JP2016081035A - Optically anisotropic layer and manufacturing method of the same, laminate, polarizing plate, display device, liquid crystal compound and manufacturing method of the same, and carboxylic acid compound - Google Patents

Optically anisotropic layer and manufacturing method of the same, laminate, polarizing plate, display device, liquid crystal compound and manufacturing method of the same, and carboxylic acid compound Download PDF

Info

Publication number
JP2016081035A
JP2016081035A JP2015149996A JP2015149996A JP2016081035A JP 2016081035 A JP2016081035 A JP 2016081035A JP 2015149996 A JP2015149996 A JP 2015149996A JP 2015149996 A JP2015149996 A JP 2015149996A JP 2016081035 A JP2016081035 A JP 2016081035A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
compound
liquid crystal
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015149996A
Other languages
Japanese (ja)
Other versions
JP6363566B2 (en
Inventor
拓史 松山
Takuji Matsuyama
拓史 松山
亮司 後藤
Ryoji Goto
亮司 後藤
石川 博之
Hiroyuki Ishikawa
博之 石川
慶太 ▲高▼橋
慶太 ▲高▼橋
Keita Takahashi
泰司 勝又
Taiji Katsumata
泰司 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to US14/887,858 priority Critical patent/US10059877B2/en
Priority to CN201510684728.5A priority patent/CN105524625B/en
Publication of JP2016081035A publication Critical patent/JP2016081035A/en
Priority to US16/042,224 priority patent/US11072741B2/en
Application granted granted Critical
Publication of JP6363566B2 publication Critical patent/JP6363566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal compound having a reverse wavelength dispersion property in which solubility and phase transition temperature are improved and an optically anisotropic layer using the same, a laminate, a polarizing plate, a display device, manufacturing methods of the liquid crystal compound and optically anisotropic layer, and a carboxylic acid compound that is an intermediate body of the liquid crystal compound.SOLUTION: An optically anisotropic layer includes a liquid crystal compound having a specific optical active carbon, or formed by curing a polymerizable composition including the liquid crystal compound, and the major axes of molecules of the liquid crystal compound are aligned.SELECTED DRAWING: None

Description

本発明は、逆波長分散性を有する光学異方性層とその製造方法、その光学異方性層を備えた積層体、偏光板、及び表示装置、逆波長分散性を発現する液晶化合物とその製造方法、液晶化合物の中間体であるカルボン酸化合物に関する。   The present invention relates to an optically anisotropic layer having reverse wavelength dispersion and a method for producing the same, a laminate including the optically anisotropic layer, a polarizing plate, and a display device, a liquid crystal compound exhibiting reverse wavelength dispersion, and its The present invention relates to a production method and a carboxylic acid compound which is an intermediate of a liquid crystal compound.

光学異方性層は、従来から各種表示モードの液晶表示装置等において、広視野角、高コントラスト比、及び色シフトを改善する目的で広く使用されている。一般に画像表示装置に用いられている素材、特に高分子においては位相差、つまり複屈折率が短波長側で大きくなる順波長分散(正常分散ともいう)である。そのため、透過光の波長の差による表示特性への影響が懸念されている。
光学異方性層では、この透過光の波長の差による表示特性への影響を防ぐために、位相差の波長分散を制御することが求められており、位相差の波長分散が、短波側の位相差に比べて長波側の位相差が大きい、つまり逆波長分散(異常分散ともいう)であることが求められている。
Optically anisotropic layers have been widely used for the purpose of improving a wide viewing angle, a high contrast ratio, and a color shift in liquid crystal display devices of various display modes. In general, a material used in an image display device, particularly a polymer, has a forward wavelength dispersion (also referred to as normal dispersion) in which a phase difference, that is, a birefringence increases on the short wavelength side. For this reason, there is a concern about the influence on the display characteristics due to the difference in wavelength of transmitted light.
In the optically anisotropic layer, in order to prevent the difference in the wavelength of transmitted light from affecting the display characteristics, it is required to control the chromatic dispersion of the phase difference. It is required that the phase difference on the long wave side is larger than the phase difference, that is, reverse wavelength dispersion (also referred to as anomalous dispersion).

逆波長分散性を有する光学異方性層として、逆波長分散液晶化合物を用いた光学異方性層が、特許文献1〜2等に開示されている。   As an optically anisotropic layer having reverse wavelength dispersion, optically anisotropic layers using a reverse wavelength dispersion liquid crystal compound are disclosed in Patent Documents 1 and 2 and the like.

特開2010−031223号公報JP 2010-031223 A 特開2009−242718号公報JP 2009-242718 A

しかしながら、これら文献で開示されている液晶化合物は、逆波長分散性を示すものの、配向状態を得るために必要な相転移温度が高く樹脂フィルム上での積層操作性に問題があり、また、塗布液を形成する際の溶剤への溶解性が良くないという問題がある。   However, although the liquid crystal compounds disclosed in these documents exhibit reverse wavelength dispersibility, they have a high phase transition temperature necessary for obtaining an alignment state and have a problem in lamination operability on a resin film. There is a problem that the solubility in a solvent at the time of forming a liquid is not good.

本発明は上記事情に鑑みてなされたものであって、従来に比して、液晶配向に必要な相転移温度が低く、溶媒への溶解性が高い、逆波長分散性を発現する液晶化合物を用いて得られる、製造適性に優れた逆波長分散性を有する光学異方性層及びその製造方法を提供することを目的とするものである。
本発明はまた、透過光の波長の差による表示特性への影響を考慮した積層体及び偏光板、表示装置を提供することを目的とするものである。
本発明はまた、液晶配向に必要な相転移温度が低く、溶媒への溶解性が高い、逆波長分散性を発現する液晶化合物とその製造方法、及びその液晶化合物の中間体であるカルボン酸化合物を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and a liquid crystal compound exhibiting reverse wavelength dispersibility, which has a low phase transition temperature necessary for liquid crystal alignment and high solubility in a solvent, as compared with the prior art. It is an object of the present invention to provide an optically anisotropic layer having a reverse wavelength dispersibility excellent in production suitability and a method for producing the same.
Another object of the present invention is to provide a laminate, a polarizing plate, and a display device in consideration of the influence on the display characteristics due to the difference in wavelength of transmitted light.
The present invention also provides a liquid crystal compound having a low phase transition temperature necessary for liquid crystal alignment, high solubility in a solvent, and exhibiting reverse wavelength dispersion, a method for producing the same, and a carboxylic acid compound as an intermediate of the liquid crystal compound Is intended to provide.

本発明の光学異方性層は、下記一般式1で表される液晶化合物を含む、または、下記一般式1で表される液晶化合物を含む重合性組成物の硬化により形成されてなり、一般式1で表される液晶化合物の分子の長軸が配向してなるものである。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、それぞれ1もしくは2が好ましい、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する2価の基を表し、Ar基中に含まれるΠ電子の数は、8以上である。
The optically anisotropic layer of the present invention comprises a liquid crystal compound represented by the following general formula 1 or is formed by curing a polymerizable composition comprising a liquid crystal compound represented by the following general formula 1, The major axis of the molecule of the liquid crystal compound represented by Formula 1 is aligned.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represent an integer of 1 to 4, preferably 1 or 2, respectively;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar represents a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the Ar group is 8 or more.

本発明の光学異方性層は、上記のように、上記一般式1で表される液晶化合物を含む態様、すなわち、硬化されてない態様である第1の態様と、上記一般式1で表される液晶化合物を含む重合性組成物の硬化により形成されてなる第2の態様を含んでいる。第2の態様には、一般式1で表される液晶化合物がバインダポリマー中に分散されてなる態様と、一般式1においてT及び/Tの末端基が重合性基であり、この重合性基が重合されてなる態様とがあり、後者の場合、「一般式1で表される液晶化合物の分子の長軸が配向してなるものである」とは、一般式1で表される液晶化合物の重合体中において、単量体時の分子長軸部分が配向してなることを意味する。 As described above, the optically anisotropic layer of the present invention includes a liquid crystal compound represented by the above general formula 1, that is, a first aspect that is an uncured aspect, and the above general formula 1. A second embodiment formed by curing a polymerizable composition containing a liquid crystal compound. In the second embodiment, the liquid crystal compound represented by the general formula 1 is dispersed in a binder polymer, and the end groups of T 1 and / T 2 in the general formula 1 are polymerizable groups. In the latter case, “the long axis of molecules of the liquid crystal compound represented by the general formula 1 is aligned” is represented by the general formula 1. In the polymer of a liquid crystal compound, it means that the molecular long axis part at the time of monomer is oriented.

一般式1において、Arは下記式一般式2−1〜2−4で表されるいずれかの芳香環であることが好ましく、一般式2−2で表される芳香環であることがより好ましい。
但し、式中、Qは、−S−、−O−、またはNR11−を表し、R11は、水素原子または炭素数1〜6のアルキル基を表し、;
は、炭素数1〜6のアルキル基、炭素数6〜12の芳香族炭化水素基、または、炭素数3〜12芳香族複素環基を表し、;
Z1,Z2,および,Z3は、それぞれ独立に、水素原子または炭素数1〜20の脂肪族炭化水素基またはアルコキシ基、炭素数3〜20の脂環式炭化水素基、1価の炭素数6〜20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、−NR1213またはSR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1〜6のアルキル基を表し、
1およびA2は各々独立に、−O−、−NR21−(R21は水素原子または置換基を表す。)、−S−およびCO−からなる群から選ばれる基を表し、Xは水素原子または置換基が結合していてもよい第14〜16族の非金属原子を表し、
Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、Ayは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、
は、水素原子、または、置換基を有していてもよい炭素数1〜6のアルキル基を表す。
In the general formula 1, Ar is preferably any aromatic ring represented by the following general formulas 2-1 to 2-4, and more preferably an aromatic ring represented by the general formula 2-2. .
However, In formula (I), Q 1 is -S -, - O-, or NR 11 - represents, R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Y 1 represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms;
Z1, Z2, and Z3 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an alkoxy group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent carbon number of 6 Represents an aromatic hydrocarbon group of ˜20, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or SR 12 , and Z 1 and Z 2 are bonded to each other to form an aromatic ring or an aromatic heterocyclic ring. R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
A 1 and A 2 each independently represent a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S—, and CO—, and X represents Represents a hydrogen atom or a non-metallic atom of group 16 to 16 to which a substituent may be bonded,
Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ay may have a hydrogen atom or a substituent. A good alkyl group having 1 to 6 carbon atoms, or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ax and Ay The aromatic ring possessed by may have a substituent, and Ax and Ay may combine to form a ring,
Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.

一般式1において、T1とT2は下記一般式3で表される構造とすることができる。一般式3の様に末端を重合性基とすることで、上記一般式1で表される液晶化合物を含む重合性組成物を硬化により形成されてなる光学異方性層とすることができる。
但し、式中、Sp1,Sp2はそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基を表し、アルキレン基中において隣接しない1つまたは2つ以上の−CH−が−O−、−S−、−C(=O)−、−OC(=O)−、−C(=O)O−、−OC(=O)O−、−NRC(=O)−、−C(=O)NR−、−OC(=O)NR−、−NRC(=O)O−、−SC(=O)−または−C(=O)S−で置換されていてもよく、R、R、R、Rは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1〜4のアルキル基を表し;
1、Pは、それぞれ独立に重合性基または水素原子を表し、少なくとも一つは重合性基を表す。
In the general formula 1, T1 and T2 can have a structure represented by the following general formula 3. By making the terminal a polymerizable group as in the general formula 3, the polymerizable composition containing the liquid crystal compound represented by the general formula 1 can be formed into an optically anisotropic layer formed by curing.
In the formula, Sp1 and Sp2 each independently represent a linear or branched alkylene group having 2 to 20 carbon atoms, and one or two or more —CH 2 — that are not adjacent to each other in the alkylene group are —O—. , —S—, —C (═O) —, —OC (═O) —, —C (═O) O—, —OC (═O) O—, —NR 1 C (═O) —, — C (═O) NR 2 —, —OC (═O) NR 3 —, —NR 4 C (═O) O—, —SC (═O) — or —C (═O) S— is substituted. R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms;
P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one represents a polymerizable group.

本発明の光学異方性層において、配向状態はネマチック相またはスメクチック相で固定されていることが好ましく、スメクチック相で固定されていることがより好ましい。
本明細書において、スメクチック相とは一方向に揃った分子が層構造を有している状態をいい、ネマチック相とはその構成分子が配向秩序を持つが、三次元的な位置秩序を持たない状態をいう。
In the optically anisotropic layer of the present invention, the alignment state is preferably fixed with a nematic phase or a smectic phase, and more preferably fixed with a smectic phase.
In this specification, the smectic phase means a state in which molecules aligned in one direction have a layer structure, and the nematic phase means that the constituent molecules have an orientational order but do not have a three-dimensional positional order. State.

本発明の光学異方性層において、一般式1で表される液晶化合物の分子の長軸がホモジニアス配向で固定され、波長450nm,550nm,650nmにおける位相差Re(450nm),Re(550nm),Re(650nm)が下記数式A及びBを満たすことが好ましい。
Re(450nm)/Re(550nm)<0.95 ・・・数式A
Re(650nm)/Re(550nm)>1.02 ・・・数式B
In the optically anisotropic layer of the present invention, the major axis of the molecule of the liquid crystal compound represented by general formula 1 is fixed in a homogeneous orientation, and the phase difference Re (450 nm), Re (550 nm) at wavelengths of 450 nm, 550 nm, and 650 nm, It is preferable that Re (650 nm) satisfies the following formulas A and B.
Re (450 nm) / Re (550 nm) <0.95 Formula A
Re (650 nm) / Re (550 nm)> 1.02 Formula B

本発明の積層体は、上記本発明の光学異方性層が樹脂フィルム上に直接または配向膜を介して積層されたものである。   The laminate of the present invention is obtained by laminating the above optically anisotropic layer of the present invention on a resin film directly or via an alignment film.

本発明の偏光板は、樹脂フィルムが偏光子である上記本発明の積層体を備えてなる。   The polarizing plate of this invention is equipped with the laminated body of the said invention whose resin film is a polarizer.

本発明の表示装置は、上記本発明の偏光板を備えたものである。   The display device of the present invention includes the polarizing plate of the present invention.

本発明の光学異方性層の製造方法は、下記一般式1で表される液晶化合物を含む組成物、または、下記一般式1で表される液晶化合物を含む重合性組成物を展開し、加熱して下記一般式1で表される液晶化合物の分子の長軸を配向させた後、上記組成物又は重合性組成物を硬化するものである。一般式1の好適な構成については上記本発明の光学異方性層と同様である。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、それぞれ1もしくは2が好ましい、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する2価の基を表し、Ar基中に含まれるΠ電子の数は8以上である。
The method for producing an optically anisotropic layer of the present invention develops a composition containing a liquid crystal compound represented by the following general formula 1 or a polymerizable composition containing a liquid crystal compound represented by the following general formula 1, The composition or polymerizable composition is cured after heating to align the long axes of the molecules of the liquid crystal compound represented by the following general formula 1. The preferred structure of general formula 1 is the same as that of the optically anisotropic layer of the present invention.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represent an integer of 1 to 4, preferably 1 or 2, respectively;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar represents a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the Ar group is 8 or more.

本発明の光学異方性層の製造方法において、一般式1で表される液晶化合物の配向温度よりもガラス転移温度が高い支持体上に、一般式1で表される液晶化合物を含む組成物または重合性組成物を展開することが好ましい。   In the method for producing an optically anisotropic layer of the present invention, a composition comprising a liquid crystal compound represented by general formula 1 on a support having a glass transition temperature higher than the alignment temperature of the liquid crystal compound represented by general formula 1 Alternatively, it is preferable to develop a polymerizable composition.

本明細書において、「液晶化合物の配向温度」とは、液晶化合物が配向状態を得るために必要な相転移温度を意味する。   In the present specification, the “alignment temperature of the liquid crystal compound” means a phase transition temperature necessary for the liquid crystal compound to obtain an alignment state.

本発明の液晶化合物は、下記一般式1で表されるものである。一般式1の好適な構成については上記本発明の光学異方性層と同様である。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、それぞれ1もしくは2が好ましい、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、下記一般式2−1〜2−4で表されるいずれかの芳香環を表す。
但し、式中、Qは、−S−、−O−、またはNR11−を表し、R11は、水素原子または炭素数1〜6のアルキル基を表し、;
は、炭素数1〜6のアルキル基、炭素数6〜12の芳香族炭化水素基、または、炭素数3〜12芳香族複素環基を表し、;
Z1,Z2,および,Z3は、それぞれ独立に、水素原子または炭素数1〜20の脂肪族炭化水素基またはアルコキシ基、炭素数3〜20の脂環式炭化水素基、1価の炭素数6〜20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、−NR1213またはSR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1〜6のアルキル基を表し、
1およびA2は各々独立に、−O−、−NR21−(R21は水素原子または置換基を表す。)、−S−およびCO−からなる群から選ばれる基を表し、Xは水素原子または置換基が結合していてもよい第14〜16族の非金属原子を表し、
Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、Ayは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、
は、水素原子、または、置換基を有していてもよい炭素数1〜6のアルキル基を表す。
The liquid crystal compound of the present invention is represented by the following general formula 1. The preferred structure of general formula 1 is the same as that of the optically anisotropic layer of the present invention.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represent an integer of 1 to 4, preferably 1 or 2, respectively;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar represents any aromatic ring represented by the following general formulas 2-1 to 2-4.
However, In formula (I), Q 1 is -S -, - O-, or NR 11 - represents, R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Y 1 represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms;
Z1, Z2, and Z3 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an alkoxy group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent carbon number of 6 Represents an aromatic hydrocarbon group of ˜20, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or SR 12 , and Z 1 and Z 2 are bonded to each other to form an aromatic ring or an aromatic heterocyclic ring. R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
A 1 and A 2 each independently represent a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S—, and CO—, and X represents Represents a hydrogen atom or a non-metallic atom of group 16 to 16 to which a substituent may be bonded,
Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ay may have a hydrogen atom or a substituent. A good alkyl group having 1 to 6 carbon atoms, or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ax and Ay The aromatic ring possessed by may have a substituent, and Ax and Ay may combine to form a ring,
Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.

本発明の液晶化合物の製造方法は、下記一般式1で表される液晶化合物の製造方法であって、下記一般式4で表される化合物と、下記一般式5表される化合物とを反応させるものである。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、それぞれ1もしくは2が好ましい、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有し、基中の芳香環に含まれるΠ電子の数が8以上である2価の基を表す。
但し、式中、Lはカルボニル基を有する接続基を表し、;
は炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
nは0〜4の整数を表し、;
aは1〜4の整数を表し、;
は炭素数2〜20の直鎖もしくは分岐のアルキレン基である;
但し、式中、Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有し、基中の芳香環に含まれるΠ電子の数が8以上である2価の基を表す。
The method for producing a liquid crystal compound of the present invention is a method for producing a liquid crystal compound represented by the following general formula 1, which comprises reacting a compound represented by the following general formula 4 with a compound represented by the following general formula 5. Is.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represent an integer of 1 to 4, preferably 1 or 2, respectively;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar is a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the aromatic ring in the group is 8 or more. Represent.
Where L 1 represents a connecting group having a carbonyl group;
F 1 represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n represents an integer of 0 to 4;
a represents an integer of 1 to 4;
T 1 is a linear or branched alkylene group having 2 to 20 carbon atoms;
However, in the formula, Ar has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the aromatic ring in the group is 8 or more. Represents a divalent group.

本発明のカルボン酸化合物は、下記一般式7で表されるものであり、上記本発明の液晶化合物の製造方法に用いるカルボン酸化合物として好適である。
但し、式中、Lはカルボニル基を有する接続基を表し、;
は炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
nは0〜4の整数を表し、;
aは1〜4の整数を表し、;
Spは、炭素数2〜20の直鎖もしくは分岐のアルキレン基を表し、アルキレン基中において隣接しない1つまたは2つ以上の−CH−が−O−、−S−、−C(=O)−、−OC(=O)−、−C(=O)O−、−OC(=O)O−、−NRC(=O)−、−C(=O)NR−、−OC(=O)NR−、−NRC(=O)O−、−SC(=O)−または−C(=O)S−で置換されていてもよく、R、R、R、Rは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1〜4のアルキル基を表し;
1は、重合性基を表す。
The carboxylic acid compound of the present invention is represented by the following general formula 7, and is suitable as the carboxylic acid compound used in the method for producing the liquid crystal compound of the present invention.
Where L 1 represents a connecting group having a carbonyl group;
F 1 represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n represents an integer of 0 to 4;
a represents an integer of 1 to 4;
Sp 1 represents a linear or branched alkylene group having 2 to 20 carbon atoms, and one or two or more —CH 2 — that are not adjacent to each other in the alkylene group are —O—, —S—, —C (= O) —, —OC (═O) —, —C (═O) O—, —OC (═O) O—, —NR 1 C (═O) —, —C (═O) NR 2 —, -OC (= O) NR 3 - , - NR 4 C (= O) O -, - SC (= O) - or -C (= O) S- may be substituted by, R 1, R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms;
P 1 represents a polymerizable group.

本発明の光学異方性層は、従来に比して、液晶配向に必要な相転移温度が低く、溶媒への溶解性が高い、逆波長分散性を発現する液晶化合物を用いて得られるものである。従って、本発明によれば、製造適性に優れた逆波長分散性を有する光学異方性層を提供することができる。   The optically anisotropic layer of the present invention is obtained by using a liquid crystal compound that has a low phase transition temperature necessary for liquid crystal alignment, a high solubility in a solvent, and a reverse wavelength dispersibility as compared with the conventional one. It is. Therefore, according to the present invention, it is possible to provide an optically anisotropic layer having reverse wavelength dispersion that is excellent in production suitability.

本発明に係る一実施形態の光学異方性層及び偏光板の構成を示す断面概略図である。It is a cross-sectional schematic diagram which shows the structure of the optically anisotropic layer and polarizing plate of one Embodiment which concerns on this invention. IPS型液晶セルの基板内面の画素電極の一部の概略上面図である。It is a schematic top view of a part of the pixel electrode on the inner surface of the substrate of the IPS type liquid crystal cell. 本発明に係る一実施形態の偏光板を備えたIPS型液晶表示装置の概略断面構成図である。1 is a schematic cross-sectional configuration diagram of an IPS liquid crystal display device including a polarizing plate according to an embodiment of the present invention.

以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、角度について「直交」および「平行」とは、厳密な角度±10°の範囲を意味するものとし、並びに角度について「同一」および「異なる」は、その差が5°未満であるか否かを基準に判断できる。   Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. Further, “orthogonal” and “parallel” with respect to an angle shall mean a range of a strict angle ± 10 °, and “identical” and “different” with respect to an angle indicate whether or not the difference is less than 5 °. It can be judged on the basis of.

本明細書において「遅相軸」とは、面内において屈折率が最大となる方向を意味し、「偏光板」とは、特別な記述がない限り、長尺の偏光板、および表示装置に組み込まれる大きさに裁断された偏光板の両者を含む意味で用いている。なお、ここでいう「裁断」には「打ち抜き」および「切り出し」等も含むものとする。また、本明細書において、「偏光板」のうち、特に、本発明の光学フィルムまたは一般的なλ/4板と偏光膜との積層体を含む形態を「円偏光板」と呼ぶ。
また、有機EL表示装置とは、有機エレクトロルミネッセンス表示装置を意味する。
In this specification, the “slow axis” means a direction in which the refractive index becomes maximum in the plane, and the “polarizing plate” means a long polarizing plate and a display device unless otherwise specified. It is used to include both polarizing plates cut to the size to be incorporated. Here, “cutting” includes “punching” and “cutting out”. Further, in the present specification, among the “polarizing plates”, in particular, a form including a laminate of the optical film of the present invention or a general λ / 4 plate and a polarizing film is referred to as a “circular polarizing plate”.
The organic EL display device means an organic electroluminescence display device.

本明細書において、「傾斜角」(チルト角とも称する)とは、傾斜した液晶が層平面となす角度を意味し、液晶化合物の屈折率楕円体において最大の屈折率の方向が層平面となす角度のうち、最大の角度を意味する。従って、正の光学的異方性を持つ液晶化合物では、チルト角は液晶化合物の長軸方向すなわちダイレクター方向と層平面とのなす角度を意味する。また、本発明において、「平均チルト角」とは、位相差層の上界面でのチルト角から下界面までのチルト角の平均値を意味する。
本明細書において逆波長分散性とは長波長になるほど面内レターデーションの絶対値が大きくなる性質を意味する。
In this specification, “tilt angle” (also referred to as tilt angle) means an angle formed by tilted liquid crystal with the layer plane, and the direction of the maximum refractive index in the refractive index ellipsoid of the liquid crystal compound is the layer plane. It means the maximum angle among the angles. Therefore, in a liquid crystal compound having positive optical anisotropy, the tilt angle means an angle formed between the major axis direction of the liquid crystal compound, that is, the director direction and the layer plane. In the present invention, “average tilt angle” means an average value of tilt angles from the tilt angle at the upper interface to the lower interface of the retardation layer.
In the present specification, the reverse wavelength dispersion means a property that the absolute value of the in-plane retardation becomes larger as the wavelength becomes longer.

本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(商品名、王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。   In this specification, Re (λ) and Rth (λ) respectively represent in-plane retardation and retardation in the thickness direction at a wavelength λ. Re (λ) is measured by making light having a wavelength of λ nm incident in the normal direction of the film in KOBRA 21ADH or WR (trade name, manufactured by Oji Scientific Instruments).

測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は、Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRにおいて算出される。
When the film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method.
Rth (λ) is Re (λ), with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (if there is no slow axis, it is arbitrary in the film plane) The light is incident at a wavelength of λ nm from the inclined direction in steps of 10 degrees from the normal direction to 50 degrees on one side with respect to the film normal direction of the rotation axis of It is calculated in KOBRA 21ADH or WR based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.

上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRにおいて算出される。
なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値および入力された膜厚値を基に、以下の数式(7)および数式(8)によりRthを算出することもできる。
In the above case, in the case of a film having a direction in which the retardation value is zero at a certain tilt angle with the in-plane slow axis from the normal direction as the rotation axis, retardation at a tilt angle larger than the tilt angle. The value is calculated in KOBRA 21ADH or WR after changing its sign to negative.
In addition, the retardation value is measured from the two inclined directions, with the slow axis as the tilt axis (rotation axis) (when there is no slow axis, the arbitrary direction in the film plane is the rotation axis), Based on the value, the assumed value of the average refractive index, and the input film thickness value, Rth can also be calculated by the following formulas (7) and (8).

式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。特にθの記載がない場合にθは0°を示すこととする。nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する方向の屈折率を表す。dはフィルムの膜厚を表す。   In the formula, Re (θ) represents a retardation value in a direction inclined by an angle θ from the normal direction. In particular, when θ is not described, θ indicates 0 °. nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to nx in the plane, and nz represents the refractive index in the direction perpendicular to nx and ny. d represents the film thickness of the film.

測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(OPTIC AXIS)がないフィルムの場合には、以下の方法によりRth(λ)が算出される。
Rth(λ)は、Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基にKOBRA 21ADHまたはWRにより算出される。
In the case where the film to be measured cannot be expressed by a uniaxial or biaxial refractive index ellipsoid, that is, a film having no so-called optical axis (OPTIC AXIS), Rth (λ) is calculated by the following method.
Rth (λ) is Re (λ), and the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis) from −50 degrees to +50 degrees with respect to the film normal direction. The light of wavelength λ nm is incident from each inclined direction in 10 degree steps and measured at 11 points, and KOBRA 21ADH or Calculated by WR.

上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRにおいてnx、ny、nzが算出される。この算出されたnx、ny、nzによりNz=(nx−nz)/(nx−ny)が更に算出される。
なお、レターデーションRe、Rthは、AxoScan(AXOMETRICS社)を用いて測定することもでき、NzはNz=Rth/Re+0.5によっても求めることができる。
In the above measurement, as the assumed value of the average refractive index, the values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. Those whose average refractive index is not known can be measured with an Abbe refractometer. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). By inputting the assumed value of the average refractive index and the film thickness, nx, ny, and nz are calculated in KOBRA 21ADH or WR. Nz = (nx−nz) / (nx−ny) is further calculated from the calculated nx, ny, and nz.
The retardations Re and Rth can also be measured by using AxoScan (AXOMETRIC), and Nz can also be obtained by Nz = Rth / Re + 0.5.

[光学異方性層]
本発明の光学異方性層は、一般式1で表される本発明の液晶化合物を含む、または、本発明の液晶化合物を含む重合性組成物の硬化により形成されてなり、本発明の液晶化合物の分子の長軸が配向してなるものであり、レターデーションを測定したときにレターデーションが0でない入射方向および波長が一つはある、すなわち等方性でない光学特性を有する層である。
[Optically anisotropic layer]
The optically anisotropic layer of the present invention contains the liquid crystal compound of the present invention represented by the general formula 1 or is formed by curing of a polymerizable composition containing the liquid crystal compound of the present invention. It is a layer having the long axis of the molecule of the compound oriented, and has a single incident direction and wavelength where retardation is not 0 when measuring retardation, that is, a layer having optical properties that are not isotropic.

光学異方性層の厚さは、用いる素材や設定する位相差値によっても異なるが、0.1〜20μmであることが好ましく、0.5〜15μmであることがより好ましく、1.0〜10μmであることがよりさらに好ましい。また、光学異方性層の波長550nmにおける面内レターデーションRe(550)、Rthは、用途によって好ましい範囲が異なるため適宜選択される。なお、本明細書において、各層の厚さは、ランダムに5箇所の膜厚を測定し、その膜厚を平均した値のことを示す。   The thickness of the optically anisotropic layer varies depending on the material used and the retardation value to be set, but is preferably 0.1 to 20 μm, more preferably 0.5 to 15 μm, and 1.0 to More preferably, it is 10 μm. Further, the in-plane retardation Re (550) and Rth at a wavelength of 550 nm of the optically anisotropic layer are appropriately selected because preferred ranges differ depending on the application. In addition, in this specification, the thickness of each layer shows the value which measured the film thickness of five places at random, and averaged the film thickness.

本発明の光学異方性層において、詳細を後記する本発明の液晶化合物の分子の長軸の配向状態はネマチック相またはスメクチック相で固定されていることが好ましく、スメクチック相で固定されていることがより好ましい。本発明の液晶化合物は、分子の長軸が揃って配向したスメクチック相及び/またはネマチック相を示し、また、さらにカイラル剤の使用によりカイラルネマチック相を形成することもできる。光学補償に用いる光学異方性層としては配向秩序度の高いスメクチック相であることが好ましい。   In the optically anisotropic layer of the present invention, the alignment state of the long axis of the molecule of the liquid crystal compound of the present invention, which will be described in detail later, is preferably fixed in a nematic phase or a smectic phase, and is fixed in a smectic phase. Is more preferable. The liquid crystal compound of the present invention exhibits a smectic phase and / or a nematic phase in which the major axes of the molecules are aligned, and a chiral nematic phase can also be formed by using a chiral agent. The optically anisotropic layer used for optical compensation is preferably a smectic phase having a high degree of orientational order.

スメクチック液晶は配向揺らぎによる光学異方性層の散乱偏光解消が小さいために100nm以上の比較的大きなレターデーションが必要な使用においてより好ましく用いることができる。なお、スメクチック相としては特に限定が無くSmA,SmB,SmCなどの液晶分子が取り得るいかなる高次の相であってもよく、所望の光学特性によって適宜選択される。
スメクチック相の状態で液晶化合物が固定されているかを確認するには、X線回折パターンによる観察によって行うことができる。スメクチック相の状態で固定されていれば、層秩序に由来するX線回折パターンが観察されるため、固定されている状態の判別が可能である。ネマチック相の状態で液晶化合物が固定されているかを確認するには、X線回折パターンによる観察によって行うことができる。ネマチック相の状態で固定されていれば、層形成に由来する低角側のシャープなピークは観測されず、広角側にブロードなハローピークのみが観測されることにより、固定されている状態の判別が可能である。
Smectic liquid crystals can be more preferably used in applications that require a relatively large retardation of 100 nm or more, because the scattering and depolarization of the optically anisotropic layer due to orientation fluctuation is small. The smectic phase is not particularly limited and may be any higher-order phase that can be taken by liquid crystal molecules such as SmA, SmB, and SmC, and is appropriately selected depending on desired optical characteristics.
In order to confirm whether the liquid crystal compound is fixed in the state of the smectic phase, it can be performed by observation with an X-ray diffraction pattern. If the smectic phase is fixed, an X-ray diffraction pattern derived from the layer order is observed, so that the fixed state can be determined. In order to confirm whether the liquid crystal compound is fixed in a nematic phase, it can be performed by observation with an X-ray diffraction pattern. If the nematic phase is fixed, the sharp peak on the low-angle side due to the layer formation is not observed, and only the broad halo peak on the wide-angle side is observed, thereby determining the fixed state. Is possible.

また、本発明の光学異方性層における、上記一般式1で表される液晶化合物の分子の長軸の配向状態は、所望の位相差を得るためにホモジニアス配向やホメオトロピック配向などの各種配向状態を選択することができるが、ホモジニアス配向で固定されていることが好ましい。   In the optically anisotropic layer of the present invention, the alignment state of the long axis of the liquid crystal compound represented by the general formula 1 is various alignments such as homogeneous alignment and homeotropic alignment in order to obtain a desired phase difference. The state can be selected, but is preferably fixed in a homogeneous orientation.

