JP2016087565A - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method Download PDF

Info

Publication number
JP2016087565A
JP2016087565A JP2014226705A JP2014226705A JP2016087565A JP 2016087565 A JP2016087565 A JP 2016087565A JP 2014226705 A JP2014226705 A JP 2014226705A JP 2014226705 A JP2014226705 A JP 2014226705A JP 2016087565 A JP2016087565 A JP 2016087565A
Authority
JP
Japan
Prior art keywords
exhaust gas
flue
waste heat
heat boiler
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014226705A
Other languages
Japanese (ja)
Other versions
JP6367086B2 (en
Inventor
望月 美彦
Yoshihiko Mochizuki
美彦 望月
稔 山崎
Minoru Yamazaki
稔 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Environmental Solutions Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Environmental Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Environmental Solutions Ltd filed Critical Mitsubishi Hitachi Power Systems Environmental Solutions Ltd
Priority to JP2014226705A priority Critical patent/JP6367086B2/en
Publication of JP2016087565A publication Critical patent/JP2016087565A/en
Application granted granted Critical
Publication of JP6367086B2 publication Critical patent/JP6367086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treatment method capable of preventing dust discharged from a melting furnace and containing a Na compound from adhering to a water pipe of a waste heat boiler and from solidifying.SOLUTION: An exhaust gas treatment method of the present invention is an exhaust gas treatment method for an exhaust gas treatment facility comprising a waste heat boiler 30 provided in a gas duct 20 for exhaust gas containing a Na compound in dust discharged from a melting furnace 12, comprises supplying powder containing an alkaline component into the gas duct 20 before the exhaust gas is introduced into the waste heat boiler 30 so as to prevent sodium hydrogensulfate from solidifying on a water pipe 32 of the waste heat boiler 30.SELECTED DRAWING: Figure 1

Description

本発明は、溶解炉から排出されるダスト中にNa化合物を含む排ガスの煙道中に、排ガスの廃熱で蒸気を発生させる廃熱ボイラを備えた排ガス処理設備の排ガス処理方法に関する。   The present invention relates to an exhaust gas treatment method for an exhaust gas treatment facility equipped with a waste heat boiler that generates steam with waste heat of exhaust gas in a flue of exhaust gas containing Na compound in dust discharged from a melting furnace.

図3は溶解炉から排出される排ガスの処理設備の説明図である。
図示のように溶解炉の排ガス処理設備10は、溶解炉12から発生した排ガスの煙道20に、排ガスの流れ方向の上流から下流に向けて廃熱ボイラ30と、バグフィルタ40と、ファン50が配置されている。
溶解炉12は、例えばガラス溶解炉の場合、炉内に供給されたケイ砂、NaSOなどのガラス原料を燃焼バーナーにより1000℃以上で溶解している。そして後段の成形機でガラスびん、照明などのガラス製品を成形している。
FIG. 3 is an explanatory diagram of a treatment facility for exhaust gas discharged from a melting furnace.
As shown in the figure, an exhaust gas treatment facility 10 for a melting furnace is provided with a waste heat boiler 30, a bag filter 40, and a fan 50 in the flue 20 of the exhaust gas generated from the melting furnace 12 from upstream to downstream in the flow direction of the exhaust gas. Is arranged.
In the melting furnace 12, for example, in the case of a glass melting furnace, glass raw materials such as silica sand and Na 2 SO 4 supplied into the furnace are melted at 1000 ° C. or more by a combustion burner. And glass products, such as a glass bottle and illumination, are shape | molded by the latter shaping | molding machine.

廃熱ボイラ30は、溶解炉12から排出される排ガスの煙道20中に設置されている。廃熱ボイラ30は、水管と、ポンプを主な基本構成としている。水管は、煙道20を流れる排ガスの流れ方向と直交する方向に所定の間隔を開けて複数配置し、ポンプにより管内に水を供給している。このような構成の廃熱ボイラ30は、煙道20を流れる排ガスによって水管の管内を流れる水を加熱して蒸気を発生させている。発生した蒸気は、例えば、水管の管表面に付着したダストを洗浄するスートブローに利用している。   The waste heat boiler 30 is installed in the flue 20 of the exhaust gas discharged from the melting furnace 12. The waste heat boiler 30 is mainly composed of a water pipe and a pump. A plurality of water pipes are arranged at predetermined intervals in a direction orthogonal to the flow direction of the exhaust gas flowing through the flue 20, and water is supplied into the pipes by a pump. The waste heat boiler 30 having such a configuration heats the water flowing in the pipe of the water pipe by the exhaust gas flowing through the flue 20 to generate steam. The generated steam is used for, for example, soot blowing for cleaning dust adhering to the surface of the water pipe.

