JP2016086577A - Non-contact power transmission/reception system - Google Patents

Non-contact power transmission/reception system Download PDF

Info

Publication number
JP2016086577A
JP2016086577A JP2014219062A JP2014219062A JP2016086577A JP 2016086577 A JP2016086577 A JP 2016086577A JP 2014219062 A JP2014219062 A JP 2014219062A JP 2014219062 A JP2014219062 A JP 2014219062A JP 2016086577 A JP2016086577 A JP 2016086577A
Authority
JP
Japan
Prior art keywords
power
power transmission
coil
distance
vehicle height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014219062A
Other languages
Japanese (ja)
Other versions
JP6252433B2 (en
Inventor
崇弘 三澤
Takahiro Misawa
崇弘 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014219062A priority Critical patent/JP6252433B2/en
Publication of JP2016086577A publication Critical patent/JP2016086577A/en
Application granted granted Critical
Publication of JP6252433B2 publication Critical patent/JP6252433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To more properly determine a distance between a power transmission coil of a transmission apparatus and a power reception coil of a reception apparatus while suppressing an increase in the number of components.SOLUTION: A non-contact power transmission apparatus estimates a distance Lv in the vehicle height direction between a power transmission coil 134 and a power reception coil 34 according to a vehicle height Hv from a vehicle height sensor as well as a distance Lh in the plane direction between the power transmission coil 134 and the power reception coil 34 using a coupling coefficient k obtained based on an output impedance Zs of a high-frequency power supply circuit 140 and calculates a distance L between the power transmission coil 134 and the power reception coil 34 on the basis of the estimated distance Lv in the vehicle height direction and the distance Lh in the plane direction, and can more exactly obtain a distance L between the power transmission coil 134 and the power reception coil 34 without increasing the number of other components only by mounting the vehicle height sensor.SELECTED DRAWING: Figure 4

Description

本発明は、非接触送受電システムに関し、詳しくは、送電コイルを有する送電装置と 受電コイルを有する受電装置およびバッテリを搭載する車両とを備える非接触送受電システムに関する。   The present invention relates to a non-contact power transmission / reception system, and more particularly to a non-contact power transmission / reception system including a power transmission device having a power transmission coil, a power reception device having a power reception coil, and a vehicle equipped with a battery.

従来、この種の非接触送受電システムとしては、上面プレートに載置された電池内蔵機器の上面プレートにおける載置位置を複数の位置検出コイルを用いて検出する充電台を備えるものが提案されている(例えば、特許文献1参照)。この充電台では、電池内蔵機器内の誘導コイルに電力を誘導する電源コイルと、この電源コイルを移動させる移動機構とを備えている。そして、電池内蔵機器が面プレートに載置されると、複数の位置検出コイルによって電池内蔵機器の載置位置を検出し、検出した載置位置に電源コイルを移動させて電池内蔵機器内の電池を充電する。   Conventionally, as this type of non-contact power transmission / reception system, a system including a charging stand for detecting a mounting position on a top surface plate of a battery built-in device mounted on a top surface plate using a plurality of position detection coils has been proposed. (For example, refer to Patent Document 1). This charging stand includes a power supply coil that induces electric power to an induction coil in the battery built-in device, and a moving mechanism that moves the power supply coil. Then, when the battery built-in device is placed on the face plate, the position of the battery built-in device is detected by a plurality of position detection coils, and the power coil is moved to the detected placement position, and the battery in the battery built-in device is moved. To charge.

特開2009−247194号公報JP 2009-247194 A

しかしながら、上述の非接触送受電システムでは、電池内蔵機器の載置位置を正確に検出するためには充電台に複数の位置検出コイルを組み込む必要がある。このため、充電台を構成する部品点数が多くなり、装置が複雑なものになってしまう。また、電源コイルを移動させる移動機構も必要となり、更に装置が複雑になると共に大型化してしまう。   However, in the non-contact power transmission / reception system described above, it is necessary to incorporate a plurality of position detection coils in the charging stand in order to accurately detect the placement position of the battery built-in device. For this reason, the number of parts which comprise a charging stand increases, and an apparatus will become complicated. In addition, a moving mechanism for moving the power supply coil is required, which further complicates the apparatus and increases the size.

本発明の非接触送受電システムは、部品点数の増加を抑制しつつ送電装置の送電コイルと受電装置の受電コイルとのコイル間距離をより適正に求めることを主目的とする。   The non-contact power transmission / reception system of the present invention is mainly intended to more appropriately obtain the inter-coil distance between the power transmission coil of the power transmission device and the power reception coil of the power reception device while suppressing an increase in the number of components.

本発明の非接触送受電システムは、上述の主目的を達成するために以下の手段を採った。   The non-contact power transmission / reception system of the present invention employs the following means in order to achieve the main object described above.

本発明の非接触送受電システムは、
送電コイルを有する送電装置と、
バッテリと、受電コイルを用いて前記送電装置から非接触で受電して前記バッテリを充電可能な受電装置と、を有する車両と、
を備える非接触送受電システムであって、
車高を検出する車高センサと、
前記送電装置から前記受電装置への送電の際、出力インピーダンスを計算すると共に、前記出力インピーダンスと前記車高とに基づいて前記送電コイルと前記受電コイルのコイル間距離を算出し、該コイル間距離を送電の制御に用いる制御手段と、
を備えることを特徴とする。
The non-contact power transmission and reception system of the present invention is
A power transmission device having a power transmission coil;
A vehicle having a battery and a power receiving device capable of receiving power from the power transmission device in a non-contact manner using a power receiving coil and charging the battery; and
A non-contact power transmission and reception system comprising:
A vehicle height sensor for detecting the vehicle height;
When power is transmitted from the power transmission device to the power reception device, the output impedance is calculated, and the distance between the power transmission coil and the power reception coil is calculated based on the output impedance and the vehicle height. Means for controlling the transmission of power,
It is characterized by providing.

