JP2016087497A - 含窒素化合物含有水の処理方法 - Google Patents

含窒素化合物含有水の処理方法 Download PDF

Info

Publication number
JP2016087497A
JP2016087497A JP2014221438A JP2014221438A JP2016087497A JP 2016087497 A JP2016087497 A JP 2016087497A JP 2014221438 A JP2014221438 A JP 2014221438A JP 2014221438 A JP2014221438 A JP 2014221438A JP 2016087497 A JP2016087497 A JP 2016087497A
Authority
JP
Japan
Prior art keywords
nitrogen
ions
water
containing compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014221438A
Other languages
English (en)
Inventor
周次 中西
Shuji Nakanishi
周次 中西
章玄 岡本
Akihiro Okamoto
章玄 岡本
橋本 和仁
Kazuhito Hashimoto
和仁 橋本
創一郎 加藤
Soichiro Kato
創一郎 加藤
シャフェール カラティル
Kalathil Shafeer
シャフェール カラティル
俊男 磯和
Toshio Isowa
俊男 磯和
石間 智生
Tomoo Ishima
智生 石間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquas Corp
University of Tokyo NUC
Original Assignee
Aquas Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquas Corp, University of Tokyo NUC filed Critical Aquas Corp
Priority to JP2014221438A priority Critical patent/JP2016087497A/ja
Publication of JP2016087497A publication Critical patent/JP2016087497A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】曝気処理なしで、水中の含窒素化合物を酸化することが可能な含窒素化合物含有水の処理方法を提供する。【解決手段】含窒素化合物を含有する水が収納された硝化反応槽内に、細胞外電子伝達能を有する微生物と、炭酸イオンおよび/または重炭酸イオンと、電子受容体と、を存在させて前記含窒素化合物中の窒素を硝酸イオンおよび/または亜硝酸イオンに酸化処理する含窒素化合物含有水の処理方法。【選択図】図1