バグフィルタ40は、排ガス中に含まれるばい塵(原料飛散物)などを捕集する集塵装置である。
ファン50は、煙道20の下流で溶解炉12から発生した排ガスを吸引して外部へ排出している。
排ガス中には、SO(硫黄酸化物)、NO(窒素酸化物)、PM(微粒子状物質)などの大気汚染物質が含まれているため、従来、脱硫装置、脱硝装置を設けた排ガス処理設備がある。
The bag filter 40 is a dust collector that collects dust (raw material scattered matter) contained in the exhaust gas.
The fan 50 sucks the exhaust gas generated from the melting furnace 12 downstream of the flue 20 and discharges it to the outside.
Since exhaust gas contains air pollutants such as SO X (sulfur oxide), NO X (nitrogen oxide), PM (particulate matter), etc., exhaust gas that has been provided with desulfurization equipment and denitration equipment in the past There are treatment facilities.

特許文献1に開示の排ガス処理設備は、ガスタービンから排出された排ガス中に含まれる硫黄酸化物を除去するために、廃熱回収ボイラが設置されている領域にアルカリ粉体を供給するアルカリ粉体供給手段を設けている。そして、廃熱回収ボイラの下流側に設けた脱硫装置で硫黄酸化物を好適に除去して装置の耐久性を高くしている。   The exhaust gas treatment facility disclosed in Patent Document 1 is an alkaline powder that supplies alkaline powder to a region where a waste heat recovery boiler is installed in order to remove sulfur oxides contained in exhaust gas discharged from a gas turbine. Body supply means is provided. And the sulfur oxide is removed suitably with the desulfurization apparatus provided in the downstream of the waste heat recovery boiler, and the durability of an apparatus is made high.

特許文献2に開示のガラス溶解炉排ガス処理方法は、ガラス溶解炉で発生した排ガスを200℃〜300℃の温度に冷却し、排ガス中の硫黄酸化物をアルカリ中和剤と搬送させて硫酸塩化合物を生成させている。硫酸塩化合物は電気集塵装置で除去している。   In the glass melting furnace exhaust gas treatment method disclosed in Patent Document 2, the exhaust gas generated in the glass melting furnace is cooled to a temperature of 200 ° C. to 300 ° C., and the sulfur oxide in the exhaust gas is conveyed with an alkali neutralizer to sulfate. A compound is generated. Sulfate compounds are removed with an electrostatic precipitator.

特開2014−128775号公報JP 2014-128775 A 特開2006−75764号公報JP 2006-75764 A

前述のガラス溶解炉に供給されるガラス原料中には、ガラス製品の用途に応じて種々の金属物質が含まれている。このためガラス溶解炉から排出される排ガスのダスト中の成分は、一般の燃焼炉から発生する排ガスのダスト中に含まれる成分と異なり、一例として、Na(ナトリウム):30wt%、S(硫黄):40wt%、K(カリウム):10wt%、Cr(クロム):10wt%、その他10wt%のような、Na化合物を多く含有するものがある。   In the glass raw material supplied to the glass melting furnace described above, various metal substances are contained depending on the use of the glass product. For this reason, the component in the dust of the exhaust gas discharged from the glass melting furnace is different from the component contained in the dust of the exhaust gas generated from a general combustion furnace. As an example, Na (sodium): 30 wt%, S (sulfur) : 40 wt%, K (potassium): 10 wt%, Cr (chromium): 10 wt%, and others containing a large amount of Na compound.

本出願人が溶解炉から発生したNa化合物を多く含有するダストと硫黄酸化物を含有する排ガスの排ガス処理の実験装置を稼働した際に、煙道中に設けた廃熱ボイラの水管にダストが付着し固結する現象が確認された。固結したダストは、スートブローによる洗浄で落とすことができなかった。このダストを採取して成分を調べたところ、NaHSO、NaH(SO、NaSO等を含んでいることが判明した。 When the applicant operates an exhaust gas treatment experimental device for exhaust gas containing a large amount of Na compounds and sulfur oxides generated from a melting furnace, dust adheres to the water pipe of a waste heat boiler provided in the flue The phenomenon of caking was confirmed. The consolidated dust could not be removed by washing with soot blow. When this dust was collected and components were examined, it was found that it contained NaHSO 4 , Na 3 H (SO 4 ) 2 , Na 2 SO 4, and the like.

