JP2016080825A - Zoom imaging optical system with anti-shake capability - Google Patents

Zoom imaging optical system with anti-shake capability Download PDF

Info

Publication number
JP2016080825A
JP2016080825A JP2014211101A JP2014211101A JP2016080825A JP 2016080825 A JP2016080825 A JP 2016080825A JP 2014211101 A JP2014211101 A JP 2014211101A JP 2014211101 A JP2014211101 A JP 2014211101A JP 2016080825 A JP2016080825 A JP 2016080825A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
optical system
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014211101A
Other languages
Japanese (ja)
Other versions
JP6492517B2 (en
Inventor
典行 小笠原
Noriyuki Ogasawara
典行 小笠原
健太 藤田
Kenta Fujita
健太 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2014211101A priority Critical patent/JP6492517B2/en
Publication of JP2016080825A publication Critical patent/JP2016080825A/en
Application granted granted Critical
Publication of JP6492517B2 publication Critical patent/JP6492517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a zoom imaging optical system with anti-shake capability, which offers a half view angle of approximately 2 degrees at the telephoto end, large image circle, and long focal length at the telephoto end, and which has a reduced total length and an anti-shake group with reduced weight.SOLUTION: A zoom imaging optical system with anti-shake capability comprises, in order from the object side, at least a first lens group having positive refractive power, second lens group having negative refractive power, third lens group having positive refractive power, fourth lens group having positive refractive power, and fifth lens group having negative refractive power, where each lens group is separated from the one next thereto by an air gap that changes while zooming. Some lenses of the second group are moved in a direction perpendicular to an optical axis for anti-shake correction. The zoom imaging optical system simultaneously satisfies conditional expressions below.SELECTED DRAWING: Figure 1

Description

本発明は、スチルカメラ、ビデオカメラ等に用いられる変倍結像光学系に関し、特に画角が狭く、更に防振機能を備えた変倍結像光学系に関するものである。   The present invention relates to a variable magnification imaging optical system used for a still camera, a video camera, and the like, and more particularly to a variable magnification imaging optical system having a narrow angle of view and further having an image stabilization function.

デジタルスチルカメラ等に用いられる結像光学系への防振機能の搭載が進んでおり、超望遠レンズを用いた写真撮影でも手振れによる失敗が減少し、超望遠レンズが身近なものとなってきている。このため更に長い焦点距離を持ち、画角の狭い結像光学系が要望されるようになってきている。 Anti-vibration functions are being installed in imaging optical systems used in digital still cameras, etc., and failure due to camera shake has decreased even in photography using super-telephoto lenses, making super-telephoto lenses familiar. Yes. For this reason, an imaging optical system having a longer focal length and a narrow angle of view has been demanded.

望遠端の画角が、35mm判に換算して焦点距離500mm乃至600mmに相当する半画角2度乃至2.5度程度の結像光学系が特許文献に記載されている。 An imaging optical system in which the angle of view at the telephoto end corresponds to a focal length of 500 mm to 600 mm in terms of a focal length of 500 mm to 600 mm in terms of a 35 mm size is described in the patent literature.

特開2011−17912号公報JP 2011-17912 A 特開2012−208434号公報JP 2012-208434 A 特開2011−186095号公報JP 2011-186095 A 特開2013−97322号公報JP 2013-97322 A 特開2014−126851号公報JP 2014-125851 A

画角の狭い、長焦点の結像光学系においては、まず焦点距離に比べて光学全長を短くすることが求められる。光学系の全長を焦点距離で割った値を望遠比と呼ぶが、この値が1を十分下回ることが望ましい。焦点距離に比例して全長が長くなると持ち運び等に支障が生じるため、特に半画角2度乃至2.5度程度の光学系においては望遠比0.7を下回るようにしたい。 In a long-focus imaging optical system with a narrow angle of view, it is first required to shorten the optical total length compared to the focal length. A value obtained by dividing the total length of the optical system by the focal length is called a telephoto ratio, and it is desirable that this value is sufficiently less than 1. If the total length is increased in proportion to the focal length, carrying and the like will be hindered. Therefore, in an optical system with a half angle of view of about 2 to 2.5 degrees, it is desired that the telephoto ratio is less than 0.7.

望遠比を小さくするためには、もっとも物体側に正屈折力のレンズ群を配置し、正屈折力のレンズ群より像側に負屈折力のレンズ群を配置した、いわゆる望遠型またはテレフォトタイプと呼ばれる屈折力配置とするのが効果的である。 In order to reduce the telephoto ratio, a so-called telephoto type or telephoto type in which a lens unit having a positive refractive power is arranged closest to the object side and a lens unit having a negative refractive power arranged closer to the image side than the lens group having a positive refractive power is arranged. It is effective to adopt a refractive power arrangement called “.

長焦点の結像光学系においては、特に物体側をはじめとして全体にレンズエレメントの径が大きくなる傾向があるとともに、変倍に伴う第1レンズ群をはじめとした各群の移動量が大きくなりがちであって変倍操作に要する力が大きくなりがちである。変倍操作をスムーズにして使いやすくするためには各群移動量を抑制する必要がある。しかしながら、各群屈折力は変倍光学系全系の望遠端の屈折力に比べて大きくする必要があるため、球面収差を初めとする諸収差の補正が難しくなる。特に光学系後方のレンズ群の製造誤差による偏芯に伴うコマ収差の変動が大きくなって製造後の結像性能の期待値が低下する傾向がある。 In a long focal length imaging optical system, the lens element tends to have a large diameter, especially on the object side, and the amount of movement of each group including the first lens group increases with zooming. The power required for zooming operation tends to increase. In order to make the zooming operation smooth and easy to use, it is necessary to suppress the movement amount of each group. However, since it is necessary to make each group refractive power larger than the refractive power at the telephoto end of the entire zooming optical system, it is difficult to correct various aberrations including spherical aberration. In particular, fluctuations in coma due to decentering due to manufacturing errors of the lens group behind the optical system tend to increase, and the expected value of imaging performance after manufacturing tends to decrease.

更に、長焦点の結像光学系においては手振れに起因する像ぶれも大きくなって防振群の光軸直交方向への変位が大きくなる傾向にある。防振群の光軸直交方向への変位が大きくなると、防振稼動部やアクチュエータの径方向のサイズが増大し、鏡筒全体の径が太くなる。 Further, in the long-focus imaging optical system, image blur due to camera shake increases, and the displacement of the image stabilizing group in the direction perpendicular to the optical axis tends to increase. When the displacement of the vibration isolation group in the direction perpendicular to the optical axis increases, the radial size of the vibration isolation operation unit and the actuator increases, and the diameter of the entire lens barrel increases.

したがって防振群は出来る限り光線径を抑制して軽量に設定する必要があるとともに、防振群の光軸直交方向への変位に対する像の光軸直交方向への変位の比、すなわち防振係数を十分に大きくして必要な防振群の変位量を小さくしなければならない。防振群と同様に、フォーカス群も長焦点レンズにおいては重量と変位量が大きくなる傾向があり、光線径の抑制とフォーカス敏感度の確保が課題である。 Therefore, it is necessary to set the vibration-proof group as light as possible by suppressing the beam diameter, and the ratio of the displacement of the image in the direction perpendicular to the optical axis to the displacement in the direction perpendicular to the optical axis, that is, the vibration-proof coefficient. Must be sufficiently large to reduce the required displacement of the vibration isolation group. Like the anti-vibration group, the focus group also tends to increase in weight and displacement in the long-focus lens, and it is a problem to suppress the beam diameter and secure the focus sensitivity.

特許文献1に記載の光学系は望遠端での光学全長の短縮をよく達成しているが、防振群の径が大きく、また防振係数が小さいために鏡筒の径の抑制が難しい。更に軸上色収差の補正が不十分であり、結像性能に問題がある。 Although the optical system described in Patent Document 1 achieves a good reduction in the optical total length at the telephoto end, it is difficult to suppress the diameter of the lens barrel because the vibration isolation group has a large diameter and a low vibration isolation coefficient. Further, the correction of axial chromatic aberration is insufficient, and there is a problem in imaging performance.

特許文献2に記載の光学系は望遠端での望遠比がおよそ0.77であるが更なる短縮を図りたい。また、第3レンズ群のティルトに伴うコマ収差の変動が大きく、製造後の性能の期待値に不満が残る。更にフォーカス群の光線径が特に広角端において高いため、フォーカス群重量に課題が残る。 The optical system described in Patent Document 2 has a telephoto ratio at the telephoto end of approximately 0.77, but it is desired to further shorten it. In addition, coma variation due to the tilt of the third lens group is large, and dissatisfaction remains with the expected performance value after manufacturing. Furthermore, since the beam diameter of the focus group is particularly high at the wide-angle end, a problem remains in the weight of the focus group.

特許文献3に記載の光学系は半径11mmほどのイメージサークルに対応し、望遠比が0.65を切り、光学全長がきわめて短いが、防振については言及されていない。 The optical system described in Patent Document 3 corresponds to an image circle having a radius of about 11 mm, the telephoto ratio cuts 0.65, and the total optical length is very short, but no mention is made of vibration isolation.

特許文献4に記載の光学系は望遠比約0.65と光学全長が非常に短いが、防振群の径が大きすぎて、防振群が1枚の構成でありながらも軽量化が不十分である。更に第2、第3、第4レンズ群のティルトやシフトの伴うコマ収差の変動が大きく製造後の性能の期待値に不満が残る。 The optical system described in Patent Document 4 has a telephoto ratio of about 0.65 and a very short optical total length. However, the diameter of the anti-vibration group is too large, and although the anti-vibration group has one structure, weight reduction is not possible. It is enough. Further, the coma aberration variation accompanying the tilt and shift of the second, third, and fourth lens groups is large, and dissatisfaction remains with the expected performance value after manufacturing.

特許文献5に記載の光学系は望遠比約0.65と光学全長が非常に短く、防振群の径も抑制されているが、防振係数が小さくて望遠端での防振群移動量が抑制されていないほか、防振群のシフトに伴う特にコマ収差の変動が大きく、防振時の性能が十分といえない。更に第3レンズ群や第4レンズ群のティルトに伴うコマ収差の変動が大きく、製造後の性能の期待値に不満が残る。 The optical system described in Patent Document 5 has a telephoto ratio of about 0.65 and an optical total length that is very short, and the diameter of the antivibration group is suppressed, but the antivibration coefficient is small and the amount of movement of the antivibration group at the telephoto end is small. Is not suppressed, and the fluctuation of the coma aberration accompanying the shift of the anti-vibration group is particularly large, and the performance at the time of anti-vibration is not sufficient. Furthermore, the coma aberration variation due to the tilt of the third lens group and the fourth lens group is large, and dissatisfaction remains with the expected performance value after manufacturing.

本発明はこのような状況に鑑みてなされたものであり、望遠端の半画角2度程度で、イメージサークルが大きく望遠端の焦点距離の長い変倍結像光学系において、全長を抑えながら、防振群の重量を抑制した、防振機能を備えた高性能な変倍結像光学系を提供することを目的とする。 The present invention has been made in view of such a situation. In a variable magnification imaging optical system having a half angle of view at the telephoto end of about 2 degrees and a large image circle and a long focal length at the telephoto end, the total length is suppressed. An object of the present invention is to provide a high-performance variable magnification imaging optical system having an anti-vibration function that suppresses the weight of the anti-vibration group.

そこで、上記課題を解決するため、請求項1に記載の発明は、
物体側から順に、
正の屈折力の第1レンズ群と、
負の屈折力の第2レンズ群と、
正の屈折力の第3レンズ群と、
正の屈折力の第4レンズ群と、
負の屈折力の第5レンズ群を少なくとも備え、
各レンズ群の間は空気間隔を以って隔てられ、変倍時に各レンズ群の間の空気間隔が変化し、
第2レンズ群内の一部を光軸と直行する方向に変位させることによって防振を行い、
以下の条件式(1)(2)及び(3)を同時に満足することを特徴とする防振機能を備えた変倍結像光学系とした。
(1)F3=|(β3*H3−H3’)/((1−β3)*f3+H3’) | < 0.25
(2)F4=|(β4*H4−H4’)/((1−β4)*f4+H4’) | < 0.25
(3)√(F3^2+F4^2)/2< 0.15
ただし、
βiは第iレンズ群の望遠端における結像倍率、Hiは第iレンズ群の最も物体側の界面から第iレンズ群の物体側主点までの距離、
Hi’は第iレンズ群の最も像側の界面から第iレンズ群の像側主点までの距離
fiは第iレンズ群の合成焦点距離
F3は第3レンズ群の近軸周縁光線の入射高さと射出高さの比
F4は第4レンズ群の近軸周縁光線の入射高さと射出高さの比
Therefore, in order to solve the above-mentioned problem, the invention described in claim 1
From the object side,
A first lens unit having a positive refractive power;
A second lens unit having negative refractive power;
A third lens group having a positive refractive power;
A fourth lens unit having a positive refractive power;
At least a fifth lens unit having a negative refractive power;
Each lens group is separated by an air interval, and the air interval between each lens group changes at the time of zooming,
Vibration is prevented by displacing a part of the second lens group in a direction perpendicular to the optical axis,
A variable magnification imaging optical system having an anti-vibration function characterized in that the following conditional expressions (1), (2) and (3) are satisfied simultaneously.
(1) F3 = | (β3 * H3-H3 ′) / ((1-β3) * f3 + H3 ′) | <0.25
(2) F4 = | (β4 * H4-H4 ′) / ((1−β4) * f4 + H4 ′) | <0.25
(3) √ (F3 ^ 2 + F4 ^ 2) / 2 <0.15
However,
βi is the imaging magnification at the telephoto end of the i-th lens group, Hi is the distance from the most object-side interface of the i-th lens group to the object-side principal point of the i-th lens group,
Hi ′ is the distance fi from the most image-side interface of the i-th lens group to the image-side principal point of the i-th lens group, the combined focal length F3 of the i-th lens group is the incident height of the paraxial peripheral ray of the third lens group Is the ratio of the incident height of the paraxial peripheral ray of the fourth lens unit to the exit height.