本発明の非接触送受電システムでは、送電装置から受電装置への送電の際、出力インピーダンスを計算すると共に、出力インピーダンスと車高とに基づいて送電コイルと受電コイルのコイル間距離を算出する。出力インピーダンスは近似的に結合係数の関数として表わすことができるから、出力インピーダンスから結合係数を求め、結合係数から送電コイルと受電コイルの水平方向の距離を求めることができる。したがって、車高により推定される送電コイルと受電コイルの垂直方向の距離と出力インピーダンスから推定される送電コイルと受電コイルの水平方向の距離とによりコイル間距離を求めることができる。車高を検出する車高センサを有するようにするだけで、送電装置における部品点数の増加なしに送電コイルと受電コイルのコイル間距離をより適正に求めることができる。ここで、制御手段は、送電装置が備えるものとしてもよいし、受電装置が備えるものとしてもよい。制御手段を受電装置が備える場合、コイル間距離やコイル間距離に基づく制御信号を送電装置に送信することにより、コイル間距離を用いて送電を制御することができる。そして、こうして求めたコイル間距離は送電の制御に用いられる。この場合、コイル間距離が小さいほど送電可能電力が大きくなる傾向に受電装置への送電を制御するものとすることもできる。これにより、効率よく送受電することができる。   In the non-contact power transmission / reception system of the present invention, when transmitting power from the power transmission device to the power reception device, the output impedance is calculated, and the distance between the coil of the power transmission coil and the power reception coil is calculated based on the output impedance and the vehicle height. Since the output impedance can be approximately expressed as a function of the coupling coefficient, the coupling coefficient can be obtained from the output impedance, and the horizontal distance between the power transmission coil and the power receiving coil can be obtained from the coupling coefficient. Therefore, the distance between the coils can be obtained from the distance in the vertical direction between the power transmission coil and the power reception coil estimated from the vehicle height and the distance in the horizontal direction between the power transmission coil and the power reception coil estimated from the output impedance. Only by having a vehicle height sensor for detecting the vehicle height, the distance between the coil of the power transmission coil and the power reception coil can be obtained more appropriately without increasing the number of components in the power transmission device. Here, the control means may be included in the power transmission device or may be included in the power reception device. When the power receiving device includes the control means, power transmission can be controlled using the inter-coil distance by transmitting a control signal based on the inter-coil distance or the inter-coil distance to the power transmitting device. The inter-coil distance thus obtained is used for power transmission control. In this case, the power transmission to the power receiving apparatus can be controlled so that the power that can be transmitted increases as the distance between the coils decreases. As a result, power can be transmitted and received efficiently.

本発明は、送電コイルを有し、車両に搭載された受電装置が有する受電コイルを介して非接触で前記受電装置に送電する送電装置であって、前記送電装置から前記受電装置への送電の際、出力インピーダンスを計算すると共に、前記出力インピーダンスと車高とに基づいて前記送電コイルと前記受電コイルのコイル間距離を算出し、該コイル間距離を用いて送電を制御する、ことを特徴とする送電装置の態様とすることもできる。   The present invention is a power transmission device that has a power transmission coil and transmits power to the power reception device in a non-contact manner via a power reception coil included in a power reception device mounted on a vehicle, and transmits power from the power transmission device to the power reception device. At the time, the output impedance is calculated, the distance between the power transmission coil and the power receiving coil is calculated based on the output impedance and the vehicle height, and power transmission is controlled using the distance between the coils. It can also be set as the aspect of the power transmission apparatus.

また、本発明は、送電装置から送電コイルを介して送電された電力を非接触で受電コイルを介して受電する車載用の受電装置であって、前記送電装置からの電力を受電する際、前記送電装置の出力インピーダンスを計算すると共に、前記出力インピーダンスと車高とに基づいて前記送電コイルと前記受電コイルのコイル間距離を算出し、該コイル間距離を用いて前記送電装置からの送電を制御する、ことを特徴とする受電装置の態様とすることもできる。   Further, the present invention is a vehicle-mounted power receiving device that receives power transmitted from a power transmitting device via a power transmitting coil in a contactless manner via a power receiving coil, and when receiving power from the power transmitting device, The output impedance of the power transmission device is calculated, the distance between the power transmission coil and the power receiving coil is calculated based on the output impedance and the vehicle height, and the power transmission from the power transmission device is controlled using the distance between the coils. It is also possible to adopt a mode of a power receiving device characterized by the above.

