JP2008092704A - Power feeding system between road vehicle - Google Patents

Power feeding system between road vehicle Download PDF

Info

Publication number
JP2008092704A
JP2008092704A JP2006271995A JP2006271995A JP2008092704A JP 2008092704 A JP2008092704 A JP 2008092704A JP 2006271995 A JP2006271995 A JP 2006271995A JP 2006271995 A JP2006271995 A JP 2006271995A JP 2008092704 A JP2008092704 A JP 2008092704A
Authority
JP
Japan
Prior art keywords
power
power transmission
vehicle
antenna
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006271995A
Other languages
Japanese (ja)
Inventor
Susumu Sasaki
将 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006271995A priority Critical patent/JP2008092704A/en
Publication of JP2008092704A publication Critical patent/JP2008092704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power feeding system between road vehicles which can improve the transmission efficiency of energy, and can alleviate a load of a power receiving device caused by excessive power transmission. <P>SOLUTION: The power feeding system between the road vehicles comprises the power receiving device 20 which is mounted to the vehicle 50, and receives a microwave via a power receiving antenna 21, and a power transmission device 10 which is arranged at a road side, and transmits the microwave via a power transmission antenna 15. The system is also characterized in that a power transmission output of the power transmission device 10 is variable according a distance between the power receiving antenna 21 and the power transmission antenna 15, or according to the direction of the power transmission of the microwave which should be transmitted via the power transmission antenna 15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両に搭載され、受電アンテナを介してマイクロ波を受電する受電装置と、道路側に設置され、送電アンテナを介してマイクロ波を送電する送電装置と、を有する路車間電力供給システムに関する。   The present invention is a road-to-vehicle power supply system that includes a power receiving device that is mounted on a vehicle and receives microwaves via a power receiving antenna, and a power transmission device that is installed on the road side and transmits microwaves via a power transmitting antenna. About.

従来、車両に搭載され、受電アンテナを介して受電したマイクロ波により電力の供給を受ける受電装置と、道路に設置され、前記受電アンテナに路面側からマイクロ波を照射する送電アンテナを備えた送電装置と、を有する路車間電力供給システムが知られている(例えば、特許文献1参照)。この路車間電力供給システムにおける送電装置は、受電装置側から受信した基準位置情報及び受電アンテナの敷設領域情報に基づいて照射領域を設定するとともに、設定した照射領域内の送電アンテナにマイクロ波を照射させる制御手段を備えるものである。
特開2006−166570号公報
2. Description of the Related Art Conventionally, a power transmission device that is mounted on a vehicle and receives power supply by microwaves received via a power reception antenna, and a power transmission device that is installed on a road and that radiates microwaves from the road surface to the power reception antenna There is known a road-to-vehicle power supply system (see, for example, Patent Document 1). The power transmission device in this road-to-vehicle power supply system sets the irradiation region based on the reference position information received from the power reception device side and the laying region information of the power reception antenna, and irradiates the power transmission antenna in the set irradiation region with microwaves. The control means to be provided is provided.
JP 2006-166570 A

しかしながら、上述の従来技術では、マイクロ波を照射する際の送電出力については考慮されていないため、例えば、車両に搭載される受電アンテナと道路に設置される送電アンテナとの距離が長い場合には車両が必要とする電力が十分得られず、また、車両に搭載される受電アンテナと道路に設置される送電アンテナとの距離が短い場合には必要以上の電力が送電されて、エネルギーの伝送効率が下がるおそれがある。さらに、受電装置が受電可能な許容電力を超える電力が送電されると、受電装置に異常が生ずるおそれがある。   However, in the above-described conventional technology, since the power transmission output when irradiating microwaves is not taken into consideration, for example, when the distance between the power receiving antenna mounted on the vehicle and the power transmitting antenna installed on the road is long If the power required by the vehicle is not sufficient, and if the distance between the power receiving antenna mounted on the vehicle and the power transmitting antenna installed on the road is short, more power is transmitted than necessary and the energy transmission efficiency May fall. Furthermore, when power exceeding the allowable power that can be received by the power receiving device is transmitted, there is a possibility that an abnormality may occur in the power receiving device.

そこで、本発明は、エネルギーの伝送効率を向上させるとともに過送電による受電装置の負担を軽減することができる、路車間電力供給システムの提供を目的とする。   Therefore, an object of the present invention is to provide a road-to-vehicle power supply system capable of improving energy transmission efficiency and reducing the burden on a power receiving device due to overpower transmission.

上記目的を達成するため、本発明に係る路車間電力供給システムは、
車両に搭載され、受電アンテナを介してマイクロ波を受電する受電装置と、
道路側に設置され、送電アンテナを介してマイクロ波を送電する送電装置と、を有する路車間電力供給システムであって、
前記送電装置の送電出力が、前記受電アンテナと前記送電アンテナとの距離に応じて、又は、前記送電アンテナを介して送電すべきマイクロ波の送電方向に応じて、可変することを特徴とする。これにより、前記距離や前記送電方向に適した送電出力に調整することができるので、マイクロ波によるエネルギーの伝送効率を向上させることができるとともに、過送電による受電装置(特に、内蔵の整流ダイオード)の負担を軽減することができる。例えば、前記送電装置の送電出力を、前記距離が長いほど、又は、前記受電アンテナと前記送電アンテナとの距離が最短になる方向と前記送電方向とのなす角度が大きいほど、大きくすると好適である。
In order to achieve the above object, a road-to-vehicle power supply system according to the present invention includes:
A power receiving device mounted on a vehicle and receiving microwaves via a power receiving antenna;
A road-to-vehicle power supply system having a power transmission device installed on the road side and transmitting microwaves via a power transmission antenna,
The power transmission output of the power transmission device is variable according to a distance between the power receiving antenna and the power transmission antenna or according to a power transmission direction of a microwave to be transmitted through the power transmission antenna. Thereby, since it can adjust to the power transmission output suitable for the said distance and the said power transmission direction, while being able to improve the transmission efficiency of the energy by a microwave, the power receiving device (especially built-in rectifier diode) by overpower transmission Can be reduced. For example, it is preferable to increase the power transmission output of the power transmission device as the distance is longer or as the angle between the direction in which the distance between the power receiving antenna and the power transmission antenna is the shortest and the power transmission direction is larger. .

また、上述の本発明に係る路車間電力供給システムは、更に、前記車両の位置情報を検出する位置情報検出手段を備え、前記距離は、前記位置情報検出手段によって検出された前記車両の位置情報に基づいて導出されると好ましい。   The road-to-vehicle power supply system according to the present invention described above further includes position information detection means for detecting the position information of the vehicle, and the distance is detected by the position information detection means. Is preferably derived on the basis of

また、上述の本発明に係る路車間電力供給システムは、更に、前記車両から送信された信号を受信することによって該信号の到来方向を検出する方向検出手段を備え、前記送電方向は、前記方向検出手段によって検出された到来方向に基づいて設定されると好ましい。   The road-to-vehicle power supply system according to the present invention described above further includes direction detection means for detecting the arrival direction of the signal by receiving the signal transmitted from the vehicle, and the power transmission direction is the direction. It is preferable to set based on the direction of arrival detected by the detecting means.

本発明によれば、エネルギーの伝送効率を向上させるとともに過送電による受電装置の負担を軽減することができる。   ADVANTAGE OF THE INVENTION According to this invention, while improving the transmission efficiency of energy, the burden of the receiving device by overpower transmission can be reduced.

本発明は、マイクロ波等の電磁波によるエネルギー伝送技術を応用して、道路側から道路上を走行する電気自動車等の車両への非接触での給電を行う路車間電力供給システムを提供する。電磁波によるエネルギー伝送技術とは、電気エネルギーを所定の周波数の電波(例えば、2.45GHzのマイクロ波)のエネルギーに変換して、無線でエネルギーを伝送する技術である。電磁波によるエネルギー伝送技術は、走行する車両への送電も可能となる点で、走行する車両への送電には限界のある有線によるエネルギー伝送技術と異なる。   The present invention provides a road-to-vehicle power supply system that applies non-contact power supply to a vehicle such as an electric vehicle traveling on a road from the road side by applying an energy transmission technique using electromagnetic waves such as microwaves. The energy transmission technology using electromagnetic waves is a technology for converting electric energy into radio wave energy of a predetermined frequency (for example, 2.45 GHz microwave) and transmitting the energy wirelessly. Energy transmission technology using electromagnetic waves is different from wired energy transmission technology, which has limitations in power transmission to traveling vehicles, in that power transmission to traveling vehicles is possible.

図1は、マイクロ波エネルギー伝送システムの概要図である。送電側の電磁波発生装置において直流または交流の送電電力はマイクロ波に変換される。直流電力または交流電力のマイクロ波への変換手段として、例えば、電子レンジにも使用されるマグネトロンがある。マグネトロンから出力されたマイクロ波は送電アンテナから放射される。放射された電力はレクテナと呼ばれるマイクロ波受電整流素子によって、受電、そして整流されて、直流電力として取り出される。レクテナとは、受電アンテナ21と整流回路22が一体化したマイクロ波受電整流素子である。整流回路22は、その入力端を1個以上の整流ダイオード22aを介してグランド線路に接続して構成され、受電アンテナ21を介して入力されたマイクロ波を整流する。   FIG. 1 is a schematic diagram of a microwave energy transmission system. In the electromagnetic wave generator on the power transmission side, direct-current or alternating-current transmission power is converted into microwaves. As a means for converting DC power or AC power into microwaves, for example, there is a magnetron that is also used in a microwave oven. The microwave output from the magnetron is radiated from the power transmission antenna. The radiated power is received and rectified by a microwave power receiving rectifier element called a rectenna, and is taken out as DC power. The rectenna is a microwave power receiving rectifying element in which the power receiving antenna 21 and the rectifying circuit 22 are integrated. The rectifier circuit 22 is configured by connecting its input end to a ground line via one or more rectifier diodes 22a, and rectifies the microwaves input via the power receiving antenna 21.

図2は、道路上を走行中の車両に給電する路車間電力供給システムの概要図である。送電アンテナを介してマイクロ波が放射される送電道路において、マイクロ波発生源で発生したマイクロ波が当該送電道路上を走行する電気自動車50に向けて放射される。放射されたマイクロ波は電気自動車50に搭載されるレクテナによって受電されて直流電力に整流される。レクテナで整流された直流電力はバッテリやモータ等の電気自動車50の駆動源に供給される。これにより、電気自動車50は、走行しながらの外部からの給電によって、バッテリの消費を抑えて走行することが可能となる。   FIG. 2 is a schematic diagram of a road-to-vehicle power supply system that supplies power to a vehicle traveling on a road. In a power transmission road where microwaves are radiated via a power transmission antenna, the microwave generated by the microwave generation source is radiated toward the electric vehicle 50 traveling on the power transmission road. The radiated microwave is received by a rectenna mounted on the electric vehicle 50 and rectified to DC power. The DC power rectified by the rectenna is supplied to a drive source of the electric vehicle 50 such as a battery or a motor. Thus, the electric vehicle 50 can travel while suppressing battery consumption by external power feeding while traveling.

図3は、本発明に係る路車間電力供給システムの第1の実施形態を示す図である。第1の実施形態の路車間電力供給システムは、道路側に設置される送電装置10と車両50に搭載される受電装置20を有している。送電装置10は、RF発振装置11、デバイダ12、移相器13、出力可変増幅器14及び送電アンテナ15を備える。受電装置20は、図1で示したように、受電アンテナ21及び整流回路22を備える。   FIG. 3 is a diagram showing a first embodiment of a road-to-vehicle power supply system according to the present invention. The road-to-vehicle power supply system of the first embodiment includes a power transmission device 10 installed on the road side and a power reception device 20 mounted on a vehicle 50. The power transmission device 10 includes an RF oscillation device 11, a divider 12, a phase shifter 13, an output variable amplifier 14, and a power transmission antenna 15. As shown in FIG. 1, the power receiving device 20 includes a power receiving antenna 21 and a rectifier circuit 22.

RF発振装置11は、直流または交流電流をマイクロ波に相当する周波数の信号波(RF出力)に変換し、RF出力をデバイダ12に出力する。RF発振装置11の具体例として、真空管タイプの発振装置(例えば、マグネトロン)や水晶発振器が挙げられる。   The RF oscillation device 11 converts a direct current or an alternating current into a signal wave (RF output) having a frequency corresponding to a microwave, and outputs an RF output to the divider 12. Specific examples of the RF oscillation device 11 include a vacuum tube type oscillation device (for example, a magnetron) and a crystal oscillator.

デバイダ12は、RF発振装置11で発生したRF出力を分割し、n(nは2以上の整数)個の移相器13のそれぞれに出力する。n個の移相器13は、後述する計算処理装置31の処理結果に従って、デバイダ12からのRF出力の位相を個別に変化させ、n個の出力可変増幅器14に出力する。n個の出力可変増幅器14は、後述する計算処理装置31の処理結果に従って、マイクロ波の送電出力を可変する。   The divider 12 divides the RF output generated by the RF oscillation device 11 and outputs it to each of n (n is an integer of 2 or more) phase shifters 13. The n number of phase shifters 13 individually change the phase of the RF output from the divider 12 in accordance with the processing result of the calculation processing device 31 described later, and output it to the n number of output variable amplifiers 14. The n output variable amplifiers 14 change the microwave power transmission output according to the processing result of the calculation processing device 31 described later.

送電アンテナ15は、計算処理装置31によって算出されたマイクロ波を送電すべき送電方向に、出力可変増幅器14によって調整された送電出力でマイクロ波を送信するアンテナである。車両50に対する給電のためにマイクロ波を放射する送電アンテナ15は、車両50が走行する道路において所定の間隔毎に設けられた給電区間毎に埋設されるため、平面アンテナであることが望ましい。この平面アンテナとしては、円形パッチアンテナ、キャビティ付スロットアンテナ、導波管スロットアンテナなどが挙げられる。なお、送電アンテナ15は、詳細は後述するが、車両50から送信された所定の信号を受信する信号受信用アンテナを備える。また、送電装置10、並びに後述する情報検知器30及び計算処理装置31は、給電区間毎に設置される。   The power transmission antenna 15 is an antenna that transmits the microwave with the power transmission output adjusted by the output variable amplifier 14 in the power transmission direction in which the microwave calculated by the calculation processing device 31 is to be transmitted. The power transmission antenna 15 that radiates microwaves for power supply to the vehicle 50 is preferably a planar antenna because it is embedded in each power supply section provided at predetermined intervals on the road on which the vehicle 50 travels. Examples of the planar antenna include a circular patch antenna, a slot antenna with a cavity, and a waveguide slot antenna. The power transmission antenna 15 includes a signal receiving antenna that receives a predetermined signal transmitted from the vehicle 50, details of which will be described later. Moreover, the power transmission apparatus 10, and the information detector 30 and the calculation processing apparatus 31, which will be described later, are installed for each power feeding section.

送電アンテナ15から放射されたマイクロ波は、車両50に搭載された受電装置20の受電アンテナ21によって受電される。受電装置20は、送電アンテナ15から放射されたマイクロ波を受電アンテナ21で受信し、整流回路22を介して車両50に搭載されるバッテリ等に給電する。受電アンテナ21は、路面から放射されたマイクロ波を受電しやすいように、車両50の底面に設置される平面アンテナであることが望ましい。受電アンテナ21の具体例として、送受電間隔が狭く車両底面が金属であることから、円形パッチアンテナが挙げられる。図4は、車両50の底面図である。車両50の底面には複数の受電アンテナ21が並べられアレイ化されている。   The microwave radiated from the power transmission antenna 15 is received by the power reception antenna 21 of the power reception device 20 mounted on the vehicle 50. The power receiving device 20 receives the microwave radiated from the power transmitting antenna 15 by the power receiving antenna 21 and supplies power to a battery or the like mounted on the vehicle 50 via the rectifier circuit 22. The power receiving antenna 21 is desirably a planar antenna installed on the bottom surface of the vehicle 50 so that the microwave radiated from the road surface can be easily received. A specific example of the power receiving antenna 21 is a circular patch antenna because the power transmission / reception interval is narrow and the bottom surface of the vehicle is metal. FIG. 4 is a bottom view of the vehicle 50. A plurality of power receiving antennas 21 are arranged in an array on the bottom surface of the vehicle 50.

信号送信用アンテナ25は、車両50のフロント部とリヤ部(例えば、フロントガラスとリヤガラス)に搭載され、車両50の位置情報、速度情報及びエネルギー情報等の車両情報に係る信号波を送信するためのアンテナである。車両50の位置情報は、絶対位置情報でも相対位置情報でもよく、車載のGPS装置によって特定可能であったり、所定の基準地点(例えば、給電区間に設定された基準位置)からの走行距離によって特定可能であったりする。車両50の速度情報は、車輪速センサによって取得可能である。車両50のエネルギー情報とは、車両50に搭載されるバッテリの蓄電状態(例えば、バッテリ電圧やSOC(State of Charge))を表す情報である。信号送信用アンテナ25は、車両50の位置情報等の車両情報に係る信号波を所定の周期で道路側に送信する。   The signal transmitting antenna 25 is mounted on a front part and a rear part (for example, a windshield and a rear glass) of the vehicle 50, and transmits signal waves related to vehicle information such as position information, speed information, and energy information of the vehicle 50. Antenna. The position information of the vehicle 50 may be absolute position information or relative position information, and can be specified by an in-vehicle GPS device or specified by a travel distance from a predetermined reference point (for example, a reference position set in a power feeding section). It is possible. The speed information of the vehicle 50 can be acquired by a wheel speed sensor. The energy information of the vehicle 50 is information representing a storage state (for example, battery voltage or SOC (State of Charge)) of a battery mounted on the vehicle 50. The signal transmission antenna 25 transmits a signal wave related to vehicle information such as position information of the vehicle 50 to the road side at a predetermined cycle.

情報検知器30は、道路側に設置され、信号送信用アンテナ25によって送信された車両情報に係る信号波を送電アンテナ15を介して受信するとともに、その車両情報を検知する。情報検知器30によって検知された車両情報は計算処理装置31に入力される。   The information detector 30 is installed on the road side and receives a signal wave related to vehicle information transmitted by the signal transmission antenna 25 via the power transmission antenna 15 and detects the vehicle information. The vehicle information detected by the information detector 30 is input to the calculation processing device 31.

計算処理装置31は、中央演算処理装置を備えるコンピュータであって、信号送信用アンテナ25によって送信された車両情報に係る信号波に基づいて(情報検知器30によって検知された車両情報に基づいて)、車両50側の受電アンテナ21と道路側の送電アンテナ15との伝送距離(アンテナ間距離)、信号波の到来方向、受電アンテナ21と送電アンテナ15との相対速度(アンテナ間相対速度)、車載バッテリのSOC等のエネルギー情報などを導出する。計算処理装置31は、これらの導出結果に基づいて、送電アンテナ15を介して当該車両50の受電アンテナ21に向けて送電すべきマイクロ波の最適な送電方向(走査角度)と送電出力を算出する。計算処理装置31は、その処理結果として、算出した送電方向(走査角度)と送電出力を移相器13や出力可変増幅器14に出力する。これによって、計算処理装置31は、車両50に搭載される受電アンテナ21の方向に送電アンテナ15から放射されるマイクロ波の送電方向が一致するように送電装置10を制御するとともに、受電アンテナ21の受電能力を超えない範囲内で車両50に必要な電力を給電できる送電出力となるように送電装置10を制御する。   The calculation processing device 31 is a computer including a central processing unit, and is based on a signal wave related to vehicle information transmitted by the signal transmission antenna 25 (based on vehicle information detected by the information detector 30). The transmission distance between the power receiving antenna 21 on the vehicle 50 side and the power transmitting antenna 15 on the road side (distance between the antennas), the direction of arrival of the signal wave, the relative speed between the power receiving antenna 21 and the power transmitting antenna 15 (relative speed between the antennas), in-vehicle Energy information such as battery SOC is derived. Based on these derivation results, the calculation processing device 31 calculates the optimum power transmission direction (scanning angle) and power transmission output of the microwave to be transmitted to the power receiving antenna 21 of the vehicle 50 via the power transmission antenna 15. . The calculation processing device 31 outputs the calculated power transmission direction (scanning angle) and power transmission output to the phase shifter 13 and the output variable amplifier 14 as the processing result. As a result, the calculation processing device 31 controls the power transmission device 10 so that the power transmission direction of the microwaves radiated from the power transmission antenna 15 matches the direction of the power reception antenna 21 mounted on the vehicle 50. The power transmission device 10 is controlled so as to obtain a power transmission output capable of supplying necessary power to the vehicle 50 within a range not exceeding the power receiving capability.

図5は、第1の実施形態におけるマイクロ波の送電方向を説明するための図である。マイクロ波の送電方向は、図5に示される走査角度θによって定められる。図5に示される走査角度θは、路面に設置された送電アンテナ15と車両50の底面に設置された受電アンテナ21との距離が最短になる方向を基準方向としたとき、その基準方向と送電アンテナ15を介してマイクロ波が送電される送電方向とのなす角度をいう。すなわち、路面に設置された送電アンテナ15の鉛直上に車両50が存在する場合、走査角度θは0°となる。   FIG. 5 is a diagram for explaining a microwave power transmission direction according to the first embodiment. The transmission direction of the microwave is determined by the scanning angle θ shown in FIG. The scanning angle θ shown in FIG. 5 is obtained when the direction in which the distance between the power transmitting antenna 15 installed on the road surface and the power receiving antenna 21 installed on the bottom surface of the vehicle 50 is the shortest is the reference direction. An angle formed with a power transmission direction in which microwaves are transmitted through the antenna 15. That is, when the vehicle 50 exists vertically above the power transmission antenna 15 installed on the road surface, the scanning angle θ is 0 °.

すなわち、計算処理装置31は、送電道路を走行する車両50が送電アンテナ15の設置地点から離れるにつれて走査角度θを大きくすることによって、車両50に搭載される受電アンテナ21の方向に送電アンテナ15から放射されるマイクロ波の送電方向を追従させる。例えば、計算処理装置31は、アンテナ間距離が略零の場合には、道路に埋設された送電アンテナ15の真上に車両50の受電アンテナ21が存在するとみなして、走査角度θを0°に設定して、移相器13を制御する。また、計算処理装置31は、例えば、アンテナ間距離が零より大きい所定値(例えば、30m)の場合には、走査角度θを当該所定値に対応する角度に設定して、移相器13を制御する。   In other words, the calculation processing device 31 increases the scanning angle θ as the vehicle 50 traveling on the power transmission road moves away from the installation point of the power transmission antenna 15, thereby moving the power transmission antenna 15 from the power transmission antenna 15 toward the power reception antenna 21. The power transmission direction of the emitted microwave is made to follow. For example, when the distance between the antennas is approximately zero, the calculation processing device 31 considers that the power receiving antenna 21 of the vehicle 50 exists directly above the power transmitting antenna 15 embedded in the road, and sets the scanning angle θ to 0 °. Set and control the phase shifter 13. For example, when the distance between the antennas is a predetermined value (for example, 30 m) greater than zero, the calculation processing device 31 sets the scanning angle θ to an angle corresponding to the predetermined value and sets the phase shifter 13. Control.

また、計算処理装置31は、レトロディレクティブ方式によって、送電アンテナ15を介してマイクロ波を送電すべき方向を決定してもよい。レトロディレクティブ方式とは、Van Atta Arrayを基本とする、パイロット信号の到来方向にマイクロ波を送信するためのフェーズドアレイ方式である。Van Atta Arrayは、パイロット信号受信用とマイクロ波送信用でアレイアンテナの位置を1次元対称に配置し、対称位置にある受信アンテナと送信アンテナを同距離で接続することで、パイロット信号の方向へマイクロ波を向けることができる。これを基本とし、レトロディレクティブ方式では、受信されたパイロット信号の位相共役を取ることによりマイクロ波をパイロット信号の方向に送信する。Van Atta Arrayでは位置の対称性でマイクロ波を送り返したのに対し、レトロディレクティブでは電波の位相の対称性を利用している。そのため、レトロディレクティブではアンテナの位置情報を受信パイロット信号の位相情報として得られるため、アンテナの形状にかかわらずパイロット信号の到来方向にマイクロ波を送電することができる。すなわち、信号送信用アンテナ25によって送信された車両情報に係る信号波を上記のパイロット信号とみなせばよい。   Further, the calculation processing device 31 may determine the direction in which the microwaves should be transmitted via the power transmission antenna 15 by the retrodirective method. The retrodirective method is a phased array method for transmitting microwaves in the arrival direction of a pilot signal based on the Van Atta Array. In the Van Atta Array, the positions of the array antennas for pilot signal reception and microwave transmission are arranged one-dimensionally symmetrically, and the reception antennas and the transmission antennas at the symmetrical positions are connected at the same distance, thereby moving in the direction of the pilot signal. Microwave can be directed. Based on this, in the retrodirective method, the microwave is transmitted in the direction of the pilot signal by taking the phase conjugate of the received pilot signal. In the Van Atta Array, the microwave is sent back with the symmetry of the position, whereas the retrodirective uses the symmetry of the phase of the radio wave. For this reason, since the retrodirective obtains the antenna position information as the phase information of the received pilot signal, microwaves can be transmitted in the direction of arrival of the pilot signal regardless of the shape of the antenna. That is, the signal wave related to the vehicle information transmitted by the signal transmission antenna 25 may be regarded as the pilot signal.

また、計算処理装置31は、送電アンテナ15で受信された受信波の受信感度を示す受信レベルに基づいて、信号送信用アンテナ25によって送信された車両情報に係る信号波の到来方向を推定し、送電アンテナ15を介してマイクロ波を送電すべき方向を決定してもよい。計算処理装置31は、信号送信用アンテナ25によって送信された車両情報に係る信号波が送電アンテナ15を介して受信したときの受信レベルを検出する。計算処理装置31は、送電アンテナ15の指向性を各方向に切り替えたときの受信波の受信レベルのうち送電アンテナ15の指向性をある一方向に切り替えたときの受信波の受信レベルが最大である場合には、その一方向に車両情報に係る信号を送信した信号送信用アンテナ25を搭載する車両50が存在すると推定する。計算処理装置31は、その推定された車両50の方向(受電アンテナ21の方向)に対応する走査角度θに設定して、移相器12を制御する。   Further, the calculation processing device 31 estimates the arrival direction of the signal wave related to the vehicle information transmitted by the signal transmission antenna 25 based on the reception level indicating the reception sensitivity of the reception wave received by the power transmission antenna 15, You may determine the direction which should transmit a microwave via the power transmission antenna 15. FIG. The calculation processing device 31 detects the reception level when the signal wave related to the vehicle information transmitted by the signal transmission antenna 25 is received via the power transmission antenna 15. The calculation processing device 31 has the maximum reception level of the received wave when the directivity of the power transmission antenna 15 is switched to one direction among the reception levels of the received wave when the directivity of the power transmission antenna 15 is switched to each direction. In some cases, it is estimated that there is a vehicle 50 equipped with the signal transmission antenna 25 that transmits a signal related to vehicle information in one direction. The calculation processing device 31 sets the scanning angle θ corresponding to the estimated direction of the vehicle 50 (the direction of the power receiving antenna 21), and controls the phase shifter 12.

一方、計算処理装置31は、例えば、送電アンテナ15と受電アンテナ21とのアンテナ間距離に基づいて、マイクロ波の送電出力を算出する。アンテナ間距離が長くなるにつれて大気減衰の影響が大きくなるので、計算処理装置31は、アンテナ間距離と送電出力との関係を定めたマップ値に基づき、アンテナ間距離が長くなるにつれて送電出力が大きくなるように算出する。計算処理装置31は、その算出された送電出力となるように出力可変増幅器14を制御する。   On the other hand, the calculation processing device 31 calculates the microwave power transmission output, for example, based on the distance between the antennas of the power transmission antenna 15 and the power reception antenna 21. Since the influence of atmospheric attenuation increases as the distance between antennas increases, the calculation processing device 31 increases the power transmission output as the distance between antennas increases based on a map value that defines the relationship between the distance between antennas and the power transmission output. Calculate as follows. The calculation processing device 31 controls the output variable amplifier 14 so that the calculated power transmission output is obtained.

また、計算処理装置31は、信号送信用アンテナ25によって送信された車両情報に係る信号波の到来方向(すなわち、マイクロ波を送電すべき方向)に応じて、マイクロ波の送電電力を決定してもよい。マイクロ波の送電方向によってマイクロ波のエネルギー損失は異なるので(特に、フェーズドアレイ方式の相互干渉による損失は大きいので)、計算処理装置は、マイクロ波の送電方向を決める走査角度θとマイクロ波の送電電力との関係を定めたマップ値に基づき、走査角度θが大きくなるにつれて送電出力が大きくなるように算出する。計算処理装置31は、その算出された送電出力となるように出力可変増幅器14を制御する。   Further, the calculation processing device 31 determines the transmission power of the microwave according to the arrival direction of the signal wave related to the vehicle information transmitted by the signal transmission antenna 25 (that is, the direction in which the microwave should be transmitted). Also good. Since the microwave energy loss differs depending on the microwave transmission direction (especially, the loss due to the mutual interference of the phased array method is large), the processing unit uses the scanning angle θ that determines the microwave transmission direction and the microwave transmission. Based on the map value that defines the relationship with power, the power transmission output is calculated to increase as the scanning angle θ increases. The calculation processing device 31 controls the output variable amplifier 14 so that the calculated power transmission output is obtained.

また、計算処理装置31は、情報検知器30によって検知された車両情報に基づいて導出された車載バッテリのSOC等のエネルギー情報も考慮して、マイクロ波の送電出力を決定する。計算処理装置31は、車載のバッテリの蓄電状態に応じて、マイクロ波の送電出力を調整し、例えば車載バッテリの蓄電状態が満充電の場合には、送電出力を零にすることによってマイクロ波の送電を停止させることも可能である。   The calculation processing device 31 also determines energy transmission output of the microwave in consideration of energy information such as the SOC of the in-vehicle battery derived based on the vehicle information detected by the information detector 30. The calculation processing device 31 adjusts the power transmission output of the microwave according to the power storage state of the in-vehicle battery. For example, when the power storage state of the on-vehicle battery is fully charged, the power transmission output is set to zero. It is also possible to stop power transmission.

図6は、本発明に係る路車間電力供給システムの第2の実施形態を示す図である。第2の実施形態の構成のうち第1の実施形態と同一または同様の機能を有する部分は、第1の実施形態と同一の符号を付与して、それらの説明を省略又は簡略する。第2の実施形態の路車間電力供給システムも、道路側に設置される送電装置10と車両50に搭載される受電装置20を有している。第2の実施形態における送電装置10は、RF発振装置11、モータ16、パラボラアンテナ17を有する。第2の実施形態における受電装置20は、図1で示したように、受電アンテナ21及び整流回路22を備える。   FIG. 6 is a diagram showing a second embodiment of the road-to-vehicle power supply system according to the present invention. In the configuration of the second embodiment, parts having the same or similar functions as those of the first embodiment are given the same reference numerals as those of the first embodiment, and the description thereof is omitted or simplified. The road-to-vehicle power supply system of the second embodiment also includes a power transmission device 10 installed on the road side and a power reception device 20 mounted on the vehicle 50. The power transmission device 10 in the second embodiment includes an RF oscillation device 11, a motor 16, and a parabolic antenna 17. The power receiving device 20 in the second embodiment includes a power receiving antenna 21 and a rectifier circuit 22 as shown in FIG.

RF発振装置11は、直流または交流電流をマイクロ波に相当する周波数の信号波(RF出力)に変換し、RF出力をパラボラアンテナ17に出力する。RF発振装置11は、計算処理装置31の処理結果に従って、マイクロ波の送電出力を可変する。   The RF oscillation device 11 converts a direct current or an alternating current into a signal wave (RF output) having a frequency corresponding to a microwave, and outputs an RF output to the parabolic antenna 17. The RF oscillation device 11 varies the microwave power transmission output according to the processing result of the calculation processing device 31.

パラボラアンテナ17は、モータ16の回転によるパラボラアンテナ17自体の向きを変化させることによってマイクロ波の送電方向を変化させる。パラボラアンテナ17は、計算処理装置31によって算出されたマイクロ波を送電すべき送電方向に、RF発振装置11によって調整された送電出力でマイクロ波を送信するアンテナである。車両50に対する給電のためにマイクロ波を放射するパラボラアンテナ17は、車両50が走行する道路において所定の間隔毎に設けられた給電区間毎に併設される。   The parabolic antenna 17 changes the transmission direction of the microwave by changing the direction of the parabolic antenna 17 itself by the rotation of the motor 16. The parabolic antenna 17 is an antenna that transmits a microwave with a power transmission output adjusted by the RF oscillation device 11 in a power transmission direction in which the microwave calculated by the calculation processing device 31 is to be transmitted. The parabolic antenna 17 that radiates microwaves for power supply to the vehicle 50 is provided for each power supply section provided at predetermined intervals on the road on which the vehicle 50 travels.

パラボラアンテナ17から放射されたマイクロ波は、車両50に搭載された受電装置20の受電アンテナ21によって受電される。受電アンテナ21は、パラボラアンテナ17から放射されたマイクロ波を受信しやすい向きで車両50に設置される。例えば、受電アンテナ21は、車両50の側方からのマイクロ波を受信しやすい位置に搭載される。   The microwave radiated from the parabolic antenna 17 is received by the power receiving antenna 21 of the power receiving device 20 mounted on the vehicle 50. The power receiving antenna 21 is installed in the vehicle 50 in a direction that facilitates reception of the microwave radiated from the parabolic antenna 17. For example, the power receiving antenna 21 is mounted at a position where microwaves from the side of the vehicle 50 can be easily received.

情報検知器32は、道路側に設置され、信号送信用アンテナ25によって送信された車両情報に係る信号波を受信するとともに、その車両情報を検知する。情報検知器32によって検知された車両情報は計算処理装置31に入力される。   The information detector 32 is installed on the road side, receives a signal wave related to vehicle information transmitted by the signal transmission antenna 25, and detects the vehicle information. The vehicle information detected by the information detector 32 is input to the calculation processing device 31.

計算処理装置31は、上述と同様に、中央演算処理装置を備えるコンピュータであって、信号送信用アンテナ25によって送信された車両情報に係る信号波に基づいて(情報検知器32によって検知された車両情報に基づいて)、アンテナ間距離、信号波の到来方向、アンテナ間相対速度、エネルギー情報などを導出する。計算処理装置31は、これらの導出結果に基づいて、パラボラアンテナ17を介して当該車両50の受電アンテナ21に向けて送電すべきマイクロ波の最適な送電方向(走査角度)と送電出力を算出する。計算処理装置31は、その処理結果として、算出した送電方向(走査角度)と送電出力をRF発信装置11やモータ16に出力する。   As described above, the calculation processing device 31 is a computer including a central processing unit, and is based on a signal wave relating to vehicle information transmitted by the signal transmission antenna 25 (a vehicle detected by the information detector 32). Based on the information), the distance between the antennas, the arrival direction of the signal wave, the relative speed between the antennas, the energy information, etc. are derived. Based on these derivation results, the calculation processing device 31 calculates the optimum power transmission direction (scanning angle) and power transmission output of the microwave to be transmitted toward the power receiving antenna 21 of the vehicle 50 via the parabolic antenna 17. . The calculation processing device 31 outputs the calculated power transmission direction (scanning angle) and power transmission output to the RF transmission device 11 and the motor 16 as the processing result.

図7は、第2の実施形態におけるマイクロ波の送電方向を説明するための図である。図7は、道路の給電区間を走行中の車両50を上方から見た図である。マイクロ波の送電方向は、図7に示される走査角度θによって定められる。図7に示される走査角度θは、道路に隣接して設置されたパラボラアンテナ17と車両50の底面や側面に設置された受電アンテナ21との距離が最短になる方向を基準方向としたとき、その基準方向と送電アンテナ15を介してマイクロ波が送電される送電方向とのなす角度をいう。すなわち、道路に隣接して設置されるパラボラアンテナ17自体の向きが道路に対して垂直の場合に、走査角度θは0°となる。   FIG. 7 is a diagram for explaining a microwave power transmission direction according to the second embodiment. FIG. 7 is a view of the vehicle 50 traveling in the power feeding section of the road as viewed from above. The transmission direction of the microwave is determined by the scanning angle θ shown in FIG. When the scanning angle θ shown in FIG. 7 is a reference direction in which the distance between the parabolic antenna 17 installed adjacent to the road and the power receiving antenna 21 installed on the bottom and side surfaces of the vehicle 50 is the shortest, The angle between the reference direction and the power transmission direction in which microwaves are transmitted through the power transmission antenna 15 is referred to. That is, when the direction of the parabolic antenna 17 itself installed adjacent to the road is perpendicular to the road, the scanning angle θ is 0 °.

例えば、計算処理装置31は、アンテナ間距離が略零の場合には、道路に隣接して設置されたパラボラアンテナ17の真横に車両50の受電アンテナ21が存在するとして、走査角度θを0°に設定して、モータ16を制御する。また、計算処理装置31は、例えば、アンテナ間距離が零より大きい所定値(例えば、30m)の場合には、走査角度θを当該所定値に対応する角度に設定して、モータ16を制御する。   For example, when the distance between the antennas is substantially zero, the calculation processing device 31 assumes that the power receiving antenna 21 of the vehicle 50 exists right next to the parabolic antenna 17 installed adjacent to the road, and sets the scanning angle θ to 0 °. And the motor 16 is controlled. For example, when the distance between the antennas is a predetermined value (for example, 30 m) greater than zero, the calculation processing device 31 sets the scanning angle θ to an angle corresponding to the predetermined value and controls the motor 16. .

また、計算処理装置31は、2台のカメラで車両50の位置を検出し、その方向にパラボラアンテナ17自体の方向が向くようにモータ16を制御してもよい。また、計算処理装置31は、第1の実施形態と同様に、レトロディレクティブ方式などに基づいて、パラボラアンテナ17自体の方向を決定してもよい。また、計算処理装置31は、第1の実施形態と同様に、車両50とパラボラアンテナ17の設置地点との距離やエネルギー情報などに基づいて、マイクロ波の送電出力を算出する。   Further, the calculation processing device 31 may detect the position of the vehicle 50 with two cameras, and may control the motor 16 so that the direction of the parabolic antenna 17 itself is directed in that direction. Further, the calculation processing device 31 may determine the direction of the parabolic antenna 17 itself based on the retrodirective method or the like, as in the first embodiment. The calculation processing device 31 calculates the microwave power transmission output based on the distance between the vehicle 50 and the installation location of the parabolic antenna 17, energy information, and the like, as in the first embodiment.

したがって、上述の実施形態によれば、アンテナ間距離やマイクロ波の送電方向に応じてマイクロ波の送電出力を可変することができるので、エネルギーの効率化を図ることができるとともに、過送電による受電装置20の負担を軽減し、受電装置20の故障を回避することができる。   Therefore, according to the above-described embodiment, the microwave power transmission output can be varied according to the distance between the antennas and the microwave power transmission direction, so that energy efficiency can be improved and power reception by overpower transmission can be achieved. The burden on the device 20 can be reduced and a failure of the power receiving device 20 can be avoided.

すなわち、マイクロ波を送電するアンテナと車両50との距離が遠くても、大気減衰による伝送効率低下の防止のために送電アンテナを道路上に増設することなく、車両50が必要とする電力が不足するということを防ぐことができるとともに、マイクロ波を送電するアンテナと車両50との距離が近くても、車両50に必要以上の電力を送電するということを防ぐことができる。特に、レクテナ等の受電装置20はサイズ当たりの最大受電力が決まっており、これを超える電力は、RF−DC変換されずに、内蔵の整流ダイオード22aの内部抵抗損失となるため、必要以上の送電を防ぐ必要がある。   In other words, even if the distance between the antenna that transmits microwaves and the vehicle 50 is long, the power required by the vehicle 50 is insufficient without adding a power transmission antenna on the road to prevent a decrease in transmission efficiency due to atmospheric attenuation. It is possible to prevent the transmission of excessive electric power to the vehicle 50 even when the distance between the antenna for transmitting the microwave and the vehicle 50 is short. In particular, the power receiving device 20 such as a rectenna has a maximum received power per size, and power exceeding this is not subjected to RF-DC conversion and becomes an internal resistance loss of the built-in rectifier diode 22a. It is necessary to prevent power transmission.

また、上述の実施形態によれば、送電出力を最適値に可変することができるようになるので、送電出力を一定にする場合に比べ電気コストの削減ができる。   In addition, according to the above-described embodiment, the power transmission output can be varied to the optimum value, so that the electric cost can be reduced as compared with the case where the power transmission output is constant.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、エネルギー伝送の対象となる移動体の具体例として「車両」を挙げて本発明の実施形態を説明したが、本発明に係る移動体用エネルギー伝送システムが対象とする移動体は、飛行機、船舶、ロボットなどでもよい。   For example, although the embodiment of the present invention has been described with reference to a “vehicle” as a specific example of a mobile object that is an object of energy transmission, the mobile object targeted by the mobile energy transmission system according to the present invention is an airplane A ship, a robot, etc. may be sufficient.

また、エネルギーを伝送する電磁波の具体例として「マイクロ波」を挙げて本発明の実施形態を説明したが、本発明に係る移動体用エネルギー伝送システムがエネルギー伝送に用いる電磁波は、効率や信号波との干渉などを考慮の上、光等の他の周波数帯の電磁波でもよい。   Further, although the embodiment of the present invention has been described with reference to “microwave” as a specific example of the electromagnetic wave for transmitting energy, the electromagnetic wave used for energy transmission by the energy transmission system for a mobile body according to the present invention is an efficiency or signal wave. In consideration of interference with the light, electromagnetic waves in other frequency bands such as light may be used.

また、車両50の位置や速度を検出する手段は、道路側に設置されたレーザー距離計でもよい。また、車両50の位置を検出する手段は、光電管センサや重量センサでもよい。   The means for detecting the position and speed of the vehicle 50 may be a laser distance meter installed on the road side. The means for detecting the position of the vehicle 50 may be a phototube sensor or a weight sensor.

マイクロ波エネルギー伝送システムの概要図である。It is a schematic diagram of a microwave energy transmission system. 道路上を走行中の車両に給電する路車間電力供給システムの概要図である。1 is a schematic diagram of a road-to-vehicle power supply system that supplies power to a vehicle traveling on a road. 本発明に係る路車間電力供給システムの第1の実施形態を示す図である。1 is a diagram showing a first embodiment of a road-to-vehicle power supply system according to the present invention. 車両50の底面図である。4 is a bottom view of the vehicle 50. FIG. 第1の実施形態におけるマイクロ波の送電方向を説明するための図である。It is a figure for demonstrating the power transmission direction of the microwave in 1st Embodiment. 本発明に係る路車間電力供給システムの第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment of the road-to-vehicle power supply system which concerns on this invention. 第2の実施形態におけるマイクロ波の送電方向を説明するための図である。It is a figure for demonstrating the power transmission direction of the microwave in 2nd Embodiment.

符号の説明Explanation of symbols

10 送電装置
11 RF発振装置
12 デバイダ
13 移相器
14 出力可変増幅器
15 送電アンテナ
16 モータ
17 パラボラアンテナ
20 受電装置
21 受電アンテナ
22 整流回路
22a 整流ダイオード
30,32 情報検知器
31 計算処理装置
50 車両
DESCRIPTION OF SYMBOLS 10 Power transmission apparatus 11 RF oscillation apparatus 12 Divider 13 Phase shifter 14 Output variable amplifier 15 Power transmission antenna 16 Motor 17 Parabolic antenna 20 Power reception apparatus 21 Power reception antenna 22 Rectifier circuit 22a Rectifier diode 30, 32 Information detector 31 Calculation processing apparatus 50 Vehicle

Claims (4)

車両に搭載され、受電アンテナを介してマイクロ波を受電する受電装置と、
道路側に設置され、送電アンテナを介してマイクロ波を送電する送電装置と、を有する路車間電力供給システムであって、
前記送電装置の送電出力が、前記受電アンテナと前記送電アンテナとの距離に応じて、又は、前記送電アンテナを介して送電すべきマイクロ波の送電方向に応じて、可変することを特徴とする、路車間電力供給システム。
A power receiving device mounted on a vehicle and receiving microwaves via a power receiving antenna;
A road-to-vehicle power supply system having a power transmission device installed on the road side and transmitting microwaves via a power transmission antenna,
The power transmission output of the power transmission device is variable according to a distance between the power receiving antenna and the power transmission antenna, or according to a power transmission direction of a microwave to be transmitted through the power transmission antenna, Road-to-vehicle power supply system.
前記送電装置の送電出力を、前記距離が長いほど、又は、前記受電アンテナと前記送電アンテナとの距離が最短になる方向と前記送電方向とのなす角度が大きいほど、大きくすることを特徴とする、請求項1記載の路車間電力供給システム。   The power transmission output of the power transmission device is increased as the distance is longer or as the angle between the direction in which the distance between the power receiving antenna and the power transmission antenna is the shortest and the power transmission direction is larger. The road-to-vehicle power supply system according to claim 1. 前記車両の位置情報を検出する位置情報検出手段を備え、
前記距離は、前記位置情報検出手段によって検出された前記車両の位置情報に基づいて導出される、請求項1又は2に記載の路車間電力供給システム。
Comprising position information detecting means for detecting position information of the vehicle,
The road-to-vehicle power supply system according to claim 1 or 2, wherein the distance is derived based on the position information of the vehicle detected by the position information detection means.
前記車両から送信された信号を受信することによって該信号の到来方向を検出する方向検出手段を備え、
前記送電方向は、前記方向検出手段によって検出された到来方向に基づいて設定される、請求項1又は2に記載の路車間電力供給システム。
Direction detecting means for detecting the direction of arrival of the signal by receiving the signal transmitted from the vehicle;
The road-to-vehicle power supply system according to claim 1 or 2, wherein the power transmission direction is set based on an arrival direction detected by the direction detection means.
JP2006271995A 2006-10-03 2006-10-03 Power feeding system between road vehicle Pending JP2008092704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271995A JP2008092704A (en) 2006-10-03 2006-10-03 Power feeding system between road vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271995A JP2008092704A (en) 2006-10-03 2006-10-03 Power feeding system between road vehicle

Publications (1)

Publication Number Publication Date
JP2008092704A true JP2008092704A (en) 2008-04-17

Family

ID=39376258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271995A Pending JP2008092704A (en) 2006-10-03 2006-10-03 Power feeding system between road vehicle

Country Status (1)

