JP2016080636A - Vehicle loss measurement device and vehicle loss measurement method in chassis dynamometer - Google Patents

Vehicle loss measurement device and vehicle loss measurement method in chassis dynamometer Download PDF

Info

Publication number
JP2016080636A
JP2016080636A JP2014214801A JP2014214801A JP2016080636A JP 2016080636 A JP2016080636 A JP 2016080636A JP 2014214801 A JP2014214801 A JP 2014214801A JP 2014214801 A JP2014214801 A JP 2014214801A JP 2016080636 A JP2016080636 A JP 2016080636A
Authority
JP
Japan
Prior art keywords
vehicle
chassis dynamometer
loss
mode
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014214801A
Other languages
Japanese (ja)
Inventor
明 野田
Akira Noda
明 野田
洋 高畑
Hiroshi Takahata
洋 高畑
鈴木 雅彦
Masahiko Suzuki
雅彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Automobile Transp Tech Ass
JAPAN AUTOMOBILE TRANSPORT TECHNOLOGY ASSOCIATION
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Japan Automobile Transp Tech Ass
JAPAN AUTOMOBILE TRANSPORT TECHNOLOGY ASSOCIATION
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Automobile Transp Tech Ass, JAPAN AUTOMOBILE TRANSPORT TECHNOLOGY ASSOCIATION, Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Japan Automobile Transp Tech Ass
Priority to JP2014214801A priority Critical patent/JP2016080636A/en
Publication of JP2016080636A publication Critical patent/JP2016080636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle loss measurement device in a chassis dynamometer capable of measuring vehicle loss in consideration of acceleration and deceleration during exhaust gas fuel cost test mode operation.SOLUTION: A vehicle loss measurement device in a chassis dynamometer that performs various tests of a test vehicle 1 installed on a roller 2 includes a controller 10 that makes the chassis dynamometer a speed control mode and performs operation control with the vehicle speed pattern of an exhaust gas fuel cost test mode, and an operation unit 20 for subtracting loss of a single chassis dynamometer from mechanical loss detected by the load cell of the chassis dynamometer during operation in the exhaust gas fuel cost test mode to obtain the vehicle loss.SELECTED DRAWING: Figure 1

Description

本発明は、シャシダイナモメータを用いて車両の転がり抵抗などの車両損失を測定する車両損失計測装置および方法に関する。   The present invention relates to a vehicle loss measuring apparatus and method for measuring vehicle loss such as rolling resistance of a vehicle using a chassis dynamometer.

シャシダイナモメータは、車両の路上走行時とできるだけ等価な走行抵抗を、ローラ上に搭載した被試験車両に付与し、燃費や排ガス等の各種試験を行う。   The chassis dynamometer gives a running resistance equivalent to that of a vehicle running on the road as much as possible to a vehicle under test mounted on a roller, and performs various tests such as fuel consumption and exhaust gas.

すなわち、走行負荷(慣性抵抗、転がり抵抗、空気抵抗)に対抗する駆動力を車両のエンジンに出力させるために、例えば4輪駆動車(4WD)では、ローラ上で前後輪合計の目標駆動力が得られるように2台のシャシダイナモメータのトルク制御を行う。   That is, for example, in a four-wheel drive vehicle (4WD), in order to output a driving force against a traveling load (inertia resistance, rolling resistance, air resistance) to the vehicle engine, the target driving force of the front and rear wheels in total on the roller is Torque control of the two chassis dynamometers is performed so as to be obtained.

従来、車両の転がり抵抗などのメカニカルロス(車両損失)の計測は、シャシダイナモメータ上で惰行時間測定を行うか、もしくはシャシダイナモメータから一定速度で運転することによりシャシダイナモメータのロードセルにて計測を行うものであった。このため、各計測車速における定常状態でのロス測定であった。   Conventionally, mechanical loss (vehicle loss) such as rolling resistance of a vehicle is measured at the chassis dynamometer load cell by measuring the coasting time on the chassis dynamometer or by driving at a constant speed from the chassis dynamometer. It was something to do. For this reason, it was a loss measurement in the steady state at each measurement vehicle speed.