本発明の一実施例としての非接触送受電システム10の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the non-contact power transmission / reception system 10 as one Example of this invention. 本発明の一実施例としての非接触送受電システム10の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the non-contact power transmission / reception system 10 as one Example of this invention. 送電開始時に送電ECU170により実行される送電開始時処理の一例を示すフローチャートである。It is a flowchart which shows an example of the power transmission start time process performed by power transmission ECU170 at the time of the power transmission start. 送電用コイル134と受電用コイル34との距離Lを求める手法を模式的に示す説明図である。It is explanatory drawing which shows typically the method of calculating | requiring the distance L of the coil 134 for power transmission, and the coil 34 for power reception. 送電可能電力マップの一例を示す説明図である。It is explanatory drawing which shows an example of the power transmission possible electric power map.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1や図2は、本発明の一実施例としての非接触送受電システム10の構成の概略を示す構成図である。実施例の非接触送受電システム10は、図1や図2に示すように、駐車場などに設置された送電装置130と、バッテリ26と送電装置130から非接触で受電してバッテリ26を充電可能な受電装置30とを搭載する自動車20と、を備える。   FIG. 1 and FIG. 2 are configuration diagrams showing an outline of the configuration of a non-contact power transmission / reception system 10 as an embodiment of the present invention. As shown in FIGS. 1 and 2, the non-contact power transmission / reception system 10 according to the embodiment receives power from the power transmission device 130 installed in a parking lot or the like, the battery 26 and the power transmission device 130 and charges the battery 26. And an automobile 20 on which the power receiving device 30 is mounted.

送電装置130は、家庭用電源(例えば200V,50Hzなど)などの交流電源190に接続される送電ユニット131と、送電ユニット131を制御する送電用電子制御ユニット(以下、「送電ECU」という)170と、送電ECU170と通信すると共に自動車20の通信ユニット80(後述)と無線通信を行なう通信ユニット180と、を備える。    The power transmission device 130 includes a power transmission unit 131 connected to an AC power source 190 such as a household power source (for example, 200 V, 50 Hz), and a power transmission electronic control unit (hereinafter referred to as “power transmission ECU”) 170 that controls the power transmission unit 131. And a communication unit 180 that communicates with the power transmission ECU 170 and wirelessly communicates with a communication unit 80 (described later) of the automobile 20.

送電ユニット131は、送電用共振回路132と、交流電源190と送電用共振回路132との間に設けられた高周波電源回路140と、を備える。ここで、送電用共振回路132は、駐車場の床面などに設置された送電用コイル134と、送電用コイル134に直列に接続されたコンデンサ136と、を有する。この送電用共振回路132は、共振周波数が所定周波数Fset(数十〜数百kHz程度)となるように設計されている。高周波電源回路140は、交流電源190からの電力を所定周波数Fsetの電力に変換して送電用共振回路132に出力する回路として構成されており、フィルタや周波数変換回路,漏電ブレーカなどを有する。   The power transmission unit 131 includes a power transmission resonance circuit 132 and a high-frequency power circuit 140 provided between the AC power supply 190 and the power transmission resonance circuit 132. Here, the power transmission resonance circuit 132 includes a power transmission coil 134 installed on a floor surface of a parking lot, and a capacitor 136 connected in series to the power transmission coil 134. The power transmission resonance circuit 132 is designed such that the resonance frequency is a predetermined frequency Fset (several tens to several hundreds kHz). The high frequency power supply circuit 140 is configured as a circuit that converts power from the AC power supply 190 into power having a predetermined frequency Fset and outputs the power to the power transmission resonance circuit 132, and includes a filter, a frequency conversion circuit, a leakage breaker, and the like.

送電ECU170は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。送電ECU170には、送電用共振回路132に流れる交流電流を検出する電流センサ150からの送電用共振回路132の電流Itr,送電用共振回路132の端子間の交流電圧を直流電圧に変換して検出する電圧検出ユニット152からの送電用共振回路132の端子間電圧(送電電圧)Vtrなどが入力ポートを介して入力されている。なお、電圧検出ユニット152は、整流回路と電圧センサとを有する。送電ECU170からは、高周波電源回路140への制御信号などが出力ポートを介して出力されている。   Although not shown, power transmission ECU 170 is configured as a microprocessor centered on a CPU, and includes a ROM for storing processing programs, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . The power transmission ECU 170 detects by converting the current Itr of the power transmission resonance circuit 132 from the current sensor 150 that detects the AC current flowing in the power transmission resonance circuit 132 and the AC voltage between the terminals of the power transmission resonance circuit 132 into a DC voltage. The voltage (transmission voltage) Vtr between terminals of the resonance circuit 132 for power transmission from the voltage detection unit 152 to be input is input via the input port. The voltage detection unit 152 includes a rectifier circuit and a voltage sensor. From the power transmission ECU 170, a control signal to the high-frequency power supply circuit 140 is output via an output port.

自動車20は、電気自動車として構成されており、走行用のモータ22と、モータ22を駆動するためのインバータ24と、インバータ24を介してモータ22と電力をやりとりするバッテリ26と、インバータ24とバッテリ26との間に設けられたシステムメインリレー28と、バッテリ26に接続される受電ユニット31と、車両全体を制御する車両用電子制御ユニット(以下、「車両ECU」という)70と、車両ECU70と通信すると共に送電装置130の通信ユニット180と無線通信を行なう通信ユニット80と、を備える。   The automobile 20 is configured as an electric vehicle, and includes a traveling motor 22, an inverter 24 for driving the motor 22, a battery 26 that exchanges electric power with the motor 22 via the inverter 24, and the inverter 24 and the battery. 26, a system main relay 28, a power receiving unit 31 connected to the battery 26, a vehicle electronic control unit (hereinafter referred to as “vehicle ECU”) 70 for controlling the entire vehicle, and a vehicle ECU 70. And a communication unit 80 that communicates with the communication unit 180 of the power transmission device 130 and performs wireless communication.