ダストが廃熱ボイラの水管などに付着して堆積すると煙道を閉塞してしまい、吸引ファンに過剰な負荷が掛かったり、煙道内が過剰な負圧状態となったりする。この場合、ガラス溶解炉の稼働を停止して、廃熱ボイラの水管などに付着したダストの除去作業を行わなければならない。ガラス溶解炉を停止させると、製造復帰までに時間が掛かり、稼働効率が著しく低下してしまうという問題があった。   If dust adheres to and accumulates on the water pipe of a waste heat boiler, the flue is blocked, and an excessive load is applied to the suction fan or the inside of the flue is in an excessively negative pressure state. In this case, it is necessary to stop the operation of the glass melting furnace and remove dust adhering to the water pipe of the waste heat boiler. When the glass melting furnace is stopped, there is a problem that it takes a long time to return to manufacture and the operating efficiency is remarkably lowered.

特許文献1に開示の排ガス処理設備は、アルカリ粉体供給装置が複数設置された熱交換器間に配置されている。このため、ダスト中にNa化合物を多く含む排ガスを処理する場合、ダストの最も付着量の多い上流側の熱交換器に設けられた水管への付着を防止することができない。
特許文献2に開示のガラス溶解炉排ガス処理方法では、アルカリ中和剤を供給する前にガス冷却装置で排ガス温度を200℃〜300℃に冷却しているため、硫酸水素ナトリウムが溶融して液化し前記ガス冷却装置に付着するおそれがあった。
The exhaust gas treatment facility disclosed in Patent Document 1 is disposed between heat exchangers in which a plurality of alkali powder supply devices are installed. For this reason, when processing the exhaust gas which contains many Na compounds in dust, adhesion to the water pipe provided in the upstream heat exchanger with the most dust adhesion amount cannot be prevented.
In the glass melting furnace exhaust gas treatment method disclosed in Patent Document 2, since the exhaust gas temperature is cooled to 200 ° C. to 300 ° C. by the gas cooling device before supplying the alkali neutralizer, the sodium hydrogen sulfate is melted and liquefied. However, there was a risk of adhering to the gas cooling device.

上記従来技術の問題点に鑑み、本発明は溶解炉から排出されるNa化合物を含むダストが廃熱ボイラの水管に付着して固結することを防止できる排ガス処理方法を提供することを目的としている。   In view of the above-mentioned problems of the conventional technology, the present invention aims to provide an exhaust gas treatment method capable of preventing dust containing Na compound discharged from a melting furnace from adhering to a water pipe of a waste heat boiler and solidifying. Yes.

本発明は、上記の課題を解決するための第1の手段として、溶解炉から排出されるダスト中にNa化合物を含む排ガスの煙道に廃熱ボイラを備えた排ガス処理設備の排ガス処理方法において、前記排ガスが前記廃熱ボイラに導入される前の前記煙道にアルカリ成分を含有する粉体(以下、単に粉体と略すことがある)を供給して、前記廃熱ボイラの水管上での硫酸水素ナトリウムの固結を防止することを特徴とする排ガス処理方法を提供することにある。   As a first means for solving the above-mentioned problems, the present invention provides an exhaust gas treatment method for an exhaust gas treatment facility provided with a waste heat boiler in an exhaust gas flue containing Na compound in dust discharged from a melting furnace. Supplying powder containing alkali components to the flue before the exhaust gas is introduced into the waste heat boiler (hereinafter sometimes simply referred to as powder) on the water pipe of the waste heat boiler Another object of the present invention is to provide an exhaust gas treatment method characterized by preventing caking of sodium hydrogen sulfate.

本発明は、上記の課題を解決するための第2の手段として、前記第1の手段において、前記粉体を前記煙道の外部から内部へ突出させた供給管から供給する際に、前記煙道の内部の前記供給管の管表面を保温していることを特徴とする排ガス処理方法を提供することにある。   The present invention provides, as a second means for solving the above-mentioned problems, in the first means, when the powder is supplied from a supply pipe protruding from the outside to the inside of the flue. An object of the present invention is to provide an exhaust gas treatment method characterized in that the pipe surface of the supply pipe inside the road is kept warm.

上記のような本発明によれば、排ガス中に含まれる硫黄酸化物を除去することにより、廃熱ボイラに硫酸水素ナトリウムのダストが付着して固結し煙道を塞ぐことがなく、溶解炉および排ガス処理設備を長期に亘って安定した運転を行うことができる。   According to the present invention as described above, the sulfur oxide contained in the exhaust gas is removed, so that the sodium hydrogen sulfate dust does not adhere to the waste heat boiler and solidify to block the flue. In addition, the exhaust gas treatment facility can be stably operated over a long period of time.

また、溶解炉と廃熱ボイラの間の煙道中にアルカリ成分を含有する粉体を供給しているので、硫酸水素ナトリウムのダストが最も付着し易い廃熱ボイラの上流側の水管上の付着を効果的に防止できる。   In addition, since powder containing an alkaline component is supplied into the flue between the melting furnace and the waste heat boiler, sodium hydrogen sulfate dust is most likely to adhere to the water pipe on the upstream side of the waste heat boiler. It can be effectively prevented.