Description

本発明は、生活排水、工場排水等の各種排水、メタン発酵の消化液、廃棄物最終処分場から発生する浸出水などの含窒素化合物含有水、より具体的には、アンモニア態窒素および/または有機態窒素含有水の処理方法に関する。
従来、排水中のアンモニア態窒素を生物学的に処理する方法としては、好気性硝化・嫌気性脱膣法が一般的である。この方法ではまず、アンモニア酸化細菌を用いた好気処理によりアンモニウムイオンを亜硝酸イオンに酸化し、次いで、亜硝酸酸化細菌を用いた好気処理により亜硝酸イオンを硝酸イオンに酸化し、その後、脱膣細菌を用いた嫌気処理により硝酸イオンを窒素ガスに還元する。このアンモニア態窒素の処理方法は、硝化工程において多量の曝気が必要であり、さらに脱窒工程における電子供与体としてメタノールの添加が必要となる。
また、特許文献1、2には、アンモニア酸化細菌を用いた好気処理によりアンモニウムイオンの一部を亜硝酸イオンに酸化し、その後アンモニウムイオンと亜硝酸イオンを反応させて窒素ガスを生成させることができる独立栄養性細菌(=アナモックス細菌)を用いてアンモニア態窒素を処理する方法が提案されている。この方法は、従来の硝化・脱窒法と比較して硝化工程における曝気量を50%以下に削減することができ、脱窒工程におけるメタノールの添加が不要となるが、アナモックス細菌の増殖速度が非常に遅いので、有機物が混在する実際の排水では、増殖の速い従属栄養細菌に対してアナモックス細菌を優占種とすることが難しく、アナモックス細菌によるアンモニア態窒素の処理を安定的に行うことが困難である。また、上記方法では、最初にアンモニウムイオンの一部を亜硝酸イオンに好気酸化する必要があるため、曝気にかかる電気代をゼロにすることはできず、加えて、被処理水中のアンモニウムイオンと亜硝酸イオンの比率を、アナモックス細菌の増殖に好適な比率に保つことが難しく、酸化が進んで硝酸イオンが生成してしまうとアナモックス細菌では処理できない等の不具合が存在する。
特許文献3には、フェアモックス菌によるアンモニア酸化処理方法において、嫌気条件下で重炭酸イオンおよび/または炭酸イオンを供給すると云う技術が提案されているが、この技術ではアンモニア酸化反応は実際には進行しない。
加えて、上記従来技術は全てアンモニア態窒素の処理技術であり、アミノ酸、タンパク質、有機系アミン等の有機態窒素を直接処理することができない。有機態窒素は、活性汚泥法やメタン発酵法等の既存の有機物分解法によってアンモニア態窒素に分解処理した後に、上記アンモニア態窒素の処理技術を適用する必要があり、装置が複雑になるとともに、活性汚泥法を利用した場合には、有機物分解のためにも曝気のための電力が必要であった。
特開2001−104992号公報 特開2010−207785号公報 特開2008−279433号公報
Lovley D.R. ; Nat.Rev.Microbiol., 2006, 4, 497-508
本願発明は、上記従来技術の問題点を解決する。すなわち、曝気処理なしで水中のアンモニア態窒素を硝酸イオンおよび/または亜硝酸イオンに酸化することが可能な含窒素化合物含有水の処理方法を提供することを目的とする。また、本願発明は、前段に有機物分解処理工程を必要とせず、曝気処理なしで水中の有機態窒素化合物を分解し、有機態窒素を硝酸イオンおよび/または亜硝酸イオンに酸化することが可能な含窒素化合物含有水の処理方法を提供することを目的とする。
本発明の含窒素化合物含有水の処理方法は、含窒素化合物を含有する水が収納された硝化反応槽内に、細胞外電子伝達能を有する微生物と、炭酸イオンおよび/または重炭酸イオンと、電子受容体と、を存在させて前記含窒素化合物中の窒素を硝酸イオンおよび/または亜硝酸イオンに酸化処理することを特徴とする。
ここで、前記電子受容体として、電子を受けて還元される自己還元性化合物を用いることができる。
また、前記電子受容体として、前記細胞外電子伝達能を有する微生物から電子を受け取る電極を用いることができる。
さらに、本発明の含窒素化合物含有水の処理方法は、前記硝化反応槽に、一部の面が外気に接し、しかも前記一部の面とは異なる他の一部の面が前記含窒素化合物を含有する水に接するエアカソードを備え、かつ、当該エアカソードと前記電極とが電気的に接続されていることを特徴とする。