受電ユニット31は、受電用共振回路32と、受電用共振回路32とバッテリ26との間に設けられた充電回路40と、受電用共振回路32と充電回路40との間に設けられた充電用リレー42と、受電用共振回路32と充電用リレー42との間で且つ受電用共振回路と並列で且つ互いに直列に接続されたリレー44および抵抗46と、を備える。ここで、受電用共振回路32は、車体底面(フロアパネル)などに設置された受電用コイル34と、受電用コイル34に直列に接続されたコンデンサ36と、を有する。この受電用共振回路32は、共振周波数が上述の所定周波数Fset(送電用共振回路132の共振周波数)付近の周波数(理想的には所定周波数Fset)となるように設計されている。充電回路40は、受電用共振回路32により受電した交流電力を直流電力に変換してバッテリ26に供給可能な回路として構成されており、整流回路や平滑回路などを有する。充電用リレー42は、受電用共振回路32側と充電回路42側との接続および接続の解除を行なう。リレー44は、受電用共振回路32と充電用リレー42との間の正極側ラインと、受電用共振回路32と充電用リレー42との間の負極側ラインに一方の端子が接続された抵抗の他方の端子と、の接続および接続の解除を行なう。   The power receiving unit 31 includes a power receiving resonance circuit 32, a charging circuit 40 provided between the power receiving resonance circuit 32 and the battery 26, and a charging circuit provided between the power receiving resonance circuit 32 and the charging circuit 40. The relay 42 includes a relay 44 and a resistor 46 that are connected between the power receiving resonance circuit 32 and the charging relay 42 and in parallel with the power receiving resonance circuit and in series with each other. Here, the power receiving resonance circuit 32 includes a power receiving coil 34 installed on the bottom surface (floor panel) of the vehicle body, and a capacitor 36 connected in series to the power receiving coil 34. The power receiving resonance circuit 32 is designed such that the resonance frequency becomes a frequency (ideally, the predetermined frequency Fset) near the predetermined frequency Fset (resonance frequency of the power transmission resonance circuit 132). The charging circuit 40 is configured as a circuit capable of converting AC power received by the power receiving resonance circuit 32 into DC power and supplying the DC power to the battery 26, and includes a rectifier circuit, a smoothing circuit, and the like. The charging relay 42 connects and disconnects the power receiving resonance circuit 32 side and the charging circuit 42 side. The relay 44 is a resistor having one terminal connected to a positive line between the power receiving resonance circuit 32 and the charging relay 42 and a negative line between the power receiving resonance circuit 32 and the charging relay 42. Connection to and release from the other terminal.

車両ECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。車両ECU70には、モータ22の回転子の回転位置を検出する回転位置検出センサからのモータ22の回転子の回転位置θmや、モータ22の三相コイルの各相に流れる相電流を検出する電流センサからの相電流Iu,Iv,Iw,バッテリ26の端子間に設置された電圧センサ27aからの電池電圧Vb,バッテリ26の正極側端子に取り付けられた電流センサ27bからの電池電流Ib,バッテリ26の温度を検出する温度センサからの電池温度Tbが入力ポートを介して入力されている。また、車両ECU70には、イグニッションスイッチ(スタートスイッチ)からのイグニッション信号,シフトレバーの操作位置を検出するシフトポジションセンサからのシフトポジションSP,アクセルペダルの踏み込み量を検出するアクセルペダルポジションセンサからのアクセル開度Acc,ブレーキペダルの踏み込み量を検出するブレーキペダルポジションセンサからのブレーキペダルポジションBP,車速センサからの車速V,車高センサ74からの車高Hvが入力ポートを介して入力されている。さらに、車両ECU70には、受電用共振回路32に流れる交流電流を検出する電流センサ50からの受電用共振回路32の電流Ire,電圧検出ユニット52からの受電用共振回路32の端子間電圧(受電電圧)Vre1,電圧検出ユニット54からの充電回路40の入力側の端子間電圧Vre2,電圧検出ユニット56からの抵抗46の端子間電圧Vre3,受電用共振回路32が取り付けられた基板などに取り付けられた温度センサからの受電用共振回路32の温度Treが入力ポートを介して入力されている。電圧検出ユニット52は、受電用共振回路32の端子間の交流電圧を直流電圧に変換する整流回路と、変換後の直流電圧を検出する電圧センサと、を有する。電圧検出ユニット54は、充電回路40と充電用リレー42との間に設けられると共に正極側ライン−負極側ライン間の交流電圧(充電回路40の入力側の端子間電圧)を直流電圧に変換する整流回路と、変換後の直流電圧を検出する電圧センサと、を有する。電圧検出ユニット56は、抵抗46の端子間の交流電圧を直流電圧に変換する整流回路と、変換後の直流電圧を検出する電圧センサと、を有する。車両ECU70からは、インバータ24の図示しないスイッチング素子へのスイッチング制御信号,システムメインリレー28へのオンオフ信号,充電用リレー42へのオンオフ信号,リレー44へのオンオフ信号,情報を表示出力するディスプレイ72(例えばナビゲーション装置のディスプレイ)への表示制御信号などが出力ポートを介して出力されている。車両ECU70は、電流センサ27bにより検出されたバッテリ26の電池電流Ibの積算値に基づいてバッテリ26の蓄電割合SOCを演算している。   Although not shown, the vehicle ECU 70 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . The vehicle ECU 70 detects the rotational position θm of the rotor of the motor 22 from the rotational position detection sensor that detects the rotational position of the rotor of the motor 22 and the current that detects the phase current flowing in each phase of the three-phase coil of the motor 22. Phase currents Iu, Iv, Iw from the sensor, a battery voltage Vb from a voltage sensor 27a installed between terminals of the battery 26, a battery current Ib from a current sensor 27b attached to a positive terminal of the battery 26, and the battery 26 The battery temperature Tb from the temperature sensor that detects the temperature of the battery is input via the input port. The vehicle ECU 70 also includes an ignition signal from an ignition switch (start switch), a shift position SP from a shift position sensor that detects the operation position of the shift lever, and an accelerator from an accelerator pedal position sensor that detects the amount of depression of the accelerator pedal. The opening degree Acc, the brake pedal position BP from the brake pedal position sensor that detects the depression amount of the brake pedal, the vehicle speed V from the vehicle speed sensor, and the vehicle height Hv from the vehicle height sensor 74 are input via the input port. Further, the vehicle ECU 70 supplies the current Ire of the power receiving resonance circuit 32 from the current sensor 50 that detects the alternating current flowing in the power receiving resonance circuit 32, the voltage between the terminals of the power receiving resonance circuit 32 from the voltage detection unit 52 (power reception). Voltage) Vre1, the voltage Vre2 between the input sides of the charging circuit 40 from the voltage detection unit 54, the voltage Vre3 between the terminals of the resistor 46 from the voltage detection unit 56, and the substrate mounted with the power receiving resonance circuit 32. The temperature Tre of the power receiving resonance circuit 32 from the temperature sensor is input via the input port. The voltage detection unit 52 includes a rectifier circuit that converts an AC voltage between terminals of the power receiving resonance circuit 32 into a DC voltage, and a voltage sensor that detects the converted DC voltage. The voltage detection unit 54 is provided between the charging circuit 40 and the charging relay 42 and converts an AC voltage between the positive electrode side line and the negative electrode side line (voltage between terminals on the input side of the charging circuit 40) into a DC voltage. A rectifier circuit; and a voltage sensor that detects the converted DC voltage. The voltage detection unit 56 includes a rectifier circuit that converts an AC voltage between the terminals of the resistor 46 into a DC voltage, and a voltage sensor that detects the converted DC voltage. From the vehicle ECU 70, a switching control signal to a switching element (not shown) of the inverter 24, an on / off signal to the system main relay 28, an on / off signal to the charging relay 42, an on / off signal to the relay 44, and a display 72 for displaying and outputting information. A display control signal or the like (for example, a display of a navigation device) is output via an output port. The vehicle ECU 70 calculates the storage ratio SOC of the battery 26 based on the integrated value of the battery current Ib of the battery 26 detected by the current sensor 27b.