本発明では、ホモジニアス配向もしくは略水平の傾斜配向(以降、(略)水平配向とも称する。)の状態の配向状態を固定化することで、屈折率の最大方向と層平面となす角が10°以下、好ましくは3°以下、特に好ましくは1°以下である光学異方性層を得ることができる。一方、ホメオトロピック配向もしくは略垂直の傾斜配向(以降、(略)垂直配向とも称する。)の状態の配向状態を固定化することで、屈折率の最大方向が層平面の法線方向となす角が10°以下、好ましくは3°以下、特に好ましくは1°以下である光学異方性層を得ることができる。   In the present invention, the angle between the maximum direction of the refractive index and the layer plane is 10 ° by fixing the orientation state of homogeneous orientation or substantially horizontal tilt orientation (hereinafter also referred to as (substantially) horizontal orientation). In the following, an optically anisotropic layer having an angle of preferably 3 ° or less and particularly preferably 1 ° or less can be obtained. On the other hand, by fixing the orientation state of homeotropic orientation or substantially vertical tilt orientation (hereinafter also referred to as (substantially) vertical orientation), the angle between the maximum direction of the refractive index and the normal direction of the layer plane Is 10 ° or less, preferably 3 ° or less, and particularly preferably 1 ° or less.

本発明の光学異方性層の一態様として、ホモジニアス配向のスメクチック相を固定化したものを得る場合、スメクチック相を発現する一般式1で表される化合物をホモジニアス配向となる様に配向規制がかかる状態でスメクチック相を発現する温度等の条件に保持することで、ホモジニアス配向のスメクチック相の状態とさせ、重合や光架橋や熱架橋によって固定することによって形成することができる。光学異方性層の製造方法の詳細は後述する。   As one embodiment of the optically anisotropic layer of the present invention, when a homogeneously oriented smectic phase is immobilized, the compound represented by the general formula 1 that expresses the smectic phase is regulated so that it becomes homogeneously oriented. By maintaining the conditions such as the temperature at which the smectic phase is developed in such a state, it can be formed into a homogeneously oriented smectic phase state and fixed by polymerization, photocrosslinking or thermal crosslinking. Details of the method of manufacturing the optically anisotropic layer will be described later.

本発明の光学異方性層は逆波長分散性を有する。逆波長分散性とは短波側の位相差に比べて長波側の位相差が大きい性質のことを表す。例えば、上記分子の長軸の配向状態が、略水平配向で固定化されてなる光学異方性層(いわゆるAプレート)においては、光学異方性層の波長450nm,550nm,650nmにおける位相差Re(450nm),Re(550nm),Re(650nm)が以下の数式(I)及び(II)を満たす。本発明では、視野角特性向上のために最も重要な緑(550nm)に対して正の複屈折性を与えた場合の好適な青(450nm)、赤(650nm)の範囲が数式I及びIIの範囲となる。本発明の光学異方性層において、逆波長分散の急峻性が高いほど好ましいことから、上記位相差Re(450nm),Re(550nm),Re(650nm)が下記数式A及びBを満たしていることが好ましく、Re(450nm)/Re(550nm)の値は、下記数式Cを満たしていることがより好ましい。急峻な逆波長分散性を有することにより、高性能の光学機器を提供することができる。
Re(450nm)/Re(550nm)<1.0 ・・・数式I
Re(650nm)/Re(550nm)>1.0 ・・・数式II
Re(450nm)/Re(550nm)<0.95 ・・・数式A
Re(650nm)/Re(550nm)>1.02 ・・・数式B
0.50≦Re(450nm)/Re(550nm)<0.90 ・・・数式C
The optically anisotropic layer of the present invention has reverse wavelength dispersion. Inverse wavelength dispersion means a property in which the phase difference on the long wave side is larger than the phase difference on the short wave side. For example, in an optically anisotropic layer (so-called A plate) in which the major axis orientation state of the molecule is fixed in a substantially horizontal orientation, the phase difference Re at wavelengths of 450 nm, 550 nm, and 650 nm of the optically anisotropic layer. (450 nm), Re (550 nm), and Re (650 nm) satisfy the following formulas (I) and (II). In the present invention, preferable ranges of blue (450 nm) and red (650 nm) when giving positive birefringence to green (550 nm), which is most important for improving the viewing angle characteristics, are represented by Formulas I and II. It becomes a range. In the optically anisotropic layer of the present invention, the higher the steepness of reverse wavelength dispersion, the better. Therefore, the phase differences Re (450 nm), Re (550 nm), and Re (650 nm) satisfy the following formulas A and B. It is preferable that the value of Re (450 nm) / Re (550 nm) satisfy the following formula C. By having steep reverse wavelength dispersion, a high-performance optical instrument can be provided.
Re (450 nm) / Re (550 nm) <1.0 Formula I
Re (650 nm) / Re (550 nm)> 1.0 Formula II
Re (450 nm) / Re (550 nm) <0.95 Formula A
Re (650 nm) / Re (550 nm)> 1.02 Formula B
0.50 ≦ Re (450 nm) / Re (550 nm) <0.90 Expression C

上記数式I及びIIを満たす光学異方性層を得るためには、配向方向と直交方向における吸収波長と遷移モーメントの方向を上手く配置する必要がある。
屈折率の波長分散性は、Lorentz−Lorenzの式で表されているように、物質の吸収に密接な関係にある。直交方向の波長分散性をより右肩下がりにするためには、上記の分子長軸方向(配向方向)の吸収遷移波長に比較して上記の分子短軸方向の吸収遷移波長を長波化することにより、数式I及びIIを満たす光学異方性層とすることができる。
以下に、一般式1で表される本発明の液晶化合物について説明する。
In order to obtain an optically anisotropic layer that satisfies the above formulas I and II, it is necessary to arrange the absorption wavelength and the direction of the transition moment in the direction orthogonal to the alignment direction.
The wavelength dispersion of the refractive index is closely related to the absorption of the substance, as represented by the Lorentz-Lorenz equation. To make the wavelength dispersion in the orthogonal direction more downward, the absorption transition wavelength in the molecular minor axis direction is made longer than the absorption transition wavelength in the molecular major axis direction (orientation direction). Thus, an optically anisotropic layer satisfying Formulas I and II can be obtained.
Hereinafter, the liquid crystal compound of the present invention represented by Formula 1 will be described.

<<液晶化合物>>
本発明の液晶化合物は、下記一般式1で表されるものである。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、それぞれ1もしくは2が好ましく、2が最も好ましい、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する2価の基を表し、Ar基中に含まれるΠ電子の数は、8以上である。
なお、L1,L2、F1,F2、T、T、Arは、置換基を有していてもよい。
<< Liquid Crystal Compound >>
The liquid crystal compound of the present invention is represented by the following general formula 1.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represent an integer of 1 to 4, preferably 1 or 2, and most preferably 2.
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar represents a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the Ar group is 8 or more.
In addition, L1, L2, F1, F2, T 1 , T 2 , and Ar may have a substituent.

本明細書において、置換基を有していてもよいという時の置換基の数、ならびにその種類、置換位は限定されず、2または3以上の置換基が存在する場合、それらは同じであっても異なっていてもよい。置換基の種類としては、特に限定されない。置換基の例としては、アルキル基、アルコキシ基、アルキル置換アルコキシ基、環状アルキル基、フェニル基、ナフチル基等のアリール基、シアノ基、アミノ基、ニトロ基、アルキルカルボニル基、スルホ基、水酸基等が挙げられる。   In the present specification, the number of the substituents when they may have a substituent, as well as the type and substitution position thereof are not limited, and when two or more substituents are present, they are the same. Or different. The type of substituent is not particularly limited. Examples of substituents include alkyl groups, alkoxy groups, alkyl-substituted alkoxy groups, cyclic alkyl groups, aryl groups such as phenyl groups, naphthyl groups, cyano groups, amino groups, nitro groups, alkylcarbonyl groups, sulfo groups, hydroxyl groups, etc. Is mentioned.

スペーサー部T,Tは、一般式1で表される化合物における末端部である。スペーサー部としては炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むものであれば特に限定されないが、アルキレン基またはアルキレンオキシド基の具体例としては、−(CH2−、−(CH2−O−、−(CH2−O−)−、−(CH2CH2−O−)などが挙げられる。 The spacer portions T 1 and T 2 are terminal portions in the compound represented by the general formula 1. The spacer portion is not particularly limited as long as it contains a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms. Specific examples of the alkylene group or alkylene oxide group include — (CH 2 ) x. -, - (CH 2) x -O -, - (CH 2 -O-) x -, - such as (CH 2 CH 2 -O-) x may be mentioned.

一般式1において、T1とT2を下記一般式3で表される構造とすることで、光学異方性層内で上記一般式1で表される液晶化合物を重合固定させることができる。
但し、式中、Sp1,Sp2はそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基を表し、アルキレン基中において隣接しない1つまたは2つ以上の−CH−が−O−、−S−、−C(=O)−、−OC(=O)−、−C(=O)O−、−OC(=O)O−、−NRC(=O)−、−C(=O)NR−、−OC(=O)NR−、−NRC(=O)O−、−SC(=O)−または−C(=O)S−で置換されていてもよく、R、R、R、Rは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1〜4のアルキル基を表し;
1、Pは、それぞれ独立に重合性基または水素原子を表し、少なくとも一つは重合性
基を表す。
In the general formula 1, by setting T1 and T2 to the structure represented by the following general formula 3, the liquid crystal compound represented by the above general formula 1 can be polymerized and fixed in the optically anisotropic layer.
In the formula, Sp1 and Sp2 each independently represent a linear or branched alkylene group having 2 to 20 carbon atoms, and one or two or more —CH 2 — that are not adjacent to each other in the alkylene group are —O—. , —S—, —C (═O) —, —OC (═O) —, —C (═O) O—, —OC (═O) O—, —NR 1 C (═O) —, — C (═O) NR 2 —, —OC (═O) NR 3 —, —NR 4 C (═O) O—, —SC (═O) — or —C (═O) S— is substituted. R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms;
P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one represents a polymerizable group.

1、Pの重合性基としてはエチレン性不飽和基や開環重合性基が好ましい。エチレン性不飽和基としては(メタ)アクリロイル基が好ましく、開環重合性基としてはエポキシ基やオキセタニル基が好ましい。 P 1 and P 2 are preferably an ethylenically unsaturated group or a ring-opening polymerizable group. The ethylenically unsaturated group is preferably a (meth) acryloyl group, and the ring-opening polymerizable group is preferably an epoxy group or an oxetanyl group.

一般式1において、Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する2価の基を表し、Ar基中に含まれるΠ電子の数は8以上である。
Ar基中に含まれるΠ電子の数が8以上であることによって一般式1で表される化合物における環状基が連結した部位とスペーサー部が伸長する方向(分子長軸方向)と交差する方向、すなわち、分子短軸方向の吸収波長が長波長となり、配向した液晶分子により発生する位相差が逆波長分散性を有すると推定される。Π電子の数は8以上40以下が好ましく、10以上36以下がより好ましく、12以上30以下がさらに好ましい。
In the general formula 1, Ar represents a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of Π electrons contained in the Ar group is 8 That's it.
A direction intersecting with the direction in which the cyclic group is linked and the direction in which the spacer portion extends (molecular long axis direction) in the compound represented by the general formula 1 when the number of Π electrons contained in the Ar group is 8 or more, That is, it is presumed that the absorption wavelength in the short axis direction of the molecule becomes a long wavelength, and the phase difference generated by the aligned liquid crystal molecules has reverse wavelength dispersion. The number of Π electrons is preferably 8 or more and 40 or less, more preferably 10 or more and 36 or less, and still more preferably 12 or more and 30 or less.

Arは下記一般式2−1、2−2、2−3、または2−4で表される2価の芳香環基であることが好ましい。
但し、式中、Qは、−S−、−O−、またはNR11−を表し、R11は、水素原子または炭素数1〜6のアルキル基を表し、;
は、炭素数1〜6のアルキル基、炭素数6〜12の芳香族炭化水素基、または、炭素数3〜12芳香族複素環基を表し、;
Z1,Z2,および,Z3は、それぞれ独立に、水素原子または炭素数1〜20の脂肪族炭化水素基またはアルコキシ基、炭素数3〜20の脂環式炭化水素基、1価の炭素数6〜20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、−NR1213またはSR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1〜6のアルキル基を表し、
1およびA2は各々独立に、−O−、−NR21−(R21は水素原子または置換基を表す。)、−S−およびCO−からなる群から選ばれる基を表し、Xは水素原子または置換基が結合していてもよい第14〜16族の非金属原子を表し、
Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、Ayは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、
は、水素原子、または、置換基を有していてもよい炭素数1〜6のアルキル基を表す。
Ar is preferably a divalent aromatic ring group represented by the following formulas 2-1, 2-2, 2-3, or 2-4.
However, In formula (I), Q 1 is -S -, - O-, or NR 11 - represents, R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Y 1 represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms;
Z1, Z2, and Z3 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an alkoxy group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent carbon number of 6 Represents an aromatic hydrocarbon group of ˜20, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or SR 12 , and Z 1 and Z 2 are bonded to each other to form an aromatic ring or an aromatic heterocyclic ring. R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
A 1 and A 2 each independently represent a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S—, and CO—, and X represents Represents a hydrogen atom or a non-metallic atom of group 16 to 16 to which a substituent may be bonded,
Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ay may have a hydrogen atom or a substituent. A good alkyl group having 1 to 6 carbon atoms, or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ax and Ay The aromatic ring possessed by may have a substituent, and Ax and Ay may combine to form a ring,
Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.

一般式1で表される本発明の液晶化合物として以下に好ましい例を示すが、特にこれらに限定されることはない。
Preferred examples of the liquid crystal compound of the present invention represented by the general formula 1 are shown below, but are not particularly limited thereto.

上記本発明の液晶化合物は、下記一般式4で表される化合物と、下記一般式5表される化合物とを反応させることにより製造することができる。すなわち、本発明の液晶化合物の製造方法は、下記一般式1で表される液晶化合物の製造方法であって、下記一般式4で表される化合物と、下記一般式5表される化合物とを反応させるものである。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、それぞれ1もしくは2が好ましく、2が最も好ましい、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有し、基中の芳香環に含まれるΠ電子の数が8以上である2価の基を表す。
但し、式中、Lはカルボニル基を有する接続基を表し、;
は炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
nは0〜4の整数を表し、;
aは1〜4の整数を表し、;
は炭素数2〜20の直鎖もしくは分岐のアルキレン基である;
但し、式中、Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有し、基中の芳香環に含まれるΠ電子の数が8以上である2価の基を表す。Arの好ましい構成については、一般式1に示されているArに関する記載を参照することができる。
The liquid crystal compound of the present invention can be produced by reacting a compound represented by the following general formula 4 with a compound represented by the following general formula 5. That is, the method for producing a liquid crystal compound of the present invention is a method for producing a liquid crystal compound represented by the following general formula 1, which comprises a compound represented by the following general formula 4 and a compound represented by the following general formula 5. It is what makes it react.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represent an integer of 1 to 4, preferably 1 or 2, and most preferably 2.
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar is a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the aromatic ring in the group is 8 or more. Represent.
Where L 1 represents a connecting group having a carbonyl group;
F 1 represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n represents an integer of 0 to 4;
a represents an integer of 1 to 4;
T 1 is a linear or branched alkylene group having 2 to 20 carbon atoms;
However, in the formula, Ar has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the aromatic ring in the group is 8 or more. Represents a divalent group. For a preferred configuration of Ar, the description relating to Ar shown in the general formula 1 can be referred to.

上記一般式4で表されるカルボン酸化合物のうち、下記一般式7で表される本発明のカルボン酸化合物は、一般式1において、スペーサー部TとTが上記一般式3で表される上記本発明の液晶化合物を製造することができる。一般式7で表されるカルボン酸化合物は、新規化合物である。
但し、式中、Lはカルボニル基を有する接続基を表し、;
は炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
nは0〜4の整数を表し、;
aは1〜4の整数を表し、;
Spは、炭素数2〜20の直鎖もしくは分岐のアルキレン基を表し、アルキレン基中において隣接しない1つまたは2つ以上の−CH−が−O−、−S−、−C(=O)−、−OC(=O)−、−C(=O)O−、−OC(=O)O−、−NRC(=O)−、−C(=O)NR−、−OC(=O)NR−、−NRC(=O)O−、−SC(=O)−または−C(=O)S−で置換されていてもよく、R、R、R、Rは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1〜4のアルキル基を表し;
1は、重合性基を表す。
Among the carboxylic acid compounds represented by the above general formula 4, the carboxylic acid compound of the present invention represented by the following general formula 7 is represented by the general formula 1 in which the spacer portions T 1 and T 2 are represented by the above general formula 3. The liquid crystal compound of the present invention can be produced. The carboxylic acid compound represented by the general formula 7 is a novel compound.
Where L 1 represents a connecting group having a carbonyl group;
F 1 represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n represents an integer of 0 to 4;
a represents an integer of 1 to 4;
Sp 1 represents a linear or branched alkylene group having 2 to 20 carbon atoms, and one or two or more —CH 2 — that are not adjacent to each other in the alkylene group are —O—, —S—, —C (= O) —, —OC (═O) —, —C (═O) O—, —OC (═O) O—, —NR 1 C (═O) —, —C (═O) NR 2 —, -OC (= O) NR 3 - , - NR 4 C (= O) O -, - SC (= O) - or -C (= O) S- may be substituted by, R 1, R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms;
P 1 represents a polymerizable group.

なお、上記中間体である一般式(4)の化合物は、(4−ヒドロキシフェニル)アルコールとスペーサー部T1を有する鎖状カルボン酸もしくはイソシアネートをエステル化し、その後さらに1、4-シクロヘキサンジカルボン酸とエステル化する方法、もしくは、(4−ヒドロキシフェニル)アルキルカルボン酸とスペーサー部T1を有する鎖状アルコールをエステル化し、その後さらに1、4-シクロヘキサンジカルボン酸とエステル化する方法で得ることができる。   In addition, the compound of the general formula (4) which is the intermediate is esterified with (4-hydroxyphenyl) alcohol and a chain carboxylic acid or isocyanate having a spacer part T1, and then further with 1,4-cyclohexanedicarboxylic acid and an ester. Or a method in which (4-hydroxyphenyl) alkylcarboxylic acid and a chain alcohol having a spacer part T1 are esterified and then further esterified with 1,4-cyclohexanedicarboxylic acid.

<<光学異方性層の製造方法>>
本発明の光学異方性層の製造方法は、上記本発明の液晶化合物を含む組成物、または、上記本発明の液晶化合物を含む重合性組成物を展開し、加熱して上記本発明の液晶化合物の分子の長軸を配向させた後、上記組成物又は重合性組成物を硬化するものである。
<< Method for Producing Optical Anisotropic Layer >>
The method for producing an optically anisotropic layer of the present invention comprises developing a composition containing the liquid crystal compound of the present invention or a polymerizable composition containing the liquid crystal compound of the present invention, and heating the composition. After orienting the long axis of the compound molecule, the composition or polymerizable composition is cured.

本発明の光学異方性層の製造方法において、上記本発明の液晶化合物の配向温度よりもガラス転移温度が高い支持体上に、上記本発明の液晶化合物を含む組成物、または、上記本発明の液晶化合物を含む重合性組成物を展開することが好ましい。   In the method for producing an optically anisotropic layer of the present invention, a composition containing the liquid crystal compound of the present invention on a support having a glass transition temperature higher than the alignment temperature of the liquid crystal compound of the present invention, or the present invention It is preferable to develop a polymerizable composition containing the liquid crystal compound.

上記本発明の液晶化合物を用いた光学異方性層の製造には、一般的な液晶化合物を用いて光学異方性層を作製する方法と同様の方法を適用することができる。
一般的な液晶化合物を用いて光学異方性層を作製する方法としては、例えば、液晶化合物を含む組成物を空隙等に封入して熱、電界、圧力等で配向状態等を操作する方法、また、液晶化合物を含む重合性組成物を塗布液として支持体等に展開して配向処理を施した後、配向状態を固定するために液晶化合物そのもの、または組成物中の重合性成分を重合硬化させる方法が知られている。
以下に、一例として、後者である、上記本発明の液晶化合物を含む重合性組成物を展開し、加熱して上記本発明の液晶化合物の分子の長軸を配向させた後、重合性組成物を硬化することにより、配向状態を固定化して光学異方性層とする製造方法について説明する。
For the production of the optically anisotropic layer using the liquid crystal compound of the present invention, a method similar to the method for producing an optically anisotropic layer using a general liquid crystal compound can be applied.
Examples of a method for producing an optically anisotropic layer using a general liquid crystal compound include, for example, a method in which a composition containing a liquid crystal compound is sealed in a gap and the like, and an alignment state and the like are manipulated by heat, electric field, pressure, etc. In addition, after a polymerizable composition containing a liquid crystal compound is applied to a support as a coating liquid and subjected to an alignment treatment, the liquid crystal compound itself or a polymerizable component in the composition is polymerized and cured in order to fix the alignment state. The method of making it known is known.
Hereinafter, as an example, the polymerizable composition containing the liquid crystal compound of the present invention, which is the latter, is developed and heated to align the major axis of the molecules of the liquid crystal compound of the present invention, and then the polymerizable composition A method for producing an optically anisotropic layer by fixing the orientation state by curing is described.

「重合性組成物」
本発明の光学異方性層の製造方法に用いる重合性組成物は、少なくとも1種の上記本発明の液晶化合物を含んでいれば特に制限されないが、一般式1において、スペーサー部T又はTに重合性基を有していない場合は、その他の重合性化合物を含有する必要がある。
重合性組成物には、少なくとも1種の一般式1で表される本発明の液晶化合物の他に、重合性化合物、配向制御剤、任意の溶剤、添加剤等を含むことができる。重合性液晶化合物は、重合性組成物の全固形分質量の50〜98質量%が好ましく、70〜95質量%がより好ましい。
"Polymerizable composition"
The polymerizable composition used in the method for producing an optically anisotropic layer of the present invention is not particularly limited as long as it contains at least one liquid crystal compound of the present invention, but in the general formula 1, the spacer portion T 1 or T When 2 does not have a polymerizable group, it is necessary to contain other polymerizable compounds.
In addition to the liquid crystal compound of the present invention represented by the general formula 1, the polymerizable composition can contain a polymerizable compound, an alignment controller, an arbitrary solvent, an additive, and the like. The polymerizable liquid crystal compound is preferably 50 to 98 mass%, more preferably 70 to 95 mass%, based on the total solid content mass of the polymerizable composition.

(重合性化合物)
重合性組成物に含むことができる重合性化合物は、液晶性の有無を問わない。重合性化合物の添加により、重合性組成物の相転移温度や結晶性等の諸物性を制御することができる。上記のように、この重合性化合物は、本発明の液晶化合物と混合して重合性組成物として扱うため、本発明の液晶化合物と相溶性が高いことが好ましい。以下に、好適な重合性化合物について説明する。
(Polymerizable compound)
The polymerizable compound that can be contained in the polymerizable composition may be liquid crystalline or not. By adding a polymerizable compound, various physical properties such as a phase transition temperature and crystallinity of the polymerizable composition can be controlled. As described above, since this polymerizable compound is mixed with the liquid crystal compound of the present invention and handled as a polymerizable composition, it is preferably highly compatible with the liquid crystal compound of the present invention. Hereinafter, suitable polymerizable compounds will be described.

((非液晶性多官能重合性化合物))
非液晶性多官能重合性化合物は、重合性組成物中に加えることにより上記本発明の液晶化合物が重合性基を持たない場合であっても、重合硬化によりバインダとして機能して液晶化合物の配向状態を固定することができる。さらに、スメクチック相とする場合には、層間が非液晶性の多官能重合性化合物で連結されることになるため、層間の近接を抑止することができる。
このような非液晶性多官能重合性化合物としては、
多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。
((Non-liquid crystalline polyfunctional polymerizable compound))
By adding the non-liquid crystalline polyfunctional polymerizable compound to the polymerizable composition, the liquid crystal compound of the present invention functions as a binder by polymerization and curing even when the liquid crystal compound of the present invention has no polymerizable group. The state can be fixed. Furthermore, in the case of a smectic phase, the interlayer is connected by a non-liquid crystalline polyfunctional polymerizable compound, so that proximity between the layers can be suppressed.
As such a non-liquid crystalline polyfunctional polymerizable compound,
Esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane Tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetra Methacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-a) Leroy Le ethyl ester, 1,4-divinyl cyclohexanone), vinyl sulfones (e.g., divinyl sulfone), acrylamides (e.g., include methylenebisacrylamide) and methacrylamide.

重合性組成物中における非液晶性多官能重合性化合物の含有量は、多すぎると光学異方性層の位相差の発現性が希釈されるため、固形分濃度で0.1〜20質量%であることが好ましく、0.1〜10質量%であることがより好ましく、0.1〜5質量%であることが特に好ましく、又は、1〜20質量%であることが好ましく、1〜10質量%であることがより好ましく、1〜5質量%であることが特に好ましい。   If the content of the non-liquid crystalline polyfunctional polymerizable compound in the polymerizable composition is too large, the expression of retardation of the optically anisotropic layer is diluted, so that the solid content concentration is 0.1 to 20% by mass. It is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass, or 1 to 20% by mass, preferably 1 to 10% by mass. It is more preferable that it is mass%, and it is especially preferable that it is 1-5 mass%.

(重合開始剤)
重合性基を有する本発明の液晶化合物、または、バインダとして添加された重合性化合物を重合硬化するために、重合性組成物中には、重合開始剤を含有させることが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応、及び電子線を用いるEB硬化が含まれるが、光重合反応が好ましい。重合組成物中における、光重合開始剤の含有量は、重合性基を有する本発明の液晶化合物および他の重合性化合物を合わせた全重合性化合物に対して、固形分濃度で0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。
(Polymerization initiator)
In order to polymerize and cure the liquid crystal compound of the present invention having a polymerizable group or the polymerizable compound added as a binder, it is preferable to include a polymerization initiator in the polymerizable composition. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator, a photopolymerization reaction using a photopolymerization initiator, and EB curing using an electron beam, and a photopolymerization reaction is preferred. In the polymerization composition, the content of the photopolymerization initiator is 0.01 to in terms of solid concentration with respect to the total polymerizable compound including the liquid crystal compound of the present invention having a polymerizable group and other polymerizable compounds. The content is preferably 20% by mass, and more preferably 0.5 to 5% by mass.

(配向制御剤)
重合性組成物には、必要に応じて、配向制御剤を含有することができる。配向制御剤としては、例えば、低分子の配向制御剤や高分子の配向制御剤を用いることができる。低分子の配向制御剤としては、例えば、特開2002−20363号公報の段落0009〜0083、特開2006−106662号公報の段落0111〜0120や、特開2012−211306公報の段落0021−0029の記載を参酌することができ、この内容は本願明細書に組み込まれる。また、高分子の配向制御剤としては、例えば、特開2004−198511号公報の段落0021〜0057の記載や、特開2006−106662号公報の段落0121〜0167を参酌することができ、この内容は本願明細書に組み込まれる。
配向制御剤の使用量は、重合性組成物中における本発明の液晶組成物の固形分の0.01〜10質量%であることが好ましく、0.05〜5質量%であることがさらに好ましい。配向制御剤を用いることにより、例えば、本発明の液晶化合物を層の表面と並行に配向したホモジニアス配向状態とすることができる。
(Orientation control agent)
The polymerizable composition can contain an alignment control agent as necessary. As the orientation control agent, for example, a low molecular orientation control agent or a high molecular orientation control agent can be used. Examples of the low molecular orientation control agent include paragraphs 0009 to 0083 of JP-A No. 2002-20363, paragraphs 011 to 0120 of JP-A No. 2006-10662, and paragraphs 0021 to 0029 of JP-A No. 2012-211306. Description can be taken into account, the contents of which are incorporated herein. Examples of the polymer orientation control agent may include, for example, descriptions in paragraphs 0021 to 0057 of JP-A-2004-198511 and paragraphs 0121 to 0167 of JP-A-2006-106662. Is incorporated herein.
The amount of the alignment control agent used is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the solid content of the liquid crystal composition of the present invention in the polymerizable composition. . By using the alignment control agent, for example, the liquid crystal compound of the present invention can be brought into a homogeneous alignment state in which the liquid crystal compound is aligned in parallel with the surface of the layer.

(添加剤)
上記以外に、重合性組成物に含有することができる添加剤の例としては、表面性状や表面形状を制御するための界面活性剤、液晶化合物の傾斜角を制御するための添加剤(配向助剤)、配向温度を低下させる添加剤(可塑剤)、その他機能性を付与するための薬剤等が挙げられ、適宜用いることができる。
(Additive)
In addition to the above, examples of additives that can be contained in the polymerizable composition include surfactants for controlling surface properties and surface shapes, and additives for controlling the tilt angle of liquid crystal compounds (alignment aids). Agent), an additive (plasticizer) for lowering the orientation temperature, and other agents for imparting functionality, and the like can be used as appropriate.

(溶剤)
光学異方性層の展開時の製造適性を改良するために、重合性組成物には、粘度調整等を目的として溶剤を加えることができる。
用いることのできる溶剤としては製造適性を落とさない限り、特に限定はされないが、ケトン、エステル、エーテル、アルコール、アルカン、トルエン、クロロホルム、メチレンクロライドからなる群の少なくとも1種から選択されることが好ましく、
ケトン、エステル、エーテル、アルコール、アルカンからなる群の少なくとも1種から選択されることがより好ましく、
ケトン、エステル、エーテル、アルコール、からなる群の少なくとも1種から選択されることが特に好ましい。
溶剤の使用量は、重合性組成物中の濃度として一般的には50〜90質量%であるが、特に限定されない。
(solvent)
In order to improve the production suitability during development of the optically anisotropic layer, a solvent can be added to the polymerizable composition for the purpose of adjusting the viscosity.
The solvent that can be used is not particularly limited as long as the production suitability is not impaired, but is preferably selected from at least one of the group consisting of ketone, ester, ether, alcohol, alkane, toluene, chloroform, and methylene chloride. ,
More preferably, it is selected from at least one selected from the group consisting of ketones, esters, ethers, alcohols, alkanes,
It is particularly preferred to be selected from at least one member selected from the group consisting of ketones, esters, ethers and alcohols.
Although the usage-amount of a solvent is generally 50-90 mass% as a density | concentration in polymeric composition, it is not specifically limited.

[重合性組成物の展開]
本発明の光学異方性層の製造方法では、上記重合性組成物を展開し、加熱して上記本発明の液晶化合物の分子の長軸を配向させた後、重合性組成物を硬化することにより、配向状態を固定化して光学異方性層とする。
重合性組成物の展開方法としては特に制限されないが、支持体上に重合性組成物を塗布(流延を含む)することにより実施することが好ましい。かかる方法において、用いる支持体は特に限定されないが、支持体上に展開された重合性組成物中の液晶化合物が配向状態を得るためには、配向させる工程で、本発明の液晶化合物が配向状態を得るために必要な相転移温度、すなわち、配向温度以上となるように加熱するため、支持体も等しく熱せられることから、支持体としては、ガラス転移温度が本発明の液晶化合物の配向温度より高い支持体であることが好ましい。ガラス転移温度が配向温度より高い支持体であれば、配向時の加熱により、支持体が熱変形することを防ぐことができる。
[Development of polymerizable composition]
In the method for producing an optically anisotropic layer of the present invention, the polymerizable composition is developed and heated to align the long axes of the molecules of the liquid crystal compound of the present invention, and then the polymerizable composition is cured. Thus, the alignment state is fixed to obtain an optically anisotropic layer.
Although it does not restrict | limit especially as a expansion | deployment method of polymeric composition, It is preferable to implement by apply | coating (including casting) polymeric composition on a support body. In such a method, the support to be used is not particularly limited, but in order to obtain the alignment state of the liquid crystal compound developed on the support, the liquid crystal compound of the present invention is aligned in the aligning step. In order to heat the support so as to be equal to or higher than the phase transition temperature necessary for obtaining the orientation temperature, that is, the alignment temperature, the support has the same glass transition temperature than the alignment temperature of the liquid crystal compound of the present invention. A high support is preferred. If the support has a glass transition temperature higher than the orientation temperature, the support can be prevented from being thermally deformed by heating during orientation.

光学異方性層を形成後、剥離して用いる仮支持体とする場合は、支持体には、剥離しやすい表面性状の材質を用いてもよい。かかる支持体としては、ガラスや易接着処理をしていないポリエステルフィルムなどを用いることができる。
また、支持体上に光学異方性層を形成したのち、そのまま後記する積層体として用いるような場合は、支持体としては、セルロース、環状オレフィン、アクリル、ポリカーボネート、ポリエステル、ポリビニルアルコールなど光学フィルム基板や、液晶セル基板や偏光子を好ましく用いることができる。
In the case of forming a temporary support that is peeled off after forming the optically anisotropic layer, a material having a surface property that is easy to peel off may be used for the support. As such a support, glass, a polyester film not subjected to easy adhesion treatment, or the like can be used.
In addition, after forming an optically anisotropic layer on a support and using it as a laminate as described later, the support is an optical film substrate such as cellulose, cyclic olefin, acrylic, polycarbonate, polyester, polyvinyl alcohol, etc. Alternatively, a liquid crystal cell substrate or a polarizer can be preferably used.