尚、特許文献1には、惰行法とモータリング法によるメカニカルロス計測結果を突き合わせて計測結果を検証することが記載されている。また、非特許文献1には、本発明の実施形態例における検証実験のうち、車両内部抵抗の測定時に利用した技術が記載され、非特許文献2には、本発明の実施形態例における検証実験のうち、前後輪の負荷と回転の変化を再現するための先進タイヤ試験機が記載されている。   Patent Document 1 describes that the measurement result is verified by matching the mechanical loss measurement result by the coasting method and the motoring method. Non-Patent Document 1 describes a technique used during measurement of vehicle internal resistance among the verification experiments in the embodiment of the present invention. Non-Patent Document 2 describes the verification experiment in the embodiment of the present invention. Among them, an advanced tire testing machine for reproducing changes in load and rotation of front and rear wheels is described.

特開2008−224403号公報JP 2008-224403 A

野田他、自動車技術会論文集Vol.44 No.3 p.823 20134460Noda et al., Automobile Engineering Society Proceedings Vol. 44 no. 3 p. 823 20134460 井上他、自動車技術会2010年春季大会前刷り 20105239Inoue et al., Automotive Engineering Society 2010 Spring Meeting Pre-print 20105239

従来のメカニカルロスの計測は、各車速における定常状態での測定であり、実際の排ガス燃費試験モードの加減速を含んだ運転の場合の測定はなされていなかった。   Conventional measurement of mechanical loss is measurement in a steady state at each vehicle speed, and measurement in the case of driving including acceleration / deceleration in an actual exhaust gas fuel consumption test mode has not been performed.

このため、加減速を含んだ運転の場合に生じるタイヤ変形等の損失分は加味されず、実際に近い状態の車両損失計測はできないものであった。   For this reason, loss such as tire deformation caused in the case of driving including acceleration / deceleration is not taken into account, and vehicle loss measurement in a state close to the actual cannot be performed.

本発明は上記課題を解決するものであり、その目的は、排ガス燃費試験モード運転時の加減速を加味した車両損失を計測することができるシャシダイナモメータにおける車両損失計測装置および方法を提供することにある。   The present invention solves the above-described problems, and an object thereof is to provide a vehicle loss measuring device and method in a chassis dynamometer capable of measuring vehicle loss in consideration of acceleration / deceleration during exhaust gas fuel consumption test mode operation. It is in.

上記課題を解決するための請求項1に記載のシャシダイナモメータにおける車両損失計測装置は、ローラ上に搭載した被試験車両の各種試験を行うシャシダイナモメータにおける車両損失計測装置であって、前記シャシダイナモメータを速度制御モードとし、排ガス燃費試験モードの車速パターンで運転制御する制御手段と、前記排ガス燃費試験モードでの運転中にシャシダイナモメータのロードセルによって検出された機械損失から、シャシダイナモメータ単体の損失を減算して車両損失を求める演算手段と、を備えたことを特徴としている。   The vehicle loss measuring device in a chassis dynamometer according to claim 1 for solving the above-mentioned problem is a vehicle loss measuring device in a chassis dynamometer for performing various tests of a vehicle under test mounted on a roller. The chassis dynamometer alone, based on the control means that controls the dynamometer in the vehicle speed pattern in the exhaust gas fuel consumption test mode and the mechanical loss detected by the load cell of the chassis dynamometer during operation in the exhaust gas fuel consumption test mode. And calculating means for subtracting the loss to obtain the vehicle loss.

また、請求項2に記載のシャシダイナモメータにおける車両損失計測装置は、前記排ガス燃費試験モードによる速度制御は、シャシダイナモメータの自動速度維持制御機能によって実行されることを特徴としている。   The vehicle loss measuring device for a chassis dynamometer according to claim 2 is characterized in that the speed control in the exhaust gas fuel consumption test mode is executed by an automatic speed maintenance control function of the chassis dynamometer.

また、請求項3に記載のシャシダイナモメータにおける車両損失計測方法は、ローラ上に搭載した被試験車両の各種試験を行うシャシダイナモメータにおける車両損失計測方法であって、制御手段が、前記シャシダイナモメータを速度制御モードとし、排ガス燃費試験モードの車速パターンで運転制御する運転制御ステップと、演算手段が、前記排ガス燃費試験モードでの運転中にシャシダイナモメータのロードセルによって検出された機械損失から、シャシダイナモメータ単体の損失を減算して車両損失を求める演算ステップと、を備えたことを特徴としている。   A vehicle loss measurement method for a chassis dynamometer according to claim 3 is a vehicle loss measurement method for a chassis dynamometer that performs various tests on a vehicle under test mounted on a roller, and the control means includes the chassis dynamometer. The operation control step for controlling the operation with the vehicle speed pattern in the exhaust gas fuel consumption test mode with the meter in the speed control mode, and the calculation means from the mechanical loss detected by the load cell of the chassis dynamometer during operation in the exhaust gas fuel consumption test mode, And a calculation step of subtracting the loss of the chassis dynamometer alone to obtain the vehicle loss.