ここで、実施例では、受電装置30としては、主として、受電ユニット31と車両ECU70と通信ユニット80とが該当する。   Here, in the embodiment, the power receiving device 30 mainly corresponds to the power receiving unit 31, the vehicle ECU 70, and the communication unit 80.

こうして構成される実施例の非接触送受電システム10では、送電用共振回路132の送電用コイル134と受電用共振回路32の受電用コイル34とが接近しており且つ充電用リレー42またはリレー44がオンとなっているときに、交流電源190から高周波電源回路140を介して送電用共振回路132に所定周波数Fsetの電力が供給されると、送電用コイル134と受電用コイル34とが電磁場を介して共鳴して、送電用コイル134から受電用コイル34にエネルギ(電力)が伝送される。なお、この共鳴によるエネルギの伝送は、送電用コイル134と受電用コイル34との共鳴強度を示すQ値が所定値Qref(例えば100など)以上のときに行なわれる。   In the non-contact power transmission / reception system 10 of the embodiment configured as described above, the power transmission coil 134 of the power transmission resonance circuit 132 and the power reception coil 34 of the power reception resonance circuit 32 are close to each other, and the charging relay 42 or the relay 44. When the power of the predetermined frequency Fset is supplied from the AC power supply 190 to the power transmission resonance circuit 132 via the high frequency power supply circuit 140 when the power is turned on, the power transmission coil 134 and the power reception coil 34 generate an electromagnetic field. Energy (electric power) is transmitted from the power transmission coil 134 to the power reception coil 34. The energy transmission by the resonance is performed when the Q value indicating the resonance intensity between the power transmission coil 134 and the power reception coil 34 is equal to or greater than a predetermined value Qref (for example, 100).

次に、こうした送電が行なわれる際の動作について説明する。図3は、送電開始時に送電ECU170により実行される送電開始時処理の一例を示すフローチャートである。送電開始時処理が実行されると、送電ECU170は、まず、車高Hvを入力し(ステップS100)、入力した車高Hvから送電用コイル134と受信用コイル34との車高方向の距離Lvを推定する(ステップS110)。ここで、車高Hvは、実施例では、自動車20に取り付けられた車高センサ74により検出されて車両ECU70を介して送信されたものを受信することにより入力するものとした。車高方向の距離Lvは、車高Hvをそのまま用いるものとしたり、車高センサ74の取り付け高さと受電用コイル34の中心位置の高さの差分を予め所定値として定めておいて、車高Hvから所定値を減じたものを用いるものとしたりすることができる。   Next, the operation when such power transmission is performed will be described. FIG. 3 is a flowchart illustrating an example of power transmission start processing executed by the power transmission ECU 170 when power transmission is started. When the power transmission start process is executed, the power transmission ECU 170 first inputs the vehicle height Hv (step S100), and the vehicle height direction distance Lv between the power transmission coil 134 and the reception coil 34 from the input vehicle height Hv. Is estimated (step S110). Here, in the embodiment, the vehicle height Hv is input by receiving the vehicle height sensor 74 attached to the automobile 20 and transmitting the vehicle height Hv. For the distance Lv in the vehicle height direction, the vehicle height Hv is used as it is, or the difference between the mounting height of the vehicle height sensor 74 and the height of the center position of the power receiving coil 34 is determined as a predetermined value in advance. A value obtained by subtracting a predetermined value from Hv can be used.