また請求項2に記載の発明は、第2レンズ群は物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成されて2b群を光軸と直行する方向に変位させることによって防振を行うことを特徴とする請求項1に記載の防振機能を備えた変倍結像光学系とした。 In the invention according to claim 2, the second lens group is composed of a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and the 2b group is displaced in a direction perpendicular to the optical axis. 2. The variable magnification imaging optical system having the image stabilization function according to claim 1, wherein image stabilization is performed.

また請求項3に記載の発明は、以下条件式(4)を満足することを特徴とする、請求項2に記載の防振機能を備えた変倍結像光学系とした。
(4)0.70 < |LT2a / f2a| < 0.85
ただし、
LT2aは2a群の最も物体側の面から2a群の像側焦点までの距離、
f2aは2a群の焦点距離
According to a third aspect of the present invention, there is provided a variable magnification imaging optical system having the image stabilization function according to the second aspect, wherein the following conditional expression (4) is satisfied.
(4) 0.70 <| LT2a / f2a | <0.85
However,
LT2a is the distance from the most object side surface of 2a group to the image side focal point of 2a group,
f2a is the focal length of group 2a

また請求項4に記載の発明は、前記第2レンズ群は変倍時に像面に対して固定されていることを特徴とする請求項1ないし3に記載の防振機能を備えた変倍結像光学系とした。 The invention according to claim 4 is characterized in that the second lens group is fixed with respect to the image plane at the time of zooming. An image optical system was obtained.

また請求項5に記載の発明は、光学系のもっとも像側に負の屈折力のレンズ群を有し、フォーカシングに際して、前記第4レンズ群以降のいずれかのレンズ群の全体または一部を移動させることを特徴とする請求項1ないし4に記載の防振機能を備えた変倍結像光学系とした。 The invention according to claim 5 has a lens unit having a negative refractive power on the most image side of the optical system, and moves all or a part of any of the lens units after the fourth lens unit during focusing. 5. A variable magnification imaging optical system having an image stabilization function according to claim 1, wherein

本発明によれば、望遠端の半画角2度程度で、イメージサークルが大きく望遠端の焦点距離の長い変倍結像光学系において、全長を抑えながら、防振群の重量を抑制した、防振機能を備えた高性能な変倍結像光学系を提供することができる。 According to the present invention, in the variable magnification imaging optical system with a half angle of view at the telephoto end of about 2 degrees and a large image circle and a long focal length at the telephoto end, the weight of the image stabilizing group is suppressed while suppressing the overall length. A high-performance variable magnification imaging optical system having an image stabilization function can be provided.

本発明の結像光学系の実施例1に係るレンズ構成図である。It is a lens block diagram concerning Example 1 of an image formation optical system of the present invention. 実施例1の結像光学系の広角端の撮影距離無限遠における縦収差図である。6 is a longitudinal aberration diagram at an imaging distance infinity at the wide-angle end of the imaging optical system according to Example 1. FIG. 実施例1の結像光学系の中望遠の撮影距離無限遠における縦収差図である。FIG. 4 is a longitudinal aberration diagram at an imaging distance infinite at the middle telephoto position in the image forming optical system according to Example 1. 実施例1の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 4 is a longitudinal aberration diagram at an imaging distance infinity at the telephoto end of the imaging optical system according to Example 1. 実施例1の結像光学系の広角端の撮影距離無限遠における横収差図である。3 is a lateral aberration diagram at an imaging distance infinity at the wide angle end of the imaging optical system according to Example 1. FIG. 実施例1の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 3 is a lateral aberration diagram at an imaging distance infinite at the middle telephoto position in the imaging optical system according to Example 1. 実施例1の結像光学系の望遠端の撮影距離無限遠における横収差図である。6 is a lateral aberration diagram at an imaging distance infinite at the telephoto end of the imaging optical system according to Example 1. FIG. 実施例1の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。3 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the wide angle end of the imaging optical system according to Example 1. FIG. 実施例1の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。6 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 1. FIG. 実施例1の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。3 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the telephoto end of the image forming optical system according to Example 1. FIG. 本発明の結像光学系の実施例2に係るレンズ構成図である。It is a lens block diagram which concerns on Example 2 of the imaging optical system of this invention. 実施例2の結像光学系の広角端の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinity at the wide angle end of the imaging optical system according to Example 2. 実施例2の結像光学系の中望遠の撮影距離無限遠における縦収差図であるFIG. 10 is a longitudinal aberration diagram at an imaging distance infinite at the middle telephoto position in the image forming optical system according to Example 2. 実施例2の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite at the telephoto end of the image forming optical system according to Example 2. 実施例2の結像光学系の広角端の撮影距離無限遠における横収差図である。FIG. 7 is a lateral aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 2. 実施例2の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 6 is a lateral aberration diagram at an intermediate telephoto shooting distance infinite distance in the image forming optical system according to Example 2. 実施例2の結像光学系の望遠端の撮影距離無限遠における横収差図である。FIG. 6 is a lateral aberration diagram at an imaging distance infinite at the telephoto end of the image forming optical system according to Example 2. 実施例2の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。6 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the wide angle end of the image forming optical system according to Example 2. FIG. 実施例2の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。6 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 2. FIG. 実施例2の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 6 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the telephoto end of the image forming optical system according to Example 2. 本発明の結像光学系の実施例3に係るレンズ構成図である。It is a lens block diagram which concerns on Example 3 of the imaging optical system of this invention. 実施例3の結像光学系の広角端の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinity at the wide angle end of the imaging optical system according to Example 3. 実施例3の結像光学系の中望遠の撮影距離無限遠における縦収差図である。FIG. 12 is a longitudinal aberration diagram at an imaging distance infinite at the middle telephoto position in the image forming optical system according to Example 3. 実施例3の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinity at the telephoto end of the imaging optical system according to Example 3. 実施例3の結像光学系の広角端の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinity at the wide angle end of the imaging optical system according to Example 3. 実施例3の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 12 is a lateral aberration diagram at an intermediate telephoto shooting distance infinite distance in the image forming optical system according to Example 3. 実施例3の結像光学系の望遠端の撮影距離無限遠における横収差図である。6 is a lateral aberration diagram at an imaging distance infinite at the telephoto end of the imaging optical system according to Example 3. FIG. 実施例3の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a transverse aberration diagram for the case of image stabilization of 0.3 ° at an imaging distance of infinity at the wide angle end of the imaging optical system according to Example 3. 実施例3の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 3. FIG. 実施例3の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 12 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the telephoto end of the imaging optical system according to Example 3. 本発明の結像光学系の実施例4に係るレンズ構成図である。It is a lens block diagram which concerns on Example 4 of the imaging optical system of this invention. 実施例4の結像光学系の広角端の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 4. 実施例4の結像光学系の中望遠の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinite at the middle telephoto position in the image forming optical system according to Example 4; 実施例4の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinite at the telephoto end of the image forming optical system according to Example 4. 実施例4の結像光学系の広角端の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 4. 実施例4の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite at the middle telephoto position in the image forming optical system according to Example 4. 実施例4の結像光学系の望遠端の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite at the telephoto end of the image forming optical system according to Example 4. 実施例4の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of 0.3 ° image stabilization at an imaging distance infinity at the wide angle end of the imaging optical system according to Example 4. 実施例4の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 4. FIG. 実施例4の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the telephoto end of the image forming optical system according to Example 4. 本発明の結像光学系の実施例5に係るレンズ構成図である。It is a lens block diagram which concerns on Example 5 of the imaging optical system of this invention. 実施例5の結像光学系の広角端の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity at the wide angle end of the imaging optical system according to Example 5. 実施例5の結像光学系の中望遠の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity in the middle telephoto range of the image forming optical system according to Example 5. 実施例5の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 11 is a longitudinal aberration diagram at an imaging distance infinity at the telephoto end of the imaging optical system according to Example 5. 実施例5の結像光学系の広角端の撮影距離無限遠における横収差図である。FIG. 10 is a transverse aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 5. 実施例5の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinity in the middle telephoto range of the image forming optical system according to Example 5. 実施例5の結像光学系の望遠端の撮影距離無限遠における横収差図である。FIG. 11 is a lateral aberration diagram at an imaging distance infinity at the telephoto end of the image forming optical system according to Example 5. 実施例5の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the wide angle end of the imaging optical system according to Example 5. 実施例5の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 5. FIG. 実施例5の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the telephoto end of the image forming optical system according to Example 5. 本発明の結像光学系の実施例6に係るレンズ構成図である。It is a lens block diagram which concerns on Example 6 of the imaging optical system of this invention. 実施例6の結像光学系の広角端の撮影距離無限遠における縦収差図である。FIG. 11 is a longitudinal aberration diagram at an imaging distance infinity at the wide-angle end of the imaging optical system according to Example 6. 実施例6の結像光学系の中望遠の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity in the middle telephoto range of the imaging optical system according to Example 6. 実施例6の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 11 is a longitudinal aberration diagram at an imaging distance infinite at the telephoto end of the imaging optical system according to Example 6. 実施例6の結像光学系の広角端の撮影距離無限遠における横収差図である。FIG. 11 is a lateral aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 6. 実施例6の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinity at the middle telephoto position in the image forming optical system according to Example 6. 実施例6の結像光学系の望遠端の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite at the telephoto end of the imaging optical system according to Example 6. 実施例6の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of 0.3 ° image stabilization at an imaging distance infinity at the wide angle end of the imaging optical system according to Example 6. 実施例6の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 6. 実施例6の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an infinite shooting distance at the telephoto end of the image forming optical system according to Example 6. FIG. 本発明の結像光学系の実施例7に係るレンズ構成図である。It is a lens block diagram which concerns on Example 7 of the imaging optical system of this invention. 実施例7の結像光学系の広角端の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 7. 実施例7の結像光学系の中望遠の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity in the middle telephoto range of the imaging optical system according to Example 7. 実施例7の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity at the telephoto end of the imaging optical system according to Example 7. 実施例7の結像光学系の広角端の撮影距離無限遠における横収差図である。FIG. 10 is a transverse aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 7. 実施例7の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinity in the middle telephoto range of the imaging optical system according to Example 7. 実施例7の結像光学系の望遠端の撮影距離無限遠における横収差図である。FIG. 11 is a lateral aberration diagram at an imaging distance infinity at the telephoto end of the imaging optical system according to Example 7. 実施例7の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。10 is a transverse aberration diagram for the case of image stabilization of 0.3 ° at an imaging distance of infinity at the wide angle end of the imaging optical system according to Example 7. FIG. 実施例7の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 7. 実施例7の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the telephoto end of the imaging optical system according to Example 7. 本発明の結像光学系の実施例8に係るレンズ構成図である。It is a lens block diagram which concerns on Example 8 of the imaging optical system of this invention. 実施例8の結像光学系の広角端の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 8. 実施例8の結像光学系の中望遠の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity in the middle telephoto range of the imaging optical system according to Example 8. 実施例8の結像光学系の望遠端の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinity at the telephoto end of the imaging optical system according to Example 8. 実施例8の結像光学系の広角端の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinity at the wide-angle end of the image forming optical system according to Example 8. 実施例8の結像光学系の中望遠の撮影距離無限遠における横収差図である。FIG. 10 is a transverse aberration diagram at an imaging distance infinity in the middle telephoto range of the image forming optical system according to Example 8. 実施例8の結像光学系の望遠端の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinity at the telephoto end of the image forming optical system according to Example 8. 実施例8の結像光学系の広角端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the wide angle end of the imaging optical system according to Example 8. 実施例8の結像光学系の中望遠の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the middle telephoto position of the image forming optical system according to Example 8. 実施例8の結像光学系の望遠端の撮影距離無限遠における0.3°防振時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of image stabilization of 0.3 ° at an imaging distance of infinity at the telephoto end of the imaging optical system according to Example 8.

本発明の防振機能を備えた変倍結像光学系は、図1、図11、図21、図31、図41、図51、図61、図71に示すレンズ構成図のとおり、物体側から順に正の屈折率の第1レンズ群と、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群を備える。各レンズ群の間は空気間隔を以って隔てられ、各レンズ群の間の空気間隔を変化させることによって変倍を行う。 The variable magnification imaging optical system having the image stabilization function according to the present invention has an object side as shown in the lens configuration diagrams shown in FIGS. 1, 11, 21, 31, 41, 51, 61, and 71. A first lens group having a positive refractive index, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens having a negative refractive power in order from A lens group is provided. The lens groups are separated from each other by an air interval, and zooming is performed by changing the air interval between the lens groups.

本発明の防振機能を備えた変倍結像光学系は、望遠端の焦点距離を長くしながら全長を抑制するために、物体側より順に正の屈折力の第1レンズ群と負の屈折力の第2レンズ群を配置して望遠型の屈折力配置を構成している。 The variable magnification imaging optical system having an image stabilization function according to the present invention includes a first lens unit having a positive refractive power and a negative refraction in order from the object side in order to suppress the total length while increasing the focal length at the telephoto end. A telephoto-type refracting power arrangement is configured by arranging a second lens group of force.

広角端から望遠端への変倍は、主として第1レンズ群と第2レンズ群の間隔を増加させることによって行う。 The zooming from the wide-angle end to the telephoto end is performed mainly by increasing the distance between the first lens group and the second lens group.

第3レンズ群以降の群は全体として正の屈折力を持ち、広角端から望遠端への変倍に伴って全体として物体側に移動して第2レンズ群に近づくことで像面補償作用を担う。それとともに第2レンズ群以降の合成系の屈折力は負の方向へ変化することで第1レンズ群と、第2レンズ群および第3レンズ群の合成系の形成する望遠型屈折力配置が広角端から望遠端に向かって強くなることになる。この第1レンズ群から第3レンズ群まで各群の作用によって広角端では全系の合成焦点距離に対して光学全長が相対的に長く、望遠端では全系の合成焦点距離に対して光学全長が相対的に短くなり、第1レンズ群の移動量の抑制が行える。 The third and subsequent lens groups have a positive refractive power as a whole, and move toward the object side as a whole and move closer to the second lens group with zooming from the wide-angle end to the telephoto end. Bear. At the same time, the refractive power of the synthesis system after the second lens group changes in the negative direction, so that the telephoto refractive power arrangement formed by the synthesis system of the first lens group, the second lens group, and the third lens group is wide angle. It becomes stronger from the end toward the telephoto end. Due to the action of each group from the first lens group to the third lens group, the optical total length is relatively long with respect to the total focal length of the entire system at the wide angle end, and the optical total length with respect to the total focal length of the entire system at the telephoto end. Becomes relatively short, and the amount of movement of the first lens group can be suppressed.