また、粉体を供給する供給管の煙道内の管表面を保温しているので、空気輸送で粉体を供給することによって煙道内の供給管の管表面が冷却されて、結露が生じることを防止できる。   In addition, since the surface of the tube in the flue of the supply pipe that supplies the powder is kept warm, supplying the powder by pneumatic transportation cools the tube surface of the supply pipe in the flue and causes condensation. Can be prevented.

本発明の排ガス処理方法の説明図である。It is explanatory drawing of the waste gas processing method of this invention. 煙道の圧力損失比と時間の関係を示すグラフである。It is a graph which shows the relationship between the pressure loss ratio of a flue, and time. 溶解炉から排出される排ガスの処理設備の説明図である。It is explanatory drawing of the processing equipment of the waste gas discharged | emitted from a melting furnace.

本発明の排ガス処理方法の実施形態を添付の図面を参照しながら、以下詳細に説明する。   Embodiments of an exhaust gas treatment method of the present invention will be described below in detail with reference to the accompanying drawings.

[ダスト固結のメカニズム]
溶解炉から排出されるダスト中にNa化合物を含む排ガスのNa化合物としては、例えば、ガラス原料のNaSOが挙げられる。
NaSOは、1000℃以上の溶解炉12で次式のように分解してSOが発生する。

Figure 2016087565

溶解炉で発生した排ガスは、煙道に導入されるとガス温度が約400℃まで低下する。 [Dust consolidation mechanism]
Examples of the Na compound of the exhaust gas containing Na compound in the dust discharged from the melting furnace include glass raw material Na 2 SO 4 .
Na 2 SO 4 is decomposed in the melting furnace 12 at 1000 ° C. or more as shown by the following formula to generate SO 3 .
Figure 2016087565

When the exhaust gas generated in the melting furnace is introduced into the flue, the gas temperature decreases to about 400 ° C.

煙道中に配置した廃熱ボイラの水管には循環水が流れている。煙道中で露出している水管は、排ガスの廃熱によって加熱されて水管の表面温度が約160℃となっている。このため、水管に付着したダスト層には160〜400℃の温度分布が生じている。一方、排ガス中にSOを含む場合、ダストの電気抵抗率が温度約220℃以下でSOのダストの表面への凝縮で大幅に低くなることが知られている。したがって、水管表面に付着したダスト層の温度が約220℃以下の領域のNaSOに、SOが凝縮して排ガス中の水分と次式のように反応し、硫酸水素ナトリウム(NaHSO)が発生する。

Figure 2016087565
Circulating water flows in the water pipe of the waste heat boiler placed in the flue. The water pipe exposed in the flue is heated by the waste heat of the exhaust gas, and the surface temperature of the water pipe is about 160 ° C. For this reason, the temperature distribution of 160-400 degreeC has arisen in the dust layer adhering to the water pipe. On the other hand, when SO 3 is contained in the exhaust gas, it is known that the electrical resistivity of the dust is significantly reduced by condensation of SO 3 on the surface of the dust at a temperature of about 220 ° C. or less. Accordingly, the Na 2 SO 4 a temperature of about 220 ° C. or less of the area of the dust layer deposited on the surface of the water pipe, SO 3 condenses reacts as moisture and the formula in the exhaust gas, sodium bisulfate (NaHSO 4 ) Occurs.
Figure 2016087565

発生した硫酸水素ナトリウムは、融点が180℃〜190℃であるため、水管表面に付着したダスト層内の融点以上の領域のダストが溶融して、バインダーとなってNaSO同士を付着させる。
そして、接触あるいは混合したNaSOと硫酸水素ナトリウムが次式のように反応する。

Figure 2016087565
生成したNaH(SOは融点が約270℃であり、水管表面のダスト層内の温度が約270℃以下の領域で固結したものと推定される。 Since the generated sodium hydrogen sulfate has a melting point of 180 ° C. to 190 ° C., the dust in the region above the melting point in the dust layer adhering to the surface of the water tube is melted to serve as a binder to adhere Na 2 SO 4 to each other. .
Then, the contacted or mixed Na 2 SO 4 and sodium hydrogen sulfate react as shown in the following formula.
Figure 2016087565
The produced Na 3 H (SO 4 ) 2 has a melting point of about 270 ° C., and is presumed to be consolidated in a region where the temperature in the dust layer on the surface of the water tube is about 270 ° C. or less.