本発明の含窒素化合物含有水の処理方法によれば、含窒素化合物を含有する水が収納された硝化反応槽内に、細胞外電子伝達能を有する微生物と、炭酸イオンおよび/または重炭酸イオンと、電子受容体と、を存在させて前記含窒素化合物中の窒素を硝酸イオンおよび/または亜硝酸イオンに酸化処理する構成により、曝気処理なしで、水中のアンモニア態窒素および/または有機態窒素を硝酸イオンおよび/または亜硝酸イオンに酸化することが可能となる。
ここで、前記電子受容体としては、電子を受けて還元される自己還元性化合物を用いることができ、例えば三価の鉄化合物や四価のマンガン化合物、具体的には酸化鉄(III)や二酸化マンガン等の金属酸化物を用いることで安価な処理が可能となる。
また、電子受容体として、前記細胞外電子伝達能を有する微生物から電子を受け取る電極を用いることができ、これにより、電子受容体として自己還元性物質を用いた場合に必要な、還元された自己還元性物質の処理が不要となる。さらに、電極で受け取った電子を、別途設けたカソード反応槽内に浸漬したカソード電極に通電することで、カソード反応槽に電子を供給し、カソード反応槽内の物質の還元処理に利用することができる。例えば、硝酸イオンおよび/または亜硝酸イオンの脱窒処理を上記カソード反応槽で行うことが可能である。
ここで、上記カソード反応槽では、溶存酸素を還元して水を生成するのが一般的だが、前記硝化反応槽に、一部の面が外気に接し、しかも前記一部の面とは異なる他の一部の面が前記含窒素化合物を含有する水に接するエアカソードを備え、かつ、当該エアカソードと前記電極とを電気的に接続すると、カソード反応槽を設ける必要がなくなり、かつ、カソード反応に必要な酸素を、動力なしで空気中から供給することが可能となる。これにより、設備を簡略化できるとともに電子受容体にかかるランニングコストを大幅に低減させることができる。
エアカソードを備えた硝化反応槽を用いた含窒素化合物の処理を示したモデル図である。 実験例1の二酸化マンガン添加系におけるMSM培地中のアンモニウムイオン濃度と硝酸イオン濃度の経時変化を示すグラフである。 実験例1の二酸化マンガン無添加系におけるMSM培地中のアンモニウムイオン濃度の経時変化を示すグラフである。 実験例2における被処理水中のアンモニウムイオン濃度、硝酸イオン濃度、亜硝酸イオン濃度の経時変化を示すグラフである。 実験例3における被処理水中のアンモニウムイオン濃度と硝酸イオン濃度の経時変化を示すグラフである。 実験例4における被処理水中のアニリン濃度、硝酸イオン濃度、亜硝酸イオン濃度の経時変化を示すグラフである。
本発明の含窒素化合物含有水の処理方法は、含窒素化合物を含有する水が収納された硝化反応槽内に、細胞外電子伝達能を有する微生物と、炭酸イオンおよび/または重炭酸イオンと、電子受容体と、を存在させて前記含窒素化合物中の窒素を硝酸イオンおよび/または亜硝酸イオンに酸化処理する構成を有する。
硝化反応槽には、その内部に収納された含窒素化合物を含有する水(以下、被処理水と称することもある)を攪拌する設備を有することが、含窒素化合物を効率的に処理することが可能となるので好ましい。また、細胞外電子伝達能を有する微生物による含窒素化合物の処理反応は嫌気的に進行するが、硝化反応槽を必ずしも厳密な気密構造とする必要はない。硝化反応槽で積極的な曝気を行わないことで、被処理水中の溶存酸素は被処理水とともに硝化反応槽に混入する酸素呼吸を行う微生物によって消費され、溶存酸素濃度の極めて低い状態になるので、細胞外電子伝達能を有する微生物による含窒素化合物中の窒素の嫌気的酸化反応には十分な環境となる。
本発明における「含窒素化合物」とは、アンモニア態窒素化合物(アンモニアおよびアンモニウムイオン)および、アミノ酸、タンパク質、有機系アミン等の有機態窒素化合物のことである。すなわち、本願発明における「含窒素化合物中の窒素」とは、いわゆるケルダール窒素を指す。
また、含窒素化合物を含有する水には、上記のような含窒素化合物以外に、各種電解質、有機物などが含まれていても構わない。
