Mold, 14a Upper Mold, 14b Lower Mold, 14c Cavity, 14d Injection Machine, 20 Resin, 22 DSC Analysis 24 rheometer

Claims (7)

複数の反応が生じる樹脂原料成分を含む樹脂を金型キャビティに注入して成形するときの挙動をコンピュータによるシミュレーションを介して解析する開発支援装置用の樹脂粘度算出機能を有する流動解析装置において、前記金型キャビティに注入されるべき樹脂の示差走査熱量を測定して昇温開始からm秒後の重合による硬化反応を示す第1発熱カーブと、n(n>m)秒後の結晶化による硬化反応を示す第2発熱カーブとで合成される合成発熱カーブを測定する合成発熱カーブ測定手段と、前記測定された合成発熱カーブを前記第1発熱カーブと第2発熱カーブとに分離する第1、第2発熱カーブ分離手段と、前記分離された第1発熱カーブに基づいて前記樹脂の硬化度αを算出する硬化度算出手段と、前記樹脂の初期粘度に前記算出された硬化度αに関連した値を乗じて前記樹脂の重合による粘度ηpを算出する粘度算出手段と、前記算出された樹脂の重合による粘度ηpを前記開発支援装置に入力する入力手段とを備えたことを特徴とする樹脂粘度算出機能を有する流動解析装置。   In the flow analysis apparatus having a resin viscosity calculation function for a development support apparatus that analyzes a behavior when injecting a resin containing a resin raw material component in which a plurality of reactions occur into a mold cavity through a computer simulation, A first exothermic curve showing a curing reaction by polymerization after m seconds from the start of temperature rise by measuring the differential scanning calorie of the resin to be injected into the mold cavity, and curing by crystallization after n (n> m) seconds A synthetic exothermic curve measuring means for measuring a synthetic exothermic curve synthesized with a second exothermic curve indicating a reaction; and a first for separating the measured synthetic exothermic curve into the first exothermic curve and the second exothermic curve. A second exothermic curve separating means; a curing degree calculating means for calculating the degree of curing α of the resin based on the separated first exothermic curve; and the calculated initial viscosity of the resin. Viscosity calculating means for calculating the viscosity ηp due to polymerization of the resin by multiplying a value related to the degree of cure α, and input means for inputting the calculated viscosity ηp due to polymerization of the resin to the development support device A flow analysis apparatus having a resin viscosity calculation function. 前記第1、第2発熱カーブ分離手段は、前記樹脂の示差走査熱量を測定して昇温開始からo(o>n)秒後の結晶融解による吸熱カーブを測定し、前記測定された吸熱カーブに基づいて前記第2発熱カーブを分離すると共に、前記合成発熱カーブから前記分離された第2発熱カーブを差し引くことで前記第1発熱カーブを分離することを特徴とする請求項1記載の樹脂粘度算出機能を有する流動解析装置。   The first and second exothermic curve separating means measure a differential scanning calorie of the resin, measure an endothermic curve due to crystal melting after o (o> n) seconds from the start of temperature rise, and measure the endothermic curve. The resin viscosity according to claim 1, wherein the second heat generation curve is separated based on the first heat generation curve, and the first heat generation curve is separated by subtracting the separated second heat generation curve from the combined heat generation curve. Flow analysis device with calculation function. 前記第1、第2発熱カーブ分離手段は、前記樹脂の示差走査熱量の測定において、前記合成発熱カーブまで昇温させた後に、一旦冷却させてから、再度昇温して前記吸熱カーブまで測定することを特徴とする請求項2記載の樹脂粘度算出機能を有する流動解析装置。   The first and second exothermic curve separating means, in measuring the differential scanning calorific value of the resin, after raising the temperature to the combined exothermic curve, once cooling, then raising the temperature again and measuring to the endothermic curve The flow analysis apparatus having a resin viscosity calculation function according to claim 2. 