また、請求項4に記載のシャシダイナモメータにおける車両損失計測方法は、前記制御手段が、前記運転制御ステップの実行前に、被試験車両の変速機をニュートラルにした状態でシャシダイナモメータおよび被試験車両を暖機運転させるステップを備えたことを特徴としている。   According to a fourth aspect of the present invention, there is provided a vehicle loss measuring method for a chassis dynamometer, wherein the control means sets the transmission of the vehicle under test to neutral before the execution of the operation control step. The vehicle includes a step of warming up the vehicle.

また、請求項5に記載のシャシダイナモメータにおける車両損失計測方法は、前記運転制御ステップは、シャシダイナモメータの自動速度維持制御機能によって実行されることを特徴としている。   Further, the vehicle loss measuring method in the chassis dynamometer according to claim 5 is characterized in that the operation control step is executed by an automatic speed maintenance control function of the chassis dynamometer.

上記構成によれば、排ガス燃費試験モードの加減速運転時のタイヤ変形等を加味した車両損失が計測される。   According to the above configuration, the vehicle loss is taken into account in consideration of tire deformation and the like during acceleration / deceleration operation in the exhaust gas fuel consumption test mode.

本発明によれば、排ガス燃費試験モード運転時の加減速を加味した車両損失を計測することができ、従来よりも実際に近い状態の車両損失を計測することができる。   According to the present invention, it is possible to measure the vehicle loss taking into account the acceleration and deceleration during the exhaust gas fuel consumption test mode operation, and it is possible to measure the vehicle loss that is closer to the actual state than in the past.

本発明の実施形態例による車両損失計測装置の構成図。The block diagram of the vehicle loss measuring apparatus by the example of embodiment of this invention. 本発明の実施形態例による車両損失計測方法の一例を示すフローチャート。The flowchart which shows an example of the vehicle loss measurement method by the example of embodiment of this invention. 本発明の実施形態例の運転制御で用いるJC08モードの車速パターンのグラフ。The graph of the vehicle speed pattern of JC08 mode used by the driving control of the example of embodiment of this invention. 本発明の検証実験における、シャシダイナモメータ上のモード走行時のエネルギー収支の概念図。The conceptual diagram of the energy balance at the time of mode driving | running | working on a chassis dynamometer in the verification experiment of this invention. 本発明の検証実験における、各速度での車両抵抗力の測定結果を表し、(a)は台上で車両を自然惰行させた場合のグラフ、(b)はシャシダイナモメータの自動速度維持制御(以下、ASRと称する)により車両を定速度運転させた場合のグラフ。In the verification experiment of this invention, the measurement result of the vehicle resistance force at each speed is shown, (a) is a graph when the vehicle is naturally coasting on the table, (b) is an automatic speed maintenance control (b) of the chassis dynamometer ( A graph when the vehicle is driven at a constant speed by ASR). 本発明の検証実験における、車両のタイヤを各駆動モードでASR制御により定速回転させた場合の、各速度毎の前後輪タイヤの転がり抵抗を表すグラフ。The graph showing the rolling resistance of the front and rear wheel tires for each speed when the vehicle tire is rotated at a constant speed by ASR control in each drive mode in the verification experiment of the present invention. 本発明の検証実験における、各駆動モードで走行する時の前後輪系の各転がり抵抗による損失率を表し、(a)はJC08モードの速度変化を与えた場合のグラフ、(b)は40Km/h定速条件の場合のグラフ。In the verification experiment of the present invention, the loss rate due to each rolling resistance of the front and rear wheel system when traveling in each drive mode is represented, (a) is a graph when the speed change of JC08 mode is given, (b) is 40 Km / h Graph for constant speed conditions. 本発明の検証実験における、ASR制御によるJC08モード走行法、台上惰行法、ASR定速駆動法、目標走行抵抗値から計算する方法の各方法により求めた車両内部損失仕事量を表すグラフ。The graph showing the vehicle internal work loss calculated | required by each method of the JC08 mode driving | running | working method by ASR control, the table coasting method, the ASR constant speed drive method, and the method of calculating from a target driving resistance value in the verification experiment of this invention. 本発明の検証実験における、車両の各駆動モードでのシャシダイナモメータ側の仕事量と車両内部抵抗に起因する仕事量の割合を表すグラフ。The graph showing the ratio of the work amount resulting from the work amount on the chassis dynamometer side and the vehicle internal resistance in each drive mode of the vehicle in the verification experiment of the present invention. 本発明の検証実験における、車両の各駆動条件毎のタイヤ損失量のグラフ。The graph of the tire loss amount for each driving condition of the vehicle in the verification experiment of the present invention. 本発明の検証実験における、各駆動条件、各シャシダイナモメータの条件毎のJC08モード燃費の測定値を表すグラフ。The graph showing the measured value of JC08 mode fuel consumption for every condition of each drive condition and each chassis dynamometer in the verification experiment of this invention. 本発明の検証実験における、燃料消費率と車両側仕事率の関係を表すグラフ。The graph showing the relationship between a fuel consumption rate and the vehicle side work rate in the verification experiment of this invention. 本発明の検証実験における、後輪側ローラ表面力とタイヤ半径の関係を表すグラフ。The graph showing the relationship between the rear wheel side roller surface force and a tire radius in the verification experiment of this invention. 本発明の検証実験における、タイヤ温度の頻度分布を表すグラフ。The graph showing the frequency distribution of tire temperature in the verification experiment of this invention.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。図1は本発明のシャシダイナモメータにおける車両損失計測装置の実施形態例の全体構成を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. FIG. 1 shows the overall configuration of an embodiment of a vehicle loss measuring device in a chassis dynamometer of the present invention.