第2レンズ群は第1レンズ群に比べ大幅に光線径が低くなり、防振群として用いることで防振群の軽量化に適する。この第2レンズ群の一部のみを防振群として用いることで、第2レンズ群全体を防振群として用いるより更なる防振群の軽量化を図れる。 The second lens group has a significantly smaller beam diameter than the first lens group, and is suitable for reducing the weight of the anti-vibration group by using it as an anti-vibration group. By using only a part of the second lens group as the anti-vibration group, it is possible to further reduce the weight of the anti-vibration group compared to using the entire second lens group as the anti-vibration group.

第3レンズ群は第2レンズ群で発散された光束をアフォーカルに近い状態で射出し、第4レンズ群で更に収斂させている。第3レンズ群と第4レンズ群の間隔が変化するとき、その間の光束がほぼアフォーカルであるゆえに軸上の球面収差はほぼ変化しないが、軸外光束の高さが変わって非点収差が変化する。変倍に伴って第3レンズ群と第4レンズ群の間隔を適切に設定することによって変倍の全域で非点収差を良好に補正することが可能である。 The third lens group emits the light beam diverged by the second lens group in a state close to afocal and is further converged by the fourth lens group. When the distance between the third lens group and the fourth lens group changes, the light beam between them is almost afocal, so the axial spherical aberration does not change substantially. However, the height of the off-axis light beam changes and astigmatism does not occur. Change. Astigmatism can be satisfactorily corrected over the entire zooming range by appropriately setting the distance between the third lens unit and the fourth lens unit with zooming.

更に物体側に負の屈折力の第5レンズ群を備えて第3レンズ群から第5レンズ群までの合成系の屈折力配置を望遠型にすることで全系の光学全長の短縮に有利である。広角端から望遠端への変倍に際して第4レンズ群と第5レンズ群との間隔が狭くなるよう第5レンズ群を物体側に移動させることで第5レンズ群の結像倍率を大きくすることで変倍に寄与し、ひいては第1レンズ群の移動量の削減に寄与する。 Further, the fifth lens unit having a negative refractive power is provided on the object side, and the refractive power arrangement of the composite system from the third lens unit to the fifth lens unit is made telephoto, which is advantageous for shortening the total optical length of the entire system. is there. Increasing the imaging magnification of the fifth lens group by moving the fifth lens group to the object side so that the distance between the fourth lens group and the fifth lens group becomes narrow when zooming from the wide-angle end to the telephoto end. This contributes to zooming, and thus contributes to a reduction in the amount of movement of the first lens group.

第3レンズ群および第4レンズ群は第2レンズ群で発散された光束を収斂させる必要があるため大きな屈折力が必要となり、第3レンズ群および第4レンズ群単独での球面収差の補正は難しくなりがちである。更に第5レンズ群の倍率が大きいことから、第3レンズ群および第4レンズ群に起因して発生する収差変動は拡大されて像面に結像する。このため第3レンズ群および第4レンズ群の偏芯に伴う、特にコマ収差の変動は大きくなりやすい傾向がある。 Since the third lens group and the fourth lens group need to converge the light beam diverged by the second lens group, a large refractive power is required, and correction of spherical aberration by the third lens group and the fourth lens group alone is performed. Tend to be difficult. Further, since the magnification of the fifth lens group is large, the aberration variation caused by the third lens group and the fourth lens group is enlarged and formed on the image plane. For this reason, especially the coma aberration fluctuation tends to become large due to the decentering of the third lens group and the fourth lens group.

第3レンズ群と第4レンズ群の偏芯に伴うコマ収差の変動を小さくするためには第3レンズ群と第4レンズ群の内部における球面収差の発生を抑制することが有効である。そのためには第3レンズ群および第4レンズ群通過前後における近軸周縁光線の通過高さの変化が抑制されていることが好ましい。 In order to reduce the variation of coma aberration caused by the eccentricity of the third lens group and the fourth lens group, it is effective to suppress the occurrence of spherical aberration inside the third lens group and the fourth lens group. For this purpose, it is preferable that the change in the passing height of the paraxial peripheral ray before and after passing through the third lens group and the fourth lens group is suppressed.

以下に、厚肉レンズ系の前後の面での近軸周縁光線の通過高さについて説明する。 Hereinafter, the passing height of the paraxial peripheral ray on the front and rear surfaces of the thick lens system will be described.

厚肉レンズ系の合成焦点距離をf、結像倍率をβ、厚肉レンズ系の最も物体側の界面から物体側主点までの距離をH、厚肉レンズ系の最も像側の界面から像側主点までの距離をH’とし、厚肉レンズ系に入射する近軸周縁光線が光軸となす角をθ、厚肉レンズ系から射出する近軸周縁光線が光軸となす角をθ’とする。 The composite focal length of the thick lens system is f, the imaging magnification is β, the distance from the most object side interface of the thick lens system to the object side principal point is H, and the image is from the most image side interface of the thick lens system. The distance to the side principal point is H ′, the angle formed by the paraxial peripheral ray incident on the thick lens system with the optical axis is θ, and the angle formed by the paraxial peripheral ray emitted from the thick lens system with the optical axis is θ 'And.

この時、ニュートンの結像式と近軸光線であることから、厚肉レンズ系への近軸周縁光線入射高さhおよび厚肉レンズ系からの近軸周縁光線射出高さh’は以下の式で表せる。
h=((1−1/β)*f−H)*θ
h’=((1−β)*f+H’)*θ’
更に、β=−θ/θ’なので、整理すると、近軸周縁光線入射高さhと近軸周縁光線射出高さh’の比は以下の式で表される。
h/h’= 1+(βH−H’)/((1−β)*f+H’)
At this time, because of Newton's imaging formula and paraxial rays, the paraxial marginal ray incidence height h to the thick lens system and the paraxial marginal ray exit height h ′ from the thick lens system are as follows: It can be expressed by an expression.
h = ((1-1 / β) * f−H) * θ
h ′ = ((1−β) * f + H ′) * θ ′
Furthermore, since β = −θ / θ ′, to summarize, the ratio between the paraxial peripheral ray incident height h and the paraxial peripheral ray exit height h ′ is expressed by the following equation.
h / h ′ = 1 + (βH−H ′) / ((1−β) * f + H ′)

条件式(1)乃至(2)は第3レンズ群および第4レンズ群において近軸周縁光線の入射高さと射出高さの比の条件を規定している。 Conditional expressions (1) and (2) define the condition of the ratio between the incident height and the exit height of the paraxial peripheral ray in the third lens group and the fourth lens group.

また条件式(3)は条件式(1)および条件式(2)の値の二乗平均値であり、この値が小さいほど条件式(1)および(2)の値が平均的に小さいことに対応し、第3レンズ群および第4レンズ群での近軸周縁光線高の変動が少ないことを意味する。 Conditional expression (3) is a mean square value of the values of conditional expression (1) and conditional expression (2). The smaller the value, the smaller the values of conditional expressions (1) and (2) on average. Correspondingly, it means that the fluctuation of the paraxial marginal ray height in the third lens group and the fourth lens group is small.

条件式(1)乃至(2)の上限を超え、第3レンズ群乃至第4レンズ群での近軸周縁光線通過高さの変動が大きくなると、第3レンズ群内での球面収差の発生が大きくなり、第3レンズ群偏芯時のコマ収差の変動が抑制できなくなる。また、条件式(3)の上限を超え、第3レンズ群および第4レンズ群全体としての近軸周縁光線高の変動が大きくなると、条件式(1)乃至(2)の範囲内であっても第3レンズ群と第4レンズ群の偏芯が同時に逆方向に発生した場合、コマ収差の変動が無視できない。 When the upper limit of conditional expressions (1) to (2) is exceeded and the variation in the paraxial marginal ray passing height in the third lens group to the fourth lens group becomes large, the occurrence of spherical aberration in the third lens group. As a result, the fluctuation of the coma aberration when the third lens group is decentered cannot be suppressed. Further, when the upper limit of the conditional expression (3) is exceeded and the variation of the paraxial peripheral ray height as the whole of the third lens group and the fourth lens group becomes large, it is within the range of the conditional expressions (1) to (2). In the case where the decentering of the third lens group and the fourth lens group occurs simultaneously in the opposite directions, fluctuations in coma aberration cannot be ignored.

条件式(1)乃至条件式(2)の上限を0.23に、更に0.20にすることで本発明の効果をより確実に達成することができる。また、条件式(3)の上限を0.14に、更に0.13にすることで本発明の効果をより確実に達成することができる。 By setting the upper limit of conditional expression (1) to conditional expression (2) to 0.23 and further to 0.20, the effect of the present invention can be achieved more reliably. Moreover, the effect of this invention can be achieved more reliably by making the upper limit of conditional expression (3) into 0.14, and also 0.13.

第2レンズ群を物体側から順に2a群と2b群に分割して、像側に配されてより光線径の低い2b群のみを防振に用いることにより防振群の更なる軽量化に適する。 The second lens group is divided into the 2a group and the 2b group in order from the object side, and only the 2b group having a lower light beam diameter disposed on the image side is used for the image stabilization, which is suitable for further weight reduction of the image stabilization group. .

条件式(4)は2a群の望遠比を規定し、光学系全系の短縮および防振群の軽量化に関して望ましい範囲を示すものである。 Conditional expression (4) defines the telephoto ratio of the 2a group, and indicates a desirable range for shortening the entire optical system and reducing the weight of the image stabilizing group.

条件式(4)の上限を超え、2a群の望遠比が大きくなると、全長短縮ならびに光線径の抑制が不十分となってしまう。条件式(4)の下限を超え、2a群の望遠比が小さくなると、全長の短縮ならびに光線径の抑制の効果は高くなるが、最も物体側の正の屈折力のレンズ成分の屈折力が強くなりすぎてレンズのティルトに伴う非点収差の変動が大きくなりやすく、製造誤差による性能低下が大きくなってしまう。 If the upper limit of conditional expression (4) is exceeded and the telephoto ratio of the group 2a is increased, the total length is shortened and the light beam diameter is not sufficiently suppressed. If the lower limit of conditional expression (4) is exceeded and the telephoto ratio of the group 2a is reduced, the effect of shortening the total length and suppressing the beam diameter is enhanced, but the refractive power of the lens component having the positive refractive power closest to the object is strong. As a result, the variation of astigmatism due to the tilt of the lens tends to increase, and the performance degradation due to manufacturing errors increases.

条件式(4)の上限を0.83に、更に0.82に、また条件式(4)の下限を0.71に、更に0.72にすることで本発明の効果をより確実に達成することができる。 The upper limit of conditional expression (4) is set to 0.83, further to 0.82, and the lower limit of conditional expression (4) is set to 0.71 and further to 0.72, thereby achieving the effect of the present invention more reliably. can do.

本発明の防振機能を備えた変倍結像光学系においては、第2レンズ群は変倍時に像面に対して固定されていることが望ましい。第2レンズ群は防振群を含むため制御配線をつなぐ必要がある。第2レンズ群が移動する場合はフレキシブル配線によって接続し、第2レンズ群の移動に伴って無理な応力をフレキシブル配線にかけないために、フレキシブル配線をたわませて退避させるための空間が必要となる。したがって、その空間を確保する必要のために鏡筒全体の小型化が難しくなる。 In the variable magnification imaging optical system having the image stabilization function of the present invention, it is desirable that the second lens group is fixed with respect to the image plane at the time of zooming. Since the second lens group includes the image stabilizing group, it is necessary to connect the control wiring. When the second lens group moves, it is connected by flexible wiring, and in order not to apply excessive stress to the flexible wiring as the second lens group moves, a space for deflecting and retracting the flexible wiring is required. Become. Therefore, it is difficult to reduce the size of the entire lens barrel because it is necessary to secure the space.

本発明の防振機能を備えた変倍結像光学系においては、最も像側に負の屈折力のレンズ群を有し、フォーカシングに際して第4レンズ群以降のいずれかのレンズ群の全体、または一部を移動させることが望ましい。長焦点レンズにおいては近距離へのフォーカシングのためのデフォーカス量が大きくなる。オートフォーカスの駆動の速度の向上を鑑みれば、第1にフォーカシングレンズ群は軽量であること、第2にフォーカシングレンズ群の単位移動量に対する像面の移動量が大きいこと、の2点が達成されることが望ましい。長焦点の光学系において物体側に近い部分では外径が大きすぎ、重量が全く抑制できない。本発明の変倍結像光学系において、光束は第1レンズ群で収斂され、第2レンズ群で発散され、第3レンズ群で収斂される。前記後方レンズ群中の、第3レンズ群よりも更に後方のレンズ群であれば光束は十分に収斂されており、十分な軽量化が可能である。 In the variable magnification imaging optical system having the image stabilization function of the present invention, the lens unit having the negative refractive power on the most image side, and the entire lens unit after the fourth lens unit during focusing, or It is desirable to move a part. In the long focus lens, the defocus amount for focusing to a short distance becomes large. Considering the improvement of the autofocus drive speed, two points are achieved: first, the focusing lens group is lightweight, and second, the amount of movement of the image plane relative to the unit movement amount of the focusing lens group is large. It is desirable. In the long-focus optical system, the outer diameter is too large at the portion close to the object side, and the weight cannot be suppressed at all. In the variable magnification imaging optical system of the present invention, the light beam is converged by the first lens group, diverged by the second lens group, and converged by the third lens group. In the rear lens group, if the lens group is further rearward than the third lens group, the luminous flux is sufficiently converged, and a sufficient weight reduction is possible.