[液晶化合物分子の配向]
本発明の光学異方性層の製造方法では、支持体上等に展開された重合性組成物を、重合性組成物中の本発明の液晶化合物の分子の長軸を所望の配向状態にする。ここで、配向状態とは、一般にネマチック相、スメクティック相といった液晶相の種類、及び、ツイスト配向、ハイブリッド配向、ホメオトロピック配向、ホモジニアス配向といった、表示にあたって必要な液晶分子の配向の双方が含まれる。前者は、一般に温度または圧力の変化による相転移により制御し、後者は、一般に、配向処理により制御される。
[Orientation of liquid crystal compound molecules]
In the method for producing an optically anisotropic layer of the present invention, a polymerizable composition developed on a support or the like is brought into a desired alignment state with the major axis of the molecule of the liquid crystal compound of the present invention in the polymerizable composition. . Here, the alignment state generally includes both types of liquid crystal phases such as a nematic phase and a smectic phase, and alignment of liquid crystal molecules necessary for display such as twist alignment, hybrid alignment, homeotropic alignment, and homogeneous alignment. The former is generally controlled by a phase transition due to a change in temperature or pressure, and the latter is generally controlled by an alignment process.

(配向処理)
配向処理の方法としては、例えば、配向膜を利用して、液晶化合物を所望の方向に配向させる方法が一般的である。配向膜としては、ポリマー等の有機化合物からなるラビング処理膜や無機化合物の斜方蒸着膜、マイクログルーブを有する膜、あるいはω−トリコサン酸やジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチルの如き有機化合物のラングミュア・ブロジェット法によるLB膜を累積させた膜などがあげられるが、重合性組成物を展開させる積層工程を考えた場合は、ポリマー層の表面をラビング処理して形成されたものや、ポリマー層の表面を光配向処理して形成された光配向膜などが好ましい。なお、これらの配向膜の耐熱性については支持体で述べた特性と同じである。
(Orientation treatment)
As a method of alignment treatment, for example, a method of aligning a liquid crystal compound in a desired direction using an alignment film is common. As the alignment film, a rubbing treatment film made of an organic compound such as a polymer, an oblique deposition film of an inorganic compound, a film having a microgroove, or an organic compound such as ω-tricosanoic acid, dioctadecylmethylammonium chloride, or methyl stearylate. Examples include a film in which the LB film is accumulated by the Langmuir-Blodgett method. However, when considering a laminating process in which the polymerizable composition is developed, a film formed by rubbing the surface of the polymer layer or a polymer A photo-alignment film formed by photo-aligning the surface of the layer is preferable. The heat resistance of these alignment films is the same as that described for the support.

ラビング処理は、ポリマー層の表面を紙や布で一定方向に数回こすることにより実施される。配向層に使用するポリマーの種類は、ポリイミド、ポリビニルアルコール、特開平9−152509号公報に記載された重合性基を有するポリマー、特開2005−97377号公報、特開2005−99228号公報、及び特開2005−128503号公報記載の直交配向膜等を好ましく使用することができる。なお、本発明で言う直交配向膜とは、本発明の重合性液晶化合物の分子の長軸を、直交配向膜のラビング方向と実質的に直交するように配向させる配向膜を意味する。配向層の厚さは配向機能を提供できれば厚い必要はなく、0.01〜5μmであることが好ましく、0.05〜2μmであることがさらに好ましい。
また、光配向性の素材に偏光又は非偏光を照射して配向膜とした、いわゆる光配向膜も用いることもできる。即ち、支持体上に、光配光材料を塗布して光配向膜を作製してもよい。偏光の照射は、光配向膜に対して、垂直方向又は斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
The rubbing treatment is performed by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth. The kind of polymer used for the alignment layer is polyimide, polyvinyl alcohol, polymer having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and An orthogonal alignment film described in JP-A-2005-128503 can be preferably used. The term “orthogonal alignment film” as used in the present invention means an alignment film that aligns the major axis of the molecules of the polymerizable liquid crystal compound of the present invention so as to be substantially orthogonal to the rubbing direction of the orthogonal alignment film. The thickness of the alignment layer is not required to be thick as long as it can provide an alignment function, and is preferably 0.01 to 5 μm, and more preferably 0.05 to 2 μm.
In addition, a so-called photo-alignment film in which a photo-alignment material is irradiated with polarized light or non-polarized light to form an alignment film can also be used. That is, a photo-alignment film may be produced by applying a light distribution material on a support. Irradiation with polarized light can be performed in a vertical direction or an oblique direction with respect to the photo-alignment film, and irradiation with non-polarized light can be performed in an oblique direction with respect to the photo-alignment film.

本発明に利用可能な光配向膜に用いられる光配向材料としては、多数の文献等に記載がある。本発明の光配向膜では、例えば、特開2006−285197号公報、特開2007−76839号公報、特開2007−138138号公報、特開2007−94071号公報、特開2007−121721号公報、特開2007−140465号公報、特開2007−156439号公報、特開2007−133184号公報、特開2009−109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002−229039号公報に記載の芳香族エステル化合物、特開2002−265541号公報、特開2002−317013号公報に記載の光配向性単位を有するマレイミド及び/又はアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003−520878号公報、特表2004−529220号公報、特許第4162850号に記載の光架橋性ポリイミド、ポリアミド、又はエステル、特開平9−118717号公報、特表平10−506420号公報、特表2003−505561号公報、WO2010/150748号公報、特開2013−177561号公報、特開2014−12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物、クマリン化合物が好ましい例として挙げられる。特に好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、エステル、シンナメート化合物、カルコン化合物である。   The photo-alignment material used for the photo-alignment film that can be used in the present invention is described in many documents. In the photo-alignment film of the present invention, for example, JP 2006-285197 A, JP 2007-76839 A, JP 2007-138138 A, JP 2007-94071 A, JP 2007-121721 A, The azo compounds described in JP2007-140465A, JP2007-156439A, JP2007-133184A, JP2009-109831A, JP3883848B, and JP4151746A, and JP2002 Aromatic ester compounds described in JP-A-229039, maleimide and / or alkenyl-substituted nadiimide compounds having a photo-alignment unit described in JP-A-2002-265541, JP-A-2002-317013, Patent No. 4205195, Photocrosslinking described in Japanese Patent No. 4205198 Silane derivatives, photocrosslinkable polyimides, polyamides, or esters described in JP-A-2003-520878, JP-A-2004-529220, and JP-A-4162850, JP-A-9-118717, JP-A-10-506420 No. 2003, No. 2003-505561, WO 2010/150748, JP 2013-177561 A, JP 2014-12823 A, photodimerizable compounds, particularly cinnamate compounds, chalcone compounds, and coumarin compounds. Is a preferred example. Particularly preferred are azo compounds, photocrosslinkable polyimides, polyamides, esters, cinnamate compounds, and chalcone compounds.

特に好ましい光配向材料の具体例としては、特開2006−285197号公報に記載されている下記式(X)で示される化合物を挙げることができる。
(式中、R及びRは、各々独立して、ヒドロキシ基、又は(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基、ビニルオキシ基、及びマレイミド基からなる群から選ばれる重合性基を表す。
は、Rがヒドロキシ基の場合、単結合を表し、Rが重合性基の場合、−(A−B−で表される連結基を表し、Xは、Rがヒドロキシ基の場合、単結合を表し、R又はRが重合性基の場合、−(A−B−で表される連結基を表す。ここで、AはR又はRと結合し、AはR又はRと結合し、B及びBは各々隣接するフェニレン基と結合する。A及びAは各々独立して単結合、又は二価の炭化水素基を表し、B及びBは各々独立して単結合、−O−、−CO−O−、−O−CO−、−CO−NH−、−NH−CO−、−NH−CO−O−、又は−O−CO−NH−を表す。m及びnは各々独立して0〜4の整数を表す。但し、m又はnが2以上のとき、複数あるA、B,A及びBは同じであっても異なっていてもよい。但し、二つのB又はBの間に挟まれたA又はAは、単結合ではないものとする。RおよびRは各々独立して、水素原子、ハロゲン原子、カルボキシル基、ハロゲン化メチル基、ハロゲン化メトキシ基、シアノ基、ニトロ基、−OR(ただしRは、炭素原子数1〜6の低級アルキル基、炭素原子数3〜6シクロアルキル基又は炭素原子数1〜6の低級アルコキシ基で置換された炭素原子数1〜6の低級アルキル基を表す)、炭素原子数1〜4のヒドロキシアルキル基、又は−CONR(R及びRは、各々独立して水素原子又は炭素原子数1〜6の低級アルキル基を表す)、またはメトキシカルボニル基を表す。但し、カルボキシル基はアルカリ金属と塩を形成していてもよい。
およびRは各々独立して、カルボキシル基、スルホ基、ニトロ基、アミノ基、又はヒドロキシ基を表す。但し、カルボキシル基、スルホ基はアルカリ金属と塩を形成していてもよい。)
Specific examples of particularly preferred photo-alignment materials include compounds represented by the following formula (X) described in JP-A-2006-285197.
(In the formula, R 1 and R 2 each independently comprises a hydroxy group or a (meth) acryloyl group, a (meth) acryloyloxy group, a (meth) acrylamide group, a vinyl group, a vinyloxy group, and a maleimide group. Represents a polymerizable group selected from the group;
X 1 represents a single bond when R 1 is a hydroxy group, and represents a linking group represented by — (A 1 -B 1 ) m — when R 1 is a polymerizable group, and X 2 represents R When 2 is a hydroxy group, it represents a single bond, and when R 2 or R 8 is a polymerizable group, it represents a linking group represented by — (A 2 —B 2 ) n —. Here, A 1 is bonded to R 1 or R 7 , A 2 is bonded to R 2 or R 8, and B 1 and B 2 are bonded to adjacent phenylene groups. A 1 and A 2 each independently represent a single bond or a divalent hydrocarbon group, and B 1 and B 2 each independently represent a single bond, —O—, —CO—O—, —O—CO. -, -CO-NH-, -NH-CO-, -NH-CO-O-, or -O-CO-NH- is represented. m and n each independently represents an integer of 0 to 4. However, when m or n is 2 or more, a plurality of A 1 , B 1 , A 2 and B 2 may be the same or different. However, A 1 or A 2 sandwiched between two B 1 or B 2 is not a single bond. R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, a carboxyl group, a halogenated methyl group, a halogenated methoxy group, a cyano group, a nitro group, or —OR 7 (wherein R 7 has 1 to 6 represents a lower alkyl group having 6 to 6 carbon atoms, a lower alkyl group having 1 to 6 carbon atoms substituted by a cycloalkyl group having 3 to 6 carbon atoms or a lower alkoxy group having 1 to 6 carbon atoms), and 1 to 4 carbon atoms A hydroxyalkyl group, or —CONR 8 R 9 (R 8 and R 9 each independently represents a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms), or a methoxycarbonyl group. However, the carboxyl group may form a salt with the alkali metal.
R 5 and R 6 each independently represent a carboxyl group, a sulfo group, a nitro group, an amino group, or a hydroxy group. However, the carboxyl group and the sulfo group may form a salt with the alkali metal. )

また、配向膜の素材を選択することで、光学異方性層形成用仮支持体から剥離したり、光学異方性層のみ剥離させることができ、転写つまり剥離した光学異方性層を貼合することで数μmの薄い光学異方性層を提供することができる。さらに、直線偏光子に直接ラビング配向膜や光配向膜を塗布積層し、ラビング又は光配向処理して配向機能を付与する態様も好ましい。即ち、本発明の積層体は、直線偏光子を有し、上記直線偏光子の表面上に光配向膜又はラビング配向膜を有する積層体でもよい。   Also, by selecting the material of the alignment film, it can be peeled off from the optically anisotropic layer forming temporary support or only the optically anisotropic layer can be peeled off. By combining, a thin optically anisotropic layer having a thickness of several μm can be provided. Furthermore, a mode in which a rubbing alignment film or a photo-alignment film is applied and laminated directly on a linear polarizer, and an alignment function is given by rubbing or photo-alignment treatment is also preferable. That is, the laminate of the present invention may be a laminate having a linear polarizer and having a photo-alignment film or a rubbing alignment film on the surface of the linear polarizer.

一般式1で表される本発明の液晶化合物をホモジニアス配向させて得る光学異方性層では、プレ傾斜角が低いほうが好ましい。光配向膜を配向膜として使用し、IPS方式に適用することで、正面の光漏れが低減された高いコントラストと、斜めの色味変化が低減された、良好な視野角依存性の両立が可能となるため、光配向膜を配向膜として使用する態様が好ましい。光配向膜では、光配向膜に対して、垂直方向又は斜め方向から偏光照射する工程、または、斜め方向から非偏光照射する工程により配向規制力を付与する態様が好ましい。斜め方向から照射する場合の斜め方向とは、光配向膜に対して、5度〜45度の角度の方向が好ましく、10度〜30度の角度の方向がより好ましい。照射強度としては、好ましくは200〜2000mJ/cmの紫外線を照射すればよい。 In the optically anisotropic layer obtained by homogeneously aligning the liquid crystal compound of the present invention represented by the general formula 1, it is preferable that the pre-tilt angle is low. By using a photo-alignment film as the alignment film and applying it to the IPS system, it is possible to achieve both high contrast with reduced light leakage on the front and good viewing angle dependence with reduced oblique color change. Therefore, an embodiment in which the photo-alignment film is used as the alignment film is preferable. In the photo-alignment film, a mode in which the alignment regulating force is applied to the photo-alignment film by a step of irradiating polarized light from a vertical direction or an oblique direction or a step of irradiating non-polarized light from an oblique direction is preferable. The oblique direction when irradiating from the oblique direction is preferably an angle of 5 to 45 degrees with respect to the photo-alignment film, and more preferably an angle of 10 to 30 degrees. The irradiation intensity is preferably 200 to 2000 mJ / cm 2 .

なお、一般式1で表される本発明の液晶化合物をホメオトロピック配向させて得る光学異方性層では、垂直配向膜や、垂直配向剤を用いて所望の配向状態を得ることができる。垂直配向膜については特開2002−294240号公報の段落[0081]〜[0082]、垂直配向剤については特開2006−106662号公報の段落[0083]〜[0084]などを参照することができる。   In the optically anisotropic layer obtained by homeotropic alignment of the liquid crystal compound of the present invention represented by the general formula 1, a desired alignment state can be obtained using a vertical alignment film or a vertical alignment agent. Paragraphs [0081] to [0082] of JP-A-2002-294240 can be referred to for the vertical alignment film, and paragraphs [0083] to [0084] of JP-A-2006-106662 can be referred to for the vertical alignment agent. .

(相転移の制御)
既に述べたように、液晶化合物の液晶相は、一般に温度または圧力の変化により転移させることができる。リオトロピック性をもつ液晶の場合には、溶媒量によっても転移させることができる。本発明では、サーモトロピック性をもつ液晶がその後の配向状態を固定する操作を考慮して温度変化により相転移させることが好ましい。
以降はホモジニアス配向のスメクチック相の状態を固定する場合を例にとって説明する。
(Control of phase transition)
As already described, the liquid crystal phase of the liquid crystal compound can generally be changed by a change in temperature or pressure. In the case of a liquid crystal having lyotropic properties, the liquid crystal can also be transferred depending on the amount of solvent. In the present invention, it is preferable that the thermotropic liquid crystal undergo a phase transition by a temperature change in consideration of the subsequent operation of fixing the alignment state.
Hereinafter, a case where the state of the smectic phase having the homogeneous orientation is fixed will be described as an example.

液晶化合物がネマチック相を発現する温度領域は、液晶化合物がより秩序度の高いスメクチック相を発現する温度領域よりも高いことが一般的である。従って、液晶化合物がネマチック相を発現する温度領域まで液晶化合物を加熱し、次に、加熱温度を液晶化合物がスメクチック相を発現する温度領域まで低下させることにより、液晶化合物をネマチック相からスメクチック相に転移させることが好ましい。   The temperature range in which the liquid crystal compound develops a nematic phase is generally higher than the temperature range in which the liquid crystal compound develops a highly ordered smectic phase. Therefore, the liquid crystal compound is heated from the nematic phase to the smectic phase by heating the liquid crystal compound to a temperature range where the liquid crystal compound develops a nematic phase, and then lowering the heating temperature to a temperature range where the liquid crystal compound develops a smectic phase. It is preferable to transfer.

一般式1で表される本発明の液晶化合物はその構造により、末端鎖状脂肪族基の自由運動性が高く、適度な立体障害を有して適切な分子間相互作用を発現するため相転移温度が低下する。本発明の液晶化合物の、スメクチック相からネマチック相に転移する温度は、160℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることが特に好ましい。上記のスメクチック相からネマチック相に転移する温度の下限値は特に限定されないが一般的には、20℃以上である。
相転移温度は、低いほど支持体や配向層に用いる素材の耐熱性の観点での選択肢が広がるので好ましい。
Due to its structure, the liquid crystal compound of the present invention represented by the general formula 1 has a high free mobility of a terminal chain aliphatic group, and has an appropriate steric hindrance to express an appropriate intermolecular interaction. The temperature drops. The temperature at which the liquid crystal compound of the present invention transitions from the smectic phase to the nematic phase is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 140 ° C. or lower. The lower limit of the temperature at which the above smectic phase transitions to the nematic phase is not particularly limited, but is generally 20 ° C. or higher.
The lower the phase transition temperature, the better the choice from the viewpoint of the heat resistance of the material used for the support and the alignment layer.

ここで、化合物のスメクチック相からネマチック相に転移する温度は、組成物の偏光顕微鏡観察により、容易に測定することができる。例えば、ネマチック相では、ネマチック相特有のシュリーレンテクスチャーが観測されるが、スメクチックA相では、フォーカルコニックファンテクスチャーに転移するため、温度を昇温または降温させながら、偏光顕微鏡でテクスチャーを観察することにより測定することができる。   Here, the temperature at which the compound transitions from the smectic phase to the nematic phase can be easily measured by observing the composition with a polarizing microscope. For example, in the nematic phase, a schlieren texture peculiar to the nematic phase is observed, but in the smectic A phase, it transitions to a focal conic fan texture. Can be measured.

液晶化合物がネマチック相を発現する温度領域では、液晶化合物がモノドメインを形成するまで一定時間加熱する必要がある。加熱時間は、10秒間〜20分間が好ましく、10秒間〜10分間がさらに好ましく、10秒間〜5分間が最も好ましい。
液晶化合物がスメクチック相を発現する温度領域では、液晶化合物がスメクチック相を発現するまで一定時間加熱する必要がある。加熱時間は、10秒間〜20分間が好ましく、10秒間〜10分間がさらに好ましく、10秒間〜5分間が最も好ましい。
In a temperature range where the liquid crystal compound develops a nematic phase, it is necessary to heat for a certain time until the liquid crystal compound forms a monodomain. The heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.
In a temperature range where the liquid crystal compound develops a smectic phase, it is necessary to heat for a certain period of time until the liquid crystal compound develops a smectic phase. The heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.

また、本発明の液晶化合物として、ネマチック相と同時に、より高次のスメクチック相も発現する液晶化合物を用いることにより、ネマチック相も通常のネマチック相とは異なり、光散乱成分が少なく、高いコントラストが実現できるネマチック相とできる。この特徴は、特に、上記化学式I−1〜I−14、II−8〜II−10で表される本発明の液晶化合物を用いることにより、顕著に達成される   In addition, by using a liquid crystal compound that exhibits a higher order smectic phase simultaneously with the nematic phase as the liquid crystal compound of the present invention, the nematic phase is different from the normal nematic phase, and has a low light scattering component and high contrast. Nematic phase can be realized. This feature is particularly achieved by using the liquid crystal compounds of the present invention represented by the above chemical formulas I-1 to I-14 and II-8 to II-10.

したがって、本発明では、液晶化合物がネマチック相を発現する温度領域で加熱し、この温度領域でモノドメインを形成させた後、固定化することも好ましい態様である。かかる態様で作製された位相差は、通常のネマチック相しか発現しない液晶化合物から作製された位相差より格段に高いコントラストが得られることを発見した。
液晶化合物がネマチック相を発現する温度領域では、液晶化合物がモノドメインを形成するまで一定時間加熱する必要がある。加熱時間は、10秒間〜20分間が好ましく、10秒間〜10分間がさらに好ましく、10秒間〜5分間が最も好ましい。
Therefore, in the present invention, it is also a preferred embodiment that the liquid crystal compound is heated in a temperature range in which a nematic phase is developed, and a monodomain is formed in this temperature range and then fixed. It has been discovered that the retardation produced in such a manner can provide a significantly higher contrast than the retardation produced from a liquid crystal compound that exhibits only a normal nematic phase.
In a temperature range where the liquid crystal compound develops a nematic phase, it is necessary to heat for a certain time until the liquid crystal compound forms a monodomain. The heating time is preferably 10 seconds to 20 minutes, more preferably 10 seconds to 10 minutes, and most preferably 10 seconds to 5 minutes.

また、温度が上昇するのに応じて、スメクチック相→ネマチック相→等方相の順に転移する組成物を用いる場合は、一旦、上記重合性組成物を、ネマチック相−等方相の相転移温度以上に加熱して、その後、所定の速度で、スメクチック相―ネマチック相の相転移温度またはスメクチック相―等方相の相転移温度以下に徐々に温度を低下することで、ネマチック相を経て、スメクチック相へ転移させることができる。低下後の温度は、スメクチック相−ネマチック相の相転移温度またはスメクチック相―等方相の相転移温度より10℃以上低いのが好ましい。冷却速度は1〜100℃/分の範囲内で行うことが好ましく、5〜50℃/分の範囲内であることが好ましい。冷却速度が速すぎると配向欠陥を生じてしまい、遅すぎると製造時間がかかる。   In addition, when using a composition that transitions in the order of smectic phase → nematic phase → isotropic phase as the temperature rises, the polymerizable composition is once transformed into a nematic phase-isotropic phase transition temperature. After heating to the above, gradually lower the temperature below the phase transition temperature of the smectic phase-nematic phase or the phase transition temperature of the smectic phase-isotropic phase at a predetermined rate. It can be transferred to the phase. The temperature after the reduction is preferably 10 ° C. or more lower than the phase transition temperature of the smectic phase-nematic phase or the phase transition temperature of the smectic phase-isotropic phase. The cooling rate is preferably within a range of 1 to 100 ° C./min, and preferably within a range of 5 to 50 ° C./min. If the cooling rate is too fast, alignment defects will be produced, and if it is too slow, it will take a long production time.

また、本発明ではスメクチック相の1次構造を適度に離間させた状態で、液晶化合物分子を傾斜させて光学異方性層の傾斜角を制御することもできる。
液晶化合物の傾斜角を制御する手段としては、ラビング条件を制御した配向膜によりプレ傾斜角を付与する方法、および液晶層に傾斜角制御剤を添加することにより支持体側あるいは空気界面側の極角を制御する方法があり、併用することが好ましい。
傾斜角制御剤は、一例としてフルオロ脂肪族基含有モノマーの共重合体をもちいることができ、芳香族縮合環官能基との共重合体、あるいはカルボキシル基、スルホ基またはホスホノキシ基もしくはその塩を含むモノマーとの共重合体を用いることが好ましい。また、複数の傾斜角制御剤を用いることにより、さらに精密かつ安定に制御可能となる。このような傾斜角制御剤としては、特開2008−257205号公報の段落0022〜0063、特開2006−91732号公報の段落0017〜0124の記載を参酌できる。
In the present invention, the tilt angle of the optically anisotropic layer can also be controlled by tilting the liquid crystal compound molecules in a state where the primary structure of the smectic phase is appropriately separated.
Means for controlling the tilt angle of the liquid crystal compound include a method of imparting a pre-tilt angle with an alignment film with controlled rubbing conditions, and a polar angle on the support side or air interface side by adding a tilt angle control agent to the liquid crystal layer. It is preferable to use these in combination.
As an example of the tilt angle control agent, a copolymer of a fluoroaliphatic group-containing monomer can be used, and a copolymer with an aromatic condensed ring functional group, a carboxyl group, a sulfo group, a phosphonoxy group or a salt thereof can be used. It is preferable to use a copolymer with the monomer to be contained. Further, by using a plurality of tilt angle control agents, it becomes possible to control more precisely and stably. As such an inclination angle controlling agent, descriptions in paragraphs 0022 to 0063 of JP-A-2008-257205 and paragraphs 0017 to 0124 of JP-A-2006-91732 can be referred to.

[配向状態の固定]
配向状態の固定は、熱重合や活性エネルギー線による重合で行うことができ、その重合に適した重合性基や重合開始剤を適宜選択することで行うことができる。製造適性等を考慮すると紫外線照射による重合反応を好ましく用いることができる。紫外線の照射量が少ないと、未重合の重合性液晶や他の重合性化合物が残存し、光学特性の温度変化や、経時劣化の起きる原因となる。
そのため、残存する重合性液晶の割合が5%以下になる様に照射条件を決めること
が好ましく、その照射条件は重合性組成物の処方や光学異方性層の膜厚にもよるが目安として200mJ/cm以上の照射量で行われることが好ましい。
[Fixed orientation]
The alignment state can be fixed by thermal polymerization or polymerization by active energy rays, and can be performed by appropriately selecting a polymerizable group and a polymerization initiator suitable for the polymerization. In consideration of production suitability and the like, a polymerization reaction by ultraviolet irradiation can be preferably used. When the irradiation amount of ultraviolet rays is small, unpolymerized polymerizable liquid crystal and other polymerizable compounds remain, which causes a temperature change of optical characteristics and deterioration with time.
Therefore, it is preferable to determine the irradiation conditions so that the ratio of the remaining polymerizable liquid crystal is 5% or less. The irradiation conditions depend on the prescription of the polymerizable composition and the film thickness of the optically anisotropic layer, but as a guideline. It is preferable to carry out at an irradiation dose of 200 mJ / cm 2 or more.

<<光学異方性層の用途>>
本発明の光学異方性層は、逆波長分散性を有するため、カラーシフト等が起こり難く、液晶セルを光学補償するための光学補償フィルムや、有機EL表示装置で外光の反射を防止するための波長板として有用であり、相転移温度が低く溶媒への溶解性が高いため、耐熱性に劣る有機材料に適用することができるため、一旦、光学異方性層を形成後に剥離転写するなどの操作を行うことなく積層することが可能となるため、製造工程の短縮なども見込むことができる。
さらに、スメクチック相を固定した光学異方性層であれば、スメクチック相に由来する液晶化合物の高い配向秩序性によって、高い位相差の発現性や偏光解消性が低いため、高コントラストなその特性から種々の用途により好ましく用いることができる。
<< Application of optically anisotropic layer >>
Since the optically anisotropic layer of the present invention has reverse wavelength dispersion, color shift or the like is unlikely to occur, and reflection of external light is prevented by an optical compensation film for optically compensating a liquid crystal cell or an organic EL display device. Therefore, it can be applied to organic materials with poor heat resistance because it has a low phase transition temperature and high solubility in a solvent. Therefore, it is possible to expect a shortening of the manufacturing process.
Furthermore, in the case of an optically anisotropic layer with a fixed smectic phase, the high orientation order of the liquid crystal compound derived from the smectic phase results in high retardation and low depolarization, so that it has high contrast. It can be preferably used for various applications.

また、使用する形態としても特に限定されない。例えば、液晶セル基板や偏光子にラビング処理を施して、これらに直接光学異方性層を形成させた形態としてもよいし、ポリマーフィルムや他の光学フィルムと積層または貼合させて組み合わせ、光学的・機械的な特性を制御した積層体の形態としてもよい。   Moreover, it does not specifically limit as a form to use. For example, a liquid crystal cell substrate or a polarizer may be rubbed, and an optically anisotropic layer may be directly formed thereon, or may be laminated or pasted with a polymer film or another optical film, combined, and optical It is good also as the form of the laminated body which controlled the mechanical and mechanical characteristic.

以上述べたように、本発明の光学異方性層は、従来に比して、液晶配向に必要な相転移温度が低く、溶媒への溶解性が高い、逆波長分散性を発現する液晶化合物を用いて得られるものである。従って、本発明によれば、製造適性に優れた逆波長分散性を有する光学異方性層を提供することができる。   As described above, the optically anisotropic layer of the present invention is a liquid crystal compound that has a low phase transition temperature necessary for liquid crystal alignment, high solubility in a solvent, and exhibits reverse wavelength dispersibility as compared with the prior art. It is obtained by using. Therefore, according to the present invention, it is possible to provide an optically anisotropic layer having reverse wavelength dispersion that is excellent in production suitability.

[積層体、偏光板、表示装置]
上記本発明の光学異方性層は、他の各種光学部材に直接または転写などを用いて積層し、積層体として用いることができる。例えば、ガラス基板上に積層して波長板や偏光ビームスプリッタ等に用いてもよいし、樹脂フィルム上に直接または配向膜を介して積層された態様であることが好ましい。後述の様に、偏光子上に直接または配向膜を介して光学異方性層が積層された積層体は、偏光板として好適である。
以下に、上記本発明にかかる一実施形態の積層体、偏光板、及び表示装置について、図面を参照して説明する。図1は、本発明に係る一実施形態である偏光板(積層体)10の構成を示す概略図である。図2は、IPS型液晶セルの基板内面の画素電極の一部の概略上面図であり、図3は、本実施形態の偏光板10を備えたIPS型液晶表示装置1の概略断面構成図である。なお、本明細書の図面において、視認しやすくするために、各部の縮尺は適宜変更して示してある。
[Laminated body, polarizing plate, display device]
The optically anisotropic layer of the present invention can be laminated on other various optical members directly or using transfer or the like and used as a laminate. For example, it may be laminated on a glass substrate and used for a wavelength plate, a polarizing beam splitter, or the like, or preferably laminated on a resin film directly or via an alignment film. As will be described later, a laminate in which an optically anisotropic layer is laminated on a polarizer directly or via an alignment film is suitable as a polarizing plate.
Hereinafter, a laminate, a polarizing plate, and a display device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of a polarizing plate (laminated body) 10 according to an embodiment of the present invention. FIG. 2 is a schematic top view of a part of the pixel electrode on the inner surface of the substrate of the IPS liquid crystal cell, and FIG. 3 is a schematic cross-sectional configuration diagram of the IPS liquid crystal display device 1 including the polarizing plate 10 of the present embodiment. is there. In the drawings of the present specification, the scale of each part is appropriately changed and shown for easy visual recognition.

図1に示されるように、偏光板(積層体)10は、偏光子100の視認側の面に偏光板保護フィルム110を、液晶セル側の面に偏光板保護フィルム120を備え、液晶セル側の偏光板保護フィルム120の表面に、上記本発明の光学異方性層130を備えている。   As shown in FIG. 1, the polarizing plate (laminate) 10 includes a polarizing plate protective film 110 on the surface on the viewing side of the polarizer 100 and a polarizing plate protective film 120 on the surface on the liquid crystal cell side. The polarizing plate protective film 120 is provided with the optically anisotropic layer 130 of the present invention.

偏光子100としては特に制限されず、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリエン系偏光子のいずれを使用してもよい。ヨウ素系偏光子および染料系偏光子は、一般にポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製することができる。   The polarizer 100 is not particularly limited, and any of an iodine polarizer, a dye polarizer using a dichroic dye, and a polyene polarizer may be used. The iodine-based polarizer and the dye-based polarizer can be generally produced by immersing and stretching a polyvinyl alcohol-based film in an iodine solution.

偏光板保護フィルム110,120は、偏光子100の劣化を抑制するための保護フィルムであり、好ましくは、低透湿性を有するフィルムである。偏光板保護フィルム110,120としては特に制限はなく、上記した支持体として利用可能なポリマーフィルムの例から選択するのが好ましい。偏光板保護フィルムの好ましい一例は、トリアセチルセルロースフィルム等のセルロースアシレートフィルムである。   The polarizing plate protective films 110 and 120 are protective films for suppressing the deterioration of the polarizer 100, and are preferably films having low moisture permeability. There is no restriction | limiting in particular as polarizing plate protective film 110,120, It is preferable to select from the example of the polymer film which can be utilized as an above-described support body. A preferred example of the polarizing plate protective film is a cellulose acylate film such as a triacetyl cellulose film.

光学異方性層130としてホモジニアス配向した本発明の光学異方性層を用いて直線偏光子と積層した場合に、その遅相軸と直線偏光子の吸収軸とがなす角は45°±10°〜90°±10°であることが好ましく、45°〜90°であることがより好ましい。   When the optically anisotropic layer 130 of the present invention that is homogeneously oriented is used as the optically anisotropic layer 130 and laminated with a linear polarizer, the angle formed by the slow axis and the absorption axis of the linear polarizer is 45 ° ± 10. It is preferable that it is (degree)-90 degrees +/- 10 degree, and it is more preferable that it is 45 degrees-90 degrees.

光学異方性層130は、上記したように、逆波長分散性を有する光学異方性層であり、製造適性に優れている。従って、位相差を用いる表示装置に好ましく用いることができる。例えば、液晶表示装置の光学補償フィルムや有機EL表示装置の円偏光板を用いる反射防止層として用いる態様などが挙げられる。
液晶表示装置の液晶セルの駆動モードとしては、TNモード、VAモード、OCBモード、IPSモード又はECBモードであることが好ましく、IPSモードであることがより好ましい。光配向を用いたIPSモードであることが特に好ましい。
As described above, the optically anisotropic layer 130 is an optically anisotropic layer having reverse wavelength dispersion, and is excellent in manufacturing suitability. Therefore, it can be preferably used for a display device using a phase difference. For example, the aspect etc. which are used as an antireflection layer using the optical compensation film of a liquid crystal display device, and the circularly-polarizing plate of an organic EL display device are mentioned.
The driving mode of the liquid crystal cell of the liquid crystal display device is preferably a TN mode, a VA mode, an OCB mode, an IPS mode or an ECB mode, and more preferably an IPS mode. The IPS mode using photo-alignment is particularly preferable.