図1において、1は被試験車両であり、この被試験車両1の各駆動輪はローラ2上に載置されており、車両自体は図示省略の拘束装置によって固定される。ローラ2には、前輪用と後輪用の2台の図示省略のダイナモメータが負荷として結合されている。   In FIG. 1, reference numeral 1 denotes a vehicle under test. Each drive wheel of the vehicle under test 1 is placed on a roller 2, and the vehicle itself is fixed by a restraining device (not shown). Two unillustrated dynamometers for front wheels and rear wheels are coupled to the roller 2 as loads.

3は被試験車両1の前面側から風力を送風する車両冷却ファン、4は4輪の各タイヤとローラ2との接触面に風力を送風するタイヤ冷却ファン、5は床面である。   3 is a vehicle cooling fan that blows wind force from the front side of the vehicle 1 under test, 4 is a tire cooling fan that blows wind force to the contact surface between each tire of the four wheels and the roller 2, and 5 is a floor surface.

尚、図示省略されているが、タイヤ温度を計測するための非接触温度計と、タイヤ周辺風速を計測するための熱線式風速計が車体ボディなどに取り付けられている。   Although not shown, a non-contact thermometer for measuring the tire temperature and a hot-wire anemometer for measuring the tire peripheral wind speed are attached to the vehicle body or the like.

10は制御装置(制御手段)であり、前記2台のダイナモメータを制御するダイナモメータ制御装置、車両冷却ファン3の制御装置、タイヤ冷却ファン4の制御装置等を備えている。   A control device (control means) 10 includes a dynamometer control device for controlling the two dynamometers, a control device for the vehicle cooling fan 3, a control device for the tire cooling fan 4, and the like.

この制御装置10は、前記ダイナモメータを速度制御モードとし、排ガス燃費試験モード、例えば図3に示すJC08モードの車速パターンで運転制御を行う。   The control device 10 sets the dynamometer in a speed control mode, and performs operation control in an exhaust gas fuel consumption test mode, for example, a vehicle speed pattern in the JC08 mode shown in FIG.

このJC08モードによる速度制御は、シャシダイナモメータの自動速度維持制御機能(ASR制御)により実行される。   The speed control in the JC08 mode is executed by the automatic speed maintenance control function (ASR control) of the chassis dynamometer.

また制御装置10は、ローラ2上で前後輪合計の目標駆動力が得られるように2台のダイナモメータのトルク制御を行う機能を有している。   Further, the control device 10 has a function of performing torque control of the two dynamometers so that the target driving force of the front and rear wheels can be obtained on the roller 2.