[粉体供給手段60]
図1は本発明の排ガス処理方法の説明図である。図示のように、溶解炉12の出口に接続する煙道20中で、廃熱ボイラ30の上流側にアルカリ成分を含有する粉体の粉体供給手段60を取り付けている。
[Powder supply means 60]
FIG. 1 is an explanatory view of the exhaust gas treatment method of the present invention. As shown in the figure, in the flue 20 connected to the outlet of the melting furnace 12, powder supply means 60 for powder containing an alkali component is attached upstream of the waste heat boiler 30.

本実施形態の粉体供給手段60は、供給管62と、ホッパー64と、ブロア66、保温手段68を主な基本構成としている。
供給管62は、煙道20の外部から内部へ向けて(煙道20の断面方向)挿入して、一端を排ガスの流れ方向と平行に配置し、他端を煙道20の外部に配置したブロア66に接続させている。供給管62の一端は、端面を上流側又は下流側に向けることができる。端面を上流側に向けた場合、粉体の供給方向が排ガスの流れ方向に逆らっているため、粉体を拡散させながら供給できる。この他、供給管62は、粉体の排出口を備えた分岐管を一端側に複数等間隔に接続させた構成であってもよい。
The powder supply means 60 of this embodiment has a supply pipe 62, a hopper 64, a blower 66, and a heat retaining means 68 as the main basic configuration.
The supply pipe 62 is inserted from the outside to the inside of the flue 20 (the cross-sectional direction of the flue 20), one end is arranged in parallel with the flow direction of the exhaust gas, and the other end is arranged outside the flue 20. The blower 66 is connected. One end of the supply pipe 62 can have an end face directed upstream or downstream. When the end surface is directed upstream, the powder supply direction is opposite to the flow direction of the exhaust gas, so that the powder can be supplied while being diffused. In addition, the supply pipe 62 may have a configuration in which a plurality of branch pipes provided with powder discharge ports are connected to one end side at equal intervals.

ブロア66と煙道20の間の供給管62にはホッパー64を取り付けている。ホッパー64には粉体が充填されている。本実施形態の供給管62は、保温手段68により煙道20の内部へ挿入した管表面を所定温度に加熱保温している。保温手段68は、煙道20内の供給管62の管表面を覆うように形成されたヒーターである。管表面の温度は、例えば、40℃〜50℃に設定している。このような保温を行うことにより、粉体を煙道20内に供給する際に、空気輸送する粉体によって管壁温度が低下して、煙道20中に露出している管表面の温度が低下して結露が生じることを防止できる。結露が生じると硫酸水素ナトリウムが固結し易いおそれがあるからである。   A hopper 64 is attached to the supply pipe 62 between the blower 66 and the flue 20. The hopper 64 is filled with powder. In the supply pipe 62 of this embodiment, the surface of the pipe inserted into the flue 20 by the heat retaining means 68 is heated and kept at a predetermined temperature. The heat retaining means 68 is a heater formed so as to cover the pipe surface of the supply pipe 62 in the flue 20. The temperature of the tube surface is set to 40 ° C. to 50 ° C., for example. By performing such heat insulation, when the powder is supplied into the flue 20, the temperature of the pipe surface exposed in the flue 20 is reduced due to the temperature of the pipe wall being lowered by the powder that is pneumatically transported. It is possible to prevent condensation from occurring due to a decrease. This is because when hydrogen condensation occurs, sodium hydrogen sulfate may be easily consolidated.

アルカリ成分を含有する粉体としては、酸性の硫黄酸化物を中和できるものであればよく、例えば、Ca(OH)、CaCO、CaO、MgO、Mg(OH)、ナトリウム化合物、バリウム化合物などを適用することができる。本実施形態の粉体は、粒径が100μm以下の粉体を用いている。このような粒径であれば、煙道20中に供給した際、排ガスと容易に混合して、硫黄酸化物との反応を促進させることができる。 The powder containing an alkali component may be any powder that can neutralize acidic sulfur oxides. For example, Ca (OH) 2 , CaCO 3 , CaO, MgO, Mg (OH) 2 , sodium compound, barium Compounds and the like can be applied. As the powder of the present embodiment, a powder having a particle size of 100 μm or less is used. If it is such a particle size, when it supplies in the flue 20, it can mix with waste gas easily and can accelerate | stimulate reaction with a sulfur oxide.