本発明における細胞外電子伝達能を有する微生物の「細胞外電子伝達能」とは、電子伝達体を酸化還元する一連の流れによって、生命活動に必要なエネルギーを獲得すると共に、発生した電子を細胞膜に存在する電子伝達体(例えば、膜結合型シトクロム)に伝達する能力をいう(非特許文献1)。このような能力を有する微生物であれば、細胞膜上の電子伝達体に保持された電子を、電子伝達体と電子受容体との直接的な接触によって容易に伝達でき、また酸化還元メディエータ化合物のような介在物質が微生物から容易に電子を抽出することができるので好ましい。細胞外電子伝達能を有する微生物としては、例えば、シェワネラ(Shewanella)属及びジオバクター(Geobacter)属のような異化的金属還元細菌、シュードモナス(Pseudomonas)属及びロドフェラックス(Rhodoferax)属等が挙げられる。シェワネラ属の細菌の具体例としては、シェワネラ・ロイヒカ(S. loihica)、シェワネラ・オネイデンシス(S. oneidensis)シェワネラ・プトレファシエンス(S. putrefaciens)、及びシェワネラ・アルガ(S. algae)が挙げられる。ジオバクター属の細菌の具体例としては、ジオバクター・サルフレドゥセンス(G. sulfurreducens)及びジオバクター・メタリレドゥセンス(G.metallireducens)が挙げられる。シュードモナス(Pseudomonas)属の細菌の具体例としては、シュードモナス・エアルギノーザ(P. aeruginosa)が挙げられる。ロドフェラックス(Rhodoferax)属の細菌の具体例としては、ロドフェラックス・フェリレドゥセンス(R. ferrireducens)が挙げられる。細胞外電子伝達能を有する微生物のうち、さらに、酸化還元メディエータ化合物を産生し、それを細胞外に放出することのできる微生物は、本発明上、特に好ましい。酸化還元メディエータ化合物が後述する電子受容体と直接電子伝達を行うことにより、本発明の効果をより発揮し得るからである。酸化還元メディエータ化合物を生産・放出する微生物の例としては、例えば、前記シェワネラ属、シュードモナス属及びロドフェラックス属等が挙げられる。
なお、細胞外電子伝達能を有する微生物は自然界に広く分布し、含窒素化合物を含有する水が流入する各種工場の排水処理設備や下水処理場の活性汚泥スラッジにも存在する。本発明では、細胞外電子伝達能を有する微生物を単離培養して用いることは必須ではなく、例えばスラッジごと採取して、そのまま用いることができる。
ここで、下水処理場の活性汚泥スラッジのような混合微生物を用いても、該スラッジと、炭酸イオンおよび/または重炭酸イオンと、電子受容体とを嫌気状態で存在させることにより、スラッジ中の細胞外電子伝達能を有する微生物の働きで、被処理水中のアンモニア態窒素を硝酸イオンおよび/または亜硝酸イオンに酸化する反応は進行する。スラッジ中に酸素呼吸を行う微生物が存在すると、該微生物の酸素呼吸によって被処理水は短時間で嫌気状態になるので、混合微生物を用いることは、本発明におけるアンモニア態窒素の酸化反応に有利に働く場合がある。
また、細胞外電子伝達能を有する微生物は、嫌気呼吸の過程で様々な有機物を分解する性質があるので、有機態窒素化合物を分解し、有機態窒素を硝酸イオンおよび/または亜硝酸イオンに酸化することが可能である。
本発明における炭酸イオンや重炭酸イオン(=炭酸水素イオン)は、細胞外電子伝達能を有する微生物による含窒素化合物中の窒素の酸化反応に対して悪影響を及ぼさない限りにおいて、水に可溶でこれらのイオンに解離する無機塩や有機塩の一種または二種以上を溶解させることで供給することができる。このような化合物として、例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウム等の炭酸水素塩、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム等の炭酸塩等が挙げられる。また、アルカリ性の被処理水に炭酸ガスを吹き込んで炭酸イオンおよび/または重炭酸イオンを生成しても良く、この場合も本発明に含まれる。
本発明における電子受容体としては、細胞外電子伝達能を有する微生物による含窒素化合物中の窒素の酸化反応に対して悪影響を及ぼさない限りにおいて、電子を受けて還元される自己還元性化合物を用いることができ、例えば三価の鉄化合物や四価のマンガン化合物、具体的には酸化鉄(III)や二酸化マンガン等の金属酸化物や、エチレンジアミン四酢酸鉄(III)ナトリウム、クエン酸鉄(III)等の金属錯体等を利用可能である。