続いて、電圧検出ユニット152により検出される電圧Vsと電流センサ150により検出される電流Isに基づいて高周波電源回路140の出力インピーダンスZsを計算する(ステップS120)。そして、出力インピーダンスZsに基づいて結合係数kを求める(ステップS130)。出力インピーダンスZsは次式(1)に示すように、結合係数kの関数として表わすことができる。式(1)中、「ω」は角周波数、「L1」は送電用コイル134の自己インダクタンス、「L2」は受電用コイル34の自己インダクタンス、「RL」は受電ユニット31より充電回路40側の負荷抵抗である。   Subsequently, the output impedance Zs of the high-frequency power supply circuit 140 is calculated based on the voltage Vs detected by the voltage detection unit 152 and the current Is detected by the current sensor 150 (step S120). Then, a coupling coefficient k is obtained based on the output impedance Zs (step S130). The output impedance Zs can be expressed as a function of the coupling coefficient k as shown in the following equation (1). In Equation (1), “ω” is the angular frequency, “L1” is the self-inductance of the power transmission coil 134, “L2” is the self-inductance of the power reception coil 34, and “RL” is closer to the charging circuit 40 than the power reception unit 31. Load resistance.

Figure 2016086577
Figure 2016086577

そして、結合係数kに基づいて送電用コイル134と受電用コイル34との巻回平面の平面方向の距離Lhを推定する(ステップS140)。平面方向の距離Lhは、実施例では、結合係数kと送電用コイル134と受電用コイル34との平面方向の距離Lhとの関係を予め実験などにより求めて平面方向距離設定用マップとして定めて記憶しておき、結合係数kが与えられるとマップから対応する平面方向の距離Lhを導出することにより推定するものとした。   Then, the distance Lh in the plane direction of the winding plane between the power transmission coil 134 and the power reception coil 34 is estimated based on the coupling coefficient k (step S140). In the embodiment, the distance Lh in the planar direction is determined as a planar distance setting map by previously obtaining the relationship between the coupling coefficient k and the distance Lh in the planar direction between the power transmission coil 134 and the power reception coil 34 by experiments or the like. It is stored and estimated by deriving the corresponding distance Lh in the plane direction from the map when the coupling coefficient k is given.

こうして送電用コイル134と受電用コイル34と車高方向の距離Lvと平面方向の距離Lhとを求めると、これらから送電用コイル134と受電用コイル34との距離(以下、コイル間距離という)Lを算出する(ステップS150)。図4にコイル間距離Lを求める際の実施例の手法を模式的に示す。そして、コイル間距離Lに基づいて送電可能電力マップを選択し(ステップS160)、選択したマップと送電用コイル134と受電用コイル34との平面方向の距離Lhから送電可能電力を設定する(ステップS170)。図5に送電可能電力マップの一例を示す。図5(a)はコイル間距離Lが比較的小さいときの送電可能電力マップであり、図5(b)はコイル間距離Lが比較的大きいときの送電可能電力マップである。図5(a)(b)のマップは、図示するように、送電用コイル134の中心位置に対する受電用コイル34の中心位置と送電可能電力との関係として示される。送電可能電力は、コイル間距離Lが大きいほど且つ送電用コイル134の中心から受電用コイル34の中心が平面方向に離れるほど小さくなる傾向に設定されている。これは、非接触送受電を効率よく行なうためである。なお、図5中の送電可能電力は例示であり、この数値に限定されるものではない。送電可能電力マップの選択は、実施例では、コイル間距離Lを予め定めた所定値Lrefと比較し、コイル間距離Lが所定値L未満のときに図5(a)のマップを選択し、コイル間距離Lが所定値Lref以上のときに図5(b)のマップを選択するものとした。   Thus, when the distance Lv in the vehicle height direction and the distance Lh in the plane direction are determined from the power transmission coil 134 and the power reception coil 34, the distance between the power transmission coil 134 and the power reception coil 34 (hereinafter referred to as the inter-coil distance). L is calculated (step S150). FIG. 4 schematically shows the method of the embodiment when the inter-coil distance L is obtained. Then, a transmittable power map is selected based on the inter-coil distance L (step S160), and the transmittable power is set from the selected map and the distance Lh in the plane direction between the power transmitting coil 134 and the power receiving coil 34 (step S160). S170). FIG. 5 shows an example of a transmittable power map. FIG. 5A is a transmittable power map when the inter-coil distance L is relatively small, and FIG. 5B is a transmittable power map when the inter-coil distance L is relatively large. The maps of FIGS. 5A and 5B are shown as the relationship between the center position of the power receiving coil 34 and the power that can be transmitted with respect to the center position of the power transmitting coil 134, as shown. The power that can be transmitted is set such that the larger the inter-coil distance L is, and the smaller the center of the power receiving coil 34 is away from the center of the power transmitting coil 134 in the plane direction. This is to perform non-contact power transmission / reception efficiently. In addition, the electric power which can be transmitted in FIG. 5 is an illustration, and is not limited to this numerical value. In the embodiment, the transmission power map is selected by comparing the inter-coil distance L with a predetermined value Lref. When the inter-coil distance L is less than the predetermined value L, the map shown in FIG. The map shown in FIG. 5B is selected when the inter-coil distance L is equal to or greater than the predetermined value Lref.