また、光学系全系の短縮のためには光学系の最も像側のレンズ群が強い負の屈折力を備えることが望ましい。この強い負の屈折力のためにこの最も像側のレンズ群の結像倍率は大きくなる。そのため、この最も像側のレンズ群の全体または一部、あるいは最も像側のレンズ群よりも物体側のレンズ群の全体または一部においては、レンズ群の単位移動量あたりの像面移動量が大きくなりやすい。これらの性質から、第4レンズ群以降のいずれかのレンズ群の全体または一部によってフォーカシングを行うことが望ましい。 In order to shorten the entire optical system, it is desirable that the lens group closest to the image side of the optical system has a strong negative refractive power. Due to this strong negative refractive power, the imaging magnification of the lens group closest to the image side becomes large. Therefore, in the whole or part of the lens group closest to the image side, or in the whole or part of the lens group closer to the object side than the lens group closest to the image side, the image plane movement amount per unit movement amount of the lens group is Easy to grow. From these properties, it is desirable to perform focusing by the whole or a part of any lens group after the fourth lens group.

次に、本発明の結像光学系に係る実施例のレンズ構成について説明する。なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。 Next, a lens configuration of an example according to the imaging optical system of the present invention will be described. In the following description, the lens configuration is described in order from the object side to the image side.

図1は、本発明の実施例1の結像光学系のレンズ構成図である。 FIG. 1 is a lens configuration diagram of an imaging optical system according to Example 1 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動する構成となっている。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 having negative refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the second lens group is fixed, and the third lens group Moves to the object side, the fourth lens group moves to the object side, and the fifth lens group moves to the object side.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex lens L2, and a positive meniscus lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および両凸レンズL9からなる接合レンズから構成される。 The second lens group includes a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The 2b group includes a biconcave lens L7 and a cemented lens including a biconcave lens L8 and a biconvex lens L9.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, Consists of

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL17とから構成される。第4レンズ群G4は、全体が無限遠方から近距離へのフォーカシングに際して物体側へ移動する。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a positive meniscus lens L17 having a convex surface directed toward the object side. The entire fourth lens group G4 moves toward the object side during focusing from infinity to a short distance.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL18と、両凹レンズL19と両凸レンズL20からなる接合レンズから構成される。 The fifth lens group G5 includes a negative meniscus lens L18 having a convex surface directed toward the object side, and a cemented lens including a biconcave lens L19 and a biconvex lens L20.

図11は、本発明の実施例2の結像光学系のレンズ構成図である。 FIG. 11 is a lens configuration diagram of the imaging optical system according to Example 2 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動する構成となっている。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 having negative refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the second lens group is fixed, and the third lens group Moves to the object side, the fourth lens group moves to the object side, and the fifth lens group moves to the object side.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた平凸レンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a plano-convex lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および両凸レンズL9からなる接合レンズから構成される。 The second lens group includes a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The 2b group includes a biconcave lens L7 and a cemented lens including a biconcave lens L8 and a biconvex lens L9.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, Consists of

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL17と、から構成される。第4レンズ群G4は、全体が無限遠方から近距離へのフォーカシングに際して物体側へ移動する。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a positive meniscus lens L17 having a convex surface directed toward the object side. The entire fourth lens group G4 moves toward the object side during focusing from infinity to a short distance.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL18と、両凹レンズL19と両凸レンズL20からなる接合レンズから構成される。 The fifth lens group G5 includes a negative meniscus lens L18 having a convex surface directed toward the object side, and a cemented lens including a biconcave lens L19 and a biconvex lens L20.

図21は、本発明の実施例3の結像光学系のレンズ構成図である。 FIG. 21 is a lens configuration diagram of the imaging optical system according to Example 3 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動する構成となっている。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 having negative refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the second lens group is fixed, and the third lens group Moves to the object side, the fourth lens group moves to the object side, and the fifth lens group moves to the object side.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex lens L2, and a positive meniscus lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および両凸レンズL9からなる接合レンズから構成される。 The second lens group includes a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The 2b group includes a biconcave lens L7 and a cemented lens including a biconcave lens L8 and a biconvex lens L9.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, Consists of

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL17と、から構成される。第4レンズ群G4は、全体が無限遠方から近距離へのフォーカシングに際して物体側へ移動する。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a positive meniscus lens L17 having a convex surface directed toward the object side. The entire fourth lens group G4 moves toward the object side during focusing from infinity to a short distance.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL18と、両凹レンズL19と両凸レンズL20からなる接合レンズから構成される。 The fifth lens group G5 includes a negative meniscus lens L18 having a convex surface directed toward the object side, and a cemented lens including a biconcave lens L19 and a biconvex lens L20.

図31は、本発明の実施例4の結像光学系のレンズ構成図である。 FIG. 31 is a lens configuration diagram of the imaging optical system according to Example 4 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動する構成となっている。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 having negative refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the second lens group is fixed, and the third lens group Moves to the object side, the fourth lens group moves to the object side, and the fifth lens group moves to the object side.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた平凸レンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a plano-convex lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および物体側に凸面を向けた正メニスカスレンズL9からなる接合レンズから構成される。 The second lens group includes a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The group 2b includes a cemented lens including a biconcave lens L7, a biconcave lens L8, and a positive meniscus lens L9 having a convex surface directed toward the object side.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, Consists of

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL17と、から構成される。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a positive meniscus lens L17 having a convex surface directed toward the object side.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL18と、両凹レンズL19と物体側に凸面を向けた正メニスカスL20からなる接合レンズから構成される。第5レンズ群G5は、全体が無限遠方から近距離へのフォーカシングに際して像側へ移動する。 The fifth lens group G5 includes a cemented lens including a negative meniscus lens L18 having a convex surface directed toward the object side, a biconcave lens L19, and a positive meniscus L20 having a convex surface directed toward the object side. The entire fifth lens group G5 moves toward the image side during focusing from infinity to a short distance.

図41は、本発明の実施例5の結像光学系のレンズ構成図である。 FIG. 41 is a lens configuration diagram of the imaging optical system according to Example 5 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動する構成となっている。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 having negative refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the second lens group is fixed, and the third lens group Moves to the object side, the fourth lens group moves to the object side, and the fifth lens group moves to the object side.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた平凸レンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a plano-convex lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および物体側に凸面を向けた正メニスカスレンズL9からなる接合レンズから構成される。 The second lens group includes a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The group 2b includes a cemented lens including a biconcave lens L7, a biconcave lens L8, and a positive meniscus lens L9 having a convex surface directed toward the object side.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, Consists of

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL17と、から構成される。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a positive meniscus lens L17 having a convex surface directed toward the object side.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL18と、両凹レンズL19と物体側に凸面を向けた正メニスカスレンズL20からなる接合レンズから構成される。第5レンズ群G5は、全体が無限遠方から近距離へのフォーカシングに際して像側へ移動する。 The fifth lens group G5 includes a cemented lens including a negative meniscus lens L18 having a convex surface directed toward the object side, a biconcave lens L19, and a positive meniscus lens L20 having a convex surface directed toward the object side. The entire fifth lens group G5 moves toward the image side during focusing from infinity to a short distance.

図51は、本発明の実施例6の結像光学系のレンズ構成図である。 FIG. 51 is a lens configuration diagram of the imaging optical system according to Example 6 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動する構成となっている。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 having negative refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the second lens group is fixed, and the third lens group Moves to the object side, the fourth lens group moves to the object side, and the fifth lens group moves to the object side.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた平凸レンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a plano-convex lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および物体側に凸面を向けた正メニスカスレンズL9からなる接合レンズから構成される。 The second lens group includes a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The group 2b includes a cemented lens including a biconcave lens L7, a biconcave lens L8, and a positive meniscus lens L9 having a convex surface directed toward the object side.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, Consists of

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、両凸レンズL17と、から構成される。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a biconvex lens L17.

第5レンズ群G5は、負の屈折力の5a群と負の屈折力の5b群と、から構成される。5a群は物体側に凸面を向けた負メニスカスレンズL18と物体側に凸面を向けた正メニスカスレンズL19とから構成される。5b群は両凹レンズL20と物体側に凸面を向けた正メニスカスレンズL21からなる接合レンズから構成される。5a群は、無限遠方から近距離へのフォーカシングに際して像側へ移動する。 The fifth lens group G5 includes a negative refractive power 5a group and a negative refractive power 5b group. The group 5a includes a negative meniscus lens L18 having a convex surface facing the object side and a positive meniscus lens L19 having a convex surface facing the object side. The 5b group includes a cemented lens including a biconcave lens L20 and a positive meniscus lens L21 having a convex surface directed toward the object side. The group 5a moves to the image side during focusing from an infinite distance to a short distance.

図61は、本発明の実施例7の結像光学系のレンズ構成図である。 FIG. 61 is a lens configuration diagram of the imaging optical system according to Example 7 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、負の屈折力の第5レンズ群G5、および負の屈折力の第6レンズ群G6から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動し、第6レンズ群は物体側へ移動する構成となっている。 In order from the object side, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a positive refractive power, and a negative The fifth lens group G5 having a negative refractive power and the sixth lens group G6 having a negative refractive power. Upon zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, The second lens group is fixed, the third lens group moves to the object side, the fourth lens group moves to the object side, the fifth lens group moves to the object side, and the sixth lens group moves to the object side. It has a configuration.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と両凸レンズL2からなる接合レンズと、物体側に凸面を向けた平凸レンズL3から構成される。 The first lens group G1 includes a cemented lens including a negative meniscus lens L1 having a convex surface facing the object side and a biconvex lens L2, and a plano-convex lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および物体側に凸面を向けた正メニスカスレンズL9からなる接合レンズから構成される。 The second lens group is composed of a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The group 2b includes a cemented lens including a biconcave lens L7, a biconcave lens L8, and a positive meniscus lens L9 having a convex surface directed toward the object side.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と像側に凸面を向けた負メニスカスレンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a negative meniscus lens L12 having a convex surface facing the image side, a positive meniscus lens L13 having a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus lens L14 directed.

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、両凸レンズL17と、から構成される。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a biconvex lens L17.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL18と物体側に凸面を向けた正メニスカスレンズL19と、から構成される。第5レンズ群G5は、無限遠方から近距離へのフォーカシングに際して像側へ移動する。 The fifth lens group G5 includes a negative meniscus lens L18 having a convex surface directed toward the object side, and a positive meniscus lens L19 having a convex surface directed toward the object side. The fifth lens group G5 moves to the image side during focusing from infinity to a short distance.

第6レンズ群G6は両凹レンズL20と物体側に凸面を向けた正メニスカスレンズL21からなる接合レンズから構成される。 The sixth lens group G6 includes a cemented lens including a biconcave lens L20 and a positive meniscus lens L21 having a convex surface directed toward the object side.

図71は、本発明の実施例8の結像光学系のレンズ構成図である。 FIG. 71 is a lens configuration diagram of the imaging optical system according to Example 8 of the present invention.

物体側より順に、正の屈折力の第1レンズ群G1、負の屈折力の第2レンズ群G2、正の屈折力の第3レンズ群G3、正の屈折力の第4レンズ群G4、および負の屈折力の第5レンズ群G5から構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群は物体側へ移動し、第2レンズ群は固定し、第3レンズ群は物体側に移動し、第4レンズ群は物体側へ移動し、第5レンズ群は物体側へ移動し、第6レンズ群は物体側へ移動する構成となっている。 In order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and The fifth lens group G5 having negative refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group moves to the object side, the second lens group is fixed, and the third lens group Moves to the object side, the fourth lens group moves to the object side, the fifth lens group moves to the object side, and the sixth lens group moves to the object side.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL1と、両凸レンズL2と、物体側に凸面を向けた正メニスカスレンズL3から構成される。 The first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a biconvex lens L2, and a positive meniscus lens L3 having a convex surface facing the object side.

第2レンズ群は、物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成され、2b群のみを光軸と直行する方向に変位させることにより防振を行う。2a群は物体側に凸面を向けた正メニスカスレンズL4と、両凸レンズL5と両凹レンズL6からなる接合レンズから構成される。2b群は両凹レンズL7と、両凹レンズL8および両凸レンズL9からなる接合レンズから構成される。 The second lens group includes a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and performs vibration isolation by displacing only the 2b group in a direction perpendicular to the optical axis. The group 2a includes a positive meniscus lens L4 having a convex surface directed toward the object side, and a cemented lens including a biconvex lens L5 and a biconcave lens L6. The 2b group includes a biconcave lens L7 and a cemented lens including a biconcave lens L8 and a biconvex lens L9.

第3レンズ群G3は両凸レンズL10と、両凸レンズL11と両凹レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、から構成される。 The third lens group G3 includes a biconvex lens L10, a cemented lens including a biconvex lens L11 and a biconcave lens L12, a positive meniscus lens L13 having a convex surface facing the object side, a negative meniscus lens L14 having a convex surface facing the object side, Consists of

開口絞りは第3レンズ群の像側に備えられ、変倍に伴って第3レンズ群と一体で移動する。 The aperture stop is provided on the image side of the third lens group, and moves together with the third lens group with zooming.

第4レンズ群G4は、両凸レンズL15と像側に凸面を向けた負メニスカスレンズL16からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL17と、から構成される。第4レンズ群G4は、全体が無限遠方から近距離へのフォーカシングに際して物体側へ移動する。 The fourth lens group G4 includes a biconvex lens L15, a cemented lens including a negative meniscus lens L16 having a convex surface directed toward the image side, and a positive meniscus lens L17 having a convex surface directed toward the object side. The entire fourth lens group G4 moves toward the object side during focusing from infinity to a short distance.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL18と、両凹レンズL19と両凸レンズL20からなる接合レンズから構成される。 The fifth lens group G5 includes a negative meniscus lens L18 having a convex surface directed toward the object side, and a cemented lens including a biconcave lens L19 and a biconvex lens L20.

以下に、前述した本発明の結像光学系の各実施例の具体的な数値データを示す。 Specific numerical data of each embodiment of the imaging optical system of the present invention described above will be shown below.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長587.56nm)に対する屈折率、vdはd線に対するアッベ数を示している。 In [Surface data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the radius of curvature of each surface, d is the distance between the surfaces, nd is the refractive index with respect to the d-line (wavelength 587.56 nm). , Vd indicate Abbe numbers for the d line.