また、前記電子受容体として、前記細胞外電子伝達能を有する微生物から電子を受け取る電極を用いることができる。本発明を排水処理に適用した場合、電子受容体に自己還元性物質である金属化合物を用いると、別途、添加した金属化合物を処理する必要が生じるが、電極で電子を受け取れば、その処理が不要となる。電極材料には、細胞外電子伝達能を有する微生物による含窒素化合物中の窒素の酸化反応に対して悪影響を及ぼさない限りにおいて、あらゆる固体の伝導体を用いることができる。このような電極材料として、カーボンナノワイヤー、グラファイトフェルトなどの各種炭素材、各種金属や各種合金などが挙げられる。
このように電子受容体として電極を用いる場合には、その対極として、一方の面が外気に接し、しかも他方の面が含窒素化合物を含有する水に接するようにエアカソードを硝化反応槽に設け、かつ、このエアカソードに電極を電気的に接続することで、カソード反応に必要な酸素を、動力なしで空気中から供給することが可能となる。ここで、エアカソードは膜タイプの電極材であり、電気的に接続された電極から電子を受け取ると前記一方の面から酸素を取り入れて、この酸素を前記他方の面に接する水中のプロトンと反応させて水を生成する。
図1に上記エアカソードを備えた硝化反応槽の例をモデル的に示す。この例では、電極(以下、アノードと称することもある)3表面に付着した細胞外電子伝達能を有する微生物4が重炭酸イオンを利用して被処理水2中のアンモニウムイオンを酸化し、硝酸イオンとプロトンを生成する。その際生じる電子はアノード3により集電され、導線5により、エアカソード6に達する。エアカソード6では、この電子とアノード3側から被処理水2中を拡散してきたプロトンと外気中の酸素とが反応しで水が生成し、被処理水2に取り込まれる。
以上、本発明について、好ましい実施形態を挙げて説明したが、本発明の含窒素化合物含有水の処理方法は、上記実施形態の構成に限定されるものではない。
当業者は、従来公知の知見に従い、本発明の含窒素化合物含有水の処理方法を適宜改変することができる。このような改変によってもなお、本発明の含窒素化合物含有水の処理方法の構成を具備する限り、もちろん、本発明の範疇に含まれるものである。
以下に本発明の含窒素化合物含有水の処理方法についての実施例を示す。
<MSM培地>
以下の実施例では、細胞外電子伝達能を有する微生物用の培地として、重炭酸イオンを含む無機培地であるMSM培地を使用した。MSM培地の組成は以下の通りである。
蒸留水:999ml、塩化ナトリウム:8.8g、炭酸水素ナトリウム:3.2g、塩化マグネシウム・七水和物:0.33g、塩化カルシウム:0.275g、燐酸二水素カリウム:14mg、燐酸水素二カリウム:21mg、燐酸水素二ナトリウム:56mg、塩化カリウム:2mg、各種ミネラル溶液:1ml。
なお、上記の各種ミネラル溶液は以下に示す各種成分を水に溶解して1リットルとしたものである。塩化鉄(II):10mmol、塩化コバルト(II):1mmol、塩化マンガン(II)・四水和物:1mmol、塩化亜鉛(II):1mmol、ホウ酸:0.1mmol、塩化ニッケル(II):0.1mmol、塩化アルミニウム:0.1mmol、モリブデン(VI)酸二ナトリウム・二水和物:0.1mmol、塩化銅(II):0.01mmol。
<実験例1:電子受容体の必要性についての検討>
内容積250mlのガラス製ネジ口ビンに、塩化アンモニウムを20mmol/lの濃度となるように添加したMSM培地を200ml、細胞外電子伝達能を有する微生物を含むスラッジとして東京都某所下水処理場の活性汚泥を乾燥重量換算で500mg、電子受容体として二酸化マンガンを1mmol添加し、上部の空気層を窒素置換した後密封し、MSM培地中のアンモニウムイオンと硝酸イオンの濃度変化を経時的に測定した。また、二酸化マンガンを添加しない以外は上記試験と同一条件の試験を行い、結果を比較した。二酸化マンガン添加系の結果を図2に、二酸化マンガン無添加系の結果を図3に示す。
図2より、二酸化マンガン添加系ではアンモニウムイオン濃度が経時的に減少し、それとともに最初はゼロであった硝酸イオン濃度が上昇することがわかる。そして、アンモニウムイオンと硝酸イオンの合計濃度がほぼ20mmol/lを維持していることから、アンモニウムイオンが硝酸イオンに酸化されたことが示唆される。一方、図3に示した通り、二酸化マンガン無添加系ではアンモニウムイオンは全く減少せず、図示していないが試験期間中、硝酸イオンは検出されなかった。以上の結果から、細胞外電子伝達能を有する微生物による含窒素化合物中の窒素の酸化反応には、電子受容体(この例では二酸化マンガン)が必須であることが確認された。