こうして送電可能電力を設定すると、設定した送電可能電力とバッテリ26の蓄電割合SOCとに基づいて充電時間を算出し(ステップS180)、本ルーチンを終了する。なお、バッテリ26の蓄電割合SOCは、電流センサ27bにより検出されるバッテリ26の充放電電流Ibの積算値に基づいて演算されたものを車両ECU70から受信したものを用いるものとした。なお、送電可能電力は、送電装置130の高周波電源回路から送電ユニット131を介して受電用コイル34に送電する際の制御に用いられ、充電時間は、車両ECU70に送信されてディスプレイ72などに表示出力される。   When the transmittable power is set in this way, the charging time is calculated based on the set transmittable power and the storage ratio SOC of the battery 26 (step S180), and this routine ends. Note that as the storage ratio SOC of the battery 26, a value calculated from the integrated value of the charge / discharge current Ib of the battery 26 detected by the current sensor 27b is received from the vehicle ECU 70. The transmittable power is used for control when power is transmitted from the high frequency power supply circuit of the power transmission device 130 to the power receiving coil 34 via the power transmission unit 131, and the charging time is transmitted to the vehicle ECU 70 and displayed on the display 72 or the like. Is output.

以上説明した実施例の非接触送受電システム10によれば、送電用コイル134と受電用コイル34のコイル間距離Lを、車高センサ74からの車高Hvから推定される車高方向の距離Lvと、高周波電源回路140の出力インピーダンスZsに基づいて得られる結合係数kから推定される平面方向の距離Lhと、に基づいて計算することができる。車高センサ74を取り付けるだけで、その他の部品点数を増やすことなく、送電用コイル134と受電用コイル34のコイル間距離Lをより正確に得ることができる。また、コイル間距離Lが大きいほど且つ送電用コイル134の中心から受電用コイル34の中心が平面方向に離れるほど小さくなる傾向に送電可能電力を設定し、設定した送電可能電力に基づいて充電時間を算出するから、充電時間をより正確に算出することができる。   According to the non-contact power transmission / reception system 10 of the embodiment described above, the distance L between the power transmission coil 134 and the power reception coil 34 in the vehicle height direction estimated from the vehicle height Hv from the vehicle height sensor 74. It can be calculated based on Lv and the distance Lh in the plane direction estimated from the coupling coefficient k obtained based on the output impedance Zs of the high-frequency power supply circuit 140. By simply attaching the vehicle height sensor 74, the distance L between the coils of the power transmission coil 134 and the power reception coil 34 can be obtained more accurately without increasing the number of other components. Further, the transmittable power is set such that the larger the inter-coil distance L is and the smaller the center of the power receiving coil 34 is from the center of the power transmitting coil 134 in the plane direction, the smaller is the power that can be transmitted. Therefore, the charging time can be calculated more accurately.

実施例の非接触送受電システム10では、送電装置130の送電ECU170が図3に例示する送電開始処理を実行するものとしたが、受電装置30の車両ECU70が送電開始処理を実行するものとしてもよい。この場合、電圧検出ユニット152により検出される電圧Vsと電流センサ150により検出される電流Isとを送電ECU170から通信により受信したり、送電ECU170により演算された出力インピーダンスZsを送電ECU170から通信により受信したり、あるいは、送電ECU170により求められた結合係数kを送電ECU170から通信により受信したりしてもよい。   In the contactless power transmission / reception system 10 of the embodiment, the power transmission ECU 170 of the power transmission device 130 executes the power transmission start process illustrated in FIG. 3, but the vehicle ECU 70 of the power reception device 30 executes the power transmission start process. Good. In this case, the voltage Vs detected by the voltage detection unit 152 and the current Is detected by the current sensor 150 are received from the power transmission ECU 170 via communication, or the output impedance Zs calculated by the power transmission ECU 170 is received from the power transmission ECU 170 via communication. Alternatively, the coupling coefficient k obtained by the power transmission ECU 170 may be received from the power transmission ECU 170 by communication.

実施例の非接触送受電システム10では、自動車20が車高センサ74を備えるものとしたが、送電装置130が車高センサ74を備えるものとしても構わない。   In the non-contact power transmission / reception system 10 of the embodiment, the automobile 20 includes the vehicle height sensor 74, but the power transmission device 130 may include the vehicle height sensor 74.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、自動車の製造産業などに利用可能である。   The present invention can be used in the automobile manufacturing industry.

10 非接触送受電システム、20 自動車、22 モータ、24 インバータ、26 バッテリ、27a 電圧センサ、27b 電流センサ、28 システムメインリレー、30 受電装置、31 受電ユニット、32 受電用共振回路、34 受電用コイル、36 コンデンサ、40 充電回路、42 充電用リレー、44 リレー、46 抵抗、50 電流センサ、52,54,56 電圧検出ユニット、70 車両用電子制御ユニット(車両ECU)、72 ディスプレイ、74 車高センサ、80 通信ユニット、130 送電装置、131 送電ユニット、132 送電用共振回路、134 送電用コイル、136 コンデンサ、140 高周波電源回路、150 電流センサ、152 電圧検出ユニット、170 送電用電子制御ユニット(送電ECU)、180 通信ユニット、190 交流電源。    DESCRIPTION OF SYMBOLS 10 Non-contact power transmission / reception system, 20 Car, 22 Motor, 24 Inverter, 26 Battery, 27a Voltage sensor, 27b Current sensor, 28 System main relay, 30 Power receiving device, 31 Power receiving unit, 32 Power receiving resonance circuit, 34 Power receiving coil , 36 capacitor, 40 charging circuit, 42 charging relay, 44 relay, 46 resistance, 50 current sensor, 52, 54, 56 voltage detection unit, 70 vehicle electronic control unit (vehicle ECU), 72 display, 74 vehicle height sensor , 80 communication unit, 130 power transmission device, 131 power transmission unit, 132 resonance circuit for power transmission, 134 coil for power transmission, 136 capacitor, 140 high-frequency power circuit, 150 current sensor, 152 voltage detection unit, 170 electronic control unit for power transmission (power transmission E U), 180 communication unit, 190 an AC power source.