面番号に付した(絞り)は、その位置に開口絞りが位置していることを示している。平面又は開口絞りに対する曲率半径には∞(無限大)を記入している。また、BFはバックフォーカスを表している。 The (diaphragm) attached to the surface number indicates that the aperture stop is located at that position. ∞ (infinity) is entered in the radius of curvature for a plane or aperture stop. BF represents back focus.

[各種データ]には、各撮影距離状態における焦点距離等の値を示している。 [Various data] shows values such as the focal length in each shooting distance state.

[可変間隔データ]には、各撮影距離状態における可変間隔及びBFの値を示している。 [Variable interval data] indicates the variable interval and the value of BF in each shooting distance state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。 [Lens Group Data] indicates the surface number of the most object side constituting each lens group and the combined focal length of the entire group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the values of the following specifications, the focal length f, the radius of curvature r, the lens surface interval d, and other length units described are in millimeters (mm) unless otherwise specified. In the system, the same optical performance can be obtained even in proportional expansion and proportional reduction, and the present invention is not limited to this.

また、これらの各実施例における条件式の対応値の一覧を示す。   In addition, a list of corresponding values of the conditional expressions in each of these examples is shown.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、△S、△Mはそれぞれサジタル像面、メリジオナル像面を表している。   In the aberration diagrams corresponding to each example, d, g, and C represent d-line, g-line, and C-line, respectively, and ΔS and ΔM represent sagittal image plane and meridional image plane, respectively. .

数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
1 357.6638 3.0000 1.80611 40.73
2 145.8989 0.1000
3 145.8989 10.7551 1.49700 81.61
4 -794.0595 0.1500
5 135.5390 10.1849 1.43700 95.10
6 7136.8093 (d6)
7 137.9806 3.0791 1.72916 54.67
8 758.9464 20.2528
9 299.5544 2.6811 1.56732 42.84
10 -133.6568 1.0000 1.77250 49.62
11 92.0241 6.0917
12 -162.5813 0.8000 1.69680 55.46
13 83.9180 3.0070
14 -56.0081 0.8000 1.69680 55.46
15 74.4381 2.9326 1.80518 25.46
16 -271.5499 (d16)
17 297.4981 3.8735 1.69680 55.46
18 -72.3818 0.1500
19 63.0217 5.0039 1.49700 81.61
20 -56.2842 1.0000 1.90043 37.37
21 325.1721 0.1500
22 33.0876 4.2056 1.62004 36.30
23 102.9453 2.4546
24 46.7524 1.0000 1.91082 35.25
25 28.9828 5.7612
26(絞り) ∞ (d26)
27 150.4164 4.1498 1.58913 61.25
28 -35.3902 1.0000 1.95375 32.32
29 -66.3121 0.1500
30 60.0137 2.5699 1.58913 61.25
31 439.8894 (d31)
32 78.1384 1.0000 1.90043 37.37
33 30.9430 8.3296
34 -75.9406 1.0000 1.49700 81.61
35 32.0303 4.0594 1.64769 33.84
36 -260.4427 (BF)
像面 ∞

[各種データ]
ズーム比 3.75
広角 中間 望遠
焦点距離 154.54 270.00 578.90
Fナンバー 5.20 5.81 6.51
全画角2ω 15.63 8.97 4.19
像高Y 21.63 21.63 21.63
レンズ全長 298.6040 342.3965 377.7921

[可変間隔データ]
広角 中間 望遠
d6 47.8371 91.6295 127.0254
d16 32.3023 26.1575 3.5000
d26 30.1327 15.9882 22.9567
d31 14.6883 8.4186 1.9977
BF 62.9518 89.5109 111.6205

[レンズ群データ]
群 始面 焦点距離
G1 1 255.26
G2 7 -46.06
G3 17 72.20
G4 27 60.80
G5 32 -60.88
G2a 7 -357.47
G2b 12 -48.13
Numerical example 1
Unit: mm
[Surface data]
Surface number rd nd vd
1 357.6638 3.0000 1.80611 40.73
2 145.8989 0.1000
3 145.8989 10.7551 1.49700 81.61
4 -794.0595 0.1500
5 135.5390 10.1849 1.43700 95.10
6 7136.8093 (d6)
7 137.9806 3.0791 1.72916 54.67
8 758.9464 20.2528
9 299.5544 2.6811 1.56732 42.84
10 -133.6568 1.0000 1.77250 49.62
11 92.0241 6.0917
12 -162.5813 0.8000 1.69680 55.46
13 83.9180 3.0070
14 -56.0081 0.8000 1.69680 55.46
15 74.4381 2.9326 1.80518 25.46
16 -271.5499 (d16)
17 297.4981 3.8735 1.69680 55.46
18 -72.3818 0.1500
19 63.0217 5.0039 1.49700 81.61
20 -56.2842 1.0000 1.90043 37.37
21 325.1721 0.1500
22 33.0876 4.2056 1.62004 36.30
23 102.9453 2.4546
24 46.7524 1.0000 1.91082 35.25
25 28.9828 5.7612
26 (Aperture) ∞ (d26)
27 150.4164 4.1498 1.58913 61.25
28 -35.3902 1.0000 1.95375 32.32
29 -66.3121 0.1500
30 60.0137 2.5699 1.58913 61.25
31 439.8894 (d31)
32 78.1384 1.0000 1.90043 37.37
33 30.9430 8.3296
34 -75.9406 1.0000 1.49700 81.61
35 32.0303 4.0594 1.64769 33.84
36 -260.4427 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.75
Wide angle Medium telephoto
Focal length 154.54 270.00 578.90
F number 5.20 5.81 6.51
Full angle 2ω 15.63 8.97 4.19
Image height Y 21.63 21.63 21.63
Total lens length 298.6040 342.3965 377.7921

[Variable interval data]
Wide angle Medium telephoto
d6 47.8371 91.6295 127.0254
d16 32.3023 26.1575 3.5000
d26 30.1327 15.9882 22.9567
d31 14.6883 8.4186 1.9977
BF 62.9518 89.5109 111.6205

[Lens group data]
Group Start surface Focal length
G1 1 255.26
G2 7 -46.06
G3 17 72.20
G4 27 60.80
G5 32 -60.88
G2a 7 -357.47
G2b 12 -48.13

数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
1 528.6730 3.0000 1.83481 42.72
2 143.5131 10.5261 1.49700 81.61
3 -536.1702 0.1500
4 133.2008 9.3074 1.49700 81.61
5 ∞ (d5)
6 148.9229 2.9114 1.71736 29.50
7 700.0000 22.6935
8 165.3603 2.7965 1.51742 52.15
9 -165.3603 1.0000 1.88300 40.80
10 93.6370 6.0627
11 -250.0754 0.7000 1.69680 55.46
12 92.3831 2.8270
13 -57.3765 0.7000 1.69680 55.46
14 75.3753 2.7812 1.80518 25.46
15 -472.9495 (d15)
16 284.2091 3.3355 1.69680 55.46
17 -67.7648 0.1500
18 70.9155 5.0947 1.49700 81.61
19 -53.8213 1.0000 1.90043 37.37
20 337.6022 0.1500
21 34.4130 5.7994 1.58144 40.89
22 96.3145 1.3784
23 45.9295 1.9000 1.88100 40.14
24 30.4137 5.5139
25(絞り) ∞ (d25)
26 160.1209 4.1084 1.65844 50.85
27 -35.9129 1.0000 1.95375 32.32
28 -80.1123 0.1500
29 67.7459 2.2114 1.58913 61.25
30 554.6238 (d30)
31 63.9746 1.0000 1.91082 35.25
32 29.1749 8.7771
33 -72.7482 1.0000 1.43700 95.10
34 31.9872 4.5267 1.64769 33.84
35 -1000.0000 (BF)
像面 ∞

[各種データ]
ズーム比 3.74
広角 中間 望遠
焦点距離 154.67 270.00 578.86
Fナンバー 5.15 5.77 6.50
全画角2ω 15.58 8.96 4.19
像高Y 21.63 21.63 21.63
レンズ全長 298.9062 343.6742 379.0453

[可変間隔データ]
広角 中間 望遠
d5 48.3963 93.1642 128.5354
d15 30.4954 25.6247 3.5000
d25 34.1791 19.6736 24.9615
d30 18.4411 9.9704 1.9974
BF 54.8430 82.6900 107.4997

[レンズ群データ]
群 始面 焦点距離
G1 1 256.25
G2 6 -46.11
G3 16 71.10
G4 26 65.07
G5 31 -65.77
G2a 6 -267.24
G2b 11 -51.20
Numerical example 2
Unit: mm
[Surface data]
Surface number rd nd vd
1 528.6730 3.0000 1.83481 42.72
2 143.5131 10.5261 1.49700 81.61
3 -536.1702 0.1500
4 133.2008 9.3074 1.49700 81.61
5 ∞ (d5)
6 148.9229 2.9114 1.71736 29.50
7 700.0000 22.6935
8 165.3603 2.7965 1.51742 52.15
9 -165.3603 1.0000 1.88300 40.80
10 93.6370 6.0627
11 -250.0754 0.7000 1.69680 55.46
12 92.3831 2.8270
13 -57.3765 0.7000 1.69680 55.46
14 75.3753 2.7812 1.80518 25.46
15 -472.9495 (d15)
16 284.2091 3.3355 1.69680 55.46
17 -67.7648 0.1500
18 70.9155 5.0947 1.49700 81.61
19 -53.8213 1.0000 1.90043 37.37
20 337.6022 0.1500
21 34.4130 5.7994 1.58144 40.89
22 96.3145 1.3784
23 45.9295 1.9000 1.88100 40.14
24 30.4137 5.5139
25 (Aperture) ∞ (d25)
26 160.1209 4.1084 1.65844 50.85
27 -35.9129 1.0000 1.95375 32.32
28 -80.1123 0.1500
29 67.7459 2.2114 1.58913 61.25
30 554.6238 (d30)
31 63.9746 1.0000 1.91082 35.25
32 29.1749 8.7771
33 -72.7482 1.0000 1.43700 95.10
34 31.9872 4.5267 1.64769 33.84
35 -1000.0000 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.74
Wide angle Medium telephoto
Focal length 154.67 270.00 578.86
F number 5.15 5.77 6.50
Full angle of view 2ω 15.58 8.96 4.19
Image height Y 21.63 21.63 21.63
Total lens length 298.9062 343.6742 379.0453

[Variable interval data]
Wide angle Medium telephoto
d5 48.3963 93.1642 128.5354
d15 30.4954 25.6247 3.5000
d25 34.1791 19.6736 24.9615
d30 18.4411 9.9704 1.9974
BF 54.8430 82.6900 107.4997

[Lens group data]
Group Start surface Focal length
G1 1 256.25
G2 6 -46.11
G3 16 71.10
G4 26 65.07
G5 31 -65.77
G2a 6 -267.24
G2b 11 -51.20

数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
1 373.7120 3.0000 1.80611 40.73
2 148.6143 0.1000
3 148.6143 10.6839 1.49700 81.61
4 -731.3819 0.1500
5 137.0582 10.1463 1.43700 95.10
6 14951.7522 (d6)
7 116.0743 4.0892 1.72916 54.67
8 403.7009 20.7778
9 293.4642 3.6165 1.56732 42.84
10 -123.6305 1.6647 1.77250 49.62
11 71.3448 6.3805
12 -145.4433 0.8000 1.69680 55.46
13 104.6635 2.6947
14 -60.2911 0.8000 1.69680 55.46
15 72.6162 2.9409 1.80518 25.46
16 -297.3883 (d16)
17 312.8853 3.8974 1.69680 55.46
18 -71.2933 0.1500
19 62.7609 5.0466 1.49700 81.61
20 -56.5939 1.0000 1.90043 37.37
21 324.7258 0.1500
22 33.4685 4.1701 1.62004 36.30
23 101.2724 2.7853
24 46.3806 1.0000 1.91082 35.25
25 29.1987 5.7625
26(絞り) ∞ (d26)
27 141.0544 4.1662 1.58913 61.25
28 -36.0830 1.0000 1.95375 32.32
29 -68.3457 0.1500
30 59.9188 2.5555 1.58913 61.25
31 391.7408 (d31)
32 75.5933 1.0000 1.90043 37.37
33 30.9362 9.3376
34 -80.2760 1.0000 1.49700 81.61
35 31.7778 4.0939 1.64769 33.84
36 -337.4440 (BF)
像面 ∞

[各種データ]
ズーム比 3.74
広角 中間 望遠
焦点距離 154.65 269.99 578.93
Fナンバー 5.18 5.80 6.48
全画角2ω 15.66 8.98 4.19
像高Y 21.63 21.63 21.63
レンズ全長 298.6675 342.4427 378.4134

[可変間隔データ]
広角 中間 望遠
d6 43.8852 87.6604 123.6307
d16 32.2743 25.7705 3.5000
d26 30.3672 16.5059 23.1094
d31 14.2104 8.2370 1.9975
BF 62.8208 89.1593 111.0662

[レンズ群データ]
群 始面 焦点距離
G1 1 255.76
G2 7 -45.76
G3 17 71.22
G4 27 61.27
G5 32 -61.45
G2a 7 -213.69
G2b 12 -52.85
Numerical Example 3
Unit: mm
[Surface data]
Surface number rd nd vd
1 373.7120 3.0000 1.80611 40.73
2 148.6143 0.1000
3 148.6143 10.6839 1.49700 81.61
4 -731.3819 0.1500
5 137.0582 10.1463 1.43700 95.10
6 14951.7522 (d6)
7 116.0743 4.0892 1.72916 54.67
8 403.7009 20.7778
9 293.4642 3.6165 1.56732 42.84
10 -123.6305 1.6647 1.77250 49.62
11 71.3448 6.3805
12 -145.4433 0.8000 1.69680 55.46
13 104.6635 2.6947
14 -60.2911 0.8000 1.69680 55.46
15 72.6162 2.9409 1.80518 25.46
16 -297.3883 (d16)
17 312.8853 3.8974 1.69680 55.46
18 -71.2933 0.1500
19 62.7609 5.0466 1.49700 81.61
20 -56.5939 1.0000 1.90043 37.37
21 324.7258 0.1500
22 33.4685 4.1701 1.62004 36.30
23 101.2724 2.7853
24 46.3806 1.0000 1.91082 35.25
25 29.1987 5.7625
26 (Aperture) ∞ (d26)
27 141.0544 4.1662 1.58913 61.25
28 -36.0830 1.0000 1.95375 32.32
29 -68.3457 0.1500
30 59.9188 2.5555 1.58913 61.25
31 391.7408 (d31)
32 75.5933 1.0000 1.90043 37.37
33 30.9362 9.3376
34 -80.2760 1.0000 1.49700 81.61
35 31.7778 4.0939 1.64769 33.84
36 -337.4440 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.74
Wide angle Medium telephoto
Focal length 154.65 269.99 578.93
F number 5.18 5.80 6.48
Full angle of view 2ω 15.66 8.98 4.19
Image height Y 21.63 21.63 21.63
Total lens length 298.6675 342.4427 378.4134