IPSモードの液晶セルは、図2に示されるように、液晶分子14a,14bを常に基板面内で回転させるモードであり、画素電極15は、一方向の基板のみに配置されて横電界がかけられるようになっている。IPS型では、液晶分子が斜めに立ち上がることがないため比較的広視野角が得られるが、基板の法線方向からずれた方向から視認する場合、光漏れにより視野角が狭くなるという現象が避けられない。本実施形態の光学異方性層130は、かかる現象を補償する光学異方性層として好適である。   As shown in FIG. 2, the IPS mode liquid crystal cell is a mode in which the liquid crystal molecules 14a and 14b are always rotated within the substrate surface, and the pixel electrode 15 is disposed only on the substrate in one direction and is applied with a lateral electric field. It is supposed to be. In the IPS type, a relatively wide viewing angle is obtained because the liquid crystal molecules do not rise obliquely, but when viewing from a direction deviated from the normal direction of the substrate, the phenomenon that the viewing angle becomes narrow due to light leakage is avoided. I can't. The optically anisotropic layer 130 of this embodiment is suitable as an optically anisotropic layer that compensates for this phenomenon.

液晶表示装置に光学異方性層130を用いる場合は、液晶セルと視認側偏光板もしくはバックライト側偏光板との間に配置するのが好ましい。また、視認側偏光板もしくはバックライト側偏光板の保護フィルムとしても機能させ、偏光板の一部材として液晶表示装置内に組み込み、液晶セルと偏光子との間に配置してもよい。   When the optically anisotropic layer 130 is used in the liquid crystal display device, it is preferably disposed between the liquid crystal cell and the viewing side polarizing plate or the backlight side polarizing plate. Further, it may function as a protective film for the viewing-side polarizing plate or the backlight-side polarizing plate, and may be incorporated in a liquid crystal display device as a member of the polarizing plate and disposed between the liquid crystal cell and the polarizer.

IPSモードの液晶セルの光学補償(特に、黒表示時の斜め方向のカラーシフト軽減)に利用する場合は、正のAプレートと組み合せて用いてもよい。   When used for optical compensation of an IPS mode liquid crystal cell (especially for reducing color shift in an oblique direction during black display), it may be used in combination with a positive A plate.

図3の液晶表示装置1は、透過型のIPS型液晶表示装置に本実施形態の光学異方性層130を備えた例を示したものであり、光学異方性層130を、視認側偏光板の液晶セル側の表面に備えた態様を示している。液晶表示装置1は、一対の偏光板(上側偏光板10,下側偏光板18)と、これらに挟持されてなる液晶セル2を有しており、液晶セル2は、液晶層14とその上下に配置されてなる液晶セル上基板13と液晶セル下基板16とを有しており、下基板16には、透明画素電極15a,15bを備えている。図示していないが、偏光板18の下側にバックライトユニット、液晶層14と視認側偏光板10との間にカラーフィルターを備える態様となる。   The liquid crystal display device 1 of FIG. 3 shows an example in which the optically anisotropic layer 130 of this embodiment is provided in a transmissive IPS liquid crystal display device. A mode provided on the surface of the plate on the liquid crystal cell side is shown. The liquid crystal display device 1 includes a pair of polarizing plates (an upper polarizing plate 10 and a lower polarizing plate 18) and a liquid crystal cell 2 sandwiched between them. The liquid crystal cell 2 includes a liquid crystal layer 14 and upper and lower sides thereof. The liquid crystal cell upper substrate 13 and the liquid crystal cell lower substrate 16 are disposed on the lower substrate 16, and the lower substrate 16 includes transparent pixel electrodes 15a and 15b. Although not shown, the backlight unit and the color filter are provided between the liquid crystal layer 14 and the viewing side polarizing plate 10 below the polarizing plate 18.

図3左側の液晶分子14aの状態は、電圧OFFの時の状態であり、右側の液晶分子14bの状態は、電圧ONの時の状態を示してある。電圧をONにすると、画素電極15aと15bとの間に電圧がかかって電界が発生し、液晶分子14aがほぼ同時に基板面に略水平な方向に回転して図3右図の状態となる。図3において、バックライト側の偏光板18と視認側の偏光板10のそれぞれの吸収軸17と12は互いに略直交しており、電圧OFF時には、液晶分子の光軸の方向12は17と略平行となっている。   The state of the liquid crystal molecules 14a on the left side of FIG. 3 is a state when the voltage is OFF, and the state of the liquid crystal molecules 14b on the right side indicates a state when the voltage is ON. When the voltage is turned on, a voltage is applied between the pixel electrodes 15a and 15b to generate an electric field, and the liquid crystal molecules 14a rotate in a substantially horizontal direction almost simultaneously with the substrate surface, resulting in the state shown in the right figure of FIG. In FIG. 3, the absorption axes 17 and 12 of the backlight-side polarizing plate 18 and the viewing-side polarizing plate 10 are substantially orthogonal to each other. When the voltage is OFF, the optical axis direction 12 of the liquid crystal molecules is approximately 17. It is parallel.

本実施形態では、表示面側偏光板及びバックライト側偏光板と液晶セルとの間には、光学異方性層130以外の位相差層が存在していないのが好ましい。従って、偏光板保護フィルム100及び120には、面内位相差Re及び膜厚方向位相差Rthの双方がほとんど0である等方性のポリマーフィルムを用いるのが好ましく、その様なポリマーフィルムとしては、特開2006−030937号公報等に記載のセルロースアシレートフィルムが好ましく用いられる。   In the present embodiment, it is preferable that no retardation layer other than the optically anisotropic layer 130 exists between the display surface side polarizing plate and the backlight side polarizing plate and the liquid crystal cell. Therefore, it is preferable to use an isotropic polymer film in which both the in-plane retardation Re and the film thickness direction retardation Rth are almost zero for the polarizing plate protective films 100 and 120. As such a polymer film, The cellulose acylate film described in JP-A-2006-030937 is preferably used.

光学異方性層130は、上記本発明の光学異方性層であるので、従来に比して、液晶配向に必要な相転移温度が低く、溶媒への溶解性が高い、逆波長分散性を発現する液晶化合物を用いて得られるものである。従って、偏光板10及び液晶表示装置1は、逆波長分散性を有する光学異方性層を備えており、透過光の波長の差による表示特性への影響の少ないものとなる。   Since the optically anisotropic layer 130 is the optically anisotropic layer of the present invention, the phase transition temperature required for liquid crystal alignment is low and the solubility in a solvent is high, as compared with the conventional case. It is obtained using a liquid crystal compound that expresses. Therefore, the polarizing plate 10 and the liquid crystal display device 1 are provided with an optically anisotropic layer having reverse wavelength dispersion, and the display characteristics due to the difference in wavelength of transmitted light are less affected.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

(実施例1)
下記スキームに従い、化合物(I−1)を合成した。
Example 1
Compound (I-1) was synthesized according to the following scheme.

<化合物(I−1B)の合成>
コハク酸モノ(2−アクリロイルオキシエチル)(I−1A)182g(839mmol)、酢酸エチル600mL、N,N−ジメチルアセトアミド150mL、2,6−ジ−t−ブチル−4−メチルフェノール680mgを混合し、内温を5℃まで冷却した。混合物に、塩化チオニル642mL(879mmol)を内温が10℃以上に上昇しないように滴下した。5℃で1時間撹拌した後、2−(4−ヒドロキシフェニル)エタノール111g(800mmol)のN,N−ジメチルアセトアミド220mL溶液を加えた。その後、室温にて12時間撹拌した後、水400mLを加えて分液を行った。集めた有機層を1N塩酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、透明なオイルである化合物(I−1B)を255g(758mmol)得た(収率95%)。
H−NMR(溶媒:CDCl)δ(ppm):2.63(t,4H),2.85(t,2H),4.25(t,2H),4.28−4.40(m,4H),5.75(br s,1H),5.86(dd,1H),6.14(dd,1H),6.45(dd,1H),6.78−6.80(m,2H),7.02−7.10(m,2H)
<Synthesis of Compound (I-1B)>
182 g (839 mmol) of mono (2-acryloyloxyethyl) succinate (I-1A), ethyl acetate 600 mL, N, N-dimethylacetamide 150 mL, 2,6-di-t-butyl-4-methylphenol 680 mg were mixed. The internal temperature was cooled to 5 ° C. To the mixture, 642 mL (879 mmol) of thionyl chloride was added dropwise so that the internal temperature did not rise above 10 ° C. After stirring at 5 ° C for 1 hour, a solution of 111 g (800 mmol) of 2- (4-hydroxyphenyl) ethanol in 220 mL of N, N-dimethylacetamide was added. Then, after stirring at room temperature for 12 hours, 400 mL of water was added and liquid separation was performed. The collected organic layer was washed with 1N aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, and the solvent was removed by a rotary evaporator to obtain 255 g (758 mmol) of compound (I-1B) as a transparent oil (yield 95%).
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 2.63 (t, 4H), 2.85 (t, 2H), 4.25 (t, 2H), 4.28-4.40 ( m, 4H), 5.75 (brs, 1H), 5.86 (dd, 1H), 6.14 (dd, 1H), 6.45 (dd, 1H), 6.78-6.80 ( m, 2H), 7.02-7.10 (m, 2H)

<化合物(I−1C)の合成>
1,4−トランス−シクロヘキサンジカルボン酸305g(1.77mol)、メタンスルホン酸クロリド(MsCl)74.2g(648mmol)、テトラヒドロフラン576mL、N,N−ジメチルアセトアミド576mLを、室温にて混合した。得られた混合物に内温が30℃以上に上昇しないよう、トリエチルアミン72g(708mmol)を滴下し、その後室温にて2時間撹拌した。この反応液に、化合物(I−1B)198g(589mmol)と2,6−ジ−t−ブチル−4−メチルフェノール12mgのテトラヒドロフラン50mL溶液を加えた。その後、N,N−ジメチルアミノピリジン1.4g(11mmol)を加えた後、トリエチルアミン72g(708mmol)を内温が30℃以上に上昇しないように滴下した。その後、室温にて12時間撹拌した後、水57mLを加えて反応を停止した。得られた反応液を、1.8wt%重曹水5.7L中に滴下し、析出した固形分をろ過により集めた。得られた固形分を1.6Lのメタノールと混合した後、水1.9Lを加えて、再び析出した固形分をろ過により集めた。得られた固形分を乾燥させた後、酢酸エチル1.6Lに溶かした。得られた溶液にヘキサン1.9Lをゆっくりと加えて、再結晶を行い、沈殿した結晶をろ過により集めることで白色固体(I−1C)202gを得た(収率70%)。この際、不純物としてシクロヘキサンジカルボン酸のジエステル体が残存するが、次工程で除けるため、混合物の状態で次工程に使用した。
H−NMR(溶媒:CDCl)δ(ppm):1.40−1.73(m,4H),2.08−2.31(m,4H),2.31−2.45(m,1H),2.45−2.70(m,1H),2.63(m,4H),2.93(t,2H),4.29(t,2H),4.29−4.40(m,4H),5.86(dd,1H),6.15(dd,1H),6.44(dd,1H),6.95−7.05(m,2H),7.17−7.25(m,2H)
<Synthesis of Compound (I-1C)>
1,4-trans-cyclohexanedicarboxylic acid 305 g (1.77 mol), methanesulfonic acid chloride (MsCl) 74.2 g (648 mmol), tetrahydrofuran 576 mL, N, N-dimethylacetamide 576 mL were mixed at room temperature. To the resulting mixture, 72 g (708 mmol) of triethylamine was added dropwise so that the internal temperature did not rise above 30 ° C., and then the mixture was stirred at room temperature for 2 hours. To this reaction solution, a solution of compound (I-1B) (198 g, 589 mmol) and 2,6-di-tert-butyl-4-methylphenol (12 mg) in tetrahydrofuran (50 mL) was added. Thereafter, 1.4 g (11 mmol) of N, N-dimethylaminopyridine was added, and 72 g (708 mmol) of triethylamine was added dropwise so that the internal temperature did not rise above 30 ° C. Then, after stirring for 12 hours at room temperature, 57 mL of water was added to stop the reaction. The obtained reaction solution was dropped into 5.7 L of 1.8 wt% sodium bicarbonate water, and the precipitated solid was collected by filtration. After the obtained solid content was mixed with 1.6 L of methanol, 1.9 L of water was added, and the precipitated solid content was collected by filtration. The obtained solid was dried and then dissolved in 1.6 L of ethyl acetate. 1.9 L of hexane was slowly added to the obtained solution to perform recrystallization, and the precipitated crystals were collected by filtration to obtain 202 g of a white solid (I-1C) (yield 70%). At this time, although the diester of cyclohexanedicarboxylic acid remains as an impurity, it can be removed in the next step, so that it was used in the next step in a mixture state.
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.40-1.73 (m, 4H), 2.08-2.31 (m, 4H), 2.31-2.45 (m , 1H), 2.45-2.70 (m, 1H), 2.63 (m, 4H), 2.93 (t, 2H), 4.29 (t, 2H), 4.29-4. 40 (m, 4H), 5.86 (dd, 1H), 6.15 (dd, 1H), 6.44 (dd, 1H), 6.95-7.05 (m, 2H), 7.17 -7.25 (m, 2H)

<化合物(I−1D)の合成>
化合物(I−D)の合成は、“Journal of Chemical Cryst allography”(1997);27(9);p.515−526.に記載の方法で行った。
<Synthesis of Compound (I-1D)>
The synthesis of compound (ID) is described in “Journal of Chemical Crystal Algography” (1997); 27 (9); p. 515-526. It carried out by the method of description.

<化合物(I−1)の合成>
化合物(I−1C)92.0g(188mmol)、酢酸エチル560mL、N,N−ジメチルアセトアミド140mL、2,6−ジ−t−ブチル−4−メチルフェノール910mgを室温にて混合し、内温を5℃まで冷却した。混合物に、塩化チオニル18mL(248mmol)を内温が10℃以上に上昇しないように滴下した。5℃で1時間撹拌した後、N,N−ジイソプロピルエチルアミン30.3mL(174mmol)を加えた。その後、化合物(I−D)19.6g(79mmol)のテトラヒドロフラン190mL溶液、N,N−ジメチルアミノピリジン1.4g(11mmol)を加えた後、N,N−ジイソプロピルエチルアミン67mL(385mmol)を内温が10℃以上に上昇しないように滴下した。その後、室温にて3時間撹拌した後、水650mL、酢酸エチル800mLを加えて反応を停止し、分液を行った。集めた有機層を1N塩酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去した後、酢酸エチル110mL及びメタノール200mLを用いて再結晶を行い、化合物(I−1)85.0gを得た(収率90%)。
H−NMR(溶媒:CDCl)δ(ppm):1.50−1.80(m,8H),2.20−2.45(m,8H),2.50−2.75(m,4H),2.65(s,8H),2.93(t,4H),4.30(t,4H),4.25−4.40(m,8H),5.84(dd,2H),6.14(dd,2H),6.44(dd,2H),6.95−7.05(m,4H),7.17−7.26(m,4H),7.32(s,2H)
<Synthesis of Compound (I-1)>
Compound (I-1C) 92.0 g (188 mmol), ethyl acetate 560 mL, N, N-dimethylacetamide 140 mL, 2,6-di-t-butyl-4-methylphenol 910 mg were mixed at room temperature, and the internal temperature was adjusted. Cooled to 5 ° C. To the mixture, thionyl chloride (18 mL, 248 mmol) was added dropwise so that the internal temperature did not rise above 10 ° C. After stirring at 5 ° C. for 1 hour, 30.3 mL (174 mmol) of N, N-diisopropylethylamine was added. Thereafter, a solution of 19.6 g (79 mmol) of Compound (ID) in 190 mL of tetrahydrofuran and 1.4 g (11 mmol) of N, N-dimethylaminopyridine were added, and then 67 mL (385 mmol) of N, N-diisopropylethylamine was added at the internal temperature. Was added dropwise so as not to rise above 10 ° C. Then, after stirring at room temperature for 3 hours, water 650mL and ethyl acetate 800mL were added, reaction was stopped, and liquid separation was performed. The collected organic layer was washed with 1N aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off and the solvent was removed with a rotary evaporator. Then, recrystallization was performed using 110 mL of ethyl acetate and 200 mL of methanol to obtain 85.0 g of Compound (I-1) (yield 90%).
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.50-1.80 (m, 8H), 2.20-2.45 (m, 8H), 2.50-2.75 (m , 4H), 2.65 (s, 8H), 2.93 (t, 4H), 4.30 (t, 4H), 4.25-4.40 (m, 8H), 5.84 (dd, 2H), 6.14 (dd, 2H), 6.44 (dd, 2H), 6.95-7.05 (m, 4H), 7.17-7.26 (m, 4H), 7.32 (S, 2H)

(実施例2)
下記スキームに従い、化合物(I−2)を合成した。
(Example 2)
Compound (I-2) was synthesized according to the following scheme.

<化合物(I−2A)の合成>
メタクリル酸2−ヒドロキシエチル(I−2a)40g(307mmol)、ジクロロメタン300mL、N,N−ジメチルアミノピリジン3.8g(30.7mmol)、無水コハク酸33.8g(338mmol)、2,6−ジ−t−ブチル−4−メチルフェノール200mgを混合し、内温を40℃まで加熱した。12時間撹拌した後、室温へと冷却して水300mLを加えて1時間撹拌し、分液を行った。集めた有機層を1N塩酸水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、透明なオイルである化合物(I−2A)を64g(278mmol)得た(収率91%)。
<Synthesis of Compound (I-2A)>
2-hydroxyethyl methacrylate (I-2a) 40 g (307 mmol), dichloromethane 300 mL, N, N-dimethylaminopyridine 3.8 g (30.7 mmol), succinic anhydride 33.8 g (338 mmol), 2,6-di -200 mg of t-butyl-4-methylphenol was mixed, and the internal temperature was heated to 40 ° C. After stirring for 12 hours, the mixture was cooled to room temperature, 300 mL of water was added, and the mixture was stirred for 1 hour, followed by liquid separation. The collected organic layer was washed with 1N aqueous hydrochloric acid and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, and the solvent was removed by a rotary evaporator to obtain 64 g (278 mmol) of compound (I-2A) as a transparent oil (yield 91%).

<化合物(I−2B)の合成>
化合物(I−2A)30g(130mmol)、酢酸エチル50mL、N,N−ジメチルアセトアミド15mL、2,6−ジ−t−ブチル−4−メチルフェノール100mgを混合し、内温を5℃まで冷却した。混合物に、塩化チオニル10.0mL(137mmol)を内温が10℃以上に上昇しないように滴下した。5℃で1時間撹拌した後、2−(4−ヒドロキシフェニル)エタノール18.0g(130mmol)のN,N−ジメチルアセトアミド100mL溶液を加えた。その後、室温にて12時間撹拌した後、水100mLを加えて分液を行った。集めた有機層を1N塩酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、透明なオイルである化合物(I−2B)を44.1g(126mmol)得た(収率97%)。
<Synthesis of Compound (I-2B)>
Compound (I-2A) 30 g (130 mmol), ethyl acetate 50 mL, N, N-dimethylacetamide 15 mL, 2,6-di-t-butyl-4-methylphenol 100 mg were mixed, and the internal temperature was cooled to 5 ° C. . To the mixture, 10.0 mL (137 mmol) of thionyl chloride was added dropwise so that the internal temperature did not rise above 10 ° C. After stirring at 5 ° C. for 1 hour, a solution of 18.0 g (130 mmol) of 2- (4-hydroxyphenyl) ethanol in 100 mL of N, N-dimethylacetamide was added. Then, after stirring at room temperature for 12 hours, 100 mL of water was added and liquid separation was performed. The collected organic layer was washed with 1N aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, and the solvent was removed by a rotary evaporator to obtain 44.1 g (126 mmol) of compound (I-2B) as a transparent oil (yield 97%).

<化合物(I−2C)の合成>
1,4−トランス−シクロヘキサンジカルボン酸14.7g(85.6mol)、メタンスルホン酸クロリド3.60g(31.4mmol)、テトラヒドロフラン28mL、N,N−ジメチルアセトアミド28mLを、室温にて混合した。得られた混合物に内温が30℃以上に上昇しないよう、トリエチルアミン3.2g(31.6mmol)を滴下し、その後室温にて2時間撹拌した。この反応液に、化合物(I−1B)10g(28.5mmol)と2,6−ジ−t−ブチル−4−メチルフェノール50mgのテトラヒドロフラン10mL溶液を加えた。その後、N,N−ジメチルアミノピリジン171mg(1.4mmol)を加えた後、トリエチルアミン3.2g(31.6mmol)を内温が30℃以上に上昇しないように滴下した。その後、室温にて12時間撹拌した後、水7mLを加えて反応を停止した。得られた反応液を、1.8wt%重曹水275mL中に滴下し、析出した固形分をろ過により集めた。得られた固形分を80mLのメタノールと混合した後、水92mLを加えて、再び析出した固形分をろ過により集めた。得られた固形分を乾燥させた後、酢酸エチル80mLに溶かした。得られた溶液にヘキサン92mLをゆっくりと加えて、再結晶を行い、沈殿した結晶をろ過により集めることで白色固体(I−2C)9.8g(19.4mmol)を得た(収率68%)。この際、不純物としてシクロヘキサンジカルボン酸のジエステル体が残存するが、次工程で除けるため、混合物の状態で次工程に使用した。
H−NMR(溶媒:CDCl)δ(ppm):1.40−1.73(m,4H),1.95(s,3H),2.08−2.31(m,4H),2.31−2.45(m,1H),2.45−2.70(m,1H),2.63(m,4H),2.93(t,2H),4.29(t,2H),4.31(s,4H),5.59(s,1H),6.12(s,1H),6.95−7.05(m,2H),7.18−7.25(m,2H)
<Synthesis of Compound (I-2C)>
1,4-trans-cyclohexanedicarboxylic acid 14.7 g (85.6 mol), methanesulfonic acid chloride 3.60 g (31.4 mmol), tetrahydrofuran 28 mL, N, N-dimethylacetamide 28 mL were mixed at room temperature. To the resulting mixture, 3.2 g (31.6 mmol) of triethylamine was added dropwise so that the internal temperature did not rise above 30 ° C., and then the mixture was stirred at room temperature for 2 hours. To this reaction solution, 10 g (28.5 mmol) of the compound (I-1B) and 50 mL of 2,6-di-tert-butyl-4-methylphenol were added in 10 mL of tetrahydrofuran. Thereafter, 171 mg (1.4 mmol) of N, N-dimethylaminopyridine was added, and 3.2 g (31.6 mmol) of triethylamine was added dropwise so that the internal temperature did not rise to 30 ° C. or higher. Then, after stirring for 12 hours at room temperature, 7 mL of water was added to stop the reaction. The obtained reaction solution was dropped into 275 mL of 1.8 wt% sodium bicarbonate water, and the precipitated solid was collected by filtration. The obtained solid content was mixed with 80 mL of methanol, 92 mL of water was added, and the precipitated solid content was collected by filtration. The obtained solid was dried and then dissolved in 80 mL of ethyl acetate. To the resulting solution, 92 mL of hexane was slowly added to perform recrystallization, and the precipitated crystals were collected by filtration to obtain 9.8 g (19.4 mmol) of a white solid (I-2C) (yield 68%). ). At this time, although the diester of cyclohexanedicarboxylic acid remains as an impurity, it can be removed in the next step, so that it was used in the next step in a mixture state.
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.40-1.73 (m, 4H), 1.95 (s, 3H), 2.08-2.31 (m, 4H), 2.31-2.45 (m, 1H), 2.45-2.70 (m, 1H), 2.63 (m, 4H), 2.93 (t, 2H), 4.29 (t, 2H), 4.31 (s, 4H), 5.59 (s, 1H), 6.12 (s, 1H), 6.95-7.05 (m, 2H), 7.18-7.25. (M, 2H)

<化合物(I−2)の合成>
実施例1に記載されている化合物(I−1)の合成法における、化合物(I−1C)を化合物(I−2C)に変更した以外は実施例1と同様の方法で、化合物(I−2C)を合成した。(収率80%)
H−NMR(溶媒:CDCl)δ(ppm):1.60−1.80(m,8H),1.95(s,6H),2.20−2.45(m,8H),2.50−2.75(m,4H),2.65(t,8H),2.93(t,4H),4.29(t,4H),4.32(s,8H),5.60(s,2H),6.12(s,2H),6.95−7.05(m,4H),7.17−7.26(m,4H),7.32(s,2H)
<Synthesis of Compound (I-2)>
Compound (I--) was prepared in the same manner as in Example 1 except that compound (I-1C) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (I-2C). 2C) was synthesized. (Yield 80%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.60-1.80 (m, 8H), 1.95 (s, 6H), 2.20-2.45 (m, 8H), 2.50-2.75 (m, 4H), 2.65 (t, 8H), 2.93 (t, 4H), 4.29 (t, 4H), 4.32 (s, 8H), 5 .60 (s, 2H), 6.12 (s, 2H), 6.95-7.05 (m, 4H), 7.17-7.26 (m, 4H), 7.32 (s, 2H) )

(実施例3)
下記スキームに従い、化合物(I−3)を合成した。
(Example 3)
Compound (I-3) was synthesized according to the following scheme.

<化合物(I−3A)の合成>
実施例2に記載されている化合物(I−2A)の合成法における、化合物(I−2a)を化合物(I−3a)に変更した以外は実施例2と同様の方法で、化合物(I−3A)を合成した。(収率92%)。
<Synthesis of Compound (I-3A)>
The compound (I-a) was synthesized in the same manner as in Example 2 except that compound (I-2a) was changed to compound (I-3a) in the synthesis method of compound (I-2A) described in Example 2. 3A) was synthesized. (Yield 92%).

<化合物(I−3B)の合成>
実施例1に記載されている化合物(I−1B)の合成法における、化合物(I−1A)を化合物(I−3A)に変更した以外は実施例1と同様の方法で、化合物(I−3B)を合成した。(収率94%)
<Synthesis of Compound (I-3B)>
Compound (I--) was prepared in the same manner as in Example 1 except that compound (I-1A) was changed to compound (I-3A) in the synthesis method of compound (I-1B) described in Example 1. 3B) was synthesized. (Yield 94%)

<化合物(I−3C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(I−3B)に変更した以外は実施例1と同様の方法で、化合物(I−3C)を合成した。(収率70%)
H−NMR(溶媒:CDCl3)δ(ppm):1.45−1.72(m,4H),1.72−1.80(m,4H),2.10−2.30(m,4H),2.33−2.45(m,1H),2.47−2.65(m,1H),2.62(s,4H),2.93(t,2H),4.10−4.22(m,4H),4.30(t,2H),5.83(dd,1H),6.12(dd,1H),6.41(dd,1H),6.95−7.05(m,2H),7.20−7.26(m,2H)
<Synthesis of Compound (I-3C)>
Compound (I--) was prepared in the same manner as in Example 1, except that Compound (I-1B) was changed to Compound (I-3B) in the synthesis method of Compound (I-1C) described in Example 1. 3C) was synthesized. (Yield 70%)
1 H-NMR (solvent: CDCl 3) δ (ppm): 1.45-1.72 (m, 4H), 1.72-1.80 (m, 4H), 2.10-2.30 (m, 4H), 2.33-2.45 (m, 1H), 2.47-2.65 (m, 1H), 2.62 (s, 4H), 2.93 (t, 2H), 4.10 -4.22 (m, 4H), 4.30 (t, 2H), 5.83 (dd, 1H), 6.12 (dd, 1H), 6.41 (dd, 1H), 6.95- 7.05 (m, 2H), 7.20-7.26 (m, 2H)

<化合物(I−3)の合成>
実施例1に記載されている化合物(I−1)の合成法における、化合物(I−1C)を、化合物(I−3C)に変更した以外は実施例1と同様の方法で、化合物(I−3)を合成した。(収率88%)
H−NMR(溶媒:CDCl3)δ(ppm):1.60−1.81(m,16H),2.21−2.30(m,8H),2.55−2.75(m,4H),2.62(s,8H),2.94(t,4H),4.09−4.22(m,8H),4.30(t,4H),5.83(dd,2H),6.12(dd,2H),6.41(dd,2H),6.95−7.05(m,4H),7.20−7.26(m,4H),7.32(s,2H)
<Synthesis of Compound (I-3)>
Compound (I) was prepared in the same manner as in Example 1 except that compound (I-1C) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (I-3C). -3) was synthesized. (Yield 88%)
1 H-NMR (solvent: CDCl 3) δ (ppm): 1.60-1.81 (m, 16H), 2.21-2.30 (m, 8H), 2.55-2.75 (m, 4H), 2.62 (s, 8H), 2.94 (t, 4H), 4.09-4.22 (m, 8H), 4.30 (t, 4H), 5.83 (dd, 2H) ), 6.12 (dd, 2H), 6.41 (dd, 2H), 6.95-7.05 (m, 4H), 7.20-7.26 (m, 4H), 7.32 ( s, 2H)

(実施例4)
下記スキームに従い、化合物(I−4)を合成した。
Example 4
Compound (I-4) was synthesized according to the following scheme.

<化合物(I−4A)の合成>
実施例2に記載されている化合物(I−2A)の合成法における、化合物(I−2a)を化合物(I−4a)に変更した以外は実施例2と同様の方法で、化合物(I−4A)を合成した。(収率99%)。
<Synthesis of Compound (I-4A)>
Compound (I— 4A) was synthesized. (Yield 99%).

<化合物(I−4B)の合成>
実施例1に記載されている化合物(I−1B)の合成法における、化合物(I−1A)を化合物(I−4A)に変更した以外は実施例1と同様の方法で、化合物(I−4B)を合成した。(収率91%)
<Synthesis of Compound (I-4B)>
Compound (I-A) was synthesized in the same manner as in Example 1 except that compound (I-1A) was changed to compound (I-4A) in the synthesis method of compound (I-1B) described in Example 1. 4B) was synthesized. (Yield 91%)

<化合物(I−4C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(I−4B)に変更した以外は実施例1と同様の方法で、化合物(I−4C)を合成した。(収率67%)
H−NMR(溶媒:CDCl3)δ(ppm):[Major Isomer]1.27(d,3H),1.45−1.73(m,4H),2.10−2.32(m,4H),2.32−2.45(m,1H),2.48−2.70(m,1H),2.62(s,4H),2.93(t,2H),4.15(dd,1H),4.25(dd,1H),4.29(t,2H),5.20(m,1H),5.85(dd,1H),6.13(dd,1H),6.42(dd,1H),6.95−7.06(m,2H),7.16−7.25(m,2H)[Minor Isomer]1.29(d,3H),1.45−1.73(m,4H),2.10−2.32(m,4H),2.32−2.45(m,1H),2.48−2.70(m,1H),2.62(s,4H),2.93(t,2H),4.13(dd,1H),4.22(dd,1H),4.29(t,2H),5.20(m,1H),5.84(dd,1H),6.11(dd,1H),6.41(dd,1H),6.95−7.06(m,2H),7.16−7.25(m,2H)
<Synthesis of Compound (I-4C)>
Compound (I--) was prepared in the same manner as in Example 1 except that compound (I-1B) was changed to compound (I-4B) in the synthesis method of compound (I-1C) described in Example 1. 4C) was synthesized. (Yield 67%)
1 H-NMR (solvent: CDCl 3) δ (ppm): [Major Isomer] 1.27 (d, 3H), 1.45-1.73 (m, 4H), 2.10-2.32 (m, 4H), 2.32-2.45 (m, 1H), 2.48-2.70 (m, 1H), 2.62 (s, 4H), 2.93 (t, 2H), 4.15. (Dd, 1H), 4.25 (dd, 1H), 4.29 (t, 2H), 5.20 (m, 1H), 5.85 (dd, 1H), 6.13 (dd, 1H) 6.42 (dd, 1H), 6.95-7.06 (m, 2H), 7.16-7.25 (m, 2H) [Minor Isomer] 1.29 (d, 3H), 1. 45-1.73 (m, 4H), 2.10-2.32 (m, 4H), 2.32-2.45 (m, 1H), 2.48-2.70 (m, 1H), 2.62 (s, 4 ), 2.93 (t, 2H), 4.13 (dd, 1H), 4.22 (dd, 1H), 4.29 (t, 2H), 5.20 (m, 1H), 5.84 (Dd, 1H), 6.11 (dd, 1H), 6.41 (dd, 1H), 6.95-7.06 (m, 2H), 7.16-7.25 (m, 2H)

化合物(I−4)の純度は92%であり、原料の(I−4a)に含まれる不純物(I−4b)に起因する、下記化合物(I−4E)を合計6%含有する。
The purity of compound (I-4) is 92%, and it contains a total of 6% of the following compound (I-4E) derived from impurities (I-4b) contained in the raw material (I-4a).