<実験例2:エアカソードを有する試験系での検討>
図1に示したエアカソードを有する硝化反応槽のモデル装置を用いて以下の試験を行った。
図1において、重炭酸イオンを添加した被処理水2として、塩化アンモニウムを20mmol/lの濃度となるように添加したMSM培地を硝化反応槽1内に充填し、細胞外電子伝達能を有する微生物を含むスラッジとして東京都某所下水処理場の活性汚泥をMLSS濃度が2500mg/lとなるように添加した後、硝化反応槽1を密閉状態とした。また、電子受容体である電極3にはカーボンフェルトを、エアカソード6には白金触媒を担持し、かつ撥水処理を施したカーボンペーパーを使用した。
上記条件において、被処理水2中のアンモニウムイオン、硝酸イオン、亜硝酸イオンの濃度変化を経時的に測定するとともに、導線5の途中に電流計を設けて導線5を流れる電流値を測定した。被処理水中の各イオンの濃度変化を図4に示す。
図4より、被処理水中のアンモニウムイオン濃度が経時的に減少し、それとともに最初はゼロであった硝酸イオン、亜硝酸イオンの濃度が上昇すること、そして、アンモニウムイオン、硝酸イオン、亜硝酸イオンの合計濃度がほぼ20mmol/lを維持していることがわかる。従って、エアカソードを有する試験系でもアンモニウムイオンが酸化されて、硝酸イオン、亜硝酸イオンが生成していることが理解される。また、試験期間中、導線5にはエアカソード6から電極3に向かって40μAから60μAの電流が流れていた。以上の結果から、カーボンフェルトからなる電極3が電子受容体として機能していること、および、エアカソードを有する試験系でも、細胞外電子伝達能を有する微生物による含窒素化合物中の窒素の酸化反応が進むことが確認された。
<実験例3:標準菌株による検討>
細胞外電子伝達能を有する微生物として、別途培養したシェワネラ・オネイデンシス(S. oneidensis)MR−1株を用いた以外は、実験例2と同一条件の試験を実施した。被処理水中のアンモニウムイオンおよび硝酸イオンの濃度変化を図5に示す。
本試験においても、被処理水中のアンモニウムイオンが経時的に硝酸イオンに酸化していることを示唆する結果が得られた。また、試験期間中、導線5にはエアカソード6から電極3に向かって約100μAの電流が流れていた。従って、細胞外電子伝達能を有する微生物が被処理水中のアンモニウムイオンの酸化反応に関与していることが明らかとなった。また、実験例3において、MSM培地から炭酸水素ナトリウムを抜いた組成の培地を被処理水として同様の試験を実施したところ、アンモニウムイオンの減少速度も、導線5を流れる電流値も10分の1となった。このことは、細胞外電子伝達能を有する微生物によるアンモニウムイオンの嫌気的酸化反応に、重炭酸イオンが重要な役割を果たしていることを示唆している。ここで、導線5を流れる電流値がゼロにならなかったのは、炭酸水素ナトリウムを抜いたMSM培地中にも、空気中の炭酸ガス由来の重炭酸イオンが溶け込んでいたためと推定する。
ここで、東京都某所下水処理場の活性汚泥から細胞外電子伝達能を有する微生物の単離を試みた結果、本発明者等はシュードモナス属の細菌を単離するに至った。そして、当該細菌を培養し、実験例3のシェワネラ・オネイデンシスMR−1株に代えて試験を行ったところ、図5と同様のアンモニウムイオンの酸化データが得られた。
<実験例4:有機態窒素化合物による検討>
重炭酸イオンを添加した被処理水2として、アニリンを10mmol/lの濃度となるように添加したMSM培地を用いた以外は、実験例2と同一条件の試験を実施した。被処理水中のアニリン、硝酸イオン、亜硝酸イオンの濃度変化を図6に示す。
図6より、アンモニア態窒素と比較すると分解速度は遅いものの、細胞外電子伝達能を有する微生物の作用により、難分解性の有機態窒素化合物であるアニリンを分解し、有機態窒素を硝酸イオンおよび亜硝酸イオンに酸化していることが分かる。すなわち、本発明の含窒素化合物含有水の処理方法を用いれば、前段に有機物分解処理用の設備を設けなくても有機態窒素の嫌気的酸化処理が可能であることが確認された。
1 硝化反応槽
2 被処理水
3 電極(アノード)
4 細胞外電子伝達能を有する微生物
5 導線
6 エアカソード