また制御装置10は、ローラ2が実走行時の路面の役割を担っていることから、如何なる運転条件でも前後のローラの回転速度が常に一致するように、2台のダイナモメータの同期制御を行う機能を有している。   Further, since the roller 2 plays the role of the road surface during actual traveling, the control device 10 performs synchronous control of the two dynamometers so that the rotational speeds of the front and rear rollers always coincide with each other under any operating condition. It has a function.

また制御装置10は、前記2つの機能を同時に達成するために、前後合計駆動力を目標値に合わせつつ、前後のダイナモメータのトルク吸収配分量を自動調整し回転同期も実現する。   Further, in order to achieve the two functions at the same time, the control device 10 automatically adjusts the torque absorption distribution amount of the front and rear dynamometers and achieves rotation synchronization while adjusting the front and rear total driving force to the target value.

20は、前記排ガス燃費試験モード(例えばJC08モード)での運転中に、シャシダイナモメータのロードセルによって検出されたメカニカルロス(機械損失)から、予め計測し記憶手段に保持しておいたシャシダイナモメータ単体の損失21を減算して車両損失を求める演算部(演算手段)である。   Reference numeral 20 denotes a chassis dynamometer that is measured in advance from a mechanical loss (mechanical loss) detected by a load cell of the chassis dynamometer during operation in the exhaust gas fuel consumption test mode (for example, JC08 mode) and stored in the storage means. It is a calculation part (calculation means) which calculates | requires a vehicle loss by subtracting the single loss 21. FIG.

図3のJC08モードの速度パターンは、従来の10.15モードに変わるモードであり、実際の使用状況に近づけるために細かい速度変化で運転するとともに、エンジンが暖まった状態だけでなく、冷えた状態からスタートする測定も加わっており、最高速度は81.6Km/h、平均速度は24.4Km/h、所要時間は1204秒、走行距離は8.172Kmである。   The speed pattern of the JC08 mode in FIG. 3 is a mode that changes to the conventional 10.15 mode, and the engine is operated not only in a warm speed but also in a cold state in order to approach the actual usage situation. The maximum speed is 81.6 Km / h, the average speed is 24.4 Km / h, the required time is 1204 seconds, and the travel distance is 8.172 Km.

本発明を構築するにあたって、本発明者らは下記(1)〜(12)の検証実験を行い、それらの実験結果を本発明に反映させたものである。   In constructing the present invention, the present inventors conducted the following verification experiments (1) to (12), and reflected the experimental results in the present invention.

前記検証実験では、2駆走行と4駆走行の選択が可能な4WD車を用いて、JC08モードの台上走行を2WD条件と4WD条件で行い、両者のエンジン負荷量、エンジン総仕事量を解析した。また総仕事量に差を生じさせる要因を探るとともに、仕事量差と燃費との関連性についても考察した。   In the verification experiment, using a 4WD vehicle that can select 2WD or 4WD, JC08 mode tabletop driving is performed under 2WD conditions and 4WD conditions, and the engine load and total engine work of both are analyzed. did. In addition, we investigated the factors causing the difference in total workload, and also considered the relationship between the workload difference and fuel consumption.

4WD車の駆動モードとして以下の3つの方式を選択して実験を行った。2WDモードにした場合は、前輪側がフリー状態になり後輪駆動(以下、2WDrと称する)による運転となる。   The experiment was conducted by selecting the following three methods as the drive mode of the 4WD vehicle. When the 2WD mode is set, the front wheel side is in a free state, and driving is performed by rear wheel drive (hereinafter referred to as 2WDr).

4WDモードの場合は次の2つのモードが選択可能である。ひとつはセンターデフ付きフルタイム4WDのモード(以下、4WDftと称する)であり、ビスカス差動制限機構(LSD)が介在する。   In the case of the 4WD mode, the following two modes can be selected. One is a full-time 4WD mode (hereinafter referred to as 4WDft) with a center differential, and a viscous differential limiting mechanism (LSD) is interposed.

もう一方の4WD方式は、センターデフをロックして前後を直結するパートタイム型4WD(以下、4WDptと称する)であり、構造上コーナリング走行は不向きだが、左右で差のない4WD対応シャシダイナモメータ上での運転には支障が無い。   The other 4WD system is a part-time type 4WD (hereinafter referred to as 4WDpt) that locks the center differential and directly connects the front and rear, and is not suitable for cornering driving due to its structure, but on a 4WD compatible chassis dynamometer with no difference between left and right There is no problem in driving.