また、粉体は、排ガス中の硫黄酸化物の濃度をあらかじめ測定しておき、この測定値に基づいて所定量を供給している。本実施形態では、排ガス中の硫黄酸化物と粉体のモル比を、1:1〜1:10の範囲に設定し供給している。モル比が1:10よりも多くなると、硫黄酸化物と未反応の過剰な粉体によって後段のバグフィルタの負荷が掛かるおそれがある。例えば、排ガス中の硫黄酸化物の濃度が10ppmで、Ca(OH)を粉体とした場合、硫黄酸化物のモル比を1とした場合の粉体の供給量は、約300g/hに設定することができる。 The powder is measured in advance for the concentration of sulfur oxide in the exhaust gas, and a predetermined amount is supplied based on the measured value. In the present embodiment, the molar ratio of the sulfur oxide and the powder in the exhaust gas is set in the range of 1: 1 to 1:10 and supplied. When the molar ratio is more than 1:10, there is a risk that the load of the subsequent bag filter may be applied by the sulfur oxide and the unreacted excessive powder. For example, when the concentration of sulfur oxide in the exhaust gas is 10 ppm and Ca (OH) 2 is powder, the supply amount of powder when the molar ratio of sulfur oxide is 1 is about 300 g / h. Can be set.

このような構成の粉体供給手段60は、ホッパー64に充填されている粉体をブロア66で供給管62から空気輸送で煙道20へ供給している。
アルカリ成分がCa(OH)の場合には、排ガス中のSOと次のように反応している。

Figure 2016087565
このように煙道内に供給されたアルカリ性の粉体が排ガス中のSOと反応して、SOを除去することができる。 The powder supply means 60 having such a configuration supplies the powder filled in the hopper 64 to the flue 20 by air transportation from the supply pipe 62 by the blower 66.
When the alkali component is Ca (OH) 2 , it reacts with SO 3 in the exhaust gas as follows.
Figure 2016087565
In this way, the alkaline powder supplied into the flue reacts with SO 3 in the exhaust gas to remove SO 3 .

なお、粉体供給手段60の設置箇所は、煙道中の排ガスの風速が5〜6m/sの場合、廃熱ボイラ30の上流側であって、煙道20内に粉体を供給して硫黄酸化物と反応させる時間が少なくとも0.5秒以上確保できればよく、一例として、廃熱ボイラ30から数メートル上流側の煙道20に取り付けている。また、本実施形態の粉体供給手段60は、廃熱ボイラ30の上流側の水管32よりも上流側に設けており、上流側の水管32よりも下流側に設けていない。これは廃熱ボイラ30上で最もダストが付着する箇所が上流側の水管32であり、粉体供給手段60をこれよりも上流側に設置しないと、上流側の水管32のダストの付着を防止できないためである。   In addition, when the wind speed of the exhaust gas in the flue is 5 to 6 m / s, the powder supply means 60 is installed on the upstream side of the waste heat boiler 30 and supplies the powder into the flue 20 to form sulfur. It is sufficient that the time for reacting with the oxide is at least 0.5 seconds or more, and as an example, it is attached to the flue 20 upstream from the waste heat boiler 30 by several meters. Further, the powder supply means 60 of this embodiment is provided on the upstream side of the water pipe 32 on the upstream side of the waste heat boiler 30 and is not provided on the downstream side of the water pipe 32 on the upstream side. In the waste heat boiler 30, the most dust-attached portion is the upstream water pipe 32, and if the powder supply means 60 is not installed on the upstream side, the dust on the upstream water pipe 32 is prevented. This is because it cannot be done.

また、粉体供給手段60は、粉体を煙道20の外部から内部へ供給できる構成であれば良く、上記構成のほかブロアを用いずに煙道の負圧を利用した供給など、その他の構成も適用可能である。   The powder supply means 60 may be configured so that the powder can be supplied from the outside to the inside of the flue 20, and in addition to the above configuration, other uses such as supply using the negative pressure of the flue without using a blower. Configurations are also applicable.

[作用]
上記構成による本発明の排ガス処理方法の作用について以下説明する。
溶解炉12の出口に接続する煙道20中で、廃熱ボイラ30の上流側に設けた粉体供給手段60から粉体を空気輸送で煙道20内へ供給する。
粉体がCa(OH)の場合、排ガス中の硫黄酸化物と反応して硫酸カルシウムとなり、硫黄酸化物の濃度を低減できる。廃熱ボイラ30には、スートブロー70が設けられており、水管32に付着したダストの除去が定期的に行われる。生成した硫酸カルシウムは、煙道中の排ガス温度(約400℃以下)では溶融しないため、後段のバグフィルタ40で捕集できる。そして、廃熱ボイラ30内では硫黄酸化物の濃度が低いので、硫酸水素ナトリウムはほとんど生成していない。このため水管32に硫酸水素ナトリウムが固結することがない。従って、溶解炉12および排ガス処理設備10を長期に亘って安定して運転させることができる。
[Action]
The operation of the exhaust gas treatment method of the present invention having the above configuration will be described below.
In the flue 20 connected to the outlet of the melting furnace 12, powder is supplied into the flue 20 from the powder supply means 60 provided on the upstream side of the waste heat boiler 30 by pneumatic transportation.
When the powder is Ca (OH) 2 , it reacts with sulfur oxide in the exhaust gas to become calcium sulfate, and the concentration of sulfur oxide can be reduced. The waste heat boiler 30 is provided with a soot blow 70, and dust attached to the water pipe 32 is periodically removed. Since the produced calcium sulfate does not melt at the flue gas temperature in the flue (about 400 ° C. or less), it can be collected by the subsequent bag filter 40. And since the density | concentration of a sulfur oxide is low in the waste heat boiler 30, almost no sodium hydrogen sulfate is produced | generated. For this reason, sodium hydrogen sulfate does not solidify in the water pipe 32. Therefore, the melting furnace 12 and the exhaust gas treatment facility 10 can be stably operated over a long period of time.