前記粘度算出手段は、前記分離された第2発熱カーブに基づいて前記樹脂の結晶化度Xcを算出し、前記硬化度αから算出された樹脂の重合による粘度ηpに前記算出された結晶化度Xcに関連した値を乗じて前記樹脂の重合と結晶化による粘度ηpcを算出すると共に、前記入力手段は、前記算出された樹脂の重合と結晶化による粘度ηpcを前記開発支援装置に入力することを特徴とする請求項2または3記載の樹脂粘度算出機能を有する流動解析装置。   The viscosity calculating means calculates a crystallinity degree Xc of the resin based on the separated second exothermic curve, and calculates the crystallinity degree calculated from the resin polymerization viscosity ηp calculated from the curing degree α. The viscosity ηpc due to polymerization and crystallization of the resin is calculated by multiplying the value related to Xc, and the input means inputs the calculated viscosity ηpc due to polymerization and crystallization of the resin to the development support device. A flow analysis apparatus having a resin viscosity calculation function according to claim 2 or 3. 前記樹脂の粘度変化曲線を測定する粘度変化測定手段と、前記測定された粘度変化曲線に基づいて前記式(1)の複数のパラメータを変更して前記算出された樹脂の重合による粘度ηpを補正する粘度補正手段を備えると共に、前記入力手段は前記補正された樹脂の重合による粘度ηpを前記開発支援装置に入力することを特徴とする請求項1から3のいずれかに記載の樹脂粘度算出機能を有する流動解析装置。   Viscosity change measuring means for measuring the viscosity change curve of the resin, and correcting the calculated viscosity ηp due to polymerization of the resin by changing a plurality of parameters of the formula (1) based on the measured viscosity change curve 4. The resin viscosity calculation function according to claim 1, further comprising: a viscosity correction unit configured to input the viscosity ηp due to polymerization of the corrected resin to the development support device. A flow analysis apparatus. 前記樹脂の粘度変化曲線を測定する粘度変化測定手段と、前記測定された粘度変化曲線に基づいて前記式(1a)の複数のパラメータを変更して前記算出された樹脂の重合と結晶化による粘度ηpcを補正する粘度補正手段を備えると共に、前記入力手段は前記補正された樹脂の重合と結晶化による粘度ηpcを前記開発支援装置に入力することを特徴とする請求項4記載の樹脂粘度算出機能を有する流動解析装置。   Viscosity change measuring means for measuring the viscosity change curve of the resin, and changing the plurality of parameters of the formula (1a) based on the measured viscosity change curve, the calculated viscosity due to polymerization and crystallization of the resin 5. The resin viscosity calculating function according to claim 4, further comprising a viscosity correcting means for correcting ηpc, wherein the input means inputs the corrected viscosity ηpc due to polymerization and crystallization of the resin to the development support apparatus. A flow analysis apparatus. 前記第1、第2発熱カーブ分離手段は、前記分離された第1発熱カーブと第2発熱カーブとを再び合成して前記合成発熱カーブと一致するか否か検証する検証手段を備えることを特徴とする請求項1から6のいずれかに記載の樹脂粘度算出機能を有する流動解析装置。
The first and second heat generation curve separating means includes verification means for recombining the separated first heat generation curve and the second heat generation curve to verify whether or not they match the combined heat generation curve. A flow analysis apparatus having a resin viscosity calculation function according to any one of claims 1 to 6.
JP2014226684A 2014-11-07 2014-11-07 Flow analysis device with resin viscosity calculation function Expired - Fee Related JP6259752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226684A JP6259752B2 (en) 2014-11-07 2014-11-07 Flow analysis device with resin viscosity calculation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226684A JP6259752B2 (en) 2014-11-07 2014-11-07 Flow analysis device with resin viscosity calculation function