<化合物(I−4)の合成>
実施例1に記載されている化合物(I−1)の合成法における、化合物(I−1C)を、化合物(I−4C)に変更した以外は実施例1と同様の方法で、化合物(I−3)を合成した。(収率80%)
H−NMR(溶媒:CDCl3)δ(ppm):[Major Isomer]1.27(d,6H),1.56−1.79(m,8H),2.22−2.40(m,8H),2.55−2.75(m,4H),2.62(s,8H),2.94(t,4H),4.15(dd,2H),4.25(dd,2H),4.28(t,4H),5.20(m,2H),5.86(dd,2H),6.13(dd,2H),6.43(dd,2H),6.99−7.06(m,4H),7.20−7.25(m,4H),7.32(s,2H)[Minor Isomer]1.29(d,6H),1.56−1.79(m,8H),2.22−2.40(m,8H),2.55−2.75(m,4H),2.62(s,8H),2.94(t,4H),4.12(dd,2H),4.22(dd,2H),4.28(t,4H),5.20(m,2H),5.84(dd,2H),6.11(dd,2H),6.41(dd,2H),6.99−7.06(m,4H),7.20−7.25(m,4H),7.32(s,2H)
<Synthesis of Compound (I-4)>
Compound (I) was synthesized in the same manner as in Example 1 except that compound (I-1C) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (I-4C). -3) was synthesized. (Yield 80%)
1 H-NMR (solvent: CDCl 3) δ (ppm): [Major Isomer] 1.27 (d, 6H), 1.56-1.79 (m, 8H), 2.22-2.40 (m, 8H), 2.55-2.75 (m, 4H), 2.62 (s, 8H), 2.94 (t, 4H), 4.15 (dd, 2H), 4.25 (dd, 2H) ), 4.28 (t, 4H), 5.20 (m, 2H), 5.86 (dd, 2H), 6.13 (dd, 2H), 6.43 (dd, 2H), 6.99 -7.06 (m, 4H), 7.20-7.25 (m, 4H), 7.32 (s, 2H) [Minor Isomer] 1.29 (d, 6H), 1.56-1. 79 (m, 8H), 2.22-2.40 (m, 8H), 2.55-2.75 (m, 4H), 2.62 (s, 8H), 2.94 (t, 4H) , 4.12 (dd, 2 H), 4.22 (dd, 2H), 4.28 (t, 4H), 5.20 (m, 2H), 5.84 (dd, 2H), 6.11 (dd, 2H), 6. 41 (dd, 2H), 6.99-7.06 (m, 4H), 7.20-7.25 (m, 4H), 7.32 (s, 2H)

(実施例5)
下記スキームに従い、化合物(I−5)を合成した。
(Example 5)
Compound (I-5) was synthesized according to the following scheme.

<化合物(I−5A)の合成>
実施例2に記載されている化合物(I−2A)の合成法における、化合物(I−2a)を化合物(I−5a)に変更した以外は実施例2と同様の方法で、化合物(I−5A)を合成した。
<Synthesis of Compound (I-5A)>
Compound (I— 5A) was synthesized.

<化合物(I−5B)の合成>
実施例1に記載されている化合物(I−1B)の合成法における、化合物(I−1A)を化合物(I−5A)に変更した以外は実施例1と同様の方法で、化合物(I−5B)を合成した。
<Synthesis of Compound (I-5B)>
Compound (I-A) was synthesized in the same manner as in Example 1 except that compound (I-1A) was changed to compound (I-5A) in the synthesis method of compound (I-1B) described in Example 1. 5B) was synthesized.

<化合物(I−5C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(I−5B)に変更した以外は実施例1と同様の方法で、化合物(I−5C)を合成した。(3工程収率45%)
H−NMR(溶媒:CDCl3)δ(ppm):1.45−1.72(m,4H),2.10−2.32(m,4H),2.32−2.45(m,1H),2.48−2.70(m,1H),2.63(m,4H),2.93(t,2H),3.72(m,4H)、4.22−4.35(m,4H),4.32(t,2H)、5.84(dd,1H),6.16(dd,1H),6.44(dd,1H),6.95−7.05(m,2H),7.16−7.25(m,2H)
<Synthesis of Compound (I-5C)>
The compound (I-C) was prepared in the same manner as in Example 1 except that the compound (I-1B) in the synthesis method of the compound (I-1C) described in Example 1 was changed to the compound (I-5B). 5C) was synthesized. (3 process yield 45%)
1 H-NMR (solvent: CDCl 3) δ (ppm): 1.45-1.72 (m, 4H), 2.10-2.32 (m, 4H), 2.32-2.45 (m, 1H), 2.48-2.70 (m, 1H), 2.63 (m, 4H), 2.93 (t, 2H), 3.72 (m, 4H), 4.22-4.35 (M, 4H), 4.32 (t, 2H), 5.84 (dd, 1H), 6.16 (dd, 1H), 6.44 (dd, 1H), 6.95-7.05 ( m, 2H), 7.16-7.25 (m, 2H)

<化合物(I−5)の合成>
実施例1に記載されている化合物(I−1)の合成法における、化合物(I−1C)を、化合物(I−5C)に変更した以外は実施例1と同様の方法で、化合物(I−5)を合成した。(収率88%)
H−NMR(溶媒:CDCl3)δ(ppm):1.61−1.79(m,8H),2.25−2.40(m,8H),2.55−2.73(m,4H),2.61(t,4H),2.62(t,4H),2.94(t,4H),3.72(m,8H)、4.22−4.33(m,8H),4.33(t,4H)、5.84(dd,2H),6.16(dd,2H),6.44(dd,2H),6.99−7.06(m,4H),7.18−7.26(m,4H),7.32(s,2H)
<Synthesis of Compound (I-5)>
Compound (I-1) was synthesized in the same manner as in Example 1 except that compound (I-1C) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (I-5C). -5) was synthesized. (Yield 88%)
1 H-NMR (solvent: CDCl 3) δ (ppm): 1.61-1.79 (m, 8H), 2.25-2.40 (m, 8H), 2.55-2.73 (m, 4H), 2.61 (t, 4H), 2.62 (t, 4H), 2.94 (t, 4H), 3.72 (m, 8H), 4.22 to 4.33 (m, 8H) ), 4.33 (t, 4H), 5.84 (dd, 2H), 6.16 (dd, 2H), 6.44 (dd, 2H), 6.99-7.06 (m, 4H) 7.18-7.26 (m, 4H), 7.32 (s, 2H)

(実施例6)
下記スキームに従い、化合物(I−6)を合成した。
(Example 6)
Compound (I-6) was synthesized according to the following scheme.

<化合物(I−6A)の合成>
アクリル酸2−ヒドロキシエチル(I−6a)10g(86.1mmol)、N,N−ジメチルアセトアミド50mL、ピリジン15mL、ジグリコール酸無水物11.0g(94.8mmol)、N,N−ジメチルアミノピリジン1.1g(8.6mmol)、2,6−ジ−t−ブチル−4−メチルフェノール50mgを混合し、内温を50℃まで加熱した。12時間撹拌した後、室温へと冷却して1N塩酸水を加えて分液を行った。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥して、ロータリーエバポレーターにて溶媒を除去し、透明なオイルである化合物(I−6A)を14.3g(278mmol)得た(収率72%)。
<Synthesis of Compound (I-6A)>
2-hydroxyethyl acrylate (I-6a) 10 g (86.1 mmol), N, N-dimethylacetamide 50 mL, pyridine 15 mL, diglycolic anhydride 11.0 g (94.8 mmol), N, N-dimethylaminopyridine 1.1 g (8.6 mmol) and 50 mg of 2,6-di-tert-butyl-4-methylphenol were mixed, and the internal temperature was heated to 50 ° C. After stirring for 12 hours, the mixture was cooled to room temperature, and 1N aqueous hydrochloric acid was added for liquid separation. The collected organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed with a rotary evaporator to obtain 14.3 g (278 mmol) of compound (I-6A) as a transparent oil. (Yield 72%).

<化合物(I−6B)の合成>
実施例1に記載されている化合物(I−1B)の合成法における、化合物(I−1A)を化合物(I−6A)に変更した以外は実施例1と同様の方法で、化合物(I−6B)を合成した。
<Synthesis of Compound (I-6B)>
Compound (I-A) was synthesized in the same manner as in Example 1 except that compound (I-1A) was changed to compound (I-6A) in the synthesis method of compound (I-1B) described in Example 1. 6B) was synthesized.

<化合物(I−6C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(I−6B)に変更した以外は実施例1と同様の方法で、化合物(I−6C)を合成した。(2工程収率58%)
H−NMR(溶媒:CDCl)δ(ppm):1.42−1.75(m,4H),2.10−2.30(m,4H),2.30−2.48(m,1H),2.48−2.70(m,1H),2.97(t,2H),4.22(s,2H),4.24(s,2H),4.33−4.45(m,6H),5.86(dd,1H),6.13(dd,1H),6.44(dd,1H),6.98−7.05(m,2H),7.19−7.25(m,2H)
<Synthesis of Compound (I-6C)>
The compound (I-C) was prepared in the same manner as in Example 1 except that the compound (I-1B) in the synthesis method of the compound (I-1C) described in Example 1 was changed to the compound (I-6B). 6C) was synthesized. (2 process yield 58%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.42-1.75 (m, 4H), 2.10-2.30 (m, 4H), 2.30-2.48 (m , 1H), 2.48-2.70 (m, 1H), 2.97 (t, 2H), 4.22 (s, 2H), 4.24 (s, 2H), 4.33-4. 45 (m, 6H), 5.86 (dd, 1H), 6.13 (dd, 1H), 6.44 (dd, 1H), 6.98-7.05 (m, 2H), 7.19 -7.25 (m, 2H)

<化合物(I−6)の合成>
実施例1に記載されている化合物(I−1)の合成法における、化合物(I−1C)を、化合物(I−6C)に変更した以外は実施例1と同様の方法で合成を行い、その後、クロロホルム−メタノールを溶媒に用いてシリカゲルカラムクロマトグラフィによる精製を行うことで化合物(I−6)を得た。(収率40%)
H−NMR(溶媒:CDCl)δ(ppm):1.62−1.78(m,8H),2.23−2.49(m,8H),2.49−2.67(m,4H),2.97(t,4H),4.22(s,4H),4.24(s,4H),4.35−4.44(m,12H),5.87(dd,2H),6.13(dd,2H),6.44(dd,2H),7.00−7.05(m,4H),7.20−7.25(m,4H),7.32(s,2H)
<Synthesis of Compound (I-6)>
Synthesis was carried out in the same manner as in Example 1 except that Compound (I-1C) in Compound (I-1) synthesis method described in Example 1 was changed to Compound (I-6C). Then, the compound (I-6) was obtained by performing purification by silica gel column chromatography using chloroform-methanol as a solvent. (Yield 40%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.62-1.78 (m, 8H), 2.23-2.49 (m, 8H), 2.49-2.67 (m , 4H), 2.97 (t, 4H), 4.22 (s, 4H), 4.24 (s, 4H), 4.35-4.44 (m, 12H), 5.87 (dd, 2H), 6.13 (dd, 2H), 6.44 (dd, 2H), 7.00-7.05 (m, 4H), 7.20-7.25 (m, 4H), 7.32 (S, 2H)

(実施例7)
下記スキームに従い、化合物(I−7)を合成した。
(Example 7)
Compound (I-7) was synthesized according to the following scheme.

<化合物(I−7B)の合成>
カレンズMOI−EG(I−7A,昭和電工社製)3.9g(19.5mmol)、2−(4−ヒドロキシフェニル)エタノール1.5g(10.9mmol)、N,N−ジメチルアセトアミド2mL、クロロホルム10mLを混合し、内温を60℃まで加熱した。12時間撹拌した後、室温へと冷却してさらに12時間撹拌した。次に飽和重曹水を加えて1時間撹拌した後、分液を行った。集めた有機層を1N塩酸水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥して、ロータリーエバポレーターにて溶媒を除去し、シリカゲルクロマトグラフィに精製を行うことで透明なオイルである化合物(I−7B)を3.1g(9.19mmol)得た(収率85%)。
<Synthesis of Compound (I-7B)>
Karenz MOI-EG (I-7A, Showa Denko) 3.9 g (19.5 mmol), 2- (4-hydroxyphenyl) ethanol 1.5 g (10.9 mmol), N, N-dimethylacetamide 2 mL, chloroform 10 mL was mixed and the internal temperature was heated to 60 ° C. After stirring for 12 hours, the mixture was cooled to room temperature and further stirred for 12 hours. Next, saturated aqueous sodium hydrogen carbonate was added and stirred for 1 hour, followed by liquid separation. The collected organic layer was washed with 1N aqueous hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate, the solvent was removed with a rotary evaporator, and the mixture was purified by silica gel chromatography to obtain a compound (I -7B) was obtained (g) (9.19 mmol) (yield 85%).

<化合物(I−7C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(I−7B)に変更した以外は実施例1と同様の方法で、化合物(I−7C)を合成した。(2工程収率45%)
H−NMR(溶媒:CDCl)δ(ppm):1.42−1.75(m,4H),1.95(s,3H),2.10−2.30(m,4H),2.30−2.48(m,1H),2.48−2.70(m,1H),2.92(m,2H),3.37(m,2H),3.56(br t,2H),3.70(br t,2H),4.20−4.45(m,4H),5.05(br s,1H),5.58(s,1H),6.13(s,1H),6.98−7.06(m,2H),7.18−7.25(m,2H)
<Synthesis of Compound (I-7C)>
Compound (I--) was prepared in the same manner as in Example 1 except that compound (I-1B) in the synthesis method of compound (I-1C) described in Example 1 was changed to compound (I-7B). 7C) was synthesized. (2 step yield 45%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.42-1.75 (m, 4H), 1.95 (s, 3H), 2.10-2.30 (m, 4H), 2.30-2.48 (m, 1H), 2.48-2.70 (m, 1H), 2.92 (m, 2H), 3.37 (m, 2H), 3.56 (br t , 2H), 3.70 (brt, 2H), 4.20-4.45 (m, 4H), 5.05 (brs, 1H), 5.58 (s, 1H), 6.13 ( s, 1H), 6.98-7.06 (m, 2H), 7.18-7.25 (m, 2H)

<化合物(I−7)の合成>
実施例1に記載されている化合物(I−1)の合成法における、化合物(I−1C)を、化合物(I−7C)に変更した以外は実施例1と同様の方法で化合物(I−7)を得た。(収率69%)
H−NMR(溶媒:CDCl)δ(ppm):1.52−1.78(m,8H),1.95(s,6H),2.25−2.49(m,8H),2.55−2.72(m,4H),2.93(br t,4H),3.37(m,4H),3.56(br t,4H),3.70(br t,4H),4.22−4.35(m,8H),5.04(br s,2H),5.58(s,2H),6.13(s,2H),7.01(br d,4H),7.23(br d,4H),7.32(s,2H)
<Synthesis of Compound (I-7)>
Compound (I-) was prepared in the same manner as in Example 1 except that compound (I-1C) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (I-7C). 7) was obtained. (Yield 69%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.52-1.78 (m, 8H), 1.95 (s, 6H), 2.25-2.49 (m, 8H), 2.55-2.72 (m, 4H), 2.93 (br t, 4H), 3.37 (m, 4H), 3.56 (br t, 4H), 3.70 (br t, 4H) ), 4.22-4.35 (m, 8H), 5.04 (br s, 2H), 5.58 (s, 2H), 6.13 (s, 2H), 7.01 (br d, 4H), 7.23 (brd, 4H), 7.32 (s, 2H)

(実施例8)
下記スキームに従い、化合物(I−9)を合成した。
(Example 8)
Compound (I-9) was synthesized according to the following scheme.

<化合物(I−9B)の合成>
実施例7に記載されている化合物(I−7B)の合成法における、カレンズMOI−EG(I−7A,昭和電工社製)をカレンズMOI(I−9A,昭和電工社製)に変更した以外は実施例1と同様の方法で、化合物(I−9B)を合成した。
<Synthesis of Compound (I-9B)>
Except for changing Karenz MOI-EG (I-7A, Showa Denko) to Karenz MOI (I-9A, Showa Denko) in the synthesis method of compound (I-7B) described in Example 7 Compound (I-9B) was synthesized in the same manner as in Example 1.

<化合物(I−9C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(I−9B)に変更した以外は実施例1と同様の方法で、化合物(I−7C)を合成した。(2工程収率40%)
H−NMR(溶媒:CDCl)δ(ppm):1.42−1.75(m,4H),1.95(s,3H),2.10−2.30(m,4H),2.30−2.48(m,1H),2.48−2.70(m,1H),2.92(m,2H),3.49(m,2H),4.10−4.35(m,4H),4.90(br s,1H),5.58(s,1H),6.13(s,1H),6.98−7.06(m,2H),7.18−7.25(m,2H)
<Synthesis of Compound (I-9C)>
The compound (I-C) was prepared in the same manner as in Example 1 except that the compound (I-1B) in the synthesis method of the compound (I-1C) described in Example 1 was changed to the compound (I-9B). 7C) was synthesized. (2 step yield 40%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.42-1.75 (m, 4H), 1.95 (s, 3H), 2.10-2.30 (m, 4H), 2.30-2.48 (m, 1H), 2.48-2.70 (m, 1H), 2.92 (m, 2H), 3.49 (m, 2H), 4.10-4. 35 (m, 4H), 4.90 (br s, 1H), 5.58 (s, 1H), 6.13 (s, 1H), 6.98-7.06 (m, 2H), 7. 18-7.25 (m, 2H)

<化合物(I−9)の合成>
実施例1に記載されている化合物(I−1)の合成法における、化合物(I−1C)を、化合物(I−9C)に変更した以外は実施例1と同様の方法で化合物(I−9)を得た。(収率66%)
H−NMR(溶媒:CDCl)δ(ppm):1.52−1.78(m,8H),1.95(s,6H),2.25−2.49(m,8H),2.55−2.72(m,4H),2.92(br t,4H),3.49(m,4H),4.10−4.35(m,8H),4.91(br s,2H),5.60(s,2H),6.13(s,2H),,6.95−7.05(m,4H),7.17−7.26(m,4H),7.32(s,2H)
<Synthesis of Compound (I-9)>
Compound (I--) was prepared in the same manner as in Example 1 except that compound (I-1C) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (I-9C). 9) was obtained. (Yield 66%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.52-1.78 (m, 8H), 1.95 (s, 6H), 2.25-2.49 (m, 8H), 2.55-2.72 (m, 4H), 2.92 (br t, 4H), 3.49 (m, 4H), 4.10-4.35 (m, 8H), 4.91 (br s, 2H), 5.60 (s, 2H), 6.13 (s, 2H), 6.95-7.05 (m, 4H), 7.17-7.26 (m, 4H), 7.32 (s, 2H)

(実施例9)
下記スキームに従い、化合物(I−14)を合成した。
Example 9
Compound (I-14) was synthesized according to the following scheme.

<化合物(I−14B)の合成>
実施例1に記載されている化合物(I−1B)の合成法における化合物(I−1)を、10−ウンデセン酸(I−14A)に変更した以外は実施例1と同様の方法で、化合物(I−14B)を合成した。
<Synthesis of Compound (I-14B)>
The compound was obtained in the same manner as in Example 1 except that the compound (I-1) in the synthesis method of the compound (I-1B) described in Example 1 was changed to 10-undecenoic acid (I-14A). (I-14B) was synthesized.

<化合物(I−14C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における化合物(I−1B)を、化合物(I−14B)に変更した以外は実施例1と同様の方法で、化合物(I−14C)を合成した。(2工程収率60%)
H−NMR(溶媒:CDCl)δ(ppm):1.20−1.45(m,10H),1.45−1.80(m,6H),2.00−2.10(m,2H),2.10−2.25(m,4H),2.25−2.45(m,3H),2.45−2.70(m,1H),2.94(t,2H),4.25(t,2H),4.88−5.07(m,2H),5.71−5.90(m,1H),6.96−7.05(m,2H),7.18−7.26(m,2H)
<Synthesis of Compound (I-14C)>
Compound (I— 14C) was synthesized. (2 step yield 60%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.20-1.45 (m, 10H), 1.45-1.80 (m, 6H), 2.00-2.10 (m , 2H), 2.10-2.25 (m, 4H), 2.25-2.45 (m, 3H), 2.45-2.70 (m, 1H), 2.94 (t, 2H) ), 4.25 (t, 2H), 4.88-5.07 (m, 2H), 5.71-5.90 (m, 1H), 6.96-7.05 (m, 2H), 7.18-7.26 (m, 2H)

<化合物(I−14)の合成>
実施例1に記載されている化合物(I−1)の合成法における化合物(I−1C)を、化合物(I−14C)に変更した以外は実施例1と同様の方法で化合物(I−14)を得た。(収率91%)
H−NMR(溶媒:CDCl)δ(ppm):1.20−1.45(m,20H),1.50−1.60(m,4H)1.60−1.80(m,8H),2.00−2.10(m,4H),2.20−2.45(m,12H),2.65−2.80(m,4H),2.93(t,4H),4.25(t,4H),4.88−5.05(m,4H),5.70−5.90(m,2H),6.95−7.05(m,4H),7.17−7.26(m,4H),7.32(s,2H)
<Synthesis of Compound (I-14)>
Compound (I-14) was prepared in the same manner as in Example 1 except that Compound (I-1C) in the synthesis method of Compound (I-1) described in Example 1 was changed to Compound (I-14C). ) (Yield 91%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.20-1.45 (m, 20H), 1.50-1.60 (m, 4H) 1.60-1.80 (m, 8H), 2.00-2.10 (m, 4H), 2.20-2.45 (m, 12H), 2.65-2.80 (m, 4H), 2.93 (t, 4H) 4.25 (t, 4H), 4.88-5.05 (m, 4H), 5.70-5.90 (m, 2H), 6.95-7.05 (m, 4H), 7 .17-7.26 (m, 4H), 7.32 (s, 2H)

(実施例10)
以下に示す化合物(I−15)を合成した。
(Example 10)
The following compound (I-15) was synthesized.

化合物(I−14)120mg(0.106mmol)と、3−クロロ過安息香酸(30wt%水分含有)56.4mg、ジクロロメタン1mLを混合し、室温にて4時間撹拌した。その後、水を加えて分液を行った。集めた有機層を飽和チオ硫酸ナトリウム水溶液、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、酢酸エチル及びメタノールを用いて再結晶を行い、化合物(I−15)80mgを得た(収率65%)。
H−NMR(溶媒:CDCl)δ(ppm):1.20−1.80(m,36H),2.20−2.45(m,12H),2.45(m,2H)2.55−2.75(m,4H),2.75(m,2H)2.85−3.00(m,2H),2.93(t,4H),4.27(t,4H),6.95−7.05(m,4H),7.17−7.26(m,4H),7.32(s,2H)
120 mg (0.106 mmol) of compound (I-14), 56.4 mg of 3-chloroperbenzoic acid (containing 30 wt% water), and 1 mL of dichloromethane were mixed and stirred at room temperature for 4 hours. Then, water was added and liquid separation was performed. The collected organic layer was washed with a saturated aqueous sodium thiosulfate solution, saturated aqueous sodium hydrogen carbonate, and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, the solvent was removed with a rotary evaporator, and recrystallization was performed using ethyl acetate and methanol to obtain 80 mg of Compound (I-15) (yield 65%).
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.20-1.80 (m, 36H), 2.20-2.45 (m, 12H), 2.45 (m, 2H) 2 .55-2.75 (m, 4H), 2.75 (m, 2H) 2.85-3.00 (m, 2H), 2.93 (t, 4H), 4.27 (t, 4H) 6.95-7.05 (m, 4H), 7.17-7.26 (m, 4H), 7.32 (s, 2H)

(実施例11)
下記スキームに従い、化合物(II−8)を合成した。
(Example 11)
Compound (II-8) was synthesized according to the following scheme.

<化合物(II−8B)の合成>
化合物(II−8A)20g(131mmol)とN,N−ジメチルアセトアミド80mLを混合し、0℃に冷却した。混合物に、塩化チオニル19.2mL(263mmol)を内温が5℃以上に上昇しないように滴下した。5℃で1時間撹拌した後、アクリル酸4−ヒドロキシブチル18.2mL(131mmol)を滴下した。その後、室温にて12時間撹拌した後、水200mLを加えて分液を行った。集めた有機層を1N塩酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、シリカゲルクロマトグラフィに精製を行うことで、透明なオイルである化合物(II−8B)を23.9g(96mmol)得た(収率73%)。
<Synthesis of Compound (II-8B)>
20 g (131 mmol) of compound (II-8A) and 80 mL of N, N-dimethylacetamide were mixed and cooled to 0 ° C. To the mixture, 19.2 mL (263 mmol) of thionyl chloride was added dropwise so that the internal temperature did not rise above 5 ° C. After stirring at 5 ° C. for 1 hour, 18.2 mL (131 mmol) of 4-hydroxybutyl acrylate was added dropwise. Then, after stirring at room temperature for 12 hours, water 200mL was added and liquid separation was performed. The collected organic layer was washed with 1N aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, the solvent was removed with a rotary evaporator, and purification was performed by silica gel chromatography to obtain 23.9 g (96 mmol) of compound (II-8B) as a transparent oil (yield 73%).

<化合物(II−8C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(II−8B)に変更した以外は実施例1と同様の方法で、化合物(II−8C)を合成した。(収率57%)
H−NMR(溶媒:CDCl)δ(ppm):1.40−1.90(m,8H),2.10−2.30(m,4H),2.30−2.45(m,1H),2.45−2.60(m,1H),3.62(s,2H),4.08−4.22(m,4H),5.83(dd,1H),6.13(dd,1H),6.41(dd,1H),6.97−7.07(m,2H),7.27−7.34(m,2H)
<Synthesis of Compound (II-8C)>
The compound (II-C) was prepared in the same manner as in Example 1 except that compound (I-1B) was changed to compound (II-8B) in the synthesis method of compound (I-1C) described in Example 1. 8C) was synthesized. (Yield 57%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.40-1.90 (m, 8H), 2.10-2.30 (m, 4H), 2.30-2.45 (m , 1H), 2.45-2.60 (m, 1H), 3.62 (s, 2H), 4.08-4.22 (m, 4H), 5.83 (dd, 1H), 6. 13 (dd, 1H), 6.41 (dd, 1H), 6.97-7.07 (m, 2H), 7.27-7.34 (m, 2H)

<化合物(II−8)の合成>
化合物(II−8C)536mg(1.24mmol)、化合物(I−D)150mg(0.60mmol)とテトラヒドロフラン5mLを混合し、室温で撹拌した。混合物に、N,N−ジメチルアミノピリジン7.5mg(0.06mmol)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩350mg(1.83mmol)を加え、室温で5時間撹拌した。その後、酢酸エチル20mLと水20mLを加えて分液を行い、集めた有機層を1N塩酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、シリカゲルクロマトグラフィに精製を行うことで化合物(II−8)を257mg(0.24mmol)得た(収率40%)。
H−NMR(溶媒:CDCl)δ(ppm):1.62−1.80(m,16H),2.25−2.40(m,8H),2.55−2.75(m,4H),3.62(s,4H),4.10−4.20(m,8H),5.83(dd,2H),6.12(dd,2H),6.41(dd,2H),7.02−7.08(m,4H),7.28−7.33(m,4H),7.32(s,2H)
<Synthesis of Compound (II-8)>
536 mg (1.24 mmol) of the compound (II-8C), 150 mg (0.60 mmol) of the compound (ID) and 5 mL of tetrahydrofuran were mixed and stirred at room temperature. To the mixture, 7.5 mg (0.06 mmol) of N, N-dimethylaminopyridine and 350 mg (1.83 mmol) of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride were added and stirred at room temperature for 5 hours. . Thereafter, 20 mL of ethyl acetate and 20 mL of water were added for liquid separation, and the collected organic layer was washed with 1N aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, the solvent was removed by a rotary evaporator, and purification was performed by silica gel chromatography to obtain 257 mg (0.24 mmol) of Compound (II-8) (yield 40%).
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.62-1.80 (m, 16H), 2.25-2.40 (m, 8H), 2.55-2.75 (m , 4H), 3.62 (s, 4H), 4.10-4.20 (m, 8H), 5.83 (dd, 2H), 6.12 (dd, 2H), 6.41 (dd, 2H), 7.02-7.08 (m, 4H), 7.28-7.33 (m, 4H), 7.32 (s, 2H)

(実施例12)
下記スキームに従い、化合物(II−9)を合成した。
(Example 12)
Compound (II-9) was synthesized according to the following scheme.

<化合物(II−9B)の合成>
実施例11に記載されている化合物(II−8B)の合成法における、アクリル酸4−ヒドロキシブチルをアクリル酸2−ヒドロキシエチルに変更した以外は実施例11と同様の方法で、化合物(II−9B)を合成した。(収率69%)
<Synthesis of Compound (II-9B)>
The compound (II-B) was synthesized in the same manner as in Example 11 except that 4-hydroxybutyl acrylate in the synthesis method of compound (II-8B) described in Example 11 was changed to 2-hydroxyethyl acrylate. 9B) was synthesized. (Yield 69%)

<化合物(II−9C)の合成>
実施例1に記載されている化合物(I−1C)の合成法における、化合物(I−1B)を化合物(II−9B)に変更した以外は実施例1と同様の方法で、化合物(II−9C)を合成した。(収率59%)
H−NMR(溶媒:CDCl)δ(ppm):1.40−1.74(m,4H),2.10−2.30(m,4H),2.30−2.45(m,1H),2.45−2.60(m,1H),3.64(s,2H),4.36(m,4H),5.86(dd,1H),6.13(dd,1H),6.41(dd,1H),6.95−7.05(m,2H),7.27−7.34(m,2H)
<Synthesis of Compound (II-9C)>
The compound (II-B) was synthesized in the same manner as in Example 1 except that the compound (I-1B) in the synthesis method of the compound (I-1C) described in Example 1 was changed to the compound (II-9B). 9C) was synthesized. (Yield 59%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.40-1.74 (m, 4H), 2.10-2.30 (m, 4H), 2.30-2.45 (m , 1H), 2.45-2.60 (m, 1H), 3.64 (s, 2H), 4.36 (m, 4H), 5.86 (dd, 1H), 6.13 (dd, 1H), 6.41 (dd, 1H), 6.95-7.05 (m, 2H), 7.27-7.34 (m, 2H)

<化合物(II−9)の合成>
化合物(II−9C)500mg(1.24mmol)、化合物(I−D)150mg(0.60mmol)とテトラヒドロフラン5mLを混合し、室温で撹拌した。混合物に、N,N−ジメチルアミノピリジン7.5mg(0.06mmol)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩350mg(1.83mmol)を加え、室温で5時間撹拌した。その後、酢酸エチル20mLと水20mLを加えて分液を行い、集めた有機層を1N塩酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、シリカゲルクロマトグラフィに精製を行うことで化合物(II−9)を270mg(0.26mmol)得た(収率44%)。
H−NMR(溶媒:CDCl)δ(ppm):1.62−1.77(m,8H),2.25−2.40(m,8H),2.56−2.73(m,4H),3.65(s,4H),4.32−4.40(m,8H),5.86(dd,2H),6.12(dd,2H),6.41(dd,2H),7.02−7.08(m,4H),7.28−7.33(m,4H),7.32(s,2H)
<Synthesis of Compound (II-9)>
Compound (II-9C) 500 mg (1.24 mmol), compound (ID) 150 mg (0.60 mmol) and tetrahydrofuran 5 mL were mixed and stirred at room temperature. To the mixture, 7.5 mg (0.06 mmol) of N, N-dimethylaminopyridine and 350 mg (1.83 mmol) of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride were added and stirred at room temperature for 5 hours. . Thereafter, 20 mL of ethyl acetate and 20 mL of water were added for liquid separation, and the collected organic layer was washed with 1N aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, the solvent was removed with a rotary evaporator, and purification was performed by silica gel chromatography to obtain 270 mg (0.26 mmol) of Compound (II-9) (44% yield).
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.62-1.77 (m, 8H), 2.25-2.40 (m, 8H), 2.56-2.73 (m , 4H), 3.65 (s, 4H), 4.32-4.40 (m, 8H), 5.86 (dd, 2H), 6.12 (dd, 2H), 6.41 (dd, 2H), 7.02-7.08 (m, 4H), 7.28-7.33 (m, 4H), 7.32 (s, 2H)

(実施例13)
下記スキームに従い、化合物(III−3)を合成した。
(Example 13)
Compound (III-3) was synthesized according to the following scheme.

<化合物(III−3Db)の合成>
化合物(III−3Db)の合成は、“Journal of Organic Chemistry”(2004);69(6);p.2164−2177.に記載の方法で行った。
<Synthesis of Compound (III-3Db)>
The synthesis of compound (III-3Db) is described in “Journal of Organic Chemistry” (2004); 69 (6); p. 2164-2177. It carried out by the method of description.

<化合物(III−3D)の合成>
化合物(III−3Db)5.0g(15.3mmol)、シアノ酢酸メチル1.66g(16.80mmol)とイソプロピルアルコール25mLを混合し、加熱還流下で3時間撹拌した。その後室温まで冷却し、混合物に水50mLを加え、析出した結晶をろ過した。得られた結晶を、水−イソプロピルアルコール(10対1)の混合溶液、0.5N塩酸水溶液で洗浄した後、N,N−ジメチルアセトアミドに溶解させて濾過を行った。得られた濾液に水を加え、析出した結晶をろ過することで化合物(III−3D)2.2g(7.82mmol)を得た(収率51%)。
<Synthesis of Compound (III-3D)>
Compound (III-3Db) 5.0 g (15.3 mmol), methyl cyanoacetate 1.66 g (16.80 mmol) and isopropyl alcohol 25 mL were mixed, and the mixture was stirred for 3 hours under heating to reflux. Thereafter, the mixture was cooled to room temperature, 50 mL of water was added to the mixture, and the precipitated crystals were filtered. The obtained crystals were washed with a mixed solution of water-isopropyl alcohol (10 to 1) and a 0.5N aqueous hydrochloric acid solution, and then dissolved in N, N-dimethylacetamide and filtered. Water was added to the obtained filtrate, and the precipitated crystals were filtered to obtain 2.2 g (7.82 mmol) of compound (III-3D) (yield 51%).