[実施例]
次に、粉体供給手段60から粉体としてJIS特号消石灰を溶解炉12と廃熱ボイラ30の間の煙道20に噴霧し、廃熱ボイラ30の経時的な圧力損失比の変化を調べた。なお、圧力損失比とは運転初期の廃熱ボイラの圧力損失を1として、その後の廃熱ボイラの圧力損失を比率で表したものである。このとき消石灰の供給量は、排ガスに対して0.1〜1g/m である。
[Example]
Next, JIS special slaked lime is sprayed as powder from the powder supply means 60 onto the flue 20 between the melting furnace 12 and the waste heat boiler 30, and the change in the pressure loss ratio of the waste heat boiler 30 over time is examined. It was. The pressure loss ratio represents the pressure loss of the waste heat boiler at the initial stage of operation as 1 and the pressure loss of the subsequent waste heat boiler as a ratio. At this time, the supply amount of slaked lime is 0.1 to 1 g / m 3 N with respect to the exhaust gas.

図2は煙道の圧力損失比と時間の関係を示すグラフである。同グラフの横軸は試験時間(h)を示し、縦軸は煙道の圧力損失比(−)を示す。またaはアルカリ成分を含む粉体の供給有りの場合を示し、bはアルカリ成分を含む粉体の供給なしの場合を示している。   FIG. 2 is a graph showing the relationship between the pressure loss ratio of the flue and time. The horizontal axis of the graph shows the test time (h), and the vertical axis shows the pressure loss ratio (−) of the flue. Further, a shows the case where the powder containing the alkali component is supplied, and b shows the case where the powder containing the alkali component is not supplied.

図2によれば、bの煙道中に粉体を供給しない場合、時間の経過と共に上昇し、試験時間2000時間前後で圧力損失比が3から4へ著しく上昇している。一方、aの煙道中に粉体を供給した場合、試験時間が4000時間経過後でも圧力損失比が1.5以下であり、圧力損失の経時的な増加を抑制できた。   According to FIG. 2, when no powder is supplied into the flue of b, the pressure rises with time, and the pressure loss ratio rises significantly from 3 to 4 around the test time of 2000 hours. On the other hand, when the powder was supplied into the flue a, the pressure loss ratio was 1.5 or less even after the test time of 4000 hours, and the increase in pressure loss over time could be suppressed.

このような本発明の排ガス処理方法によれば、排ガス中に含まれる硫黄酸化物を除去することにより、廃熱ボイラに硫酸水素ナトリウムのダストが付着して固結し煙道を塞ぐことがなく、溶解炉および排ガス処理設備を長期に亘って安定した運転を行うことができる。   According to the exhaust gas treatment method of the present invention, by removing sulfur oxides contained in the exhaust gas, the sodium hydrogen sulfate dust does not adhere to the waste heat boiler and solidify to block the flue. The melting furnace and the exhaust gas treatment facility can be stably operated over a long period of time.

本発明は、ガラス溶解炉などダスト中にNa化合物を多く含む排ガスの処理分野において、特に有用である。   The present invention is particularly useful in the field of treating exhaust gas containing a large amount of Na compound in dust such as a glass melting furnace.

10………排ガス処理設備、12………溶解炉、20………煙道、30………廃熱ボイラ、32………水管、40………バグフィルタ、50………ファン、60………アルカリ成分を含有する粉末供給手段、62………供給管、64………ホッパー、66………ブロア、70………スートブロー。 10 ......... Exhaust gas treatment equipment, 12 ......... Smelting furnace, 20 ......... Smoke, 30 ......... Waste heat boiler, 32 ......... Water pipe, 40 ...... Bug filter, 50 ...... Fan, 60 ......... powder supply means containing an alkali component, 62 ......... supply pipe, 64 ......... hopper, 66 ......... blower, 70 ... soot blow.