Publications (2)

Publication Number Publication Date
JP2016087975A true JP2016087975A (en) 2016-05-23
JP6259752B2 JP6259752B2 (en) 2018-01-10

Family

ID=56016020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226684A Expired - Fee Related JP6259752B2 (en) 2014-11-07 2014-11-07 Flow analysis device with resin viscosity calculation function

Country Status (1)

Country Link
JP (1) JP6259752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135443A1 (en) * 2017-01-17 2018-07-26 日精樹脂工業株式会社 Method for estimating molding conditions of injection molding machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174590A (en) * 1995-12-26 1997-07-08 Nitto Denko Corp Apparatus and method for estimating viscosity of thermosetting resin and memory medium for thermosetting resin viscosity estimating method
JP2004058453A (en) * 2002-07-29 2004-02-26 Hitachi Ltd Design assisting apparatus and method for resin molded product
US20080234989A1 (en) * 2007-03-22 2008-09-25 Junichi Saeki Design support system, support method and support program of resin molded article
WO2012002340A1 (en) * 2010-07-01 2012-01-05 三菱重工業株式会社 Method for producing molded body
JP2014173063A (en) * 2013-03-12 2014-09-22 Kyocera Chemical Corp Method for producing electric/electronic component and electric/electronic component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174590A (en) * 1995-12-26 1997-07-08 Nitto Denko Corp Apparatus and method for estimating viscosity of thermosetting resin and memory medium for thermosetting resin viscosity estimating method
JP2004058453A (en) * 2002-07-29 2004-02-26 Hitachi Ltd Design assisting apparatus and method for resin molded product
US20040093104A1 (en) * 2002-07-29 2004-05-13 Osami Kaneto Design support apparatus and method for supporting design of resin mold product
US20080234989A1 (en) * 2007-03-22 2008-09-25 Junichi Saeki Design support system, support method and support program of resin molded article
JP2008230089A (en) * 2007-03-22 2008-10-02 Hitachi Ltd Design supporting device for resin molding, supporting method and supporting program
WO2012002340A1 (en) * 2010-07-01 2012-01-05 三菱重工業株式会社 Method for producing molded body
JP2012011694A (en) * 2010-07-01 2012-01-19 Mitsubishi Heavy Ind Ltd Molding manufacturing method
JP2014173063A (en) * 2013-03-12 2014-09-22 Kyocera Chemical Corp Method for producing electric/electronic component and electric/electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135443A1 (en) * 2017-01-17 2018-07-26 日精樹脂工業株式会社 Method for estimating molding conditions of injection molding machine

Also Published As

Publication number Publication date
JP6259752B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
Xinhua et al. An investigation on distortion of PLA thin-plate part in the FDM process
US8095348B2 (en) Support system, support method and support program of resin molded article
CN103218471B (en) For the method for the multiphase flow for simulating plastic material and gas
Azaman et al. Optimization and numerical simulation analysis for molded thin‐walled parts fabricated using wood‐filled polypropylene composites via plastic injection molding
KR102109907B1 (en) Method and apparatus for simulating plastic material flowing through extruding channel
JP6259752B2 (en) Flow analysis device with resin viscosity calculation function
CN101479730B (en) Method for analyzing warp of board or electronic component, system for analyzing warp of board or electronic component and program for analyzing warp of board or electronic component
Białasz et al. Simulation of the medical syringe injection moulding process
Moghimi Rad et al. Numerical Simulation of HTPB Resin Curing Process Using OpenFOAM and Study the Effect of Different Conditions on its Curing Time
Zhang et al. Rubber curing process simulation based on parabola model
JP2019181801A (en) Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program
JP6042249B2 (en) Computer-aided mold design equipment
Marhöfer et al. Validation of precision powder injection molding process simulations using a spiral test geometry
Kasza et al. Method to describe curing in large epoxy samples
US20180267011A1 (en) Method of predicting deformation of resin molded article
Ding et al. Sensitivity analysis on resin transfer molding processes with edge effect and curing reaction characteristics
JP2012131220A (en) Strength analysis device, and strength analysis program
JP7009251B2 (en) Deformation prediction method for resin molded products
JP5899004B2 (en) Molded product warpage deformation prediction device, molded product warpage deformation prediction method, and molded product warpage deformation prediction program
WO2023238492A1 (en) System, supercritical injection molding assistance method, and program
JPH08230008A (en) Method and device for estimating warping deformation of injection molded article
JP2006213015A (en) Flow-analyzing apparatus and method for polymer liquid crystal in mold, and flow-analyzing program of polymer liquid crystal in mold
JP6029559B2 (en) Computer-aided mold design equipment
JP2004001248A (en) Injection molding process simulation method
US11060962B2 (en) Flow analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees