JP2016085128A - 電池電圧監視半導体装置及び電池電圧監視システム - Google Patents

電池電圧監視半導体装置及び電池電圧監視システム Download PDF

Info

Publication number
JP2016085128A
JP2016085128A JP2014218261A JP2014218261A JP2016085128A JP 2016085128 A JP2016085128 A JP 2016085128A JP 2014218261 A JP2014218261 A JP 2014218261A JP 2014218261 A JP2014218261 A JP 2014218261A JP 2016085128 A JP2016085128 A JP 2016085128A
Authority
JP
Japan
Prior art keywords
current
consumption
voltage monitoring
consumption current
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014218261A
Other languages
English (en)
Inventor
貴仁 早川
Takahito Hayakawa
貴仁 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014218261A priority Critical patent/JP2016085128A/ja
Publication of JP2016085128A publication Critical patent/JP2016085128A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】簡単な構成で互いの消費電流を揃えることができる電池電圧監視半導体装置及び電池電圧監視システムを提供する。【解決手段】各電圧監視ICnは、自己消費電流よりも他者消費電流が大きい場合は、自己消費電流が他者消費電流と揃うように自己消費電流を増大させるので、最終的には自己消費電流を最大の他者消費電流に揃えることができる。この場合、消費電流検出回路7、消費電流判断回路8及び消費電流増大回路9はアナログ回路から構成されているので、各電圧監視ICnの消費電流をデジタル変換して通信により共有することにより自己消費電流を調整する従来構成に比較して、デジタル処理も通信も利用しない簡単な構成で実施することができる。【選択図】図1

Description

本発明は、組電池を構成する複数の単位セルの電圧を監視する電池電圧監視半導体装置、及び電池電圧監視システムに関する。
例えばハイブリッド車或いは電気自動車のようにモータを駆動源とする車両には2次電池が搭載されている。この2次電池は、複数の単位セルを直列接続してユニット化した組電池をさらに複数直列接続して構成されている。組電池では全ての単位セルの電圧が正常範囲であることが要求されることから、組電池に対応して電池電圧監視半導体装置(以下、電圧監視IC)を設け、各単位セルの電圧が正常範囲か否かを電圧監視ICにより監視するようにしている。
特開2010−81692号公報 特開2011−182550号公報
ところが、電圧監視IC内部の抵抗やトランジスタ素子の特性のばらつきにより、電圧監視ICで消費する電流値がばらつくという現象が生じている。このため、各組電池間において容量のばらつきや電圧のばらつぎが発生し、組電池を組み合わせた2次電池で使用可能な電圧範囲が制限されるようになるので、燃費に相当する所謂電費が悪化するという事情がある。
このような電圧監視ICの消費電流のばらつきを抑制するために、各電圧監視ICの消費電流を検出し、各消費電流を揃えるように調整する技術が提案されている。即ち、各電圧監視ICの消費電流(アナログ)をAD変換回路などによりデジタルデータに変換し、特許文献1では、デジタルデータに基づいて最大消費電流をマイクロコンピュータが特定し、全ての電圧監視ICに通信で送信することにより各電圧監視ICが消費電流を最大消費電流に揃うように調整している。一方、特許文献2では、各電圧監視ICが互いにデジタルデータを送受信することにより、全ての電圧監視ICが消費電流を最大消費電流に揃うように調整している。
しかしながら、特許文献1のように各電圧監視ICが最大消費電流を共有することをマイクロコンピュータが行う場合には、消費電流の通信を既存の通信と共用する必要があり、通信時間の確保が必要となったり、マイクロコンピュータの処理量が増大したりする。
一方、特許文献2のように各電圧監視ICが互いの送受信により消費電流の共有を行う場合には、電圧監視ICに高機能な送受信機能を持たせる必要があり、電圧監視ICの構成が複雑となる。
しかも、特許文献1及び特許文献2のものは、消費電流をマイクロコンピュータに送信したり、他の電圧監視ICと送受信したりする必要から、消費電流をデジタルに変換する必要がある。このため、消費電流をデジタル変換するためのA/D変換器が必要となり、電圧監視ICの構成が一層複雑となっているのが実情である。
本発明は上記事情に鑑みてなされたもので、その目的は、簡単な構成で互いの消費電流を揃えることができる電池電圧監視半導体装置及び電池電圧監視システムを提供することにある。
本発明によれば、消費電流判断手段は、消費電流検出手段がアナログで検出した自己消費電流と他者消費電流との大小関係をアナログで比較し、消費電流調整手段は、それらが大小関係となる場合は他者消費電流と揃うように自己消費電流をアナログで調整する。このような動作を各電池電圧監視半導体装置がそれぞれ実行することにより、各電池電圧監視半導体装置の消費電流を揃えることができる。この場合、自己消費電流は他者消費電流と揃うようにアナログで調整されるので、各消費電流をデジタルデータに変換して通信により共有することにより各消費電流を揃える従来構成に比較して、デジタル処理も通信も利用しない簡単な構成で実施することができる。
第1実施形態における電圧監視ICの機能ブロック図 第2実施形態における電圧監視ICの機能ブロック図 消費電流判断回路の構成を示す機能ブロック図 放電回路を示す電気回路図 放電電流及び消費電流の変化を示す電圧監視ICの模式図 第3実施形態における放電電流及び消費電流の変化を示す電圧監視ICの模式図 第4実施形態における放電電流及び消費電流の変化を示す電圧監視ICの模式図
(第1実施形態)
以下、本発明を自動車用2次電池の電池電圧監視システムに適用した第1実施形態について図1を参照して説明する。
ハイブリッド車或いは電気自動車のようにモータを駆動源とする車両には2次電池が搭載されている。図1に示すように、2次電池1は、複数の組電池Bn(nは正数)を直列接続して構成されている。組電池Bnは単位セルBna(nは正数)を直列接続してユニット化して構成されている。組電池Bnに対応して電池電圧監視半導体装置ICn(以下、電圧監視ICn(nは正数))が設けられている。この電圧監視ICnは、電圧検出回路2、電源部3、参照電圧源4、制御部5、通信部6、消費電流検出回路7(消費電流検出手段)、消費電流判断回路8(消費電流判断手段)、消費電流増大回路9(消費電流調整手段)等を備えて構成されている。電圧検出回路2は、組電池Bnを構成する各単位セルBnaの電圧を、参照電圧源4の出力電圧を基準としてA/D変換器(ADC)10によりデジタルデータに変換する。通信部6は図示しない電池管理ECUとデータ通信し、制御部5は全体の動作を制御する。
電圧監視ICnの正電源線11は組電池Bnの正端子Bnb(nは正数)と接続されており、組電池Bnの正端子Bnbから正電源線11を通じて電源部3に給電される。電源部3は、正電源線11からの電圧から電源電圧を生成して各回路に給電する。負電源線12は組電池Bnの負端子Bncと接続されており、電源部3を含む電圧監視ICn全体で消費された電流は負電源線12を介して組電池Bnの負端子Bncに流れ込む。正電源線11と負電源線12との間には消費電流検出回路7が設けられており、消費電流検出回路7により組電池Bnの正端子Bnaから流れ込んだ消費電流IccICn(nは正数)が検出される。
正電源線11には消費電流検出回路7が介在されている。この消費電流検出回路7は、正電源線11に流れる消費電流をアナログで検出する。
消費電流判断回路8はアナログ回路から構成されており、消費電流検出回路7が検出した消費電流をアナログで入力すると共に、上位側に隣接した電圧監視IC(以下、上位側電圧監視IC。他者電池電圧監視半導体装置)、下位側に隣接した電圧監視IC(以下、下位側電圧監視ICn。他者電池電圧監視半導体装置)の消費電流検出回路7が検出した消費電流もアナログで入力し、それらの消費電流をアナログで比較するようになっている。このように消費電流検出回路7が消費電流をアナログで検出する構成としては、消費電流を電圧(アナログ)に変換する構成を採用することができる。
ここで、消費電流判断回路8は、消費電流検出回路7が検出した消費電流に加えて、上位側電圧監視ICn(第1の他者電池電圧監視半導体装置)の消費電流検出回路7が検出した消費電流(以下、他者消費電流。第1の他者消費電流)及び下位側電圧監視ICn(第2の他者電池電圧監視半導体装置)消費電流検出回路7が検出した他者消費電流(第2の他者消費電流)をアナログで入力する。
尚、最上位の電圧監視IC1の消費電流判断回路8は、他者消費電流として下位側電圧監視IC2の消費電流検出回路7が検出した他者消費電流のみを入力する。最下位の電圧監視ICnの消費電流判断回路8は、他者消費電流として上位側電圧監視ICn−1の消費電流検出回路7が検出した他者消費電流のみを入力する。
消費電流判断回路8は、次のように動作する。
(1)2つの他者消費電流が入力する場合は、自己消費電流と2つの他者消費電流とをアナログで比較し、自己消費電流が両方の他者消費電流の少なくとも一方よりも小である場合は、自己消費電流と電流差が大きい方の他者消費電流との消費電流差をアナログで求める。
(2)1つの他者消費電流のみが入力する場合は、自己消費電流と他者消費電流とをアナログで比較し、自己消費電流が他者消費電流よりも小である場合は、自己消費電流と他者消費電流との消費電流差をアナログで求める。
消費電流増大回路9はアナログ回路から構成されており、消費電流判断回路8が求めた消費電流差をアナログで入力し、正電源線11から負電源線12に消費電流差に相当する電流を流すことにより電圧監視ICn全体の消費電流を増大させる。このような消費電流増大回路9としては、オペアンプを用いて消費電流差に相当する電圧を電流に変換する構成を採用することができる。
以上のような動作により、全ての電圧監視ICnの消費電流は最大消費電流に揃うようになり、各組電池Bn間における容量のばらつきや電圧のばらつきをなくすことができるので、電費を高めることができる。
このような実施形態によれば、次のような効果を奏することができる。
各電圧監視ICnは、自己消費電流よりも他者消費電流が大きい場合は、他者消費電流と揃うように自己消費電流を増大させるので、最終的には自己消費電流を最大他者消費電流に揃えることができる。この場合、消費電流検出回路7、消費電流判断回路8及び消費電流増大回路9はアナログ回路から構成されているので、各消費電流をデジタルデータに変換して通信により共有することにより各消費電流を揃える従来構成に比較して、デジタル処理も通信も利用しない簡単な構成で実施することができる。
(第2実施形態)
次に、本発明の第2実施形態について図2から図5を参照して説明する。この第2実施形態は、電圧監視ICnの電源線に流れる消費電流の方向と大きさに基づいて自己消費電流をアナログで調整することを特徴とする。
図2に示すように、電圧監視ICnには正電源端子21と負電源端子22とが設けられている。正電源端子21は、正電源線11と接続されていると共に上位側電圧監視ICnの負電源端子22と接続されている。負電源端子22は、負電源線12と接続されていると共にシャント抵抗23を介して組電池Bnの負端子Bncと接続されている。
ここで、正電源端子21は上位側電圧監視ICnの負電源端子22と接続されている。つまり、正電源線11は正電源端子21を介して上位側電圧監視ICnの負電源線12と接続されている。尚、最上位の電圧監視IC1の正電源端子21は対応する組電池B1の正端子B1bと接続され、最下位の電圧監視ICnの負電源端子22は対応する組電池Bnの負端子Bncと接続されている。
消費電流判断回路8は、シャント抵抗23の電位差をアナログで入力すると共に、上位側電圧監視ICnのシャント抵抗23の電位差もアナログで入力するように接続されている。尚、最上位の電圧監視IC1の正電源端子21には対応する組電池B1の正端子B1bが接続されていることから、消費電流判断回路8の上位側から入力する電位差は零となっている。同様に、最下位の電圧監視ICnの負電源端子22には対応する組電池Bnの負端子Bncが接続されていることから、消費電流判断回路8に入力するシャント抵抗23の電位差は零となっている。
以上のような接続関係により、電圧監視ICnには、上位側電圧監視ICnからの電流が流入してから下位側電圧監視ICnに流出するようになっている。この場合、自己消費電流が下位側他者消費電流よりも大であるときは、自己消費電流から下位側電圧監視ICnに流出する電流(下位側電圧監視ICnの消費電流)を除いた電流が対応する組電池Bnの負端子Bncにシャント抵抗23を介して流入する。自己消費電流が下位側他者消費電流よりも小であるときは、上位側電圧監視ICnの消費電流の全てが下位側電圧監視ICnに流入し、さらに不足した電流(自己消費電流と下位側他者消費電流との消費電流差)が対応する組電池Bnの負端子Bncからシャント抵抗23を介して下位側電圧監視ICに流出する。自己消費電流と下位側電圧監視ICnの他者消費電流とが同じである場合は、自己消費電流の全てが下位側他者消費電流として下位側電圧監視ICnに流入し、シャント抵抗23を流れる電流は零となる。
消費電流判断回路8は、図3に示すように、電圧値比較・正負判定部24、マルチプレクサ25、差動増幅部26から構成されている。電圧値比較・正負判定部24はアナログ回路から構成されており、上位側電圧監視ICnのシャント抵抗23の電位差を入力すると共に自己のシャント抵抗23の電位差を入力する。
電圧値比較・正負判定部24は次のように動作する。
(1)上位側電圧監視ICnとの消費電流差分(実際には上位側電圧監視ICnのシャント抵抗23の電位差。以下、上位側電流差分)が正(電圧)か負(電圧)か、下位側電圧監視ICnとの消費電流差分(実際には自己のシャント抵抗23の電位差。以下、下位側電流差分)が正(電圧)か負(電圧)かを判断する。
(2)上位側電流差分及び下位側電流差分が正の場合は、自己消費電流の方が上位側他者消費電流よりも小、下位側他者消費電流よりも大であると判断し、マルチプレクサ25に対して上位側電圧監視ICnとの電流差分を出力するように指示する。
(3)上位側電流差分が正、下位側電流差分が負の場合は、自己消費電流の方が上位側他者消費電流及び下位側他者消費電流よりも小であると判断し、マルチプレクサ25に対して電圧値が大きい方の電流差分を出力するように指示する。
(4)上位側電流差分が負、下位側電流差分電位差が正の場合は、自己消費電流の方が上位側他者消費電流及び下位側他者消費電流よりも大であると判断し、マルチプレクサ25に対して中立を指示する。
(5)上位側電流差分及び下位側電流差分が負の場合は、自己消費電流の方が上位側他者消費電流よりも大、下位側他者消費電流よりも小であると判断し、マルチプレクサ25に対して下位側電圧監視ICnとの電流差分を出力するように指示する。
マルチプレクサ25は、中立を指示された場合は図3に実線で示すように中立に位置することにより入力端子25aと出力端子25cとの間を遮断し、上位側電流差分比例電圧を出力するように指示された場合は図3に破線で示すように入力端子25aと出力端子25cとの間を接続し、下位側電流差分比例電圧を出力するように指示された場合は入力端子25aと出力端子25cとの間を接続する。
差動増幅部26は、入力した消費電流差分を対応する組電池Bnの負端子電位に対する電流差分比例電圧Vとして消費電流増大回路9に出力する。つまり、消費電流増大回路9に対して消費電流の差分に相当する電圧に現在の電圧を加えた電流差分比例電圧Vを与えるものであり、消費電流の差分が大きくなる程、大きな電流差分比例電圧Vを消費電流増大回路9に出力する。
消費電流増大回路9としては、図4に示す放電回路を採用できる。消費電流増大回路9は、オペアンプ27、MOSFET28、抵抗R、及びミラー回路29から構成されている。オペアンプ27の正入力端子には消費電流判断回路8から与えられる電流差分比例電圧Vが入力する。オペアンプ27の負入力端子の電圧(抵抗Rの電圧)は電流差分比例電圧Vと一致するので、MOSFET28、及びミラー回路29の入力側のMOSFET29aにはV/Rの電流が流れる。従って、ミラー比を1:nとすると、ミラー回路29の出力側のMOSFET29bにはn×V/Rの電流が流れるので、消費電流増大回路9には電流差分比例電圧Vに応じた電流が流れる。自己消費電流が増大して他者消費電流量に揃うと、電流差分比例電圧Vが零となるので、消費電流増大回路9に流れる電流が零となる。
要するに、シャント抵抗23の電位差が正電圧の場合は、シャント抵抗23には電圧監視ICnから組電池Bnの負端子Bncに電流が流れていることを意味していることから、上位側電圧監視ICnのシャント抵抗23の電位差が正電圧の場合は、自己消費電流よりも上位側他者消費電流の方が大であると判断でき、自己のシャント抵抗23の電位差が正電圧の場合は、自己消費電流の方が下位側他者消費電流よりも大であると判断することができる。同様に、シャント抵抗23の電位差が負電圧の場合は、シャント抵抗23には組電池Bnの負端子Bncから電圧監視ICnに電流が流れていることを意味していることから、自己のシャント抵抗23の電位差が正電圧の場合は、自己消費電流の方が下位側他者消費電流よりも大であると判断でき、自己のシャント抵抗23の電位差が負電圧の場合は、自己消費電流の方が下位側他者消費電流よりも小であると判断することができる。そして、シャント抵抗23の電位差が零の場合は、シャント抵抗23には電流が流れていないことを意味していることから、上位側電圧監視ICnのシャント抵抗23の電位差が零の場合は、自己消費電流と上位側他者消費電流とは揃っていると判断でき、自己のシャント抵抗23の電位差が零の場合は、自己消費電流は下位側他者消費電流と揃っていると判断することができる。また、シャント抵抗23の電位差が大きい程、消費電流差が大であると判断することができる。
以上のような判断により、消費電流判断回路8は、上位側電圧監視ICn及び下位側電圧監視ICnの消費電流との大小関係及びその大小関係の大きさを判断することができるので、自己消費電流の方が他者消費電流よりも小である場合には自己消費電流が他者消費電流と揃うまで消費電流増大回路9を動作させる。
電圧監視ICnが自己消費電流を調整する過程について図5を参照して説明する。図5では、説明の簡単化のために、2次電池1は組電池1〜3から構成され、各組電池1〜3に対応して電圧監視IC1〜3を設けた構成を示している。電圧監視IC1〜3は、説明の簡単化のためにメイン回路30と放電回路31(消費電流調整手段)から構成されているものとする。メイン回路30とは、電圧監視IC1〜3を構成する全ての回路の内、放電回路31を除いた回路を意味する。従って、メイン回路30の消費電流は、放電回路31の消費電流を除く電圧監視IC1〜3全体の消費電流を意味する。尚、図5では、消費電流が正数となるように処理しているが、小数点以下も処理対象とするようにしても良い。
初期状態では、電圧監視IC1の消費電流が5mA、電圧監視IC2の消費電流が4mA、電圧監視IC3の消費電流が6mAであり、放電回路31による放電電流が0mAとすると、電圧監視IC1は、自己消費電流が電圧監視IC2の他者消費電流よりも大であるので、そのままの状態を維持する。電圧監視IC2は、自己消費電流(4mA)よりも第1及び電圧監視IC3の他者消費電流の方が大であり、さらに電圧監視IC3の他者消費電流(6mA)の方が電圧監視IC1の他者消費電流(5mA)よりも大であるので、消費電流差の大きな他者消費電流(6mA)に揃うように放電回路31により2mA放電電流を増大する。電圧監視IC3の自己消費電流は、電圧監視IC2の他者消費電流よりも大であるので、そのままの状態を維持する。
以上の動作により、電圧監視IC2の自己消費電流が6mAとなり、電圧監視IC3の他者消費電流と揃うようになる。
この状態では、電圧監視IC1の消費電流が5mAに対して電圧監視IC2の消費電流が6mAであるので、電圧監視IC1は、自己消費電流が電圧監視IC2の他者消費電流に揃うように放電回路31により1mA放電電流を増大する。
以上の動作により、電圧監視IC1の自己消費電流が6mAとなるので、全ての電圧監視ICの消費電流が揃うようになる。
このような実施形態によれば、次のような効果を奏することができる。
シャント抵抗23により消費電流を電圧に変換してアナログで処理するようにしたので、第1実施形態と同様の効果を奏しながら、消費電流に影響を与えることなく消費電流をアナログで処理することが可能となる。
シャント抵抗23の電圧の正負及びその電圧の大きさに基づいて、消費電流の大小関係及び消費電流差を求めるようにしたので、シャント抵抗23という極めて単純な構成で実施することができる。
(第3実施形態)
本発明の第3実施形態について図6を参照して説明する。この第3実施形態は、第2実施形態の構成において、放電回路31の放電電流を減少させることにより各電圧監視IC1〜3の消費電流を調整することを特徴とする。
図6に示すように、初期状態では、電圧監視IC1〜3の初期状態でのメイン回路30の消費電流は10mA、電圧監視IC2の消費電流は11mA、電圧監視IC3の消費電流は9mAであり、放電回路31は初期状態として予め5mA放電しているものとする。
電圧監視ICnは、自己消費電流と他者消費電流とを比較し、自己消費電流の方が他者消費電流よりも大である場合は、自己消費放電が他者消費電流に揃うように放電回路31による放電電流を減少させる。電圧監視IC1は、自己消費電流(10mA)の方が電圧監視ICの他者消費電流(11mA)よりも小であるので、そのままの状態を維持する。電圧監視IC2は、自己消費電流(11mA)の方が電圧監視IC1及び電圧監視IC3の他者消費電流よりも大であるので、その消費電流差が大きい電圧監視IC3の消費電流(9mA)に揃うように放電回路31による放電電流を減少させる。
以上の動作により、電圧監視IC2の自己消費電流が9mAとなり、電圧監視IC3の他者消費電流に揃うようになる。
この状態では、電圧監視IC1の消費電流(10mA)の方が電圧監視IC2の消費電流(9mA)よりも大であるので、電圧監視IC1は、自己消費電流が電圧監視IC2の他者消費電流に揃うように放電回路31による放電電流を減少させる。
以上の動作により、電圧監視IC1の消費電流が9mAとなり、電圧監視IC2及び電圧監視IC3の他者消費電流に揃うようになる。
このような実施形態によれば、次のような効果を奏することができる。
電圧監視ICnは、自己消費電流が他者消費電流よりも大である場合は他者消費電流に揃うように自己消費電流を減少させるので、自己放電電流を減少させる構成であっても、上記第1及び第2実施形態と同様に、各電圧監視IC1〜3の消費電流をアナログで揃えるように調整することができる。
(第4実施形態)
本発明の第4実施形態について、図7を参照して説明する。この第4実施形態は、各電監視ICnの消費電流を比例的に調整するのではなく、段階的に調整することを特徴とする。
電圧監視ICnは、自己消費電流と他者消費電流とを比較し、自己消費電流の方が小である場合は、1mAずつ段階的に放電回路31による放電電流を増大させるようになっている。
図7に示すように、初期状態では、電圧監視IC1の消費電流が5mA、電圧監視IC2の消費電流が4mA、電圧監視IC3の消費電流が6mAであり、各放電回路31による放電電流が0mAとすると、電圧監視IC1は、自己消費電流(5mA)が電圧監視IC2の他者消費電流(4mA)よりも大であるので、そのままの状態を維持する。電圧監視IC2は、自己消費電流(4mA)が第1電圧監視IC1及び電圧監視IC3の他者消費電流よりも小であり、さらに消費電流差の大きい電圧監視IC3の他者消費電流(6mA)が自己消費電流よりも1mAを上回って大であるので、放電回路31による放電電流を1mA増大する。このとき、電圧監視IC1及び電圧監視IC3は、自己消費電流が電圧監視IC2の他者消費電流よりも大であるので、そのままの状態を維持する。
以上の動作により、電圧監視IC2の消費電流が5mAとなるので、自己消費電流が電圧監視IC1の他者消費電流に揃うようになるものの、電圧監視IC3の他者消費電流よりも依然として小であるので、さらに放電回路31による放電電流を1mA増大する。これにより、電圧監視IC2の自己消費電流が6mAとなり、電圧監視IC3の他者消費電流に揃うようになるものの、電圧監視IC1の自己消費電流(5mA)が電圧監視IC2の他者消費電流(6mA)よりも小であるので、放電回路31による放電電流を1mA増大する。
以上の動作により、電圧監視IC1の自己消費電流が6mAとなり、電圧監視IC2及び電圧監視IC3の他者消費電流と揃うようになる。
このような実施形態によれば、次のような効果を奏することができる。
電圧監視ICnは、自己消費電流が他者消費電流よりも小である場合は他者消費電流に揃うように自己消費電流を段階的に増大させるので、消費電流が変動する状態であっても安定化した状態で消費電流の調整を行うことができる。
尚、段階的に増大させる放電電流は1mAに限定されることはなく、0.5mA単位、0.1mA単位でも良い。また、本構成を第3実施形態に適用し、自己消費電流が他者消費電流よりも大である場合は自己消費電流を段階的に減少させるようにしても良い。
一定電流を放電する放電回路を複数設け、増大させる電流に応じて所定数の放電回路を動作させることにより自己放電電流を段階的に調整するようにしても良い。
(その他の実施形態)
本発明は、上記実施形態に限定されることなく、次のように変形または拡張したり、各変形例を上記実施形態と組合せたり、各変形例を組み合わせるようにしても良い。
電圧監視ICnは、自己放電電流と上位側電圧監視ICn及び下位側電圧監視ICnの他者消費電流とを比較するようにしたが、比較対象として隣接する電圧監視ICnの他者消費電流に限定されることなく、隣接しない電圧監視ICnの他者消費電流と比較するようにしても良い。つまり、全ての電圧監視ICnがチェーン接続する構成であれば、どのような接続構成を採用しても良い。
最上位の電圧監視IC1と最下位の電圧監視ICnとを互いの消費電流を比較可能に接続するようにしても良い。この場合、自己消費電流と上位側電圧監視ICn及び下位側電圧監視ICnの他者消費電流とを比較するのに代えて、自己消費電流と上位側電圧監視ICn及び下位側電圧監視ICnの一方の他者消費電流のみと比較するようにしても良い。
第2実施形態では、負電源線12にシャント抵抗23を介在させたが、組電池Bnの正端子Bnbと接続した正電源線11にシャント抵抗23を介在させるようにしても良い。
各電圧監視ICnが他者消費電流に揃うように自己消費電流を増減させて調整するようにしても良い。
本発明は、車両用の2次電池を限定されることなく、家庭用、商業用等の2次電池に適用しても良い。
図面中、1は2次電池、7は消費電流検出回路(消費電流検出手段)、8は消費電流判断回路(消費電流判断手段)、9は消費電流増大回路(消費電流調整手段)、11は正電源線、23はシャント抵抗(消費電流検出手段)、31は放電回路(消費電流調整手段)、Bnは組電池、ICnは電池電圧監視半導体装置(第1の他者電池電圧監視半導体装置、第2の他者電池電圧監視半導体装置)である。

Claims (9)

  1. 組電池(Bn)を構成する複数の単位セル(Bna)の電圧を監視する電池電圧監視半導体装置(ICn)において、
    正電源線(11)から負電源線(12)に流れる自己消費電流をアナログで検出する消費電流検出手段(7)と、
    前記自己消費電流と、他の電池電圧監視半導体装置(以下、他者電池電圧監視半導体装置)の前記消費電流検出手段が検出した前記自己消費電流(以下、他者消費電流)とをアナログで比較することにより大小関係を判断する消費電流判断手段(8)と、
    前記消費電流判断手段が前記自己消費電流と前記他者消費電流とは大小関係にあると判断した場合は、前記他者消費電流と揃うように前記自己消費電流をアナログで調整する消費電流調整手段(9)と、
    を備えたことを特徴とする電池電圧監視半導体装置。
  2. 前記消費電流判断手段は、前記自己消費電流と、第1の他者電池電圧監視半導体装置の第1の他者消費電流及び第2の他者電池電圧監視半導体装置の第2の他者消費電流との大小関係を判断し、
    前記消費電流調整手段は、前記消費電流判断手段が前記自己消費電流と前記第1の他者消費電流及び前記第2の他者消費電流の少なくとも一方とは大小関係にあると判断した場合は、前記第1の他者消費電流と前記第2の他者消費電流との内、前記自己消費電流との消費電流差が大きい方の他者消費電流と揃うように前記自己消費電流を調整することを特徴とする請求項1に記載の電池電圧監視半導体装置。
  3. 前記正電源線は、前記第1の他者電池電圧監視半導体装置の前記負電源線と接続され、
    前記負電源線は、前記第2の他者電池電圧監視半導体装置の前記正電源線と接続され、
    前記消費電流判断手段は、前記正電源線と前記負電源線とを流れる消費電流の方向に基づいて、前記自己消費電流と前記第1の他者消費電流及び第2の他者消費電流との大小関係を判断することを特徴とする請求項1または2に記載の電池電圧監視半導体装置。
  4. 前記消費電流判断手段は、前記正電源線と前記負電源線とを流れる消費電流の大きさを判断し、
    前記消費電流調整手段は、前記消費電流の方向と大きさに基づいて前記自己消費電流を調整することを特徴とする請求項3に記載の電池電圧監視半導体装置。
  5. 前記消費電流検出手段は、前記正電源または前記負電源線に介在されたシャント抵抗(23)であり、
    前記消費電流判断手段は、前記シャント抵抗の両端の電位差に基づいて前記正電源線と前記負電源線とを流れる消費電流の方向及び大きさを判断することを特徴とする請求項4に記載の電池電圧監視半導体装置。
  6. 前記消費電流調整手段は、前記正電源線と前記負電源線との間に接続された放電回路(31)であり、
    前記消費電流調整手段は、前記放電回路の放電電流を調整することにより前記自己消費電流を調整することを特徴とする請求項1から5のいずれか一項に記載の電池電圧監視半導体装置。
  7. 前記消費電流調整手段は、前記他者消費電流との消費電流差に応じて前記自己消費電流を比例的に増大または減少することにより調整することを特徴とする請求項1から6のいずれか一項に記載の電池電圧監視半導体装置。
  8. 前記消費電流調整手段は、他者消費電流との消費電流差に応じて前記自己消費電流を段階的に増大または減少することにより調整することを特徴とする請求項1から6のいずれか一項に記載の電池電圧監視半導体装置。
  9. 請求項1から8のいずれか一項に記載の電池電圧監視半導体装置を複数備え、
    前記電池電圧監視半導体装置は、直列接続された複数の組電池にそれぞれ対応して設けられていることを特徴とする電池電圧監視システム。
JP2014218261A 2014-10-27 2014-10-27 電池電圧監視半導体装置及び電池電圧監視システム Pending JP2016085128A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218261A JP2016085128A (ja) 2014-10-27 2014-10-27 電池電圧監視半導体装置及び電池電圧監視システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218261A JP2016085128A (ja) 2014-10-27 2014-10-27 電池電圧監視半導体装置及び電池電圧監視システム

Publications (1)

Publication Number Publication Date
JP2016085128A true JP2016085128A (ja) 2016-05-19

Family

ID=55972069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218261A Pending JP2016085128A (ja) 2014-10-27 2014-10-27 電池電圧監視半導体装置及び電池電圧監視システム

Country Status (1)

Country Link
JP (1) JP2016085128A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828192A (zh) * 2017-11-22 2019-05-31 瑞萨电子株式会社 半导体器件和半导体系统
US11870094B2 (en) 2019-07-03 2024-01-09 Lg Energy Solution, Ltd. Battery module, battery rack comprising same, and power storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828192A (zh) * 2017-11-22 2019-05-31 瑞萨电子株式会社 半导体器件和半导体系统
CN109828192B (zh) * 2017-11-22 2023-09-15 瑞萨电子株式会社 半导体器件和半导体系统
US11870094B2 (en) 2019-07-03 2024-01-09 Lg Energy Solution, Ltd. Battery module, battery rack comprising same, and power storage device

Similar Documents

Publication Publication Date Title
JP5764260B2 (ja) 電池システムおよび中間電圧を供給するための方法
JP5830971B2 (ja) 電池モニタ回路、蓄電装置、電動車両および電力システム
US20110234006A1 (en) Parallel device including a battery module and control method thereof
US20120091967A1 (en) Power stabilization system and power stabilizing method
WO2017073018A1 (ja) 蓄電ユニット及び蓄電システム
WO2013076877A1 (ja) 蓄電池システム
US9991723B2 (en) Virtual cell method for battery management
US9030156B2 (en) Power supply system using an assembled battery
WO2014061422A1 (ja) 電圧検出装置
WO2013161512A1 (ja) 充電制御装置および充電制御方法
US9466993B2 (en) Charge and discharge control circuit having an intermediate terminal disconnection detecting circuit for detecting disconnection with secondary batteries
JP2008117573A (ja) 直列/並列切り替え式均等化機能付き蓄電セルモジュール
JP5334531B2 (ja) パック電池
JP2015050842A (ja) 蓄電システム、蓄電制御装置および蓄電制御方法
US9583952B2 (en) Shunt circuit, charging system and integrated circuit
JP4749290B2 (ja) 電源装置及びこれに用いる電圧管理ic
WO2018230187A1 (ja) 電池監視装置
JP2016085128A (ja) 電池電圧監視半導体装置及び電池電圧監視システム
JP2010008227A (ja) 電源装置
JP5423955B2 (ja) 電気自動車の電池モジュール
JP2008295184A (ja) 充電装置
KR20150050366A (ko) 적응적 집전 장치 전기화학 시스템
JP2013013277A (ja) 電力調整装置
JP2011055592A (ja) 二次電池、及びその充放電方法
KR101069104B1 (ko) 안정성이 향상된 멀티 전지 팩 시스템 및 그 제어방법, 및이를 이용한 전지 팩