タイヤ温度に影響する車両冷却ファンの吹き出し口の寸法を、1300×700mmとし、140Km/hまでの車速追従風速制御を可能とした。   The size of the blowout port of the vehicle cooling fan that affects the tire temperature is 1300 × 700 mm, and the vehicle speed following wind speed control up to 140 Km / h is enabled.

試験車の固定は、2WDr,4WDft,4WDptのいずれのモードも前後合計4点によるチェーン拘束式で統一した。また車両の台上揺動の影響を調べる目的で、2WDrモードで前輪にベルトを巻き付けて固定する方法も実験した。さらに実走行に近い2WDr走行として、前輪を後輪に同期して回転させ、その抵抗力を後輪吸収力に重畳する制御、すなわちシャシダイナモメータを4WDモードにし4輪回転で走行する時の総仕事量も調べた。   The test vehicle was fixed in a chain restraint system with a total of four points in the front and rear in all modes of 2WDr, 4WDft, and 4WDpt. For the purpose of investigating the influence of the vehicle's platform swing, we also experimented with a method of winding a belt around the front wheel and fixing it in the 2WDr mode. Further, as 2WDr running close to actual running, the front wheel is rotated in synchronization with the rear wheel, and the resistance force is superimposed on the rear wheel absorption force, that is, the total when the chassis dynamometer is set to the 4WD mode and the vehicle is driven with four wheel rotation. I also checked the workload.

(1)試験車が2WDおよび4WDの条件でシャシダイナモメータ上をJC08モード走行する時のエンジン総仕事量を以下の方法で求めた。   (1) The total amount of engine work when the test vehicle travels on the chassis dynamometer in the JC08 mode under the conditions of 2WD and 4WD was determined by the following method.

総仕事量は、全走行抵抗と速度の積(仕事率)のモード走行区間の積算値で求める。シャシダイナモメータ上走行時のエンジン負荷は、車両内部で発生する動力伝達ロス、タイヤ抵抗および回転系慣性抵抗とローラ面でシャシダイナモメータから与えられる負荷(等価慣性量による慣性抵抗及び目標走行抵抗と車両の実転がり抵抗の差)の合計になる。   The total work amount is obtained as an integrated value of the mode travel section of the product (work rate) of the total travel resistance and speed. The engine load when running on the chassis dynamometer includes the power transmission loss, tire resistance and rotation system inertial resistance generated inside the vehicle, and the load applied from the chassis dynamometer on the roller surface (inertia resistance and target running resistance based on the equivalent inertia amount). The difference between the actual rolling resistance of the vehicle).

そこで、車両側抵抗力とシャシダイナモメータの吸収抵抗力を別々に測定し、走行仕事量の内訳を計算した。シャシダイナモメータ上のモード走行時のエネルギー収支を概念的に図4で示す。   Therefore, the breakdown of running work was calculated by measuring the vehicle side resistance and the absorption resistance of the chassis dynamometer separately. FIG. 4 conceptually shows the energy balance during mode running on the chassis dynamometer.

図4において、Wvmはエンジン負荷、Wptは動力伝達ロス、Wtfは前輪タイヤ抵抗、Wtrは後輪タイヤ抵抗、Wchfは前輪側シャシダイナモメータの吸収抵抗力、Wchrは後輪側シャシダイナモメータの吸収抵抗力である。   In FIG. 4, Wvm is the engine load, Wpt is the power transmission loss, Wtf is the front wheel tire resistance, Wtr is the rear wheel tire resistance, Wchf is the absorption resistance force of the front wheel side chassis dynamometer, and Wchr is the absorption force of the rear wheel side chassis dynamometer. It is resistance.