[Variable interval data]
Wide angle Medium telephoto
d6 43.8852 87.6604 123.6307
d16 32.2743 25.7705 3.5000
d26 30.3672 16.5059 23.1094
d31 14.2104 8.2370 1.9975
BF 62.8208 89.1593 111.0662

[Lens group data]
Group Start surface Focal length
G1 1 255.76
G2 7 -45.76
G3 17 71.22
G4 27 61.27
G5 32 -61.45
G2a 7 -213.69
G2b 12 -52.85

数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
1 378.1538 3.0000 1.83481 42.72
2 129.8799 10.1967 1.49700 81.61
3 -1207.9001 0.1500
4 128.8993 9.5152 1.49700 81.61
5 ∞ (d5)
6 136.4357 2.9694 1.71736 29.50
7 520.1053 22.5262
8 157.9367 2.8856 1.51742 52.15
9 -157.9367 1.0000 1.88300 40.80
10 96.4016 6.0478
11 -343.4654 0.7000 1.69680 55.46
12 84.3415 2.7699
13 -64.5497 0.7000 1.69680 55.46
14 63.5386 2.7771 1.80518 25.46
15 2214.2403 (d15)
16 320.9977 3.3148 1.69680 55.46
17 -66.4937 0.1500
18 72.1850 5.0395 1.49700 81.61
19 -54.1974 1.0000 1.90043 37.37
20 347.1276 0.1500
21 34.9884 5.4911 1.58144 40.89
22 100.1616 0.9803
23 46.2672 1.9000 1.88100 40.14
24 30.8087 5.5414
25(絞り) ∞ (d25)
26 184.7128 4.1778 1.65844 50.85
27 -36.1480 1.0000 1.95375 32.32
28 -77.2303 0.1500
29 71.5466 2.3326 1.58913 61.25
30 1830.4119 (d30)
31 77.3392 1.0000 1.91082 35.25
32 32.1806 10.2760
33 -78.1132 1.6681 1.43700 95.10
34 36.1981 4.4142 1.67270 32.17
35 10228.2235 (BF)
像面 ∞

[各種データ]
ズーム比 3.74
広角 中間 望遠
焦点距離 154.65 269.95 578.87
Fナンバー 5.07 5.83 6.50
全画角2ω 15.71 9.03 4.21
像高Y 21.63 21.63 21.63
レンズ全長 298.9917 341.5260 379.1790

[可変間隔データ]
広角 中間 望遠
d5 47.3884 89.9225 127.5760
d15 29.5144 24.3542 3.5000
d25 36.9826 19.2524 19.9625
d30 19.1013 10.5429 1.9972
BF 52.1813 83.6303 112.3196

[レンズ群データ]
群 始面 焦点距離
G1 1 257.80
G2 6 -46.22
G3 16 71.96
G4 26 64.13
G5 31 -65.81
G2a 6 -299.30
G2b 11 -49.93
Numerical Example 4
Unit: mm
[Surface data]
Surface number rd nd vd
1 378.1538 3.0000 1.83481 42.72
2 129.8799 10.1967 1.49700 81.61
3 -1207.9001 0.1500
4 128.8993 9.5152 1.49700 81.61
5 ∞ (d5)
6 136.4357 2.9694 1.71736 29.50
7 520.1053 22.5262
8 157.9367 2.8856 1.51742 52.15
9 -157.9367 1.0000 1.88300 40.80
10 96.4016 6.0478
11 -343.4654 0.7000 1.69680 55.46
12 84.3415 2.7699
13 -64.5497 0.7000 1.69680 55.46
14 63.5386 2.7771 1.80518 25.46
15 2214.2403 (d15)
16 320.9977 3.3148 1.69680 55.46
17 -66.4937 0.1500
18 72.1850 5.0395 1.49700 81.61
19 -54.1974 1.0000 1.90043 37.37
20 347.1276 0.1500
21 34.9884 5.4911 1.58144 40.89
22 100.1616 0.9803
23 46.2672 1.9000 1.88100 40.14
24 30.8087 5.5414
25 (Aperture) ∞ (d25)
26 184.7128 4.1778 1.65844 50.85
27 -36.1480 1.0000 1.95375 32.32
28 -77.2303 0.1500
29 71.5466 2.3326 1.58913 61.25
30 1830.4119 (d30)
31 77.3392 1.0000 1.91082 35.25
32 32.1806 10.2760
33 -78.1132 1.6681 1.43700 95.10
34 36.1981 4.4142 1.67270 32.17
35 10228.2235 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.74
Wide angle Medium telephoto
Focal length 154.65 269.95 578.87
F number 5.07 5.83 6.50
Full angle of view 2ω 15.71 9.03 4.21
Image height Y 21.63 21.63 21.63
Total lens length 298.9917 341.5260 379.1790

[Variable interval data]
Wide angle Medium telephoto
d5 47.3884 89.9225 127.5760
d15 29.5144 24.3542 3.5000
d25 36.9826 19.2524 19.9625
d30 19.1013 10.5429 1.9972
BF 52.1813 83.6303 112.3196

[Lens group data]
Group Start surface Focal length
G1 1 257.80
G2 6 -46.22
G3 16 71.96
G4 26 64.13
G5 31 -65.81
G2a 6 -299.30
G2b 11 -49.93

数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
1 373.2439 3.0000 1.83481 42.72
2 128.8795 10.2630 1.49700 81.61
3 -1288.9145 0.1500
4 128.2438 9.6096 1.49700 81.61
5 ∞ (d5)
6 137.6764 2.9639 1.71736 29.50
7 544.3756 22.6620
8 149.6888 2.9567 1.51742 52.15
9 -149.6888 1.0000 1.88300 40.80
10 94.6010 6.0666
11 -314.7976 0.7000 1.69680 55.46
12 86.0375 2.7411
13 -64.5500 0.7000 1.69680 55.46
14 64.5618 2.7794 1.80518 25.46
15 5702.1522 (d15)
16 346.2888 3.2611 1.69680 55.46
17 -67.4490 0.1500
18 75.1045 4.9850 1.49700 81.61
19 -54.3536 1.0000 1.90043 37.37
20 388.8141 0.1500
21 35.6793 4.7690 1.58144 40.89
22 107.1754 1.0796
23 47.2787 1.9000 1.88100 40.14
24 31.5149 5.5389
25(絞り) ∞ (d25)
26 198.8545 4.1456 1.65844 50.85
27 -36.1922 1.0000 1.95375 32.32
28 -75.7005 0.1500
29 69.5985 2.3143 1.59349 67.00
30 1112.9818 (d30)
31 75.6091 1.0000 1.90043 37.37
32 32.3743 11.1880
33 -83.0905 1.0000 1.43700 95.10
34 36.5367 4.2928 1.67270 32.17
35 674.4266 (BF)
像面 ∞

[各種データ]
ズーム比 3.74
広角 中間 望遠
焦点距離 154.65 269.99 578.88
Fナンバー 5.04 5.86 6.49
全画角2ω 15.71 9.03 4.21
像高Y 21.63 21.63 21.63
レンズ全長 299.0765 340.6390 379.3817

[可変間隔データ]
広角 中間 望遠
d5 46.8751 88.4376 127.1801
d15 28.9404 23.7846 3.5000
d25 38.1845 19.9778 21.7946
d30 19.5085 10.9735 1.9975
BF 52.0514 83.9489 111.3929

[レンズ群データ]
群 始面 焦点距離
G1 1 257.64
G2 6 -46.46
G3 16 73.66
G4 26 63.71
G5 31 -64.70
G2a 6 -292.50
G2b 11 -50.41
Numerical Example 5
Unit: mm
[Surface data]
Surface number rd nd vd
1 373.2439 3.0000 1.83481 42.72
2 128.8795 10.2630 1.49700 81.61
3 -1288.9145 0.1500
4 128.2438 9.6096 1.49700 81.61
5 ∞ (d5)
6 137.6764 2.9639 1.71736 29.50
7 544.3756 22.6620
8 149.6888 2.9567 1.51742 52.15
9 -149.6888 1.0000 1.88300 40.80
10 94.6010 6.0666
11 -314.7976 0.7000 1.69680 55.46
12 86.0375 2.7411
13 -64.5500 0.7000 1.69680 55.46
14 64.5618 2.7794 1.80518 25.46
15 5702.1522 (d15)
16 346.2888 3.2611 1.69680 55.46
17 -67.4490 0.1500
18 75.1045 4.9850 1.49700 81.61
19 -54.3536 1.0000 1.90043 37.37
20 388.8141 0.1500
21 35.6793 4.7690 1.58144 40.89
22 107.1754 1.0796
23 47.2787 1.9000 1.88100 40.14
24 31.5149 5.5389
25 (Aperture) ∞ (d25)
26 198.8545 4.1456 1.65844 50.85
27 -36.1922 1.0000 1.95375 32.32
28 -75.7005 0.1500
29 69.5985 2.3143 1.59349 67.00
30 1112.9818 (d30)
31 75.6091 1.0000 1.90043 37.37
32 32.3743 11.1880
33 -83.0905 1.0000 1.43700 95.10
34 36.5367 4.2928 1.67270 32.17
35 674.4266 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.74
Wide angle Medium telephoto
Focal length 154.65 269.99 578.88
F number 5.04 5.86 6.49
Full angle of view 2ω 15.71 9.03 4.21
Image height Y 21.63 21.63 21.63
Total lens length 299.0765 340.6390 379.3817

[Variable interval data]
Wide angle Medium telephoto
d5 46.8751 88.4376 127.1801
d15 28.9404 23.7846 3.5000
d25 38.1845 19.9778 21.7946
d30 19.5085 10.9735 1.9975
BF 52.0514 83.9489 111.3929

[Lens group data]
Group Start surface Focal length
G1 1 257.64
G2 6 -46.46
G3 16 73.66
G4 26 63.71
G5 31 -64.70
G2a 6 -292.50
G2b 11 -50.41

数値実施例6
単位:mm
[面データ]
面番号 r d nd vd
1 365.4891 3.0000 1.83481 42.72
2 127.0846 10.3046 1.49700 81.61
3 -1427.5505 0.1500
4 127.1046 9.6873 1.49700 81.61
5 ∞ (d5)
6 144.9780 3.0032 1.71736 29.50
7 709.8099 22.5926
8 139.7435 3.0697 1.51742 52.15
9 -139.7435 1.0000 1.88300 40.80
10 91.2159 6.1098
11 -305.2438 0.7000 1.69680 55.46
12 87.7611 2.7308
13 -64.5798 0.7000 1.69680 55.46
14 66.8529 2.7379 1.80518 25.46
15 6415.1292 (d15)
16 917.0159 3.1606 1.62041 60.34
17 -65.4856 0.1500
18 81.4594 5.1676 1.49700 81.61
19 -50.2651 1.0000 1.91082 35.25
20 12857.9429 0.1500
21 39.7020 3.7454 1.64769 33.84
22 165.3683 3.3038
23 52.9808 1.9000 1.88100 40.14
24 33.0522 5.4858
25(絞り) ∞ (d25)
26 294.0289 4.2603 1.69680 55.46
27 -35.1097 1.0000 1.95375 32.32
28 -80.1614 0.1500
29 78.1387 2.5322 1.59349 67.00
30 -377.4708 (d30)
31 87.7761 1.0000 1.80420 46.50
32 26.8830 2.2144 1.72825 28.32
33 36.6224 21.2579
34 -101.5049 2.0000 1.43700 95.10
35 37.2848 4.1070 1.60342 38.01
36 203.2256 (BF)
像面 ∞

[各種データ]
ズーム比 3.74
広角 中間 望遠
焦点距離 154.77 270.00 578.86
Fナンバー 5.06 5.84 6.49
全画角2ω 15.71 9.03 4.21
像高Y 21.63 21.63 21.63
レンズ全長 298.7481 340.7869 379.0428

[可変間隔データ]
広角 中間 望遠
d5 46.0134 88.0521 126.3078
d15 29.1520 23.7340 3.5000
d25 32.6154 19.6895 25.1890
d30 17.4253 10.1944 1.9975
BF 45.1711 70.7460 93.6776

[レンズ群データ]
群 始面 焦点距離
G1 1 257.14
G2 6 -46.18
G3 16 77.20
G4 26 62.34
G5 31 -59.18
G2a 6 -277.76
G2b 11 -50.55
G5a 31 -75.35
G5b 34 -357.07
Numerical Example 6
Unit: mm
[Surface data]
Surface number rd nd vd
1 365.4891 3.0000 1.83481 42.72
2 127.0846 10.3046 1.49700 81.61
3 -1427.5505 0.1500
4 127.1046 9.6873 1.49700 81.61
5 ∞ (d5)
6 144.9780 3.0032 1.71736 29.50
7 709.8099 22.5926
8 139.7435 3.0697 1.51742 52.15
9 -139.7435 1.0000 1.88300 40.80
10 91.2159 6.1098
11 -305.2438 0.7000 1.69680 55.46
12 87.7611 2.7308
13 -64.5798 0.7000 1.69680 55.46
14 66.8529 2.7379 1.80518 25.46
15 6415.1292 (d15)
16 917.0159 3.1606 1.62041 60.34
17 -65.4856 0.1500
18 81.4594 5.1676 1.49700 81.61
19 -50.2651 1.0000 1.91082 35.25
20 12857.9429 0.1500
21 39.7020 3.7454 1.64769 33.84
22 165.3683 3.3038
23 52.9808 1.9000 1.88100 40.14
24 33.0522 5.4858
25 (Aperture) ∞ (d25)
26 294.0289 4.2603 1.69680 55.46
27 -35.1097 1.0000 1.95375 32.32
28 -80.1614 0.1500
29 78.1387 2.5322 1.59349 67.00
30 -377.4708 (d30)
31 87.7761 1.0000 1.80420 46.50
32 26.8830 2.2144 1.72825 28.32
33 36.6224 21.2579
34 -101.5049 2.0000 1.43700 95.10
35 37.2848 4.1070 1.60342 38.01
36 203.2256 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.74
Wide angle Medium telephoto
Focal length 154.77 270.00 578.86
F number 5.06 5.84 6.49
Full angle of view 2ω 15.71 9.03 4.21
Image height Y 21.63 21.63 21.63
Total lens length 298.7481 340.7869 379.0428