Claims (4)

  1. 含窒素化合物を含有する水が収納された硝化反応槽内に、細胞外電子伝達能を有する微生物と、炭酸イオンおよび/または重炭酸イオンと、電子受容体と、を存在させて前記含窒素化合物中の窒素を硝酸イオンおよび/または亜硝酸イオンに酸化処理することを特徴とする含窒素化合物含有水の処理方法。
  2. 前記電子受容体が、電子を受けて還元される自己還元性化合物であることを特徴とする請求項1に記載の含窒素化合物含有水の処理方法。
  3. 前記電子受容体が、前記細胞外電子伝達能を有する微生物から電子を受け取る電極であることを特徴とする請求項1に記載の含窒素化合物含有水の処理方法。
  4. 前記硝化反応槽が、一部の面が外気に接し、しかも前記一部の面とは異なる他の一部の面が前記含窒素化合物を含有する水に接するエアカソードを備え、かつ、当該エアカソードと前記電極とが電気的に接続されていることを特徴とする請求項3に記載の含窒素化合物含有水の処理方法。
JP2014221438A 2014-10-30 2014-10-30 含窒素化合物含有水の処理方法 Pending JP2016087497A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014221438A JP2016087497A (ja) 2014-10-30 2014-10-30 含窒素化合物含有水の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014221438A JP2016087497A (ja) 2014-10-30 2014-10-30 含窒素化合物含有水の処理方法