(2)車両内部の抵抗力による走行仕事量の算出
車両側抵抗力とその走行仕事量を以下の手法で求めた。実験では、試験車をシャシダイナモメータ上に固定した後、2WDrと4WDft及び4WDptの各駆動条件のもとで、シャシダイナモメータの自動速度維持制御(ASR)を利用してローラ側から試験車のタイヤを20,40,60,80,100Km/hの定速度で回し、その時の前後ローラの表面力を測定した。この値は各速度での車両側動力伝達損失及びタイヤ損失から成る車両抵抗力に相当する。
(2) Calculation of travel work by resistance force inside vehicle The vehicle side resistance force and the travel work amount were obtained by the following method. In the experiment, after fixing the test vehicle on the chassis dynamometer, under the driving conditions of 2WDr, 4WDft, and 4WDpt, the automatic speed maintenance control (ASR) of the chassis dynamometer was used from the roller side. The tire was rotated at a constant speed of 20, 40, 60, 80, and 100 km / h, and the surface force of the front and rear rollers at that time was measured. This value corresponds to the vehicle resistance force composed of the vehicle side power transmission loss and the tire loss at each speed.

比較のため、台上で車を自然惰行させた時の減速時間から各車速域での走行抵抗を求める方法も実験した。   For comparison, an experiment was also conducted to determine the running resistance in each vehicle speed range from the deceleration time when the vehicle was allowed to naturally coast on the table.

図5は、各速度での車両抵抗力の測定結果を表し、(a)は台上で車両を自然惰行させた場合のグラフ、(b)はシャシダイナモメータの自動速度維持制御(以下、ASRと称する)により車両を定速度運転させた場合のグラフである。   FIG. 5 shows the measurement results of the vehicle resistance force at each speed, (a) is a graph when the vehicle is naturally coasting on the table, and (b) is an automatic speed maintenance control (hereinafter referred to as ASR) of the chassis dynamometer. Is a graph when the vehicle is operated at a constant speed.

図5(a)の惰行方法の方がやや抵抗値が大きかったが、その原因は車両暖機や走行速度域の違いで両試験法のタイヤ温度条件が異なった影響と推測する。   The coasting method of FIG. 5 (a) has a slightly larger resistance value, but the cause is presumed to be the effect of different tire temperature conditions in both test methods due to differences in vehicle warm-up and running speed range.

(3)一方、ASR制御でシャシダイナモメータから速度変化を与えた場合は、試験車には転がり抵抗の他に変速機以降の回転慣性力も作用する。この条件でJC08モードと同じ速度変化を試験車に与え、各瞬間のローラ表面力と車速の積を積算する方法で、モード走行時の車両内部抵抗に起因する損失量を算出した。   (3) On the other hand, when a speed change is given from the chassis dynamometer by ASR control, the rotational inertia force after the transmission acts on the test vehicle in addition to the rolling resistance. Under this condition, the same speed change as in the JC08 mode was given to the test vehicle, and the amount of loss caused by the vehicle internal resistance during the mode running was calculated by a method of integrating the product of the roller surface force and the vehicle speed at each moment.

転がり抵抗の中でもタイヤ損失の寄与度が高いとされる。回転でタイヤ接地部周辺のゴム部材が繰り返し変形し、粘弾性体の性質で発熱するためタイヤ損失が発生する。さらに接地摩擦抵抗と回転空気摩擦抵抗も加わるが、タイヤ抵抗では変形損失が約9割とされる。タイヤ転がり抵抗係数(RRC)は温度で変化するので、タイヤ冷却風の影響を見るため、走行中のタイヤ側壁温も連続測定した。   It is said that the contribution of tire loss is high in rolling resistance. The rubber member around the tire ground contact portion is repeatedly deformed by the rotation and generates heat due to the properties of the viscoelastic body, resulting in tire loss. In addition, ground friction resistance and rotating air friction resistance are added, but deformation loss is about 90% in tire resistance. Since the tire rolling resistance coefficient (RRC) varies with temperature, the tire sidewall temperature during running was also continuously measured in order to see the effect of tire cooling air.

尚、前記(2)に示した車両内部抵抗の測定方法では、タイヤ損失と動力伝達ロスの分離ができない。そこで、非特許文献1に示す方法に基づき、4WDft、4WDptおよび2WDrの各駆動条件でJC08モードを走行した時の前後輪の負荷と回転の変化を非特許文献2の先進タイヤ試験機により再現し、その時のタイヤ入出力軸間のトルク差等を演算することにより、JC08モード走行時のタイヤ単体変形ロス分の仕事量を求めた。   In the vehicle internal resistance measurement method shown in (2) above, tire loss and power transmission loss cannot be separated. Therefore, based on the method shown in Non-Patent Document 1, changes in the load and rotation of the front and rear wheels when running in JC08 mode under the driving conditions of 4WDft, 4WDpt, and 2WDr are reproduced by the advanced tire testing machine of Non-Patent Document 2. Then, by calculating the torque difference between the tire input / output shafts at that time, the work amount corresponding to the single tire deformation loss at the time of running in the JC08 mode was obtained.