[Variable interval data]
Wide angle Medium telephoto
d5 46.0134 88.0521 126.3078
d15 29.1520 23.7340 3.5000
d25 32.6154 19.6895 25.1890
d30 17.4253 10.1944 1.9975
BF 45.1711 70.7460 93.6776

[Lens group data]
Group Start surface Focal length
G1 1 257.14
G2 6 -46.18
G3 16 77.20
G4 26 62.34
G5 31 -59.18
G2a 6 -277.76
G2b 11 -50.55
G5a 31 -75.35
G5b 34 -357.07

数値実施例7
単位:mm
[面データ]
面番号 r d nd vd
1 370.6330 3.0000 1.83481 42.72
2 127.6111 10.3116 1.49700 81.61
3 -1345.5535 0.1500
4 127.2682 9.6767 1.49700 81.61
5 ∞ (d5)
6 145.7558 2.9973 1.71736 29.50
7 723.8084 22.5896
8 140.5816 3.0595 1.51742 52.15
9 -140.5816 1.0000 1.88300 40.80
10 91.5361 6.1057
11 -300.0543 0.7000 1.69680 55.46
12 88.4743 2.7214
13 -64.5061 0.7000 1.69680 55.46
14 66.6869 2.7410 1.80518 25.46
15 6186.2394 (d15)
16 1220.3717 3.1551 1.62041 60.34
17 -64.6325 0.1500
18 82.7645 5.1690 1.49700 81.61
19 -49.8333 1.0000 1.91082 35.25
20 -4479.2347 0.1500
21 39.6642 3.7281 1.64769 33.84
22 159.7630 3.4204
23 52.6520 1.9000 1.88100 40.14
24 32.9896 5.4905
25(絞り) ∞ (d25)
26 285.4516 4.2383 1.69680 55.46
27 -35.2509 1.0000 1.95375 32.32
28 -81.6685 0.1500
29 80.1273 2.5468 1.59349 67.00
30 -304.8572 (d30)
31 88.3160 1.0000 1.80420 46.50
32 27.2454 2.1595 1.75520 27.53
33 36.0764 (d33)
34 -96.6261 1.9935 1.43700 95.10
35 38.1247 4.1376 1.60342 38.01
36 223.3526 (BF)
像面 ∞

[各種データ]
ズーム比 3.74
広角 中間 望遠
焦点距離 154.77 269.96 578.86
Fナンバー 5.10 5.84 6.51
全画角2ω 15.71 9.03 4.21
像高Y 21.63 21.63 21.63
レンズ全長 298.8477 341.1342 379.1761

[可変間隔データ]
広角 中間 望遠
d5 46.2834 88.5697 126.6121
d15 29.7073 23.7653 3.5000
d25 31.4942 20.0095 25.3557
d30 16.6915 10.2099 1.9971
d33 22.6552 20.3464 21.2514
BF 44.8745 71.0918 93.3182

[レンズ群データ]
群 始面 焦点距離
G1 1 257.40
G2 6 -46.22
G3 16 77.13
G4 26 62.12
G5 31 -75.06
G6 33 -350.93
G2a 6 -278.80
G2b 11 -50.58
Numerical Example 7
Unit: mm
[Surface data]
Surface number rd nd vd
1 370.6330 3.0000 1.83481 42.72
2 127.6111 10.3116 1.49700 81.61
3 -1345.5535 0.1500
4 127.2682 9.6767 1.49700 81.61
5 ∞ (d5)
6 145.7558 2.9973 1.71736 29.50
7 723.8084 22.5896
8 140.5816 3.0595 1.51742 52.15
9 -140.5816 1.0000 1.88300 40.80
10 91.5361 6.1057
11 -300.0543 0.7000 1.69680 55.46
12 88.4743 2.7214
13 -64.5061 0.7000 1.69680 55.46
14 66.6869 2.7410 1.80518 25.46
15 6186.2394 (d15)
16 1220.3717 3.1551 1.62041 60.34
17 -64.6325 0.1500
18 82.7645 5.1690 1.49700 81.61
19 -49.8333 1.0000 1.91082 35.25
20 -4479.2347 0.1500
21 39.6642 3.7281 1.64769 33.84
22 159.7630 3.4204
23 52.6520 1.9000 1.88100 40.14
24 32.9896 5.4905
25 (Aperture) ∞ (d25)
26 285.4516 4.2383 1.69680 55.46
27 -35.2509 1.0000 1.95375 32.32
28 -81.6685 0.1500
29 80.1273 2.5468 1.59349 67.00
30 -304.8572 (d30)
31 88.3160 1.0000 1.80420 46.50
32 27.2454 2.1595 1.75520 27.53
33 36.0764 (d33)
34 -96.6261 1.9935 1.43700 95.10
35 38.1247 4.1376 1.60342 38.01
36 223.3526 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.74
Wide angle Medium telephoto
Focal length 154.77 269.96 578.86
F number 5.10 5.84 6.51
Full angle of view 2ω 15.71 9.03 4.21
Image height Y 21.63 21.63 21.63
Total lens length 298.8477 341.1342 379.1761

[Variable interval data]
Wide angle Medium telephoto
d5 46.2834 88.5697 126.6121
d15 29.7073 23.7653 3.5000
d25 31.4942 20.0095 25.3557
d30 16.6915 10.2099 1.9971
d33 22.6552 20.3464 21.2514
BF 44.8745 71.0918 93.3182

[Lens group data]
Group Start surface Focal length
G1 1 257.40
G2 6 -46.22
G3 16 77.13
G4 26 62.12
G5 31 -75.06
G6 33 -350.93
G2a 6 -278.80
G2b 11 -50.58

数値実施例8
単位:mm
[面データ]
面番号 r d nd vd
1 550.2301 3.0000 1.83481 42.72
2 144.9435 10.6178 1.49700 81.61
3 -508.0778 0.1500
4 133.4833 9.2990 1.49700 81.61
5 ∞ (d5)
6 148.9001 2.9142 1.71736 29.50
7 700.0000 22.4340
8 159.6819 2.8639 1.51742 52.15
9 -159.6819 1.0000 1.88300 40.80
10 91.2597 6.1064
11 -214.1812 0.7000 1.69680 55.46
12 94.8167 2.8442
13 -57.6477 0.7000 1.69680 55.46
14 76.1754 2.8444 1.80518 25.46
15 -392.6584 (d15)
16 235.0685 3.5316 1.69680 55.46
17 -66.2550 0.1500
18 70.0938 5.2152 1.49700 81.61
19 -53.3381 1.0000 1.90043 37.37
20 296.4532 0.1500
21 34.3415 5.7678 1.58144 40.89
22 89.1967 2.6246
23 46.2929 1.9000 1.88100 40.14
24 30.4491 5.4557
25(絞り) ∞ (d25)
26 154.5168 4.0267 1.65844 50.85
27 -36.8251 1.0000 1.95375 32.32
28 -82.3995 0.1500
29 63.3772 2.2199 1.58913 61.25
30 373.4005 (d30)
31 64.6555 1.0000 1.91082 35.25
32 29.1373 8.8009
33 -73.8858 1.0000 1.43700 95.10
34 31.7813 4.5840 1.64769 33.84
35 -1000.0000 (BF)
像面 ∞

[各種データ]
ズーム比 3.74
広角 中間 望遠
焦点距離 154.67 270.01 578.85
Fナンバー 5.14 5.75 6.50
全画角2ω 15.58 8.95 4.19
像高Y 21.63 21.63 21.63
レンズ全長 298.9154 344.1588 379.0824

[可変間隔データ]
広角 中間 望遠
d5 47.8096 93.0528 127.9769
d15 30.3675 25.8998 3.5000
d25 34.5016 19.2696 25.0138
d30 18.0578 9.2937 1.9973
BF 54.1286 82.5926 106.5441

[レンズ群データ]
群 始面 焦点距離
G1 1 255.82
G2 6 -45.90
G3 16 69.85
G4 26 64.59
G5 31 -65.63
G2a 6 -254.33
G2b 11 -51.56
Numerical Example 8
Unit: mm
[Surface data]
Surface number rd nd vd
1 550.2301 3.0000 1.83481 42.72
2 144.9435 10.6178 1.49700 81.61
3 -508.0778 0.1500
4 133.4833 9.2990 1.49700 81.61
5 ∞ (d5)
6 148.9001 2.9142 1.71736 29.50
7 700.0000 22.4340
8 159.6819 2.8639 1.51742 52.15
9 -159.6819 1.0000 1.88300 40.80
10 91.2597 6.1064
11 -214.1812 0.7000 1.69680 55.46
12 94.8167 2.8442
13 -57.6477 0.7000 1.69680 55.46
14 76.1754 2.8444 1.80518 25.46
15 -392.6584 (d15)
16 235.0685 3.5316 1.69680 55.46
17 -66.2550 0.1500
18 70.0938 5.2152 1.49700 81.61
19 -53.3381 1.0000 1.90043 37.37
20 296.4532 0.1500
21 34.3415 5.7678 1.58144 40.89
22 89.1967 2.6246
23 46.2929 1.9000 1.88100 40.14
24 30.4491 5.4557
25 (Aperture) ∞ (d25)
26 154.5168 4.0267 1.65844 50.85
27 -36.8251 1.0000 1.95375 32.32
28 -82.3995 0.1500
29 63.3772 2.2199 1.58913 61.25
30 373.4005 (d30)
31 64.6555 1.0000 1.91082 35.25
32 29.1373 8.8009
33 -73.8858 1.0000 1.43700 95.10
34 31.7813 4.5840 1.64769 33.84
35 -1000.0000 (BF)
Image plane ∞

[Various data]
Zoom ratio 3.74
Wide angle Medium telephoto
Focal length 154.67 270.01 578.85
F number 5.14 5.75 6.50
Full angle of view 2ω 15.58 8.95 4.19
Image height Y 21.63 21.63 21.63
Total lens length 298.9154 344.1588 379.0824

[Variable interval data]
Wide angle Medium telephoto
d5 47.8096 93.0528 127.9769
d15 30.3675 25.8998 3.5000
d25 34.5016 19.2696 25.0138
d30 18.0578 9.2937 1.9973
BF 54.1286 82.5926 106.5441

[Lens group data]
Group Start surface Focal length
G1 1 255.82
G2 6 -45.90
G3 16 69.85
G4 26 64.59
G5 31 -65.63
G2a 6 -254.33
G2b 11 -51.56

条件式対応表
実施例1 実施例2 実施例3 実施例4 実施例5 実施例6 実施例7 実施例8
条件式1 0.1490 0.1627 0.1501 0.1461 0.1323 0.1257 0.1264 0.1879
条件式2 0.0688 0.0629 0.0691 0.0598 0.0581 0.0500 0.0499 0.0639
条件式3 0.0821 0.0872 0.0826 0.0789 0.0722 0.0676 0.0680 0.0993
条件式4 0.8143 0.7809 0.7317 0.7895 0.7851 0.7780 0.7788 0.7765
Conditional expression correspondence table
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8
Conditional expression 1 0.1490 0.1627 0.1501 0.1461 0.1323 0.1257 0.1264 0.1879
Conditional expression 2 0.0688 0.0629 0.0691 0.0598 0.0581 0.0500 0.0499 0.0639
Conditional expression 3 0.0821 0.0872 0.0826 0.0789 0.0722 0.0676 0.0680 0.0993
Conditional expression 4 0.8143 0.7809 0.7317 0.7895 0.7851 0.7780 0.7788 0.7765

また、本発明の結像光学系では、以下の構成を伴うことがより効果的である。 In the imaging optical system of the present invention, it is more effective to have the following configuration.

第3レンズ群は2枚以上の正レンズを含み、うち一枚は負レンズとの接合レンズであってその接合面は発散作用を持つことがより望ましい。第3レンズ群には第2群で発散された光束が入射し、光学系全系としては光線を収斂させる必要があるので、第3レンズ群では強い光線収斂作用を持たせる必要がある。球面収差の発生を抑えながら強い収斂作用を持たせるためには2枚以上の正レンズに屈折力を分割することが望ましい。更にそのうちの1枚は負レンズと接合され、その接合面を発散面とすることで球面収差の補正が行える。 More preferably, the third lens group includes two or more positive lenses, one of which is a cemented lens with a negative lens, and its cemented surface has a diverging action. Since the light beam diverged in the second group is incident on the third lens group, and the entire optical system needs to converge the light beam, the third lens group needs to have a strong light beam converging action. In order to have a strong convergence effect while suppressing the occurrence of spherical aberration, it is desirable to divide the refractive power into two or more positive lenses. Further, one of them is cemented with a negative lens, and spherical aberration can be corrected by making the cemented surface a divergent surface.

第4レンズ群の最も物体側および最も像側のレンズは正レンズであることが望ましい。第4レンズ群内の屈折力配置を対称に近づけることで第4レンズ群への近軸周縁光線入射高さと近軸周縁光線射出高さが近くなり、第4レンズ群全体のティルトに伴うコマ収差の変動が小さくできる。 The most object side and most image side lenses of the fourth lens group are preferably positive lenses. By bringing the refractive power arrangement in the fourth lens group close to symmetry, the paraxial marginal ray incident height and paraxial marginal ray exit height to the fourth lens group become close, and coma aberration associated with the tilt of the entire fourth lens group. Fluctuations can be reduced.