Country Link
JP (1) JP2008092704A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017241A2 (en) 2007-06-07 2009-01-21 Ibiden Co., Ltd. Graphite material and a method of producing graphite material
JP2010098896A (en) * 2008-10-20 2010-04-30 Toyota Central R&D Labs Inc Power supply system
WO2011046407A2 (en) * 2009-10-16 2011-04-21 Korea Advanced Institute Of Science And Technology System and method for controlling vertical movement of power acquisition device mounted on non-contact electromagnetic induction charging-type electric vehicle
JP2011111268A (en) * 2009-11-26 2011-06-09 Murata Machinery Ltd Traveling vehicle system and noncontact power supply method to traveling vehicle
CN102624067A (en) * 2011-01-29 2012-08-01 孙善骏 Charging device for mobile electromagnetic-charged electric vehicles
WO2013035190A1 (en) * 2011-09-09 2013-03-14 中国電力株式会社 Non-contact power supply system and non-contact power supply method
CN104137387A (en) * 2012-02-29 2014-11-05 中国电力株式会社 Non-contact power supply system, power supply apparatus, power receiving apparatus, and method for controlling non-contact power supply system
JP2016086577A (en) * 2014-10-28 2016-05-19 トヨタ自動車株式会社 Non-contact power transmission/reception system
JP2017041946A (en) * 2015-08-18 2017-02-23 株式会社デンソー Patch array antenna and power transmission system
JP2017201879A (en) * 2017-05-09 2017-11-09 トヨタ自動車株式会社 Non-contact power transmission and reception system and vehicle
JP2018506252A (en) * 2014-12-29 2018-03-01 エナージャス コーポレイション System and method for wireless power transfer
JP2020167821A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Wireless power transmission device and wireless power transmission system
JP2020167823A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Wireless power transmission device and wireless power transmission system
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
CN113991890A (en) * 2021-10-25 2022-01-28 郑州铁路职业技术学院 Non-contact power supply method for rail transit
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130840A (en) * 1994-11-01 1996-05-21 Mitsubishi Electric Corp Radio wave feeder device
JP2006166570A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Road-to-vehicle power supply system
JP2006174676A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Microwave transmitting system for vehicle and microwave receiving apparatus for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130840A (en) * 1994-11-01 1996-05-21 Mitsubishi Electric Corp Radio wave feeder device
JP2006166570A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Road-to-vehicle power supply system
JP2006174676A (en) * 2004-12-20 2006-06-29 Nissan Motor Co Ltd Microwave transmitting system for vehicle and microwave receiving apparatus for vehicle

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017241A2 (en) 2007-06-07 2009-01-21 Ibiden Co., Ltd. Graphite material and a method of producing graphite material
JP2010098896A (en) * 2008-10-20 2010-04-30 Toyota Central R&D Labs Inc Power supply system
WO2011046407A2 (en) * 2009-10-16 2011-04-21 Korea Advanced Institute Of Science And Technology System and method for controlling vertical movement of power acquisition device mounted on non-contact electromagnetic induction charging-type electric vehicle
WO2011046407A3 (en) * 2009-10-16 2011-10-13 Korea Advanced Institute Of Science And Technology System and method for controlling vertical movement of power acquisition device mounted on non-contact electromagnetic induction charging-type electric vehicle
JP2011111268A (en) * 2009-11-26 2011-06-09 Murata Machinery Ltd Traveling vehicle system and noncontact power supply method to traveling vehicle
CN102624067A (en) * 2011-01-29 2012-08-01 孙善骏 Charging device for mobile electromagnetic-charged electric vehicles
US9571162B2 (en) 2011-09-09 2017-02-14 The Chugoku Electric Power Co., Inc. Non-contact power supply system and non-contact power supply method
WO2013035190A1 (en) * 2011-09-09 2013-03-14 中国電力株式会社 Non-contact power supply system and non-contact power supply method
JP5274712B1 (en) * 2011-09-09 2013-08-28 中国電力株式会社 Non-contact power feeding system and non-contact power feeding method
CN103828188A (en) * 2011-09-09 2014-05-28 中国电力株式会社 Non-contact power supply system and non-contact power supply method
KR101573347B1 (en) * 2011-09-09 2015-12-01 쥬코쿠 덴료쿠 가부시키 가이샤 Non-contact power supply system and non-contact power supply method
US9755699B2 (en) 2012-02-29 2017-09-05 The Chugoku Electric Power Co., Inc. Wireless power transfer system that performs power transfer from determined power transmission device to power receiving device, power transmission device, power receiving device, and control method of wireless power transfer system
CN104137387A (en) * 2012-02-29 2014-11-05 中国电力株式会社 Non-contact power supply system, power supply apparatus, power receiving apparatus, and method for controlling non-contact power supply system
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
JP2016086577A (en) * 2014-10-28 2016-05-19 トヨタ自動車株式会社 Non-contact power transmission/reception system
JP2018506252A (en) * 2014-12-29 2018-03-01 エナージャス コーポレイション System and method for wireless power transfer
JP2017041946A (en) * 2015-08-18 2017-02-23 株式会社デンソー Patch array antenna and power transmission system
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
JP2017201879A (en) * 2017-05-09 2017-11-09 トヨタ自動車株式会社 Non-contact power transmission and reception system and vehicle
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
JP2020167823A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Wireless power transmission device and wireless power transmission system
JP2020167821A (en) * 2019-03-29 2020-10-08 Tdk株式会社 Wireless power transmission device and wireless power transmission system
CN113991890A (en) * 2021-10-25 2022-01-28 郑州铁路职业技术学院 Non-contact power supply method for rail transit

Similar Documents

Publication Publication Date Title
JP2008092704A (en) Power feeding system between road vehicle
US9620964B2 (en) Power transmission system and method, power transmitting apparatus and power receiving apparatus
US20160109564A1 (en) Systems, methods, and apparatus for living object protection in wireless power transfer applications
KR102188452B1 (en) System and method for wireless power transfer in a multipath vehicle environment
KR102125722B1 (en) Coil structure for inductive and resonant wireless charging transmitter and integral control method for the same
JPH08103039A (en) Radio wave feeder apparatus
JP2012249403A (en) Non-contact power supply device
EP2937713B1 (en) Method and system for wireless power supply
WO2022054586A1 (en) Antenna device, power supply device, and power supply method
JP2011205829A (en) Noncontact charging system
JP6437954B2 (en) Wireless power supply method
WO2006134911A1 (en) Radar
JP6501838B2 (en) Wireless power supply method
JP4710314B2 (en) Road-to-vehicle power supply system
JP5966822B2 (en) Wireless power transmission equipment
JP2009073397A (en) Train position detection device and mobile radio
KR101890359B1 (en) Beam Width Adjusting Apparatus for Periodically Rotating Radar and Long Range Radar System
JP2016041009A (en) Power transmission apparatus
JP2009178001A (en) Power transmission device, power receiving device, and energy transmission system
JP6672880B2 (en) Position shift detection device and non-contact power supply system
JP2007267577A (en) Energy supply device and system
KR20140111881A (en) Apparatus and method wireless power transmission, and wireless power transmission system using the same
JP5256672B2 (en) Vehicle power supply device
KR102003196B1 (en) Wireless power transmitter for providing movement information of charging area for target and method for controlling thereof
GB2595508A (en) System and method for facilitating charging vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030