<化合物(III−3)の合成>
実施例1に記載されている化合物(I−1)の合成法における化合物(I−4D)を、化合物(III−3D)に変更した以外は実施例1と同様の方法で化合物(III−3)を得た。(収率80%)
H−NMR(溶媒:CDCl)δ(ppm):1.60−1.85(m,8H),2.20−2.45(m,8H),2.55−2.75(m,4H),2.65(t,8H),2.93(t,4H),3.91(s,3H),4.30(t,4H),4.25−4.40(m,8H),5.84(dd,2H),6.14(dd,2H),6.44(dd,2H),6.98−7.05(m,4H),7.17−7.26(m,4H),7.27(s,2H)22
<Synthesis of Compound (III-3)>
Compound (III-3) was prepared in the same manner as in Example 1 except that compound (I-4D) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (III-3D). ) (Yield 80%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.60-1.85 (m, 8H), 2.20-2.45 (m, 8H), 2.55-2.75 (m , 4H), 2.65 (t, 8H), 2.93 (t, 4H), 3.91 (s, 3H), 4.30 (t, 4H), 4.25-4.40 (m, 8H), 5.84 (dd, 2H), 6.14 (dd, 2H), 6.44 (dd, 2H), 6.98-7.05 (m, 4H), 7.17-7.26. (M, 4H), 7.27 (s, 2H) 22

(実施例14)
下記スキームに従い、化合物(III−7)を合成した。
(Example 14)
Compound (III-7) was synthesized according to the following scheme.

<化合物(III−7D)の合成>
化合物(III−7D)の合成は、特開2008−107767に記載の方法で行った。
<Synthesis of Compound (III-7D)>
Compound (III-7D) was synthesized by the method described in JP-A-2008-107767.

<化合物(III−7)の合成>
実施例1に記載されている化合物(I−1)の合成法における化合物(I−4D)を、化合物(III−7D)に変更した以外は実施例1と同様の方法で化合物(III−7)を得た。(収率78%)
H−NMR(溶媒:CDCl)δ(ppm):1.31(s,6H),1.65−1.80(m,8H),1.96(t,2H)2.25−2.50(m,8H),2.55−2.75(m,4H),2.65(t,8H),2.93(t,4H),4.30(t,4H),4.25−4.40(m,8H),4.48(t,2H),5.84(dd,2H),6.14(dd,2H),6.44(dd,2H),6.98−7.05(m,4H),7.20−7.26(m,4H),7.27(s,2H)
<Synthesis of Compound (III-7)>
Compound (III-7) was prepared in the same manner as in Example 1 except that Compound (I-4D) in the synthesis method of Compound (I-1) described in Example 1 was changed to Compound (III-7D). ) (Yield 78%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.31 (s, 6H), 1.65 to 1.80 (m, 8H), 1.96 (t, 2H) 2.25-2 .50 (m, 8H), 2.55-2.75 (m, 4H), 2.65 (t, 8H), 2.93 (t, 4H), 4.30 (t, 4H), 4. 25-4.40 (m, 8H), 4.48 (t, 2H), 5.84 (dd, 2H), 6.14 (dd, 2H), 6.44 (dd, 2H), 6.98 -7.05 (m, 4H), 7.20-7.26 (m, 4H), 7.27 (s, 2H)

(実施例15)
下記スキームに従い、化合物(IV−1)を合成した。
(Example 15)
Compound (IV-1) was synthesized according to the following scheme.

<化合物(IV−1Db)の合成>
1-ピロリジンカルボジチオ酸アンモニウム8.2g(50.0mmol)とN,N−ジメチルホルムアミド50mLを混合し、5℃に冷却した。混合物に、トルキノン(IV−1Da)6.7g(55.0mmol)の酢酸40mL溶液を滴下して、室温で二時間撹拌した。その後、内温を5℃まで冷却し、1,4−ベンゾキノン5.9g(55.0mmol)のジメチルスルホキシド40mL溶液を、内温が15℃を越えないようにゆっくりと滴下した。室温で1時間撹拌した後、水1Lを加えた。そこに、28wt%の水酸化ナトリウム水溶液を結晶が析出するまで加え、析出した結晶をろ過し、水とメタノールによって洗浄することで化合物(IV−1Db)5.4g(20.1mmol)を得た(収率40%)。
<Synthesis of Compound (IV-1Db)>
8.2 g (50.0 mmol) of ammonium 1-pyrrolidinecarbodithioate and 50 mL of N, N-dimethylformamide were mixed and cooled to 5 ° C. To the mixture, a solution of 6.7 g (55.0 mmol) of toluquinone (IV-1Da) in 40 mL of acetic acid was added dropwise and stirred at room temperature for 2 hours. Thereafter, the internal temperature was cooled to 5 ° C., and a solution of 5.9 g (55.0 mmol) of 1,4-benzoquinone in 40 mL of dimethyl sulfoxide was slowly added dropwise so that the internal temperature did not exceed 15 ° C. After stirring at room temperature for 1 hour, 1 L of water was added. Thereto, 28 wt% sodium hydroxide aqueous solution was added until crystals were precipitated, and the precipitated crystals were filtered and washed with water and methanol to obtain 5.4 g (20.1 mmol) of compound (IV-1Db). (Yield 40%).

<化合物(IV−1D)の合成>
化合物(IV−1Db)1.5g(5.6mmol)、マロノニトリル410mg(6.2mmol)、イソプロピルアルコール16mL、酢酸0.3mLと無水酢酸0.2mLを混合し、加熱還流下で3時間撹拌した。その後室温まで冷却し、混合物に水を加え、析出した結晶をろ過して、化合物(IV−1D)1.1g(4.2mmol)を得た(収率75%)。
H−NMR(溶媒:DMSO−d6)δ(ppm):2.19(s,3H),6.71(s,1H),9.60(br s,1H),10.55(br s,1H)
<Synthesis of Compound (IV-1D)>
1.5 g (5.6 mmol) of compound (IV-1Db), 410 mg (6.2 mmol) of malononitrile, 16 mL of isopropyl alcohol, 0.3 mL of acetic acid and 0.2 mL of acetic anhydride were mixed, and the mixture was stirred for 3 hours with heating under reflux. Thereafter, the mixture was cooled to room temperature, water was added to the mixture, and the precipitated crystals were filtered to obtain 1.1 g (4.2 mmol) of compound (IV-1D) (yield 75%).
1 H-NMR (solvent: DMSO-d6) δ (ppm): 2.19 (s, 3H), 6.71 (s, 1H), 9.60 (br s, 1H), 10.55 (br s , 1H)

<化合物(IV−1)の合成>
実施例1に記載されている化合物(I−1)の合成法における化合物(I−4D)を、化合物(IV−1D)に変更した以外は実施例1と同様の方法で化合物(IV−1)を得た。(収率68%)
H−NMR(溶媒:CDCl)δ(ppm):1.50−1.80(m,8H),2.20−2.45(m,8H),2.22(s,3H),2.50−2.75(m,4H),2.65(t,8H),2.93(t,4H),4.30(t,4H),4.25−4.40(m,8H),5.86(dd,2H),6.14(dd,2H),6.44(dd,2H),6.95−7.05(m,4H),7.17−7.26(m,4H),7.23(s,1H)
<Synthesis of Compound (IV-1)>
Compound (IV-1) was prepared in the same manner as in Example 1 except that compound (I-4D) in the synthesis method of compound (I-1) described in Example 1 was changed to compound (IV-1D). ) (Yield 68%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.50-1.80 (m, 8H), 2.20-2.45 (m, 8H), 2.22 (s, 3H), 2.50-2.75 (m, 4H), 2.65 (t, 8H), 2.93 (t, 4H), 4.30 (t, 4H), 4.25-4.40 (m, 8H), 5.86 (dd, 2H), 6.14 (dd, 2H), 6.44 (dd, 2H), 6.95-7.05 (m, 4H), 7.17-7.26. (M, 4H), 7.23 (s, 1H)

(実施例16)
下記スキームに従い、化合物(IV−2)を合成した。
(Example 16)
Compound (IV-2) was synthesized according to the following scheme.

<化合物(IV−2Da)の合成>
化合物(IV−2Da)の合成は、“Tetrahedron Letters”(1985);26(7);p.819−822.に記載の方法で行った。
<Synthesis of Compound (IV-2Da)>
The synthesis of compound (IV-2Da) is described in “Tetrahedron Letters” (1985); 26 (7); 819-822. It carried out by the method of description.

<化合物(IV−2D)の合成>
水5mL、水酸化カリウム1.38g(21.0mmol)、イソプロピルアルコール4mLを混合し、5℃に冷却した。混合物に、マロノニトリル690mg(10.5mmol)のイソプロピルアルコール溶液を内温が8℃を越えないように滴下した後、二硫化炭素0.63mL(10.5mmol)のイソプロピルアルコール溶液を内温が8℃を越えないように滴下した。40分撹拌した後、酢酸0.18mLを加えた。次に、化合物(IV−2Da)3.12g(20.8mmon)と酢酸1.19mLのアセトン9mL溶液を、内温が3℃を越えないように滴下した。1時間撹拌した後、水50mLを加えて、析出した結晶をろ過することで、化合物(IV−2D)2.45g(8.4mmol)を得た(収率80%)。
H−NMR(溶媒:DMSO−d6)δ(ppm):1.12(t,3H),2.60(q,2H),6.73(s,1H),9.57(br s,1H),10.55(br s,1H)
<Synthesis of Compound (IV-2D)>
5 mL of water, 1.38 g (21.0 mmol) of potassium hydroxide and 4 mL of isopropyl alcohol were mixed and cooled to 5 ° C. To the mixture, a solution of malononitrile (690 mg, 10.5 mmol) in isopropyl alcohol was added dropwise so that the internal temperature did not exceed 8 ° C., and then carbon disulfide (0.63 mL, 10.5 mmol) in isopropyl alcohol was added at an internal temperature of 8 ° C. It was dripped so that it might not exceed. After stirring for 40 minutes, 0.18 mL of acetic acid was added. Next, a solution of compound (IV-2Da) (3.12 g, 20.8 mmol) and acetic acid (1.19 mL) in acetone (9 mL) was added dropwise so that the internal temperature did not exceed 3 ° C. After stirring for 1 hour, 50 mL of water was added, and the precipitated crystals were filtered to obtain 2.45 g (8.4 mmol) of compound (IV-2D) (yield 80%).
1 H-NMR (solvent: DMSO-d6) δ (ppm): 1.12 (t, 3H), 2.60 (q, 2H), 6.73 (s, 1H), 9.57 (br s, 1H), 10.55 (br s, 1H)

<化合物(IV−2)の合成>
化合物(I−1C)2.09g(4.26mmol)、化合物(IV−2D)0.50g(1.72mmol)とテトラヒドロフラン10mLを混合し、室温で撹拌した。混合物に、N,N−ジメチルアミノピリジン84.2mg(0.69mmol)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩1.00g(5.22mmol)を加え、室温で3時間撹拌した。その後、酢酸エチルと水を加えて分液を行い、集めた有機層を1N塩酸水、飽和重曹水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、シリカゲルクロマトグラフィに精製を行うことで化合物(IV−2)を1.00g(0.81mmol)得た(収率47%)。
H−NMR(溶媒:CDCl)δ(ppm):1.25(t,3H),1.50−1.80(m,8H),2.20−2.45(m,8H),2.50−2.75(m,4H),2.57(q,2H),2.65(t,8H),2.93(t,4H),4.30(t,4H),4.25−4.40(m,8H),5.86(dd,2H),6.14(dd,2H),6.44(dd,2H),6.95−7.05(m,4H),7.17−7.26(m,4H),7.23(s,1H)
<Synthesis of Compound (IV-2)>
2.09 g (4.26 mmol) of compound (I-1C), 0.50 g (1.72 mmol) of compound (IV-2D) and 10 mL of tetrahydrofuran were mixed and stirred at room temperature. To the mixture, 84.2 mg (0.69 mmol) of N, N-dimethylaminopyridine and 1.00 g (5.22 mmol) of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride were added, and 3 hours at room temperature. Stir. Thereafter, ethyl acetate and water were added for liquid separation, and the collected organic layer was washed with 1N aqueous hydrochloric acid, saturated aqueous sodium bicarbonate, and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, the solvent was removed with a rotary evaporator, and purification was performed by silica gel chromatography to obtain 1.00 g (0.81 mmol) of Compound (IV-2) (yield 47%).
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.25 (t, 3H), 1.50-1.80 (m, 8H), 2.20-2.45 (m, 8H), 2.50-2.75 (m, 4H), 2.57 (q, 2H), 2.65 (t, 8H), 2.93 (t, 4H), 4.30 (t, 4H), 4 .25-4.40 (m, 8H), 5.86 (dd, 2H), 6.14 (dd, 2H), 6.44 (dd, 2H), 6.95-7.05 (m, 4H) ), 7.17-7.26 (m, 4H), 7.23 (s, 1H)

(実施例17)
下記スキームに従い、化合物(IV−6)を合成した。
(Example 17)
Compound (IV-6) was synthesized according to the following scheme.

<化合物(IV−6Db)の合成>
ピペリジニウムペンタメチレンジチオカルバマート12.5g(51.0mmol)とN−メチルピロリドン40mLを混合し、5℃に冷却した。混合物に、2−tert−ブチル−1,4−ベンゾキノン(IV−6Da)10.0g(61.0mmol)と酢酸12.5mLのN−メチルピロリドン20mL溶液を滴下して、10℃で二時間撹拌した。次に、内温を5℃まで冷却し、1,4−ベンゾキノン6.6g(61.0mmol)と酢酸12.5mLのN−メチルピロリドン20mL溶液を、内温が15℃を越えないようにゆっくりと滴下した。室温で1時間撹拌した後、内温を50℃に昇温して1時間撹拌した。その後、室温まで冷却し、アセトンを結晶が析出するまで加え、析出した結晶をろ過し、アセトンによって洗浄することで化合物(IV−6Db)6.0g(15.6mmol)を得た(収率31%)。
<Synthesis of Compound (IV-6Db)>
Piperidinium pentamethylenedithiocarbamate 12.5 g (51.0 mmol) and N-methylpyrrolidone 40 mL were mixed and cooled to 5 ° C. To the mixture, a solution of 10.0 g (61.0 mmol) of 2-tert-butyl-1,4-benzoquinone (IV-6Da) and 12.5 mL of acetic acid in 20 mL of N-methylpyrrolidone was added dropwise and stirred at 10 ° C. for 2 hours. did. Next, the internal temperature is cooled to 5 ° C., and 6.6 g (61.0 mmol) of 1,4-benzoquinone and a solution of 12.5 mL of acetic acid in 20 mL of N-methylpyrrolidone are slowly added so that the internal temperature does not exceed 15 ° C. And dripped. After stirring at room temperature for 1 hour, the internal temperature was raised to 50 ° C. and stirred for 1 hour. Thereafter, the mixture was cooled to room temperature, acetone was added until crystals were precipitated, the precipitated crystals were filtered, and washed with acetone to obtain 6.0 g (15.6 mmol) of compound (IV-6Db) (yield 31 %).

<化合物(IV−6D)の合成>
化合物(IV−6Db)1.5g(3.9mmol)、マロノニトリル290mg(4.4mmol)、イソプロピルアルコール16mL、酢酸0.3mLと無水酢酸0.2mLを混合し、加熱還流下で3時間撹拌した。その後室温まで冷却し、混合物に水を加え、析出した結晶をろ過して、化合物(IV−1D)0.9g(2.9mmol)を得た(収率76%)。
H−NMR(溶媒:DMSO−d6)δ(ppm):1.35(s,9H),6.89(s,1H),9.32(br s,1H),10.60(br s,1H)
<Synthesis of Compound (IV-6D)>
Compound (IV-6Db) (1.5 g, 3.9 mmol), malononitrile (290 mg, 4.4 mmol), isopropyl alcohol (16 mL), acetic acid (0.3 mL), and acetic anhydride (0.2 mL) were mixed, and the mixture was stirred with heating under reflux for 3 hours. Thereafter, the mixture was cooled to room temperature, water was added to the mixture, and the precipitated crystals were filtered to obtain 0.9 g (2.9 mmol) of Compound (IV-1D) (yield 76%).
1 H-NMR (solvent: DMSO-d6) δ (ppm): 1.35 (s, 9H), 6.89 (s, 1H), 9.32 (brs, 1H), 10.60 (brs , 1H)

<化合物(IV−6)の合成>
実施例16に記載されている化合物(IV−2)の合成法における化合物(IV−2D)を、化合物(IV−6D)に変更した以外は実施例16同様の方法で化合物(IV−6)を得た。
H−NMR(溶媒:CDCl)δ(ppm):1.65−1.80(m,8H),2.25−2.40(m,8H),2.50−2.75(m,4H),2.65(t,8H),2.94(t,4H),4.30(t,4H),4.25−4.40(m,8H),5.87(dd,2H),6.14(dd,2H),6.44(dd,2H),6.97−7.05(m,4H),7.20−7.26(m,4H),7.31(s,1H)
<Synthesis of Compound (IV-6)>
Compound (IV-6) was prepared in the same manner as in Example 16 except that compound (IV-2D) in the synthesis method of compound (IV-2) described in Example 16 was changed to compound (IV-6D). Got.
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.65 to 1.80 (m, 8H), 2.25 to 2.40 (m, 8H), 2.50 to 2.75 (m , 4H), 2.65 (t, 8H), 2.94 (t, 4H), 4.30 (t, 4H), 4.25-4.40 (m, 8H), 5.87 (dd, 2H), 6.14 (dd, 2H), 6.44 (dd, 2H), 6.97-7.05 (m, 4H), 7.20-7.26 (m, 4H), 7.31 (S, 1H)

(実施例18)
下記スキームに従い、化合物(IV−10)を合成した。
(Example 18)
Compound (IV-10) was synthesized according to the following scheme.

<化合物(IV−10Da)の合成>
化合物(IV−10Da)の合成は、“Journal of Agricultural and Food Chemistry”(2003);51(18);p.5329−5336.に記載の方法で行った。
<Synthesis of Compound (IV-10Da)>
The synthesis of compound (IV-10 Da) is described in “Journal of Agricultural and Food Chemistry” (2003); 51 (18); p. 5329-5336. It carried out by the method of description.

<化合物(IV−10Db)の合成>
化合物(IV−10Da)2.6g(16.7mmol)、水67mL、塩酸2mL、酢酸エチル67mLを混合した。この混合物に、塩化鉄(III)5.4g(33.4mmol)の水42mL溶液を滴下した後、30分撹拌した。その後、水と酢酸エチルを加えて分液を行い、ロータリーエバポレーター用いて溶媒除去した後、シリカゲルクロマトグラフィによる精製を行うことで化合物(IV−10Da)を0.72g(4.73mmol)得た(収率28%)。
<Synthesis of Compound (IV-10Db)>
2.6 g (16.7 mmol) of compound (IV-10Da), water 67 mL, hydrochloric acid 2 mL, and ethyl acetate 67 mL were mixed. To this mixture was added dropwise a solution of 5.4 g (33.4 mmol) of iron (III) chloride in 42 mL of water, and the mixture was stirred for 30 minutes. Thereafter, water and ethyl acetate were added for liquid separation, the solvent was removed using a rotary evaporator, and purification by silica gel chromatography was performed to obtain 0.72 g (4.73 mmol) of compound (IV-10 Da) (yield). Rate 28%).

<化合物(IV−10D)の合成>
実施例16に記載されている化合物(IV−2D)の合成法における化合物(IV−2Db)を、化合物(IV−10Db)に変更した以外は実施例16と同様の方法で化合物(IV−10D)を得た。
H−NMR(溶媒:DMSO−d6)δ(ppm):1.35(t,3H),4.04(q,2H),6.63(s,1H),9.75(br s,1H)
<Synthesis of Compound (IV-10D)>
Compound (IV-10D) was prepared in the same manner as in Example 16 except that compound (IV-2Db) in the synthesis method of compound (IV-2D) described in Example 16 was changed to compound (IV-10Db). )
1 H-NMR (solvent: DMSO-d6) δ (ppm): 1.35 (t, 3H), 4.04 (q, 2H), 6.63 (s, 1H), 9.75 (br s, 1H)

<化合物(IV−10)の合成>
実施例16に記載されている化合物(IV−2)の合成法における化合物(IV−2D)を、化合物(IV−10D)に変更した以外は実施例16と同様の方法で化合物(IV−10)を得た。
H−NMR(溶媒:CDCl)δ(ppm):1.25(t,3H),1.60−1.78(m,8H),2.25−2.40(m,8H),2.55−2.70(m,4H),2.63(m,8H),2.94(t,4H),4.08(q,2H)4.30(t,4H),4.30−4.40(m,8H),5.86(dd,2H),6.16(dd,2H),6.44(dd,2H),6.90(s,1H),7.00−7.08(m,4H),7.20−7.25(m,4H)
<Synthesis of Compound (IV-10)>
Compound (IV-10) was prepared in the same manner as in Example 16 except that compound (IV-2D) in the synthesis method of compound (IV-2) described in Example 16 was changed to compound (IV-10D). )
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.25 (t, 3H), 1.60-1.78 (m, 8H), 2.25-2.40 (m, 8H), 2.55-2.70 (m, 4H), 2.63 (m, 8H), 2.94 (t, 4H), 4.08 (q, 2H) 4.30 (t, 4H), 4. 30-4.40 (m, 8H), 5.86 (dd, 2H), 6.16 (dd, 2H), 6.44 (dd, 2H), 6.90 (s, 1H), 7.00 -7.08 (m, 4H), 7.20-7.25 (m, 4H)

(実施例19)
下記スキームに従い、化合物(VI−1)を合成した。
(Example 19)
Compound (VI-1) was synthesized according to the following scheme.

<化合物(VI−1E)の合成>
実施例16に記載されている化合物(IV−2)の合成法における化合物(IV−2D)を、2,5−ジヒドロキシベンズアルデヒドに変更した以外は実施例16と同様の方法で化合物(VI−1E)を得た。
<Synthesis of Compound (VI-1E)>
Compound (VI-1E) was prepared in the same manner as in Example 16 except that Compound (IV-2D) in the synthesis method of Compound (IV-2) described in Example 16 was changed to 2,5-dihydroxybenzaldehyde. )

<化合物(VI−1)の合成>
化合物(VI−1E)0.5g(0.46mmol)、2−ヒドラジノベンゾチアゾール99mg(0.60mmol)、10−カンファースルホン酸5.4mg(0.01mmol)とテトラヒドロフラン10mLを混合し、室温で12時間撹拌した。混合物に酢酸エチルと水を加えて分液を行い、集めた有機層を1N塩酸水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、シリカゲルクロマトグラフィに精製を行うことで化合物(Ia−1)を0.4g(0.33mmol)得た(収率70%)。
H−NMR(溶媒:DMSO−d6)δ(ppm):1.40−1.75(m,8H),2.10−2.30(m,8H),2.55(s,8H),2.60−2.80(m,4H),2.89(t,4H),4.23(t,4H),4.23−4.35(m,8H),5.96(dd,2H),6.18(dd,2H),6.35(dd,2H),7.05(d,4H),7.13(m,1H),7.20−7.35(m,3H),7.30(d,4H),7.47(br s,1H),7.60(d,1H),7.80(br d,1H),8.09(s,1H),12.5(br s,1H)
<Synthesis of Compound (VI-1)>
Compound (VI-1E) 0.5 g (0.46 mmol), 2-hydrazinobenzothiazole 99 mg (0.60 mmol), 10-camphorsulfonic acid 5.4 mg (0.01 mmol) and tetrahydrofuran 10 mL were mixed, and at room temperature. Stir for 12 hours. Ethyl acetate and water were added to the mixture for liquid separation, and the collected organic layer was washed with 1N aqueous hydrochloric acid and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, the solvent was removed with a rotary evaporator, and purification was performed by silica gel chromatography to obtain 0.4 g (0.33 mmol) of Compound (Ia-1) (yield 70%).
1 H-NMR (solvent: DMSO-d6) δ (ppm): 1.40-1.75 (m, 8H), 2.10-2.30 (m, 8H), 2.55 (s, 8H) 2.60-2.80 (m, 4H), 2.89 (t, 4H), 4.23 (t, 4H), 4.23-4.35 (m, 8H), 5.96 (dd , 2H), 6.18 (dd, 2H), 6.35 (dd, 2H), 7.05 (d, 4H), 7.13 (m, 1H), 7.20-7.35 (m, 3H), 7.30 (d, 4H), 7.47 (brs, 1H), 7.60 (d, 1H), 7.80 (brd, 1H), 8.09 (s, 1H), 12.5 (br s, 1H)

(実施例20)
下記スキームに従い、化合物(VI−7)を合成した。
(Example 20)
Compound (VI-7) was synthesized according to the following scheme.

<化合物(VI−7D)の合成>
化合物(VI−7D)の合成は、“Journal of Organic Chemistry”(2004);69(6);p.2164−2177.に記載の方法で行った。
<Synthesis of Compound (VI-7D)>
The synthesis of compound (VI-7D) is described in “Journal of Organic Chemistry” (2004); 69 (6); p. 2164-2177. It carried out by the method of description.

<化合物(VI−7)の合成>
実施例16に記載されている化合物(IV−2)の合成法における化合物(IV−2D)を、化合物(VI−7D)に変更した以外は実施例16と同様の方法で化合物(VI−7)を得た。(収率50%)
H−NMR(溶媒:CDCl)δ(ppm):1.58−1.78(m,8H),2.20−2.40(m,8H),2.55−2.70(m,4H),2.63(m,8H),2.94(t,4H),4.30(t,4H),4.30−4.40(m,8H),5.86(dd,2H),6.14(dd,2H),6.44(dd,2H),6.98−7.05(m,4H),7.20−7.24(m,4H),7.25(s,2H)
<Synthesis of Compound (VI-7)>
Compound (VI-7) was prepared in the same manner as in Example 16 except that compound (IV-2D) in the synthesis method of compound (IV-2) described in Example 16 was changed to compound (VI-7D). ) (Yield 50%)
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.58-1.78 (m, 8H), 2.20-2.40 (m, 8H), 2.55-2.70 (m , 4H), 2.63 (m, 8H), 2.94 (t, 4H), 4.30 (t, 4H), 4.30-4.40 (m, 8H), 5.86 (dd, 2H), 6.14 (dd, 2H), 6.44 (dd, 2H), 6.98-7.05 (m, 4H), 7.20-7.24 (m, 4H), 7.25 (S, 2H)

(実施例21)
下記スキームに従い、化合物(IV−4)を合成した。
(Example 21)
Compound (IV-4) was synthesized according to the following scheme.

<化合物(IV−4)の合成>
実施例4に記載されている化合物(I−4)の合成法における、化合物(I−1D)を、化合物(IV−1D)に変更した以外は実施例1と同様の方法で、化合物(IV−4)を合成した。(収率81%)
H−NMR(溶媒:CDCl3)δ(ppm):[Major Isomer]1.27(d,6H),1.56−1.79(m,8H),2.22(s,3H),2.22−2.40(m,8H),2.55−2.75(m,4H),2.62(s,8H),2.94(t,4H),4.15(dd,2H),4.25(dd,2H),4.28(t,4H),5.20(m,2H),5.86(dd,2H),6.13(dd,2H),6.43(dd,2H),6.99−7.06(m,4H),7.20−7.25(m,4H),7.25(s,1H)[Minor Isomer]1.29(d,6H),1.56−1.79(m,8H),2.22(s,3H),2.22−2.40(m,8H),2.55−2.75(m,4H),2.62(s,8H),2.94(t,4H),4.12(dd,2H),4.22(dd,2H),4.28(t,4H),5.20(m,2H),5.84(dd,2H),6.11(dd,2H),6.41(dd,2H),6.99−7.06(m,4H),7.20−7.25(m,4H),7.25(s,1H)
化合物(IV−4)の純度は92%であり、原料の(I−4a)に含まれる不純物(I−4a´)に起因する、下記化合物(IV−4E)を合計6%含有する。
<Synthesis of Compound (IV-4)>
Compound (IV) was prepared in the same manner as in Example 1 except that compound (I-1D) in the synthesis method of compound (I-4) described in Example 4 was changed to compound (IV-1D). -4) was synthesized. (Yield 81%)
1 H-NMR (solvent: CDCl 3) δ (ppm): [Major Isomer] 1.27 (d, 6H), 1.56-1.79 (m, 8H), 2.22 (s, 3H), 2 2.22-2.40 (m, 8H), 2.55-2.75 (m, 4H), 2.62 (s, 8H), 2.94 (t, 4H), 4.15 (dd, 2H) ), 4.25 (dd, 2H), 4.28 (t, 4H), 5.20 (m, 2H), 5.86 (dd, 2H), 6.13 (dd, 2H), 6.43 (Dd, 2H), 6.99-7.06 (m, 4H), 7.20-7.25 (m, 4H), 7.25 (s, 1H) [Minor Isomer] 1.29 (d, 6H), 1.56-1.79 (m, 8H), 2.22 (s, 3H), 2.22-2.40 (m, 8H), 2.55-2.75 (m, 4H) , 2.62 (s, H), 2.94 (t, 4H), 4.12 (dd, 2H), 4.22 (dd, 2H), 4.28 (t, 4H), 5.20 (m, 2H), 5. 84 (dd, 2H), 6.11 (dd, 2H), 6.41 (dd, 2H), 6.99-7.06 (m, 4H), 7.20-7.25 (m, 4H) , 7.25 (s, 1H)
The purity of the compound (IV-4) is 92%, and a total of 6% of the following compound (IV-4E) derived from the impurity (I-4a ′) contained in the raw material (I-4a) is contained.

(実施例22)
下記スキームに従い、化合物(VII−4)を合成した。
(Example 22)
Compound (VII-4) was synthesized according to the following scheme.