Publications (1)

Publication Number Publication Date
JP2016087497A true JP2016087497A (ja) 2016-05-23

Family

ID=56015474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221438A Pending JP2016087497A (ja) 2014-10-30 2014-10-30 含窒素化合物含有水の処理方法

Country Status (1)

Country Link
JP (1) JP2016087497A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143352A1 (ja) * 2015-03-11 2016-09-15 パナソニック株式会社 微生物燃料電池システム
CN105948222A (zh) * 2016-06-23 2016-09-21 浙江大学 厌氧消化反硝化厌氧氨氧化生物电化学系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2006081963A (ja) * 2004-09-14 2006-03-30 Hitachi Kiden Kogyo Ltd 汚泥返流水の処理方法及び処理装置
JP2008279433A (ja) * 2007-04-13 2008-11-20 National Institute Of Advanced Industrial & Technology 嫌気性アンモニア酸化処理方法および装置
JP2009158426A (ja) * 2007-12-28 2009-07-16 Kurita Water Ind Ltd 微生物発電方法および微生物発電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2006081963A (ja) * 2004-09-14 2006-03-30 Hitachi Kiden Kogyo Ltd 汚泥返流水の処理方法及び処理装置
JP2008279433A (ja) * 2007-04-13 2008-11-20 National Institute Of Advanced Industrial & Technology 嫌気性アンモニア酸化処理方法および装置
JP2009158426A (ja) * 2007-12-28 2009-07-16 Kurita Water Ind Ltd 微生物発電方法および微生物発電装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BO QU ET AL.: "Anaerobic ammonium oxidation with an anode as the electron acceptor", ENVIRONMENTAL MICROBIOLOGY REPORTS, vol. 6(1), JPN6018024044, 11 October 2013 (2013-10-11), pages 100 - 105, ISSN: 0004045054 *
BORAN KARTAL ET AL.: "How to make a living from anaerobic ammonium oxidation", FEMS MICROBIOLOGY REVIEWS, vol. 37, JPN6018024043, 21 January 2013 (2013-01-21), pages 428 - 461, ISSN: 0004045056 *
JA-WON SHIN ET AL: "Energy recovery of ethanolamine in wastewater using an air-cathode microbial fuel cell", INTERNATIONAL BIODETERIORATION & BIODEGRADATION, vol. 95, JPN6018045467, 7 July 2014 (2014-07-07), pages 117 - 121, ISSN: 0004045057 *
MATHAVA KUMAR ET AL.: "Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies", JOURNAL OF HAZARDOUS MATERIALS, vol. 178, JPN6018024040, 21 January 2010 (2010-01-21), pages 1 - 9, ISSN: 0004045055 *
SHIGEKI SAWAYAMA: "Possibility of Anoxic Ferric Ammonium Oxidation", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 101, no. 1, JPN6018045469, January 2006 (2006-01-01), pages 70 - 72, ISSN: 0004045058 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143352A1 (ja) * 2015-03-11 2016-09-15 パナソニック株式会社 微生物燃料電池システム
JPWO2016143352A1 (ja) * 2015-03-11 2018-01-18 パナソニック株式会社 微生物燃料電池システム
CN105948222A (zh) * 2016-06-23 2016-09-21 浙江大学 厌氧消化反硝化厌氧氨氧化生物电化学系统及方法
CN105948222B (zh) * 2016-06-23 2018-09-07 浙江大学 厌氧消化反硝化厌氧氨氧化生物电化学系统及方法

Similar Documents

Publication Publication Date Title
Kelly et al. Nutrients removal and recovery in bioelectrochemical systems: a review
He et al. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review
Mook et al. A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems
Clauwaert et al. Methanogenesis in membraneless microbial electrolysis cells
Zhang et al. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells
Jiang et al. Electrochemical study of enhanced nitrate removal in wastewater treatment using biofilm electrode
US8415037B2 (en) Microbial fuel cells
Okabe Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell
Philips et al. Electron transfer mechanisms in biofilms
Zhu et al. Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution
Chen et al. Simultaneous sulfide removal, nitrogen removal and electricity generation in a coupled microbial fuel cell system
Kim et al. pH-dependent ammonia removal pathways in microbial fuel cell system
JP5101855B2 (ja) バイオリアクタ
Zhong et al. Power recovery coupled with sulfide and nitrate removal in separate chambers using a microbial fuel cell
Ghimire et al. Accomplishing a NEW (nutrient-energy-water) synergy in a bioelectrochemical nitritation-anammox process
Xie et al. Influence and mechanism of dissolved oxygen on the performance of ammonia-oxidation microbial fuel cell
CN102800883A (zh) 硝化微生物燃料电池
Qiao et al. Reinforced nitrite supplement by cathode nitrate reduction with a bio-electrochemical system coupled anammox reactor
JP2009158426A (ja) 微生物発電方法および微生物発電装置
Zhou et al. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide
Guo et al. Interspecies electron transfer between Geobacter and denitrifying bacteria for nitrogen removal in bioelectrochemical system
CN113365952A (zh) 转化总氨氮的方法
JP2013188727A (ja) 水底土壌の微生物反応制御方法及びシステム
JP2016087497A (ja) 含窒素化合物含有水の処理方法
Li et al. Synchronous recovery of iron and electricity using a single chamber air-cathode microbial fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604