2a群は物体側から順に正レンズと、正レンズと負レンズからなる接合レンズから構成されることがより望ましい。 It is more desirable that the 2a group includes a positive lens and a cemented lens including a positive lens and a negative lens in order from the object side.

2b群は正レンズ1枚を含む3枚以下のレンズから構成されることがより望ましい。4枚以上の枚数とした場合には防振群の重量の抑制が困難となってしまうためである。 The 2b group is more preferably composed of three or less lenses including one positive lens. This is because when the number of sheets is four or more, it is difficult to suppress the weight of the vibration isolation group.

また、2b群の色収差を補正して防振時の横色収差の発生を抑えるために、2b群内に少なくとも1枚の正レンズを有することが望ましい。 In addition, in order to correct the chromatic aberration of the 2b group and suppress the occurrence of lateral chromatic aberration during image stabilization, it is desirable to have at least one positive lens in the 2b group.

また、2b群の負の屈折力を十分に保ちながら、特に球面収差やコマ収差等の発生を抑制するために、2b群内に2枚の負レンズを有することが望ましい。 In addition, it is desirable to have two negative lenses in the 2b group in order to suppress the occurrence of spherical aberration, coma and the like while maintaining the negative refractive power of the 2b group sufficiently.

また、本発明は上記のような5群構成以外の構成を排除するものではない。第5レンズ群の更に後ろに、単体で十分に諸収差の補正された減倍光学系または増倍光学系を追加した構成をも当然に含む。当然ながら、減倍光学系または増倍光学系を第1レンズ群から第5レンズ群までを備える本発明の光学系に追加した系は、第1レンズ群から第5レンズ群までを備える本発明の光学系の特徴を備えた系である。減倍光学系または増倍光学系の追加前後で光学系が本質的に変化したものではない。 The present invention does not exclude configurations other than the five-group configuration as described above. Naturally, a configuration in which a reduction optical system or a multiplication optical system in which various aberrations are sufficiently corrected is added after the fifth lens group is also included. Of course, a system in which a demagnification optical system or a multiplication optical system is added to the optical system of the present invention including the first lens group to the fifth lens group includes the first lens group to the fifth lens group of the present invention. This system has the characteristics of the optical system. The optical system is not essentially changed before and after the addition of the demagnification optical system or the multiplication optical system.

G1 第1レンズ群
G2 第2レンズ群
G2a 2a群(第2レンズ群前群)
G2b 2b群(第2レンズ群後群)
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G5a 5a群(第5レンズ群前群)
G5b 5b群(第5レンズ群後群)
G6 第6レンズ群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G2a 2a group (2nd lens group front group)
G2b 2b group (second lens group rear group)
G3 3rd lens group G4 4th lens group G5 5th lens group G5a 5a group (5th lens group front group)
G5b 5b group (the rear group of the fifth lens group)
G6 6th lens group S Aperture stop I Image surface

Claims (5)

物体側から順に、
正の屈折力の第1レンズ群と、
負の屈折力の第2レンズ群と、
正の屈折力の第3レンズ群と、
正の屈折力の第4レンズ群と、
負の屈折力の第5レンズ群を少なくとも備え、
各レンズ群の間は空気間隔を以って隔てられ、変倍時に各レンズ群の間の空気間隔が変化し、
第2レンズ群内の一部を光軸と直行する方向に変位させることによって防振を行い、
以下の条件式を同時に満足することを特徴とする防振機能を備えた変倍結像光学系。
F3=|(β3*H3−H3’)/((1−β3)*f3+H3’) | < 0.25
F4=|(β4*H4−H4’)/((1−β4)*f4+H4’) | < 0.25
√(F3^2+F4^2)/2< 0.15
ただし、
βiは第iレンズ群の望遠端における結像倍率
Hiは第iレンズ群の最も物体側の界面から第iレンズ群の物体側主点までの距離
Hi’は第iレンズ群の最も像側の界面から第iレンズ群の像側主点までの距離
fiは第iレンズ群の合成焦点距離
F3は第3レンズ群の近軸周縁光線の入射高さと射出高さの比
F4は第4レンズ群の近軸周縁光線の入射高さと射出高さの比
である。
From the object side,
A first lens unit having a positive refractive power;
A second lens unit having negative refractive power;
A third lens group having a positive refractive power;
A fourth lens unit having a positive refractive power;
At least a fifth lens unit having a negative refractive power;
Each lens group is separated by an air interval, and the air interval between each lens group changes at the time of zooming,
Vibration is prevented by displacing a part of the second lens group in a direction perpendicular to the optical axis,
A variable magnification imaging optical system having an anti-vibration function characterized by simultaneously satisfying the following conditional expressions:
F3 = | (β3 * H3-H3 ′) / ((1−β3) * f3 + H3 ′) | <0.25
F4 = | (β4 * H4-H4 ′) / ((1-β4) * f4 + H4 ′) | <0.25
√ (F3 ^ 2 + F4 ^ 2) / 2 <0.15
However,
βi is the imaging magnification Hi at the telephoto end of the i-th lens group, Hi is the distance Hi ′ from the most object-side interface of the i-th lens group to the object-side principal point of the i-th lens group, and is the most image side of the i-th lens group The distance fi from the interface to the image side principal point of the i-th lens group is the combined focal length F3 of the i-th lens group, and the ratio F4 of the incident height and the exit height of the paraxial peripheral ray of the third lens group is the fourth lens group. The ratio between the incident height and the exit height of the paraxial peripheral ray.
第2レンズ群は物体側より順に負の屈折力の2a群と負の屈折力の2b群より構成されて2b群を光軸と直行する方向に変位させることによって防振を行うことを特徴とする請求項1に記載の防振機能を備えた変倍結像光学系。 The second lens group is composed of a negative refractive power 2a group and a negative refractive power 2b group in order from the object side, and is characterized in that vibration is prevented by displacing the 2b group in a direction perpendicular to the optical axis. A variable magnification imaging optical system having the image stabilization function according to claim 1. 以下の式を満足することを特徴とする、請求項2に記載の防振機能を備えた変倍結像光学系。
0.70 < |LT2a / f2a| < 0.85
ただし、
LT2aは2a群の最も物体側の面から2a群の像側焦点までの距離、
f2aは2a群の焦点距離、
である。
The variable magnification imaging optical system having an image stabilization function according to claim 2, wherein the following expression is satisfied.
0.70 <| LT2a / f2a | <0.85
However,
LT2a is the distance from the most object side surface of 2a group to the image side focal point of 2a group,
f2a is the focal length of the group 2a,
It is.
前記第2レンズ群は変倍時に像面に対して固定されていることを特徴とする請求項1ないし3に記載の防振機能を備えた変倍結像光学系 4. A variable magnification imaging optical system having an image stabilization function according to claim 1, wherein the second lens group is fixed with respect to the image plane during zooming. 光学系のもっとも像側に負の屈折力のレンズ群を有し、フォーカシングに際して、前記第4レンズ群以降のいずれかのレンズ群の全体または一部を移動させることを特徴とする請求項1ないし4に記載の防振機能を備えた変倍結像光学系。 2. A lens unit having a negative refractive power closest to the image side of the optical system, and the whole or a part of any one of the fourth lens unit and the subsequent lens units is moved during focusing. 5. A variable magnification imaging optical system having the image stabilization function described in 4.
JP2014211101A 2014-10-15 2014-10-15 Variable magnification imaging optical system with anti-vibration function Active JP6492517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014211101A JP6492517B2 (en) 2014-10-15 2014-10-15 Variable magnification imaging optical system with anti-vibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211101A JP6492517B2 (en) 2014-10-15 2014-10-15 Variable magnification imaging optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JP2016080825A true JP2016080825A (en) 2016-05-16
JP6492517B2 JP6492517B2 (en) 2019-04-03

Family

ID=55956217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211101A Active JP6492517B2 (en) 2014-10-15 2014-10-15 Variable magnification imaging optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP6492517B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126295A (en) * 2015-01-08 2016-07-11 株式会社タムロン Zoom lens and imaging apparatus
JP2017223778A (en) * 2016-06-14 2017-12-21 株式会社シグマ Zoom imaging optical system with anti-shake capability
JP2020052338A (en) * 2018-09-28 2020-04-02 株式会社タムロン Zoom lens and image capturing device
US10705317B2 (en) 2017-08-04 2020-07-07 Panasonic Intellectual Property Management Co., Ltd. Zooming imaging optical system
JP2021015167A (en) * 2019-07-11 2021-02-12 株式会社シグマ Zoom imaging optical system with anti-shake capability
JP7350311B2 (en) 2019-12-10 2023-09-26 株式会社シグマ Variable magnification imaging optical system with anti-shake function
JP7413044B2 (en) 2020-01-27 2024-01-15 キヤノン株式会社 Zoom lens and imaging device and imaging system having the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136863A (en) * 1994-11-07 1996-05-31 Canon Inc Variable power optical system provided with vibration proofing function
JPH11202201A (en) * 1998-01-14 1999-07-30 Minolta Co Ltd Zoom lens
JP2005292338A (en) * 2004-03-31 2005-10-20 Nikon Corp Zoom lens
US20090251781A1 (en) * 2008-04-02 2009-10-08 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US20110007403A1 (en) * 2009-07-09 2011-01-13 Nikon Corporation Zoom optical system, optical apparatus equipped therewith and method for manufacturing the zoom optical system
JP2013097322A (en) * 2011-11-04 2013-05-20 Nikon Corp Variable power optical system, optical apparatus, and method of manufacturing variable power optical system
US20140211029A1 (en) * 2013-01-30 2014-07-31 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2014209144A (en) * 2013-04-16 2014-11-06 株式会社ニコン Zoom lens with image blur correction function
US20140362259A1 (en) * 2013-06-10 2014-12-11 Konica Minolta, Inc. Variable-Magnification Optical System, Imaging Optical Device, And Digital Appliance
JP2015069040A (en) * 2013-09-30 2015-04-13 コニカミノルタ株式会社 Variable power optical system, imaging optical device, and digital equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136863A (en) * 1994-11-07 1996-05-31 Canon Inc Variable power optical system provided with vibration proofing function
JPH11202201A (en) * 1998-01-14 1999-07-30 Minolta Co Ltd Zoom lens
JP2005292338A (en) * 2004-03-31 2005-10-20 Nikon Corp Zoom lens
US20090251781A1 (en) * 2008-04-02 2009-10-08 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2009265652A (en) * 2008-04-02 2009-11-12 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
US20110007403A1 (en) * 2009-07-09 2011-01-13 Nikon Corporation Zoom optical system, optical apparatus equipped therewith and method for manufacturing the zoom optical system
JP2011017912A (en) * 2009-07-09 2011-01-27 Nikon Corp Variable mignification optical system, optical apparatus equipped with the variable mignification optical system, and method for manufacturing the variable mignification optical system
JP2013097322A (en) * 2011-11-04 2013-05-20 Nikon Corp Variable power optical system, optical apparatus, and method of manufacturing variable power optical system
US20140211029A1 (en) * 2013-01-30 2014-07-31 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2014145960A (en) * 2013-01-30 2014-08-14 Canon Inc Zoom lens and imaging apparatus having the same
JP2014209144A (en) * 2013-04-16 2014-11-06 株式会社ニコン Zoom lens with image blur correction function
US20140362259A1 (en) * 2013-06-10 2014-12-11 Konica Minolta, Inc. Variable-Magnification Optical System, Imaging Optical Device, And Digital Appliance
JP2015069040A (en) * 2013-09-30 2015-04-13 コニカミノルタ株式会社 Variable power optical system, imaging optical device, and digital equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126295A (en) * 2015-01-08 2016-07-11 株式会社タムロン Zoom lens and imaging apparatus
JP2017223778A (en) * 2016-06-14 2017-12-21 株式会社シグマ Zoom imaging optical system with anti-shake capability
US10705317B2 (en) 2017-08-04 2020-07-07 Panasonic Intellectual Property Management Co., Ltd. Zooming imaging optical system
JP2020052338A (en) * 2018-09-28 2020-04-02 株式会社タムロン Zoom lens and image capturing device
JP7149795B2 (en) 2018-09-28 2022-10-07 株式会社タムロン Zoom lens and imaging device
JP2021015167A (en) * 2019-07-11 2021-02-12 株式会社シグマ Zoom imaging optical system with anti-shake capability
JP7350311B2 (en) 2019-12-10 2023-09-26 株式会社シグマ Variable magnification imaging optical system with anti-shake function
JP7413044B2 (en) 2020-01-27 2024-01-15 キヤノン株式会社 Zoom lens and imaging device and imaging system having the same

Also Published As

Publication number Publication date
JP6492517B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6492517B2 (en) Variable magnification imaging optical system with anti-vibration function
JP5854269B2 (en) Large aperture ratio internal focusing telephoto zoom lens
JP5764510B2 (en) Zoom lens
JP5952133B2 (en) Zoom lens
US11448893B2 (en) Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2014208091A1 (en) Variable magnification optical system, optical device and method for manufacturing variable magnification optical system
JP4356040B2 (en) Long zoom lens with anti-vibration function
JP2007093976A (en) Zoom lens
JP6515480B2 (en) Variable magnification imaging optical system with anti-vibration function
JP6690425B2 (en) Variable magnification imaging optical system with anti-vibration function
JP5562552B2 (en) Inner focus type anti-vibration lens
JP2021015167A (en) Zoom imaging optical system with anti-shake capability
JP4360088B2 (en) Zoom lens
JP6171344B2 (en) Zoom lens system and electronic imaging apparatus including the same
JP2011150036A (en) Imaging lens, optical apparatus equipped therewith, and method of manufacturing imaging lens
JP6409361B2 (en) Inner focusing type zoom lens
JP7114041B2 (en) Variable magnification imaging optical system
JP2014038255A (en) Imaging optical system
JP2018072581A (en) Large-aperture telephoto zoom lens with anti-shake functionality
JP4378958B2 (en) Zoom lens
JP6326929B2 (en) Variable magnification imaging optical system with anti-vibration function
JPH0792390A (en) Zoom lens
JP6151144B2 (en) Imaging optics
JP2004212541A (en) Zoom lens
JP6191246B2 (en) Zoom lens, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250