Claims (1)

送電コイルを有する送電装置と、
バッテリと、受電コイルを用いて前記送電装置から非接触で受電して前記バッテリを充電可能な受電装置と、を有する車両と、
を備える非接触送受電システムであって、
車高を検出する車高センサと、
前記送電装置から前記受電装置への送電の際、出力インピーダンスを計算すると共に、前記出力インピーダンスと前記車高とに基づいて前記送電コイルと前記受電コイルのコイル間距離を算出し、該コイル間距離を送電の制御に用いる制御手段と、
を備えることを特徴とする非接触送受電システム。
A power transmission device having a power transmission coil;
A vehicle having a battery and a power receiving device capable of receiving power from the power transmission device in a non-contact manner using a power receiving coil and charging the battery; and
A non-contact power transmission and reception system comprising:
A vehicle height sensor for detecting the vehicle height;
When power is transmitted from the power transmission device to the power reception device, the output impedance is calculated, and the distance between the power transmission coil and the power reception coil is calculated based on the output impedance and the vehicle height. Means for controlling the transmission of power,
A non-contact power transmission / reception system comprising:
JP2014219062A 2014-10-28 2014-10-28 Non-contact power transmission / reception system Active JP6252433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014219062A JP6252433B2 (en) 2014-10-28 2014-10-28 Non-contact power transmission / reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014219062A JP6252433B2 (en) 2014-10-28 2014-10-28 Non-contact power transmission / reception system

Publications (2)

Publication Number Publication Date
JP2016086577A true JP2016086577A (en) 2016-05-19
JP6252433B2 JP6252433B2 (en) 2017-12-27

Family

ID=55972367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014219062A Active JP6252433B2 (en) 2014-10-28 2014-10-28 Non-contact power transmission / reception system

Country Status (1)

Country Link
JP (1) JP6252433B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179811A1 (en) * 2017-03-31 2018-10-04 本田技研工業株式会社 Non-contact power transmission system
US10933756B2 (en) 2017-03-03 2021-03-02 Tdk Corporation Wireless power transmitting device and wireless power transmission system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092704A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp Power feeding system between road vehicle
JP2012070463A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Non-contact power supply device
WO2012090700A1 (en) * 2010-12-28 2012-07-05 Tdk株式会社 Wireless power feeder, wireless power receiver, and wireless transmission system
JP2013192326A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Non-contact power supply device
JP2014057458A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Vehicle and non-contact power supply system
JP2014160702A (en) * 2013-02-19 2014-09-04 Yazaki Corp Electromagnetic induction coil
JP2014183695A (en) * 2013-03-21 2014-09-29 Toyota Industries Corp Power reception equipment and non-contact power transmission device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092704A (en) * 2006-10-03 2008-04-17 Toyota Motor Corp Power feeding system between road vehicle
JP2012070463A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Non-contact power supply device
WO2012090700A1 (en) * 2010-12-28 2012-07-05 Tdk株式会社 Wireless power feeder, wireless power receiver, and wireless transmission system
JP2013192326A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Non-contact power supply device
JP2014057458A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Vehicle and non-contact power supply system
JP2014160702A (en) * 2013-02-19 2014-09-04 Yazaki Corp Electromagnetic induction coil
JP2014183695A (en) * 2013-03-21 2014-09-29 Toyota Industries Corp Power reception equipment and non-contact power transmission device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933756B2 (en) 2017-03-03 2021-03-02 Tdk Corporation Wireless power transmitting device and wireless power transmission system
WO2018179811A1 (en) * 2017-03-31 2018-10-04 本田技研工業株式会社 Non-contact power transmission system
JP2018174691A (en) * 2017-03-31 2018-11-08 本田技研工業株式会社 Non-contact power transmission system
CN110462976A (en) * 2017-03-31 2019-11-15 本田技研工业株式会社 Non-contact electric power transmission system
CN110462976B (en) * 2017-03-31 2022-11-22 本田技研工业株式会社 Contactless electrical power transmission system

Also Published As

Publication number Publication date
JP6252433B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US10562396B2 (en) Parking assistance apparatus and system
US9969280B2 (en) Contactless electricity supply device
JP6359924B2 (en) Non-contact power transmission / reception system
JP6206556B2 (en) Induction system, vehicle, and power transmission device
US9956914B2 (en) Parking assistance device and parking assistance method
JP2017028855A (en) Power receiving device and non-contact power transmission method
JP2016067149A (en) Non-contact power transmission/reception system
JP6566131B2 (en) Method for detecting coil position of non-contact power feeding system and non-contact power feeding system
JP6252433B2 (en) Non-contact power transmission / reception system
CN109155539B (en) Coil position detection method for non-contact power supply system and power receiving device
WO2013118368A1 (en) Charging station and relative position control method
JP6384566B2 (en) Non-contact power transmission / reception system and vehicle
JP2016086575A (en) Power receiving device
JP6248883B2 (en) Power receiving device
JP2016063600A (en) Power reception device
CN111152669A (en) Electric vehicle
US11043819B2 (en) Non-contact power transmission system
JP2017153220A (en) vehicle
JP2015186364A (en) Vehicular power apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151