<化合物(VII−1B)の合成>
4−アミノ−2,3−ジメチルフェノール(VII−1A)25.8g(0.188mol)、酢酸エチル723ml混合し、更に水258ml、濃塩酸22.6mlを加えた。混合物に塩化鉄(III)61.1g(0.377mol)を水465mlに溶解した溶液を内温20〜30℃にて30分間で滴下した。室温にて1時間攪拌した後、反応系に析出している固体を濾別し分液した。有機層を飽和食塩水400mlで洗浄した。その後、同様の洗浄を3回行なった後、有機層を無水硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別して、溶媒を減圧留去し、残渣をカラムクロマトグラフィー(展開溶媒:酢酸エチル/n−ヘキサン=1/6)で精製した。溶媒を減圧留去し黄色固化物の化合物(I−1B)を23.7g(収率92.6%)を得た。H−NMR(溶媒:CDCl)σ(ppm):2.04(s,6H),6.73(s,2H)
<Synthesis of Compound (VII-1B)>
4-amino-2,3-dimethylphenol (VII-1A) 25.8 g (0.188 mol) and ethyl acetate 723 ml were mixed, and water 258 ml and concentrated hydrochloric acid 22.6 ml were further added. A solution prepared by dissolving 61.1 g (0.377 mol) of iron (III) chloride in 465 ml of water was added dropwise to the mixture at an internal temperature of 20 to 30 ° C. over 30 minutes. After stirring at room temperature for 1 hour, the solid precipitated in the reaction system was separated by filtration and separated. The organic layer was washed with 400 ml of saturated brine. Then, after performing the same washing | cleaning 3 times, the organic layer was dried with anhydrous magnesium sulfate. Magnesium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (developing solvent: ethyl acetate / n-hexane = 1/6). The solvent was distilled off under reduced pressure to obtain 23.7 g (yield 92.6%) of yellow solidified compound (I-1B). 1 H-NMR (solvent: CDCl 3 ) σ (ppm): 2.04 (s, 6H), 6.73 (s, 2H)

<化合物(VII−1D)の合成>
イソプロパノール18ml、水23mlの混合液に水酸化カリウム(85%)7.55g(0.114mol)添加し溶解し、内温0〜5℃まで冷却した。この混合液にマロノニトリル(I−1C)3.78g(0.057mol)とイソプロパノール3mlを混合し、内温0〜10℃で滴下した。内温0〜10℃で10分間攪拌後、二硫化炭素4.36g(0.057mol)を内温0〜8℃にて滴下した。内温0〜10℃で40分間攪拌した後、酢酸1.03g(0.017mol)内温0〜8℃で滴下した。イソプロパノール60mlを添加し、内温を-10℃まで冷却しながら窒素気流下で10分間攪拌した。窒素気流下にて化合物(I−1B)15.41g(0.113mol)、アセトン52mlおよび酢酸6.80gの溶液を内温-10〜0℃にて滴下した。内温-10〜0℃で50分間攪拌した後、内温を5℃まで昇温し、水200mlを内温10℃以下で滴下した。内温5〜10℃で40分間攪拌した後、析出した結晶を濾集し、薄茶色固体(VII−1D)13.2g(収率83.6%)を得た。H−NMR(溶媒:DMSO)σ(ppm):2.15(s,6H),9.57(s,2H)
<Synthesis of Compound (VII-1D)>
7.55 g (0.114 mol) of potassium hydroxide (85%) was added and dissolved in a mixed solution of 18 ml of isopropanol and 23 ml of water, and the internal temperature was cooled to 0 to 5 ° C. To this mixture, 3.78 g (0.057 mol) of malononitrile (I-1C) and 3 ml of isopropanol were mixed and added dropwise at an internal temperature of 0 to 10 ° C. After stirring at an internal temperature of 0 to 10 ° C. for 10 minutes, 4.36 g (0.057 mol) of carbon disulfide was added dropwise at an internal temperature of 0 to 8 ° C. After stirring for 40 minutes at an internal temperature of 0 to 10 ° C., 1.03 g (0.017 mol) of acetic acid was added dropwise at an internal temperature of 0 to 8 ° C. 60 ml of isopropanol was added, and the mixture was stirred for 10 minutes under a nitrogen stream while cooling the internal temperature to −10 ° C. Under a nitrogen stream, a solution of 15.41 g (0.113 mol) of compound (I-1B), 52 ml of acetone and 6.80 g of acetic acid was added dropwise at an internal temperature of −10 to 0 ° C. After stirring for 50 minutes at an internal temperature of −10 to 0 ° C., the internal temperature was raised to 5 ° C., and 200 ml of water was added dropwise at an internal temperature of 10 ° C. or lower. After stirring for 40 minutes at an internal temperature of 5 to 10 ° C., the precipitated crystals were collected by filtration to obtain 13.2 g (yield 83.6%) of a light brown solid (VII-1D). 1 H-NMR (solvent: DMSO) σ (ppm): 2.15 (s, 6H), 9.57 (s, 2H)

<化合物(VII−4)の合成>
化合物(VII−4E)(76.17%)16.98g(0.026mol)、酢酸エチル73ml、N,N−ジメチルアセトアミド18ml、2,6−ジ−t−ブチル−4−メチルフェノール38.8mgを混合し、内温を0℃まで冷却した。混合物に、塩化チオニル3.18g(0.027mol)を内温0〜5℃にて滴下した。5℃で50分間攪拌した後、化合物(I−1E)3.0g(0.011mol)、テトラヒドロフラン22ml、N,N−ジメチルアセトアミド17mlの溶液を内温0〜8℃にて滴下した。その後、N,N−ジイソプロピルエチルアミン6.9g(0.053mol)を内温0〜10℃にて滴下した。内温15〜20℃で2時間攪拌した後、酢酸エチル100ml、水100ml、濃塩酸5.3mlを加え洗浄した。有機層を飽和食塩水100mlで洗浄、分液し、続いて、飽和食塩水75ml、7.5wt%重曹水25mlで洗浄、分液した。更に飽和食塩水100mlで洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別して溶媒を減圧留去した後、酢酸エチル70mlおよびメタノール180mlを用いて再結晶を行い、化合物(VII−4)10.8g(収率79.7%)を得た。H−NMR(溶媒:CDCl)σ(ppm):1.26−1.30(m,6H),1.64−1.81(m,8H),2.13(s,6H),2.33−2.35(m,8H),2.62−2.72(m,12H),2.94(t,4H),4.10−4.26(m,4H),4.27−4.32(t,4H),5.15−5.26(m,2H),5.82−5.88(m,2H),6.07−6.18(m,2H),6.38−6.40(m,2H),7.01−7.04(m,4H),7.22−7.25(m,4H)
化合物(VII−4)の純度は92%であり、原料の(I−4a)に含まれる不純物(I−4a´)に起因する、下記化合物(VII−4E)を合計6%含有する。
<Synthesis of Compound (VII-4)>
Compound (VII-4E) (76.17%) 16.98 g (0.026 mol), ethyl acetate 73 ml, N, N-dimethylacetamide 18 ml, 2,6-di-tert-butyl-4-methylphenol 38.8 mg mixed The internal temperature was cooled to 0 ° C. To the mixture, 3.18 g (0.027 mol) of thionyl chloride was added dropwise at an internal temperature of 0 to 5 ° C. After stirring at 5 ° C. for 50 minutes, a solution of 3.0 g (0.011 mol) of compound (I-1E), 22 ml of tetrahydrofuran and 17 ml of N, N-dimethylacetamide was added dropwise at an internal temperature of 0-8 ° C. Thereafter, 6.9 g (0.053 mol) of N, N-diisopropylethylamine was added dropwise at an internal temperature of 0 to 10 ° C. After stirring at an internal temperature of 15 to 20 ° C. for 2 hours, 100 ml of ethyl acetate, 100 ml of water, and 5.3 ml of concentrated hydrochloric acid were added for washing. The organic layer was washed and separated with 100 ml of saturated brine, and then washed and separated with 75 ml of saturated brine and 25 ml of 7.5 wt% sodium bicarbonate. After further washing with 100 ml of saturated saline, the organic layer was dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off and the solvent was distilled off under reduced pressure, recrystallization was performed using 70 ml of ethyl acetate and 180 ml of methanol to obtain 10.8 g (yield 79.7%) of compound (VII-4). 1 H-NMR (solvent: CDCl 3 ) σ (ppm): 1.26 to 1.30 (m, 6H), 1.64 to 1.81 (m, 8H), 2.13 (s, 6H), 2.33-2.35 (m, 8H), 2.62-2.72 (m, 12H), 2.94 (t, 4H), 4.10-4.26 (m, 4H), 4. 27-4.32 (t, 4H), 5.15-5.26 (m, 2H), 5.82-5.88 (m, 2H), 6.07-6.18 (m, 2H), 6.38-6.40 (m, 2H), 7.01-7.04 (m, 4H), 7.22-7.25 (m, 4H)
The purity of compound (VII-4) is 92%, and it contains 6% in total of the following compound (VII-4E) caused by impurities (I-4a ′) contained in the raw material (I-4a).

(比較化合物−1)
以下に示す比較例1〜7では、先行文献(特開2011−207765号公報、国際公開第2014/010325号パンフレット)で主に使用されている下記式(Ia)の側鎖部分を有する化合物(比較化合物)の合成例について示す。
(Comparative Compound-1)
In Comparative Examples 1 to 7 shown below, compounds having a side chain moiety of the following formula (Ia) mainly used in the prior literature (Japanese Patent Application Laid-Open No. 2011-207765, International Publication No. 2014/010325 pamphlet) ( A synthesis example of a comparative compound) will be described.

比較例で使用した比較化合物の構造式は以下のとおりである。
The structural formula of the comparative compound used in the comparative example is as follows.

(比較例1)
下記スキームに従い、化合物(Ia−1)を合成した。
(Comparative Example 1)
Compound (Ia-1) was synthesized according to the following scheme.

<化合物(Ia−1C)の合成>
化合物(Ia−1C)の合成は、特開2010−31223に記載の方法で行った(5工程、28%)。
<Synthesis of Compound (Ia-1C)>
Compound (Ia-1C) was synthesized by the method described in JP 2010-31223 (5 steps, 28%).

<化合物(Ia−1)の合成>
化合物(Ia−1C)1.25g(2.99mmol)、化合物(I−1D)337mg(1.36mmol)とジクロロメタン10mLを混合し、室温で撹拌した。混合物に、N,N−ジメチルアミノピリジン27mg(0.22mmol)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩840mg(4.35mmol)を加え、室温で12時間撹拌した。その後、酢酸エチルと水を加えて分液を行い、集めた有機層を1N塩酸水、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾別して、ロータリーエバポレーターで溶媒を除去し、シリカゲルクロマトグラフィに精製を行うことで化合物(Ia−1)を0.6g(0.57mmol)得た(収率42%)。
H−NMR(溶媒:CDCl)δ(ppm):1.40−1.55(m,8H),1.65−1.85(m,16H),2.23−2.40(m,8H),2.55−2.73(m,4H),3.94(t,4H),4.17(t,4H),5.84(dd,2H),6.12(dd,2H),6.40(dd,2H),6.84−6.92(m,4H),6.94−7.02(m,4H),7.32(s,2H)
<Synthesis of Compound (Ia-1)>
1.25 g (2.99 mmol) of compound (Ia-1C), 337 mg (1.36 mmol) of compound (I-1D) and 10 mL of dichloromethane were mixed and stirred at room temperature. N, N-dimethylaminopyridine (27 mg, 0.22 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (840 mg, 4.35 mmol) were added to the mixture, and the mixture was stirred at room temperature for 12 hours. Thereafter, ethyl acetate and water were added for liquid separation, and the collected organic layer was washed with 1N aqueous hydrochloric acid and saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was filtered off, the solvent was removed with a rotary evaporator, and purification was performed by silica gel chromatography to obtain 0.6 g (0.57 mmol) of Compound (Ia-1) (yield 42%).
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 1.40-1.55 (m, 8H), 1.65-1.85 (m, 16H), 2.23-2.40 (m , 8H), 2.55-2.73 (m, 4H), 3.94 (t, 4H), 4.17 (t, 4H), 5.84 (dd, 2H), 6.12 (dd, 2H), 6.40 (dd, 2H), 6.84-6.92 (m, 4H), 6.94-7.02 (m, 4H), 7.32 (s, 2H)

(比較例2)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(I−1D)を、化合物(III−3D)に変更した以外は比較例1と同様の方法で比較化合物(IIIa−3)を得た。
(Comparative Example 2)
Comparative compound (IIIa-) was prepared in the same manner as in comparative example 1 except that compound (I-1D) in the synthesis method of compound (Ia-1) described in comparative example 1 was changed to compound (III-3D). 3) was obtained.

(比較例3)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(I−1D)を、化合物(III−7D)に変更した以外は比較例1と同様の方法で比較化合物(IIIa−7)を得た。
(Comparative Example 3)
Comparative compound (IIIa-) was prepared in the same manner as in comparative example 1 except that compound (I-1D) in the synthesis method of compound (Ia-1) described in comparative example 1 was changed to compound (III-7D). 7) was obtained.

(比較例4)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(I−1D)を、化合物(IV−1D)に変更した以外は比較例1と同様の方法で比較化合物(IVa−1)を得た。
(Comparative Example 4)
Comparative compound (IVa-) was prepared in the same manner as in comparative example 1 except that compound (I-1D) in the synthesis method of compound (Ia-1) described in comparative example 1 was changed to compound (IV-1D). 1) was obtained.

(比較例5)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(I−1D)を、化合物(IV−6D)に変更した以外は比較例1と同様の方法で比較化合物(IVa−6)を得た。
(Comparative Example 5)
Comparative compound (IVa-) was prepared in the same manner as in Comparative example 1 except that compound (I-1D) in the synthesis method of compound (Ia-1) described in comparative example 1 was changed to compound (IV-6D). 6) was obtained.

(比較例6)
比較化合物(VIa−1)の合成は、WO2014−010325に記載の方法で行った。
(Comparative Example 6)
The synthesis of the comparative compound (VIa-1) was performed by the method described in WO2014-010325.

(比較例7)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(I−1D)を、化合物(VI−7D)に変更した以外は比較例1と同様の方法で比較化合物(VIa−7)を得た。
(Comparative Example 7)
Comparative compound (VIa-) was prepared in the same manner as in comparative example 1 except that compound (I-1D) in the synthesis method of compound (Ia-1) described in comparative example 1 was changed to compound (VI-7D). 7) was obtained.

(比較化合物−2)
以下に示す比較例8〜10、比較例15では、下記構造式の比較化合物の合成例について示す。
(Comparative Compound-2)
In Comparative Examples 8 to 10 and Comparative Example 15 shown below, synthesis examples of comparative compounds having the following structural formulas are shown.

(比較例8)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(Ia−1C)を、化合物(Ib−1C)に変更した以外は比較例1と同様の方法で比較化合物(Ib−1)を得た。なお、化合物(Ib−1C)は特開2009−179563に記載の方法で合成した。
(Comparative Example 8)
Comparative compound (Ib-) was prepared in the same manner as in Comparative example 1 except that compound (Ia-1C) in the synthesis method of compound (Ia-1) described in comparative example 1 was changed to compound (Ib-1C). 1) was obtained. Compound (Ib-1C) was synthesized by the method described in JP-A-2009-179563.

(比較例9)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(Ia−1C)を、化合物(Ic−1C)に変更した以外は比較例1と同様の方法で比較化合物(Ic−1)を得た。なお、化合物(Ic−1C)はWO2013/035733に記載の方法で合成した。
(Comparative Example 9)
In the same manner as in Comparative Example 1 except that Compound (Ia-1C) in the synthesis method of Compound (Ia-1) described in Comparative Example 1 was changed to Compound (Ic-1C), Comparative Compound (Ic- 1) was obtained. Compound (Ic-1C) was synthesized by the method described in WO2013 / 035733.

(比較例10)
比較例1に記載されている化合物(Ia−1)の合成法における化合物(Ia−1C)を、化合物(Id−1C)に変更した以外は比較例1と同様の方法で化合物(Id−1)を得た。なお化合物(Id−1C)は、実施例9の化合物(I−14C)の合成における10−ウンデセン酸をアクリル酸クロリドに変更する以外は同様の方法で合成した。
(Comparative Example 10)
Compound (Id-1) was prepared in the same manner as in Comparative Example 1 except that Compound (Ia-1C) in the synthesis method of Compound (Ia-1) described in Comparative Example 1 was changed to Compound (Id-1C). ) Compound (Id-1C) was synthesized in the same manner except that 10-undecenoic acid in the synthesis of compound (I-14C) of Example 9 was changed to acrylic acid chloride.

(相転移温度の評価)
偏光顕微鏡を用いて合成した実施例及び比較例の液晶化合物の相転移温度の測定を行い、温度低下の程度を評価した。具体的には、実施例の化合物と側鎖部分の構造が異なる比較例の化合物、すなわち、実施例の化合物と(一般式1の)Ar(中心に位置する芳香環)の構造が共通であり、且つ、下記式(Ia)の側鎖部分を有する比較例の化合物の相転移温度を基準とし、基準の相転移温度からの温度低下の程度により下記A〜Cに分けて評価した。
例えば、化合物(I−1)や(I−2)は比較化合物(Ia−1)と比較し、化合物(III−3)は比較化合物(IIIa−3)と比較をした。評価は以下の基準で行った。
A:融点又はS−N(スメクチック−ネマチック)転移温度の低下が20℃以上
B:融点又はS−N(スメクチック−ネマチック)転移温度の低下が5〜20℃未満
C:融点及びS−N(スメクチック−ネマチック)転移温度の低下が5℃未満
(Evaluation of phase transition temperature)
The phase transition temperatures of the liquid crystal compounds of Examples and Comparative Examples synthesized using a polarizing microscope were measured, and the degree of temperature decrease was evaluated. Specifically, the compound of the comparative example in which the structure of the side chain moiety is different from that of the compound of the example, that is, the structure of the compound of the example and Ar (of the general formula 1) Ar (central aromatic ring) is common. And, based on the phase transition temperature of the compound of the comparative example having a side chain moiety of the following formula (Ia) as a reference, the evaluation was divided into the following AC according to the degree of temperature decrease from the reference phase transition temperature.
For example, the compounds (I-1) and (I-2) were compared with the comparative compound (Ia-1), and the compound (III-3) was compared with the comparative compound (IIIa-3). Evaluation was performed according to the following criteria.
A: Decrease in melting point or S m —N (smectic-nematic) transition temperature is 20 ° C. or more B: Decrease in melting point or S m —N (smectic-nematic) transition temperature is less than 5 to 20 ° C. C: Melting point and S m -N (smectic-nematic) transition temperature drop below 5 ° C

(溶解性の測定)
合成した液晶化合物の溶解性測定は以下に示す方法で行った。1.5mLのサンプル瓶に化合物を50mg秤量し、固形分が40wt%になるまで溶媒を加えた(75mg)。室温にて手でよく振り混ぜた後、目視で観察してクリアであれば終了して、溶解性40wt%と判定した。溶け残りがあれば固形分が35wt%になるように溶媒を加えた(+18mg)。室温にて手でよく振り混ぜた後、目視で観察してクリアであれば終了して、35wt%と判定した。溶け残りがあれば30wt%になるように溶媒を加えた。同様の操作を5wt%刻みで行い、5wt%になるまで繰り返して、溶け残りがある場合は溶解性5wt%未満(<5wt%)と判定し、終了した。溶解性測定の溶媒として、MEK(メチルエチルケトン)とCPN(シクロペンタノン)を使用した。
(Measurement of solubility)
The solubility of the synthesized liquid crystal compound was measured by the method shown below. 50 mg of the compound was weighed into a 1.5 mL sample bottle, and the solvent was added until the solid content became 40 wt% (75 mg). After thoroughly shaking by hand at room temperature, it was terminated by visual observation and judged to be 40 wt% solubility. If there was any undissolved residue, the solvent was added so that the solid content was 35 wt% (+18 mg). After thoroughly shaking by hand at room temperature, it was terminated by visual observation and judged to be 35 wt%. If there was any undissolved residue, the solvent was added so that it might be 30 wt%. The same operation was repeated in increments of 5 wt% until it was 5 wt%. If there was any undissolved residue, it was determined that the solubility was less than 5 wt% (<5 wt%), and the process was completed. MEK (methyl ethyl ketone) and CPN (cyclopentanone) were used as solvents for solubility measurement.

(溶解性の評価)
測定した溶解性の評価を行った。評価は、相転移温度の評価と同様、実施例の化合物と(一般式1の)Arの構造が共通であり、且つ、上記式(Ia)の側鎖部分を有する比較例の化合物の溶解性を基準とし、基準からの溶解性の向上の程度により下記A〜Cに分けて評価した。
例えば、化合物(I−1)や(I−2)は比較化合物(Ia−1)と比較し、化合物(III−3)は比較化合物(IIIa−3)と比較をした。評価は以下の基準で行った。
A:複数もしくは単独の溶媒において、溶解性が2倍以上向上
B:複数もしくは単独の溶媒において、溶解性が1〜2倍向上
C:複数もしくは単独の溶媒において、溶解性向上せず
(Evaluation of solubility)
The measured solubility was evaluated. The evaluation is similar to the evaluation of the phase transition temperature, and the solubility of the compound of the comparative example having the same structure as that of the compound of the example and Ar (of the general formula 1) and having the side chain moiety of the formula (Ia). Based on the above, the following AC were evaluated according to the degree of improvement in solubility from the reference.
For example, the compounds (I-1) and (I-2) were compared with the comparative compound (Ia-1), and the compound (III-3) was compared with the comparative compound (IIIa-3). Evaluation was performed according to the following criteria.
A: The solubility is improved twice or more in plural or single solvents. B: The solubility is improved by one or two times in plural or single solvents. C: The solubility is not improved in plural or single solvents.

(側鎖部分合成適性の評価)
本発明化合物の、中心に位置する芳香環Ar(逆分散性に大きく寄与する部分)を除いた部分を、側鎖部分と定義する。例えば、化合物(I−1)の側鎖部分を下記式(I)で表し、化合物(Ia−1)の側鎖部分を下記式(Ia)で表す。
この側鎖部分の合成適性を以下の基準で評価した。
A:市販原料物質から3工程以下かつ収率50%以上
B:市販原料物質から3工程以下かつ収率35%以上、または、5工程以下かつ収率50%以上
C:それ以外
(Evaluation of suitability for side chain partial synthesis)
The portion of the compound of the present invention excluding the aromatic ring Ar located at the center (a portion that greatly contributes to reverse dispersibility) is defined as a side chain portion. For example, the side chain part of compound (I-1) is represented by the following formula (I), and the side chain part of compound (Ia-1) is represented by the following formula (Ia).
The suitability for synthesis of this side chain moiety was evaluated according to the following criteria.
A: 3 steps or less from commercial raw material and yield 50% or more B: 3 steps or less from commercial raw material and yield 35% or more, or 5 steps or less and yield 50% or more C: Other

実施例1〜22、比較例1〜10で合成した化合物の、溶解性・相転移温度・合成適性を下記表1に示した。相転移温度について、かっこの中の数値は降温時の数値を表しており、それ以外は昇温時の数値を表す。   The solubility, phase transition temperature, and synthesis suitability of the compounds synthesized in Examples 1-22 and Comparative Examples 1-10 are shown in Table 1 below. Regarding the phase transition temperature, the numerical value in parentheses represents the value when the temperature is lowered, and the other values represent the values when the temperature is raised.

表1から明らかなように、先行文献(特開2011−207765号公報、国際公開第2014/010325号パンフレット)で主に使われる側鎖部分を有する比較例1〜7の化合物と比べて、本発明化合物(実施例1、13、14、15、17、19、20)はいずれもスメクチック−ネマチック相転移温度・融点を大きく低減することができ、安価に合成が可能で、溶解性が大きく向上する。   As is clear from Table 1, compared with the compounds of Comparative Examples 1 to 7 having side chain moieties mainly used in the prior literature (Japanese Patent Laid-Open No. 2011-207765, International Publication No. 2014/010325 pamphlet), Inventive compounds (Examples 1, 13, 14, 15, 17, 19, and 20) can greatly reduce the smectic-nematic phase transition temperature and melting point, can be synthesized at low cost, and greatly improve solubility. To do.

(実施例23)
下記の組成を有する重合性組成物(光学異方性層用塗布液23)を調製し、ラビング処理されたポリイミド配向膜(日産化学工業(株))製SE-150)付ガラス基板にスピンコートにより塗布した。塗膜を下記表2に示す温度で配向処理し、液晶層を形成した。その後表2に記載されている露光時温度まで冷却して1000mJ/cmの紫外線照射による配向固定化を行い、光学異方性層を形成し、波長分散測定用の光学フィルムを得た。
(Example 23)
A polymerizable composition (coating solution 23 for optically anisotropic layer) having the following composition was prepared, and spin coated on a glass substrate with a rubbed polyimide alignment film (SE-150 manufactured by Nissan Chemical Industries, Ltd.). Was applied. The coating film was subjected to orientation treatment at the temperature shown in Table 2 below to form a liquid crystal layer. Thereafter, the film was cooled to the exposure temperature described in Table 2 and subjected to orientation fixation by irradiation with 1000 mJ / cm 2 of ultraviolet rays to form an optically anisotropic layer to obtain an optical film for wavelength dispersion measurement.

(実施例24〜29)
重合性組成物中の液晶化合物を表2に記載の化合物に変更して重合性組成物(光学異方性層用塗布液)を調製した以外は実施例23と同様にして、各実施例の本発明の光学異方性層を得た。
(実施例30)
ラビング処理されたポリイミド配向膜付ガラス基板の代わりに、特開平9−152509に記載の方法で作製した下記ポリビニルアルコールAを含む配向膜付ガラス基板を用いた以外は実施例23と同様にして、本発明の光学異方性層を得た。
(Examples 24-29)
In the same manner as in Example 23 except that the liquid crystal compound in the polymerizable composition was changed to the compounds shown in Table 2 to prepare a polymerizable composition (a coating solution for an optically anisotropic layer). An optically anisotropic layer of the present invention was obtained.
(Example 30)
Instead of the glass substrate with a polyimide alignment film subjected to rubbing treatment, in the same manner as in Example 23 except that a glass substrate with an alignment film containing the following polyvinyl alcohol A prepared by the method described in JP-A-9-152509 was used. An optically anisotropic layer of the present invention was obtained.

(比較例11〜15)
重合性組成物中の液晶化合物を表2に記載の化合物に変更して重合性組成物(光学異方性層用塗布液)を調製し、乾燥温度、配向処理温度、露光時温度を表2に記載条件にそれぞれ変更した以外は実施例23と同様にして、各比較例の光学異方性層を得た。
なお、比較例15では、以下の方法で得られた比較化合物1e−1を液晶化合物として使用した。
(Comparative Examples 11-15)
A liquid crystal compound in the polymerizable composition was changed to the compounds shown in Table 2 to prepare a polymerizable composition (a coating liquid for an optically anisotropic layer), and the drying temperature, the alignment treatment temperature, and the exposure temperature were set in Table 2. The optically anisotropic layer of each comparative example was obtained in the same manner as in Example 23 except that the conditions were changed to the above.
In Comparative Example 15, Comparative Compound 1e-1 obtained by the following method was used as the liquid crystal compound.

<比較例15の比較化合物の合成>
比較例1に記載されている化合物(Ia−1)の合成法における化合物(Ia−1C)を、化合物(Ie−1C)に変更した以外は比較例1と同様の方法で化合物(Ie−1)を得た。なお、化合物(Ie−1C)は特開2010−31223に記載の方法で合成した。
<Synthesis of Comparative Compound of Comparative Example 15>
Compound (Ie-1) was prepared in the same manner as in Comparative Example 1 except that Compound (Ia-1C) in the synthesis method of Compound (Ia-1) described in Comparative Example 1 was changed to Compound (Ie-1C). ) Compound (Ie-1C) was synthesized by the method described in JP2010-31223A.

(比較例16)
重合性組成物中の液晶化合物をIc−1に変更し、クロロホルム35質量部を70質量部に変更して重合性組成物(光学異方性層用塗布液)を調製した以外は実施例23と同様にして基板上に塗布を行ったが、スピンコート直後に塗布面に結晶が発生し、加熱処理を行っても均一な膜を得ることは出来なかった。
(Comparative Example 16)
Example 23 except that the liquid crystal compound in the polymerizable composition was changed to Ic-1, and 35 parts by mass of chloroform was changed to 70 parts by mass to prepare a polymerizable composition (coating liquid for optically anisotropic layer). The coating was performed on the substrate in the same manner as described above, but crystals were formed on the coated surface immediately after spin coating, and a uniform film could not be obtained even after heat treatment.

(比較例17)
重合性組成物中の液晶化合物をId−1に変更し、クロロホルム35質量部を70質量部に変更して重合性組成物(光学異方性層用塗布液)を調製した以外は実施例23と同様にして基板上に塗布を行ったが、スピンコート直後に塗布面に結晶が発生し、加熱処理を行っても均一な膜を得ることは出来なかった。
(Comparative Example 17)
Example 23 except that the liquid crystal compound in the polymerizable composition was changed to Id-1, and 35 parts by mass of chloroform was changed to 70 parts by mass to prepare a polymerizable composition (a coating liquid for an optically anisotropic layer). The coating was performed on the substrate in the same manner as described above, but crystals were formed on the coated surface immediately after spin coating, and a uniform film could not be obtained even after heat treatment.

(比較例18)
実施例30において、重合性組成物中の液晶化合物をIa−1に変更し、塗膜の配向処理温度を200℃として、液晶層を形成した。その後160℃まで冷却して1000mJ/cmの紫外線照射による配向固定化を試みたが、支持体のガラス転移温度(Tg)が低く、配向膜の機能が低下したため、均一配向な液晶膜を得ることは出来なかった。
(Comparative Example 18)
In Example 30, the liquid crystal compound in the polymerizable composition was changed to Ia-1, and the alignment treatment temperature of the coating film was set to 200 ° C. to form a liquid crystal layer. After that, it was cooled to 160 ° C., and alignment fixation was attempted by irradiation with ultraviolet rays of 1000 mJ / cm 2. However, since the glass transition temperature (Tg) of the support was low and the function of the alignment film was lowered, a uniformly aligned liquid crystal film was obtained. I couldn't.

(レターデーションの測定と波長分散の評価)
実施例23〜30、及び比較例11〜15で得られた光学異方性層について、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、波長450nm,550nm,650nmにおけるレターデーション値(Re値)を測定した。その結果として、波長550nmにおけるRe値、α(Re(450)/Re(550))、β(Re(650)/Re(550))の値を表2に示す。
(Measurement of retardation and evaluation of chromatic dispersion)
About the optically anisotropic layers obtained in Examples 23 to 30 and Comparative Examples 11 to 15, wavelengths were 450 nm and 550 nm using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments). The retardation value (Re value) at 650 nm was measured. As a result, Table 2 shows the Re value, α (Re (450) / Re (550)), and β (Re (650) / Re (550)) values at a wavelength of 550 nm.

表2より、本発明の光学異方性層はいずれも高い逆波長分散性を有していることが確認された。また、比較例11〜17と比べて相転移温度が低いために、配向処理温度を低温化することが出来た。比較例11〜17の条件では150℃で配向処理を行っても、均一に配向せず、膜の作成は困難であった。化合物の融点が高いため、液晶性を示すのに高温が必要であると考えられる。比較例11の条件で降温していくと、化合物の融点が高いために130℃で結晶発生が確認された。UV吸光度の強い芳香環を有する化合物を使用した比較例15は逆分散が低い値を示した。
以上のように、本発明の有効性が確認された。
From Table 2, it was confirmed that all of the optically anisotropic layers of the present invention have high reverse wavelength dispersion. Moreover, since the phase transition temperature was low compared with Comparative Examples 11-17, orientation processing temperature was able to be made low. Under the conditions of Comparative Examples 11 to 17, even when the alignment treatment was performed at 150 ° C., the film was not uniformly aligned and it was difficult to produce a film. Since the melting point of the compound is high, a high temperature is considered necessary to exhibit liquid crystallinity. When the temperature was lowered under the conditions of Comparative Example 11, generation of crystals was confirmed at 130 ° C. because the melting point of the compound was high. Comparative Example 15 using a compound having an aromatic ring with strong UV absorbance showed a low value of reverse dispersion.
As described above, the effectiveness of the present invention was confirmed.

1 液晶表示装置(表示装置)
2 液晶セル
10 偏光板
18 偏光板
100 偏光子
110 偏光板保護フィルム(視認側)
120 偏光板保護フィルム
130 光学異方性層
1 Liquid crystal display device (display device)
2 Liquid crystal cell 10 Polarizing plate 18 Polarizing plate 100 Polarizer 110 Polarizing plate protective film (viewing side)
120 Polarizing plate protective film 130 Optical anisotropic layer

Claims (19)