Claims (2)

溶解炉から排出されるダスト中にNa化合物を含む排ガスの煙道に廃熱ボイラを備えた排ガス処理設備の排ガス処理方法において、
前記排ガスが前記廃熱ボイラに導入される前の前記煙道にアルカリ成分を含有する粉体を供給して、前記廃熱ボイラの水管上での硫酸水素ナトリウムの固結を防止することを特徴とする排ガス処理方法。
In the exhaust gas treatment method of an exhaust gas treatment facility equipped with a waste heat boiler in the flue of the exhaust gas containing Na compound in the dust discharged from the melting furnace,
Supplying powder containing an alkali component to the flue before the exhaust gas is introduced into the waste heat boiler to prevent caking of sodium hydrogen sulfate on the water pipe of the waste heat boiler Exhaust gas treatment method.
前記粉体を前記煙道の外部から内部へ突出させた供給管から供給する際に、前記煙道の内部の前記供給管の管表面を保温していることを特徴とする請求項1に記載の排ガス処理方法。   The tube surface of the supply pipe inside the flue is kept warm when the powder is supplied from a supply pipe protruding from the outside to the inside of the flue. Exhaust gas treatment method.
JP2014226705A 2014-11-07 2014-11-07 Exhaust gas treatment method Active JP6367086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226705A JP6367086B2 (en) 2014-11-07 2014-11-07 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226705A JP6367086B2 (en) 2014-11-07 2014-11-07 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2016087565A true JP2016087565A (en) 2016-05-23
JP6367086B2 JP6367086B2 (en) 2018-08-01

Family

ID=56016388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226705A Active JP6367086B2 (en) 2014-11-07 2014-11-07 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP6367086B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289432A (en) * 1989-03-28 1990-11-29 Sorg Gmbh & Co Kg Purification of exhaust gas from melting furnace
JPH06165914A (en) * 1992-11-30 1994-06-14 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas for waste combustion
JP2006105578A (en) * 2004-09-07 2006-04-20 Kurita Water Ind Ltd Treatment method of exhaust gas
JP2008241078A (en) * 2007-03-26 2008-10-09 Kurita Water Ind Ltd Clinker inhibiting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289432A (en) * 1989-03-28 1990-11-29 Sorg Gmbh & Co Kg Purification of exhaust gas from melting furnace
JPH06165914A (en) * 1992-11-30 1994-06-14 Mitsubishi Heavy Ind Ltd Treatment of exhaust gas for waste combustion
JP2006105578A (en) * 2004-09-07 2006-04-20 Kurita Water Ind Ltd Treatment method of exhaust gas
JP2008241078A (en) * 2007-03-26 2008-10-09 Kurita Water Ind Ltd Clinker inhibiting method

Also Published As

Publication number Publication date
JP6367086B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6852958B2 (en) Devices and methods for evaporating wastewater and reducing acidic gas emissions
US9925490B2 (en) Flue gas treatment device
JP7242496B2 (en) Cement kiln dust treatment system and method
EP3238811A1 (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
JP5024735B2 (en) Exhaust gas treatment method
US20140072483A1 (en) Desulfurization device and particulate collection system
TW200810826A (en) Reduced liquid discharge in wet flue gas desulfurization
CN108273370A (en) A kind of combination flue gas takes off white wet type fume sweetening device and its application method
CN104696979B (en) Dry scrubber system with air preheater protection
US9724638B2 (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
CN107551778B (en) Flue gas denitration desulfurization dust removal process method
JP6020305B2 (en) Exhaust gas treatment method
CN209451648U (en) A kind of gas mercury sulphur cooperation-removal device based on dry powder injection
JP2011200781A (en) Exhaust gas treatment apparatus and operation method of exhaust gas treatment apparatus
EP3323496A1 (en) Apparatus and method for reducing acid gas emissions with zero liquid discharge of waste water
JP6367086B2 (en) Exhaust gas treatment method
US20120251423A1 (en) Methods For Reducing The Acidic Gas Content of Effluent Gases
JP6586812B2 (en) Coal-fired power generation facility
JP2009247998A (en) Exhaust gas treatment method
WO2017022582A1 (en) Method for evaluating degradation of denitration catalyst
JP6627311B2 (en) Denitration system degradation control method
JP6428964B1 (en) Denitration catalyst degradation evaluation method
JP2007144253A (en) Dry type apparatus and method for treating exhaust gas
JP2019013893A (en) Exhaust gas treatment method and exhaust gas treatment system
JP6461512B2 (en) Exhaust gas treatment apparatus and treatment method using the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6367086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350