下記一般式1で表される液晶化合物を含む、または、該液晶化合物を含む重合性組成物の硬化により形成されてなる光学異方性層であって、前記液晶化合物の分子の長軸が配向してなる光学異方性層。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する2価の基を表し、Ar基中に含まれるΠ電子の数は、8以上である。
An optically anisotropic layer containing a liquid crystal compound represented by the following general formula 1 or formed by curing a polymerizable composition containing the liquid crystal compound, wherein the major axis of the liquid crystal compound is oriented An optically anisotropic layer.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represents an integer of 1 to 4;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar represents a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the Ar group is 8 or more.
前記一般式1のArが下記式一般式2−1〜2−4で表されるいずれかの芳香環である請求項1に記載の光学異方性層。
但し、式中、Qは、−S−、−O−、またはNR11−を表し、R11は、水素原子または炭素数1〜6のアルキル基を表し、;
は、炭素数1〜6のアルキル基、炭素数6〜12の芳香族炭化水素基、または、炭素数3〜12芳香族複素環基を表し、;
Z1,Z2,および,Z3は、それぞれ独立に、水素原子または炭素数1〜20の脂肪族炭化水素基またはアルコキシ基、炭素数3〜20の脂環式炭化水素基、1価の炭素数6〜20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、−NR1213またはSR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1〜6のアルキル基を表し、
1およびA2は各々独立に、−O−、−NR21−(R21は水素原子または置換基を表す。)、−S−およびCO−からなる群から選ばれる基を表し、Xは水素原子または置換基が結合していてもよい第14〜16族の非金属原子を表し、
Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、Ayは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、
は、水素原子、または、置換基を有していてもよい炭素数1〜6のアルキル基を表す。
The optically anisotropic layer according to claim 1, wherein Ar in the general formula 1 is any aromatic ring represented by the following general formulas 2-1 to 2-4.
However, In formula (I), Q 1 is -S -, - O-, or NR 11 - represents, R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Y 1 represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms;
Z1, Z2, and Z3 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an alkoxy group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent carbon number of 6 Represents an aromatic hydrocarbon group of ˜20, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or SR 12 , and Z 1 and Z 2 are bonded to each other to form an aromatic ring or an aromatic heterocyclic ring. R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
A 1 and A 2 each independently represent a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S—, and CO—, and X represents Represents a hydrogen atom or a non-metallic atom of group 16 to 16 to which a substituent may be bonded,
Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ay may have a hydrogen atom or a substituent. A good alkyl group having 1 to 6 carbon atoms, or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ax and Ay The aromatic ring possessed by may have a substituent, and Ax and Ay may combine to form a ring,
Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
前記一般式1のArが前記一般式2−2で表される芳香環である請求項2に記載の光学異方性層。   The optically anisotropic layer according to claim 2, wherein Ar in the general formula 1 is an aromatic ring represented by the general formula 2-2. 前記一般式1のTとTが下記一般式3で表される請求項1〜3いずれか1項に記載の光学異方性層。
但し、式中、Sp1,Sp2はそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基を表し、該アルキレン基中において隣接しない1つまたは2つ以上の−CH−が−O−、−S−、−C(=O)−、−OC(=O)−、−C(=O)O−、−OC(=O)O−、−NRC(=O)−、−C(=O)NR−、−OC(=O)NR−、−NRC(=O)O−、−SC(=O)−または−C(=O)S−で置換されていてもよく、R、R、R、Rは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1〜4のアルキル基を表し;
1、Pは、それぞれ独立に重合性基または水素原子を表し、少なくとも一つは重合性基を表す。
The optically anisotropic layer according to claim 1, wherein T 1 and T 2 of the general formula 1 are represented by the following general formula 3.
In the formula, Sp1 and Sp2 each independently represent a linear or branched alkylene group having 2 to 20 carbon atoms, and one or two or more —CH 2 — that are not adjacent to each other in the alkylene group are —O. -, - S -, - C (= O) -, - OC (= O) -, - C (= O) O -, - OC (= O) O -, - NR 1 C (= O) -, Substituted with —C (═O) NR 2 —, —OC (═O) NR 3 —, —NR 4 C (═O) O—, —SC (═O) — or —C (═O) S— R 1 , R 2 , R 3 , R 4 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms;
P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one represents a polymerizable group.
配向状態がネマチック相またはスメクチック相で固定された請求項1〜4いずれか1項に記載の光学異方性層。   The optically anisotropic layer according to any one of claims 1 to 4, wherein the alignment state is fixed in a nematic phase or a smectic phase. 配向状態がスメクチック相で固定された請求項5に記載の光学異方性層。   The optically anisotropic layer according to claim 5, wherein the orientation state is fixed in a smectic phase. 前記分子の長軸がホモジニアス配向で固定され、波長450nm,550nm,650nmにおける位相差Re(450nm),Re(550nm),Re(650nm)が、下記数式A及びBを満たす請求項1〜6いずれか1項に記載の光学異方性層。
Re(450nm)/Re(550nm)<0.95 ・・・数式A
Re(650nm)/Re(550nm)>1.02 ・・・数式B
The major axis of the molecule is fixed in a homogeneous orientation, and the phase differences Re (450 nm), Re (550 nm), and Re (650 nm) at wavelengths of 450 nm, 550 nm, and 650 nm satisfy the following formulas A and B: 2. An optically anisotropic layer according to item 1.
Re (450 nm) / Re (550 nm) <0.95 Formula A
Re (650 nm) / Re (550 nm)> 1.02 Formula B
請求項1〜7いずれか1項に記載の光学異方性層が樹脂フィルム上に直接または配向膜を介して積層された積層体。   The laminated body by which the optically anisotropic layer of any one of Claims 1-7 was laminated | stacked directly or through the orientation film on the resin film. 前記樹脂フィルムが偏光子である請求項8に記載の積層体を備えた偏光板。   The polarizing plate provided with the laminate according to claim 8, wherein the resin film is a polarizer. 請求項9に記載の偏光板を備えた表示装置。   A display device comprising the polarizing plate according to claim 9. 下記一般式1で表される液晶化合物を含む組成物、または、該液晶化合物を含む重合性組成物を展開し、
加熱して前記液晶化合物の分子の長軸を配向させた後、前記重合性組成物を硬化する光学異方性層の製造方法。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する2価の基を表し、Ar基中に含まれるΠ電子の数は8以上である。
Expand a composition containing a liquid crystal compound represented by the following general formula 1, or a polymerizable composition containing the liquid crystal compound,
A method for producing an optically anisotropic layer, wherein the polymerizable composition is cured after heating to align the major axes of the molecules of the liquid crystal compound.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represents an integer of 1 to 4;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar represents a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the Ar group is 8 or more.
前記一般式1のArが下記式一般式2−1〜2−4で表されるいずれかの芳香環である請求項11に記載の光学異方性層の製造方法。
但し、式中、Qは、−S−、−O−、またはNR11−を表し、R11は、水素原子または炭素数1〜6のアルキル基を表し、;
は、炭素数1〜6のアルキル基、炭素数6〜12の芳香族炭化水素基、または、炭素数3〜12芳香族複素環基を表し、;
Z1,Z2,および,Z3は、それぞれ独立に、水素原子または炭素数1〜20の脂肪族炭化水素基またはアルコキシ基、炭素数3〜20の脂環式炭化水素基、1価の炭素数6〜20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、−NR1213またはSR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1〜6のアルキル基を表し、;
1およびA2は各々独立に、−O−、−NR21−(R21は水素原子または置換基を表す。)、−S−およびCO−からなる群から選ばれる基を表し、Xは水素原子または置換基が結合していてもよい第14〜16族の非金属原子を表し、;
Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、Ayは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、;
は、水素原子、または、置換基を有していてもよい炭素数1〜6のアルキル基を表す。
The method for producing an optically anisotropic layer according to claim 11, wherein Ar in the general formula 1 is any aromatic ring represented by the following general formulas 2-1 to 2-4.
However, In formula (I), Q 1 is -S -, - O-, or NR 11 - represents, R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Y 1 represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms;
Z1, Z2, and Z3 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an alkoxy group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent carbon number of 6 Represents an aromatic hydrocarbon group of ˜20, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or SR 12 , and Z 1 and Z 2 are bonded to each other to form an aromatic ring or an aromatic heterocyclic ring. Each of R 12 and R 13 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
A 1 and A 2 each independently represent a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S—, and CO—, and X represents Represents a hydrogen atom or a non-metallic atom of group 16 to 16 to which a substituent may be bonded;
Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ay may have a hydrogen atom or a substituent. A good alkyl group having 1 to 6 carbon atoms, or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ax and Ay The aromatic ring may have a substituent, Ax and Ay may be bonded to form a ring;
Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
前記一般式1のArが前記一般式2−2で表される芳香環である請求項12に記載の光学異方性層の製造方法。   The method for producing an optically anisotropic layer according to claim 12, wherein Ar in the general formula 1 is an aromatic ring represented by the general formula 2-2. 前記液晶化合物の配向温度よりもガラス転移温度が高い支持体上に前記組成物または前記重合性組成物を展開する請求項11〜13いずれか1項に記載の光学異方性層の製造方法。   The method for producing an optically anisotropic layer according to claim 11, wherein the composition or the polymerizable composition is developed on a support having a glass transition temperature higher than an alignment temperature of the liquid crystal compound. 下記一般式1で表される液晶化合物。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、下記一般式2−1〜2−4で表されるいずれかの芳香環を表す。
但し、式中、Qは、−S−、−O−、またはNR11−を表し、R11は、水素原子または炭素数1〜6のアルキル基を表し、;
は、炭素数1〜6のアルキル基、炭素数6〜12の芳香族炭化水素基、または、炭素数3〜12芳香族複素環基を表し、;
Z1,Z2,および,Z3は、それぞれ独立に、水素原子または炭素数1〜20の脂肪族炭化水素基またはアルコキシ基、炭素数3〜20の脂環式炭化水素基、1価の炭素数6〜20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、−NR1213またはSR12を表し、ZおよびZは、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1〜6のアルキル基を表し、
1およびA2は各々独立に、−O−、−NR21−(R21は水素原子または置換基を表す。)、−S−およびCO−からなる群から選ばれる基を表し、Xは水素原子または置換基が結合していてもよい第14〜16族の非金属原子を表し、
Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、Ayは水素原子、置換基を有していてもよい炭素数1〜6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2〜30の有機基を表し、AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよく、
は、水素原子、または、置換基を有していてもよい炭素数1〜6のアルキル基を表す。
A liquid crystal compound represented by the following general formula 1.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represents an integer of 1 to 4;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar represents any aromatic ring represented by the following general formulas 2-1 to 2-4.
However, In formula (I), Q 1 is -S -, - O-, or NR 11 - represents, R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Y 1 represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms;
Z1, Z2, and Z3 are each independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an alkoxy group, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a monovalent carbon number of 6 Represents an aromatic hydrocarbon group of ˜20, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or SR 12 , and Z 1 and Z 2 are bonded to each other to form an aromatic ring or an aromatic heterocyclic ring. R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
A 1 and A 2 each independently represent a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S—, and CO—, and X represents Represents a hydrogen atom or a non-metallic atom of group 16 to 16 to which a substituent may be bonded,
Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ay may have a hydrogen atom or a substituent. A good alkyl group having 1 to 6 carbon atoms, or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and Ax and Ay The aromatic ring possessed by may have a substituent, and Ax and Ay may combine to form a ring,
Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
前記一般式1のArが前記一般式2−2で表される芳香環である請求項15に記載の液晶化合物。   The liquid crystal compound according to claim 15, wherein Ar in the general formula 1 is an aromatic ring represented by the general formula 2-2. 前記一般式1のT、Tが下記一般式3で表される請求項15又は16に記載の液晶化合物。
但し、式中、Sp1,Sp2はそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基を表し、該アルキレン基中において隣接しない1つまたは2つ以上の−CH−が−O−、−S−、−C(=O)−、−OC(=O)−、−C(=O)O−、−OC(=O)O−、−NRC(=O)−、−C(=O)NR−、−OC(=O)NR−、−NRC(=O)O−、−SC(=O)−または−C(=O)S−で置換されていてもよく、R、R、R、Rは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1〜4のアルキル基を表し;
1、Pは、それぞれ独立に重合性基または水素原子を表し、少なくとも一つは重合性基を表す。
The liquid crystal compound according to claim 15 or 16, wherein T 1 and T 2 of the general formula 1 are represented by the following general formula 3.
In the formula, Sp1 and Sp2 each independently represent a linear or branched alkylene group having 2 to 20 carbon atoms, and one or two or more —CH 2 — that are not adjacent to each other in the alkylene group are —O. -, - S -, - C (= O) -, - OC (= O) -, - C (= O) O -, - OC (= O) O -, - NR 1 C (= O) -, Substituted with —C (═O) NR 2 —, —OC (═O) NR 3 —, —NR 4 C (═O) O—, —SC (═O) — or —C (═O) S— R 1 , R 2 , R 3 , R 4 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms;
P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one represents a polymerizable group.
下記一般式1で表される液晶化合物の製造方法であって、下記一般式4で表される化合物と、下記一般式5表される化合物とを反応させる液晶化合物の製造方法。
但し、式中、L1,L2はそれぞれ独立にカルボニル基を有する接続基を表し、;
F1,F2はそれぞれ独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
n,mはそれぞれ独立に0〜4の整数を表し、;
a,bはそれぞれ独立に1〜4の整数を表し、;
、Tはそれぞれ独立に、炭素数2〜20の直鎖もしくは分岐のアルキレン基又はアルキレンオキシド基を含むスペーサー部を表し、;
Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有し、基中の芳香環に含まれるΠ電子の数が8以上である2価の基を表す。
但し、式中、Lはカルボニル基を有する接続基を表し、;
は炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
nは0〜4の整数を表し、;
aは1〜4の整数を表し、;
は炭素数2〜20の直鎖もしくは分岐のアルキレン基である;
但し、式中、Arは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有し、基中の芳香環に含まれるΠ電子の数が8以上である2価の基を表す。
A method for producing a liquid crystal compound represented by the following general formula 1, wherein a compound represented by the following general formula 4 is reacted with a compound represented by the following general formula 5.
However, in formula, L1, L2 represents the connection group which has a carbonyl group each independently,
F1 and F2 each independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n and m each independently represents an integer of 0 to 4;
a and b each independently represents an integer of 1 to 4;
T 1 and T 2 each independently represent a spacer part containing a linear or branched alkylene group or alkylene oxide group having 2 to 20 carbon atoms;
Ar is a divalent group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the aromatic ring in the group is 8 or more. Represent.
Where L 1 represents a connecting group having a carbonyl group;
F 1 represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n represents an integer of 0 to 4;
a represents an integer of 1 to 4;
T 1 is a linear or branched alkylene group having 2 to 20 carbon atoms;
However, in the formula, Ar has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and the number of negative electrons contained in the aromatic ring in the group is 8 or more. Represents a divalent group.
下記一般式7で表されるカルボン酸化合物。
但し、式中、Lはカルボニル基を有する接続基を表し、;
は炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、または、ハロゲン原子を表し、;
nは0〜4の整数を表し、;
aは1〜4の整数を表し、;
Spは、炭素数2〜20の直鎖もしくは分岐のアルキレン基を表し、該アルキレン基中において隣接しない1つまたは2つ以上の−CH−が−O−、−S−、−C(=O)−、−OC(=O)−、−C(=O)O−、−OC(=O)O−、−NRC(=O)−、−C(=O)NR−、−OC(=O)NR−、−NRC(=O)O−、−SC(=O)−または−C(=O)S−で置換されていてもよく、R、R、R、Rは、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1〜4のアルキル基を表し;
1は、重合性基を表す。
Carboxylic acid compound represented by the following general formula 7.
Where L 1 represents a connecting group having a carbonyl group;
F 1 represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom;
n represents an integer of 0 to 4;
a represents an integer of 1 to 4;
Sp 1 represents a linear or branched alkylene group having 2 to 20 carbon atoms, and one or two or more —CH 2 — that are not adjacent to each other in the alkylene group are —O—, —S—, —C ( ═O) —, —OC (═O) —, —C (═O) O—, —OC (═O) O—, —NR 1 C (═O) —, —C (═O) NR 2 —. , —OC (═O) NR 3 —, —NR 4 C (═O) O—, —SC (═O) — or —C (═O) S— may be substituted, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms;
P 1 represents a polymerizable group.
JP2015149996A 2014-10-21 2015-07-29 Optically anisotropic layer and manufacturing method thereof, laminate, polarizing plate, display device, liquid crystal compound and manufacturing method thereof, carboxylic acid compound Active JP6363566B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/887,858 US10059877B2 (en) 2014-10-21 2015-10-20 Optically anisotropic layer, method for producing the optically anisotropic layer, a laminate, polarizing plate, display device, liquid crystal compound, method for producing the liquid crystal compound, and carboxylic acid compound
CN201510684728.5A CN105524625B (en) 2014-10-21 2015-10-20 Optically anisotropic layer and method for producing same, laminate, polarizing plate, display device, liquid crystal compound and method for producing same, and carboxylic acid compound
US16/042,224 US11072741B2 (en) 2014-10-21 2018-07-23 Optically anisotropic layer, method for producing the optically anisotropic layer, a laminate, polarizing plate, display device, liquid crystal compound, method for producing the liquid crystal compound, and carboxylic acid compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014214782 2014-10-21
JP2014214782 2014-10-21

Publications (2)

Publication Number Publication Date
JP2016081035A true JP2016081035A (en) 2016-05-16
JP6363566B2 JP6363566B2 (en) 2018-07-25

Family

ID=55956230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149996A Active JP6363566B2 (en) 2014-10-21 2015-07-29 Optically anisotropic layer and manufacturing method thereof, laminate, polarizing plate, display device, liquid crystal compound and manufacturing method thereof, carboxylic acid compound

Country Status (1)

Country Link
JP (1) JP6363566B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166344A (en) * 2015-03-02 2016-09-15 Jnc株式会社 Polymerizable liquid crystal composition and optical anisotropic film
JP2016194693A (en) * 2015-04-01 2016-11-17 Jnc株式会社 Manufacturing method of optical compensation film
WO2017043438A1 (en) * 2015-09-07 2017-03-16 富士フイルム株式会社 Polymerizable liquid crystal composition, retardation film, polarizing plate, liquid crystal display device and organic electroluminescent device
WO2017098988A1 (en) * 2015-12-08 2017-06-15 Dic株式会社 Polymerizable compound and optically anisotropic body
WO2018012390A1 (en) * 2016-07-15 2018-01-18 Dic株式会社 Phase difference film, elliptically polarizing plate, and display device using same
JP2018016577A (en) * 2016-07-27 2018-02-01 富士フイルム株式会社 Ester compound production method
JP2018025770A (en) * 2016-07-28 2018-02-15 富士フイルム株式会社 Method for manufacturing liquid crystal mixture
JP2018040876A (en) * 2016-09-06 2018-03-15 富士フイルム株式会社 Optical anisotropic film, optical film, polarizing plate, and image display device
WO2018096938A1 (en) * 2016-11-22 2018-05-31 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, optical film, optically anisotropic body, polarizing plate, flat-panel display device, organic electroluminescence display device, antireflection film, and compound
WO2018123551A1 (en) * 2016-12-28 2018-07-05 富士フイルム株式会社 Optical film, method for producing same, polarizing plate and image display device
WO2018221470A1 (en) * 2017-05-29 2018-12-06 大日本印刷株式会社 Phase difference film, liquid crystal composition, optical member, display panel, display device, and method for manufacturing phase difference film
WO2019017445A1 (en) * 2017-07-19 2019-01-24 富士フイルム株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic membrane, optical film, polarizing plate, and image display device
WO2019044863A1 (en) * 2017-08-30 2019-03-07 富士フイルム株式会社 Cured product, optical member, lens, compound and curable composition
KR20190072610A (en) 2016-11-29 2019-06-25 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device and organic electroluminescence display device
KR20190077028A (en) 2016-11-29 2019-07-02 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device and organic electroluminescence display device
KR20190078589A (en) * 2016-11-22 2019-07-04 니폰 제온 가부시키가이샤 Polymerizable compounds, mixtures, polymerizable liquid crystal compositions, polymers, optical films, optical anisotropies, polarizers, display devices and antireflection films
KR20190097181A (en) 2017-02-21 2019-08-20 후지필름 가부시키가이샤 Polymeric liquid crystal compound, the manufacturing method of a polymeric liquid crystal compound, a polymeric liquid crystal composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display apparatus
WO2019160025A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Polymerizable liquid crystal composition, production method for polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2019160044A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Optical anisotropic film, optical film, polarizer, and image display device
WO2019160034A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Mixed crystal, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2019163878A1 (en) * 2018-02-21 2019-08-29 富士フイルム株式会社 Polymerizable liquid crystal composition, optical anisotropic membrane, optical film, polarization plate, and image display device
WO2019181247A1 (en) 2018-03-23 2019-09-26 富士フイルム株式会社 Cholesteric liquid crystal layer, laminated body, optically anisotropic body, reflective film, production method for cholesteric liquid crystal layer; forgery prevention medium, and determination method
WO2019182052A1 (en) 2018-03-23 2019-09-26 富士フイルム株式会社 Cholesteric liquid crystal layer production method, cholesteric liquid crystal layer, liquid crystal composition, cured product, optically anisotropic body, and reflective layer
CN110527520A (en) * 2018-05-25 2019-12-03 石家庄诚志永华显示材料有限公司 A kind of liquid-crystal compounds and liquid-crystal composition
WO2020022422A1 (en) * 2018-07-25 2020-01-30 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200013730A (en) 2017-07-19 2020-02-07 후지필름 가부시키가이샤 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
JP2020125408A (en) * 2019-02-05 2020-08-20 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
JP2020125407A (en) * 2019-02-05 2020-08-20 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
KR20200102479A (en) 2018-02-14 2020-08-31 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200103833A (en) 2018-02-14 2020-09-02 후지필름 가부시키가이샤 Circular polarizer including image display device and photosensitive adhesive
KR20200105898A (en) 2018-02-14 2020-09-09 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200105917A (en) 2018-02-14 2020-09-09 후지필름 가부시키가이샤 Optical film, polarizer and image display device
KR20200106068A (en) 2018-02-14 2020-09-10 후지필름 가부시키가이샤 Optical film, polarizing plate, image display device
CN112789532A (en) * 2019-01-09 2021-05-11 株式会社Lg化学 Method for producing optically anisotropic film
WO2021131355A1 (en) 2019-12-25 2021-07-01 富士フイルム株式会社 Resin composition, cured product, uv absorber, uv cut filter, lens, protective material, compound, and method for synthesizing compound
KR20220050162A (en) 2019-09-27 2022-04-22 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, compound, optically anisotropic film, optical film, polarizing plate and image display device
KR20220050169A (en) 2019-09-27 2022-04-22 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
US11518938B2 (en) 2018-03-16 2022-12-06 Fujifilm Corporation Optical film, polarizing plate, and image display device
US11518916B2 (en) 2017-12-26 2022-12-06 Fujifilm Corporation Lens adhesive, cemented lens, and imaging module
KR20230030525A (en) 2021-08-25 2023-03-06 후지필름 가부시키가이샤 Liquid crystal composition, liquid crystal cured layer, optical film, polarizing plate, and image display device
US11873426B2 (en) 2018-07-02 2024-01-16 Fujifilm Corporation Curable composition, cured product, optical member, lens, and compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242718A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Liquid crystal composition comprising polymerizable liquid crystal compound and stabilizer
JP2010001368A (en) * 2008-06-19 2010-01-07 Fujifilm Corp Liquid crystal composition, light absorption anisotropic film, polarizing element and liquid crystal display device
JP2012077057A (en) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd Method for production of dihydroxybenzene compound
JP2016051178A (en) * 2014-08-29 2016-04-11 富士フイルム株式会社 Phase difference film, manufacturing method of phase difference film, laminate, composition, polarizing plate, and liquid crystal display device
JP2016051083A (en) * 2014-08-29 2016-04-11 富士フイルム株式会社 Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
JP2016053709A (en) * 2014-03-31 2016-04-14 富士フイルム株式会社 Optical film, polarizing plate, and production method of optical film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242718A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Liquid crystal composition comprising polymerizable liquid crystal compound and stabilizer
JP2010001368A (en) * 2008-06-19 2010-01-07 Fujifilm Corp Liquid crystal composition, light absorption anisotropic film, polarizing element and liquid crystal display device
JP2012077057A (en) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd Method for production of dihydroxybenzene compound
JP2016053709A (en) * 2014-03-31 2016-04-14 富士フイルム株式会社 Optical film, polarizing plate, and production method of optical film
JP2016051178A (en) * 2014-08-29 2016-04-11 富士フイルム株式会社 Phase difference film, manufacturing method of phase difference film, laminate, composition, polarizing plate, and liquid crystal display device
JP2016051083A (en) * 2014-08-29 2016-04-11 富士フイルム株式会社 Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166344A (en) * 2015-03-02 2016-09-15 Jnc株式会社 Polymerizable liquid crystal composition and optical anisotropic film
JP2016194693A (en) * 2015-04-01 2016-11-17 Jnc株式会社 Manufacturing method of optical compensation film
WO2017043438A1 (en) * 2015-09-07 2017-03-16 富士フイルム株式会社 Polymerizable liquid crystal composition, retardation film, polarizing plate, liquid crystal display device and organic electroluminescent device
WO2017098988A1 (en) * 2015-12-08 2017-06-15 Dic株式会社 Polymerizable compound and optically anisotropic body
JPWO2018012390A1 (en) * 2016-07-15 2018-11-08 Dic株式会社 Retardation film, elliptically polarizing plate and display device using the same
WO2018012390A1 (en) * 2016-07-15 2018-01-18 Dic株式会社 Phase difference film, elliptically polarizing plate, and display device using same
JP2018016577A (en) * 2016-07-27 2018-02-01 富士フイルム株式会社 Ester compound production method
JP2018025770A (en) * 2016-07-28 2018-02-15 富士フイルム株式会社 Method for manufacturing liquid crystal mixture
JP2018040876A (en) * 2016-09-06 2018-03-15 富士フイルム株式会社 Optical anisotropic film, optical film, polarizing plate, and image display device
KR20190078589A (en) * 2016-11-22 2019-07-04 니폰 제온 가부시키가이샤 Polymerizable compounds, mixtures, polymerizable liquid crystal compositions, polymers, optical films, optical anisotropies, polarizers, display devices and antireflection films
WO2018096938A1 (en) * 2016-11-22 2018-05-31 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, optical film, optically anisotropic body, polarizing plate, flat-panel display device, organic electroluminescence display device, antireflection film, and compound
JPWO2018096938A1 (en) * 2016-11-22 2019-10-17 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device, antireflection film, and compound
KR102442596B1 (en) * 2016-11-22 2022-09-08 니폰 제온 가부시키가이샤 Polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic body, polarizing plate, display device and anti-reflection film
US11332669B2 (en) 2016-11-29 2022-05-17 Fujifilm Corporation Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device, and organic electroluminescent display device
KR20190077028A (en) 2016-11-29 2019-07-02 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device and organic electroluminescence display device
KR20190072610A (en) 2016-11-29 2019-06-25 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device and organic electroluminescence display device
US11279880B2 (en) 2016-11-29 2022-03-22 Fujifilm Corporation Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device, and organic electroluminescent display device
CN110088653A (en) * 2016-12-28 2019-08-02 富士胶片株式会社 Optical film and its manufacturing method, polarizing film, image display device
JPWO2018123551A1 (en) * 2016-12-28 2019-10-31 富士フイルム株式会社 Optical film and method for manufacturing the same, polarizing plate, and image display device
WO2018123551A1 (en) * 2016-12-28 2018-07-05 富士フイルム株式会社 Optical film, method for producing same, polarizing plate and image display device
KR20190097181A (en) 2017-02-21 2019-08-20 후지필름 가부시키가이샤 Polymeric liquid crystal compound, the manufacturing method of a polymeric liquid crystal compound, a polymeric liquid crystal composition, an optically anisotropic film, an optical film, a polarizing plate, and an image display apparatus
US11225605B2 (en) 2017-02-21 2022-01-18 Fujifilm Corporation Polymerizable liquid crystal compound, method for producing polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2018221470A1 (en) * 2017-05-29 2018-12-06 大日本印刷株式会社 Phase difference film, liquid crystal composition, optical member, display panel, display device, and method for manufacturing phase difference film
JPWO2018221470A1 (en) * 2017-05-29 2020-03-26 大日本印刷株式会社 Retardation film, liquid crystal composition, optical member, display panel, display device, and method for producing retardation film
TWI760498B (en) * 2017-05-29 2022-04-11 日商大日本印刷股份有限公司 Retardation film, liquid crystal composition, optical member, display panel, display device, and production method of retardation film
US11932798B2 (en) 2017-07-19 2024-03-19 Fujifilm Corporation Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2019017445A1 (en) * 2017-07-19 2019-01-24 富士フイルム株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic membrane, optical film, polarizing plate, and image display device
KR20200013730A (en) 2017-07-19 2020-02-07 후지필름 가부시키가이샤 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200014377A (en) 2017-07-19 2020-02-10 후지필름 가부시키가이샤 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
JPWO2019017445A1 (en) * 2017-07-19 2020-04-16 富士フイルム株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
US11078180B2 (en) 2017-08-30 2021-08-03 Fujifilm Corporation Cured product, optical member, lens, compound, and curable composition
WO2019044863A1 (en) * 2017-08-30 2019-03-07 富士フイルム株式会社 Cured product, optical member, lens, compound and curable composition
JPWO2019044863A1 (en) * 2017-08-30 2020-11-19 富士フイルム株式会社 Cured products, optics, lenses, compounds, and curable compositions
US11518916B2 (en) 2017-12-26 2022-12-06 Fujifilm Corporation Lens adhesive, cemented lens, and imaging module
KR20200105917A (en) 2018-02-14 2020-09-09 후지필름 가부시키가이샤 Optical film, polarizer and image display device
JPWO2019160025A1 (en) * 2018-02-14 2021-03-04 富士フイルム株式会社 Polymerizable liquid crystal composition, method for producing polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
KR20200103833A (en) 2018-02-14 2020-09-02 후지필름 가부시키가이샤 Circular polarizer including image display device and photosensitive adhesive
KR20200103834A (en) 2018-02-14 2020-09-02 후지필름 가부시키가이샤 Optically anisotropic film, optical film, polarizing plate and image display device
KR20200105905A (en) 2018-02-14 2020-09-09 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, method for producing polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
CN111727391B (en) * 2018-02-14 2022-04-29 富士胶片株式会社 Polymerizable liquid crystal composition, method for producing same, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200105898A (en) 2018-02-14 2020-09-09 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2019160025A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Polymerizable liquid crystal composition, production method for polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200105935A (en) 2018-02-14 2020-09-09 후지필름 가부시키가이샤 Mixed crystal, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200106068A (en) 2018-02-14 2020-09-10 후지필름 가부시키가이샤 Optical film, polarizing plate, image display device
CN111727390A (en) * 2018-02-14 2020-09-29 富士胶片株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
CN111727391A (en) * 2018-02-14 2020-09-29 富士胶片株式会社 Polymerizable liquid crystal composition, method for producing polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
US11370970B2 (en) 2018-02-14 2022-06-28 Fujifilm Corporation Optically anisotropic film, optical film, polarizing plate, and image display device
JPWO2019160044A1 (en) * 2018-02-14 2021-02-04 富士フイルム株式会社 Optically anisotropic film, optical film, polarizing plate and image display device
JPWO2019160034A1 (en) * 2018-02-14 2021-02-12 富士フイルム株式会社 Mixed crystal, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
KR102438545B1 (en) * 2018-02-14 2022-08-30 후지필름 가부시키가이샤 Mixed crystal, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
WO2019160034A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Mixed crystal, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
US11630342B2 (en) 2018-02-14 2023-04-18 Fujifilm Corporation Image display device and circularly polarizing plate with photosensitive adhesive
JP7260520B2 (en) 2018-02-14 2023-04-18 富士フイルム株式会社 Polymerizable liquid crystal composition, method for producing polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2019160044A1 (en) * 2018-02-14 2019-08-22 富士フイルム株式会社 Optical anisotropic film, optical film, polarizer, and image display device
CN111727390B (en) * 2018-02-14 2021-11-02 富士胶片株式会社 Polymerizable liquid crystal composition, optical film, polarizing plate, and image display device
US11480721B2 (en) 2018-02-14 2022-10-25 Fujifilm Corporation Polymerizable liquid crystal composition, method for producing polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200102479A (en) 2018-02-14 2020-08-31 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
JP7022192B2 (en) 2018-02-21 2022-02-17 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
JPWO2019163878A1 (en) * 2018-02-21 2021-03-04 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
WO2019163878A1 (en) * 2018-02-21 2019-08-29 富士フイルム株式会社 Polymerizable liquid crystal composition, optical anisotropic membrane, optical film, polarization plate, and image display device
US11702596B2 (en) 2018-02-21 2023-07-18 Fujifilm Corporation Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
KR20200105910A (en) 2018-02-21 2020-09-09 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
US11518938B2 (en) 2018-03-16 2022-12-06 Fujifilm Corporation Optical film, polarizing plate, and image display device
WO2019182052A1 (en) 2018-03-23 2019-09-26 富士フイルム株式会社 Cholesteric liquid crystal layer production method, cholesteric liquid crystal layer, liquid crystal composition, cured product, optically anisotropic body, and reflective layer
WO2019181247A1 (en) 2018-03-23 2019-09-26 富士フイルム株式会社 Cholesteric liquid crystal layer, laminated body, optically anisotropic body, reflective film, production method for cholesteric liquid crystal layer; forgery prevention medium, and determination method
CN110527520B (en) * 2018-05-25 2022-07-05 石家庄诚志永华显示材料有限公司 Liquid crystal compound and liquid crystal composition
CN110527520A (en) * 2018-05-25 2019-12-03 石家庄诚志永华显示材料有限公司 A kind of liquid-crystal compounds and liquid-crystal composition
US11873426B2 (en) 2018-07-02 2024-01-16 Fujifilm Corporation Curable composition, cured product, optical member, lens, and compound
WO2020022422A1 (en) * 2018-07-25 2020-01-30 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
US11746295B2 (en) 2018-07-25 2023-09-05 Fujifilm Corporation Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
CN112789532A (en) * 2019-01-09 2021-05-11 株式会社Lg化学 Method for producing optically anisotropic film
CN112789532B (en) * 2019-01-09 2023-10-20 株式会社Lg化学 Method for producing optically anisotropic film
JP7042761B2 (en) 2019-02-05 2022-03-28 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
JP2020125408A (en) * 2019-02-05 2020-08-20 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
JP2020125407A (en) * 2019-02-05 2020-08-20 富士フイルム株式会社 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
KR20220050169A (en) 2019-09-27 2022-04-22 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device
KR20220050162A (en) 2019-09-27 2022-04-22 후지필름 가부시키가이샤 Polymerizable liquid crystal composition, compound, optically anisotropic film, optical film, polarizing plate and image display device
WO2021131355A1 (en) 2019-12-25 2021-07-01 富士フイルム株式会社 Resin composition, cured product, uv absorber, uv cut filter, lens, protective material, compound, and method for synthesizing compound
KR20230030525A (en) 2021-08-25 2023-03-06 후지필름 가부시키가이샤 Liquid crystal composition, liquid crystal cured layer, optical film, polarizing plate, and image display device
US11932796B2 (en) 2021-08-25 2024-03-19 Fujifilm Corporation Liquid crystal composition, liquid crystal cured layer, optical film, polarizing plate, and image display device

Also Published As

Publication number Publication date
JP6363566B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6363566B2 (en) Optically anisotropic layer and manufacturing method thereof, laminate, polarizing plate, display device, liquid crystal compound and manufacturing method thereof, carboxylic acid compound
CN105524625B (en) Optically anisotropic layer and method for producing same, laminate, polarizing plate, display device, liquid crystal compound and method for producing same, and carboxylic acid compound
JP6343349B2 (en) Polymerizable composition containing polymerizable compound, film, and half mirror for projected image display
JP6616489B2 (en) Coloring composition, light-absorbing anisotropic film, laminate and image display device
JP6080884B2 (en) Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projected image display
US10048416B2 (en) Optically anisotropic layer, method of manufacturing the same, laminate, method of manufacturing the same, polarizing plate, liquid crystal display device, and organic EL display device
US10316252B2 (en) Polymerizable compound, polymer, polymerizable composition, and film
JP6553708B2 (en) Polymerizable composition, film, and half mirror for projection image display
WO2015147243A1 (en) Polymerizable compound, polymer, polymerizable composition, film, and half mirror for projection image display
CN108291999B (en) Optical film, polarizing plate, image display device, polymerizable compound, and method for producing 1, 4-cyclohexanedicarboxylic acid monoaryl ester
WO2014142026A1 (en) Polymerizable liquid crystal compound, liquid crystal composition, polymer material and production method for same, film, polarizing plate, and liquid crystal display device
WO2018199096A1 (en) Liquid crystal composition, light-absorbing anisotropic film, laminate, and image display device
JP2008291218A (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer, and optically anisotropic material
JP5816232B2 (en) Liquid crystal composition, method for producing the same, and film
US10519374B2 (en) Polymerizable composition containing polymerizable compound, film, half mirror for displaying projection image, and polymerizable compound
JP5649779B2 (en) Liquid crystalline composition and optical film
WO2017010560A1 (en) Liquid crystal composition, film, half mirror for projected image display, and method for producing film
WO2014050427A1 (en) Polymerizable liquid crystal compound, liquid crystal composition, polymer material, method for producing polymer material, and film
US11543697B2 (en) Polarizer and image display device
WO2017047674A1 (en) Polymerizable liquid crystal compound, polymerizable composition, and film
JP2008089894A (en) Method for manufacturing retardation filmmethod for manufacturing retardation film
JP6469180B2 (en) Optically anisotropic film and manufacturing method thereof, laminate and manufacturing method thereof, polarizing plate, liquid crystal display device and organic EL display device
JP7433435B2 (en) Liquid crystal compositions, optical elements and light guiding elements
JP2015197492A (en) Optically anisotropic film and production method of the same, laminate and production method of laminate, polarizing plate, liquid crystal display device, and organic electroluminescence display device
KR20220050169A (en) Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180628

R150 Certificate of patent or registration of utility model

Ref document number: 6363566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250