モード走行時の加速抵抗及び目標走行抵抗(空気抵抗等を含む)は、シャシダイナモメータ負荷として試験車に与えられる。そこでモード全体でシャシダイナモメータが吸収した仕事量を測定した。シャシダイナモメータに等価慣性質量と目標走行抵抗を設定した後、駆動モードとして4WDft、4WDptおよび2WDrの各駆動条件でJC08モードを走行し、前後のローラ表面力(正の値のみ)にローラ周速度をかけて瞬時仕事率を求め、モード区間全体で積算することでシャシダイナモメータが吸収した分のモード総仕事量を求めた。   The acceleration resistance and the target travel resistance (including air resistance) during the mode travel are given to the test vehicle as a chassis dynamometer load. Therefore, the amount of work absorbed by the chassis dynamometer was measured over the entire mode. After setting the equivalent inertial mass and target running resistance in the chassis dynamometer, the JC08 mode is run under the driving conditions of 4WDft, 4WDpt, and 2WDr as the driving mode, and the roller peripheral force is applied to the front and rear roller surface forces (positive value only). The instantaneous work rate was calculated over time, and the total work amount of the mode absorbed by the chassis dynamometer was obtained by integrating over the entire mode section.

(4)図6は、4WDft、4WDptおよび2WDrの各駆動モードにおいてASR制御で定速回転させ、前後輪の各転がり抵抗をローラ表面力の値から求めたものである。尚、2WDr駆動モード時は、前輪(front)と後輪(rear)を別々に測定した。図の結果では、後輪系の抵抗が前輪よりも大きく、4WDではデフやビスカス機構が介在する4WDftモードの前輪抵抗が、前後輪直結の4WDptよりやや大きかった。さらに前後間の結合がない2WDrが、前後合計の総抵抗が最も小さい結果となった。   (4) FIG. 6 shows the rolling resistance of the front and rear wheels determined from the value of the roller surface force by rotating at a constant speed by ASR control in each of the 4WDft, 4WDpt, and 2WDr drive modes. In the 2WDr drive mode, the front and rear wheels were measured separately. In the results shown in the figure, the resistance of the rear wheel system is larger than that of the front wheels, and in 4WD, the front wheel resistance in the 4WDft mode in which the differential and viscous mechanisms are interposed is slightly larger than that of 4WDpt in which the front and rear wheels are directly connected. Furthermore, 2WDr with no coupling between the front and rear resulted in the smallest total resistance before and after.

(5)次にJC08モードを各駆動モードで走行する時の前後輪系の各転がり抵抗による損失率(kJ/km)を求めた。この測定は、試験車を載せたローラにASR駆動でJC08モードの速度変化を与える実験により行った。この場合、車両側の回転慣性分の損失も含めた仕事量になる。   (5) Next, the loss rate (kJ / km) due to each rolling resistance of the front and rear wheel system when traveling in the JC08 mode in each drive mode was determined. This measurement was performed by an experiment in which a speed change in the JC08 mode was applied to the roller on which the test vehicle was mounted by ASR driving. In this case, the work amount includes the loss of rotational inertia on the vehicle side.

JC08モードと40Km/h定速条件における損失率の測定結果を図7に示す。図7は、各駆動モードで走行する時の前後輪系の各転がり抵抗による損失率を表し、(a)はJC08モードの速度変化を与えた場合のグラフ、(b)は40Km/h定速条件の場合のグラフである。   FIG. 7 shows the measurement results of the loss rate in the JC08 mode and the 40 Km / h constant speed condition. FIG. 7 shows the loss rate due to each rolling resistance of the front and rear wheel system when traveling in each driving mode, (a) is a graph when the speed change of JC08 mode is given, (b) is a constant speed of 40 km / h. It is a graph in the case of conditions.

2WDrモードの台上試験では前輪が回転しないので、後輪系のみを示した。4WD走行における前後の比率を見ると、JC08モードでは40Km/h定速走行時よりも前輪側が増えている。駆動方式の違いでは、4WDftモードの損失率が直結型の4WDptモードを僅かに上回った。こうした転がり抵抗に起因する距離あたり損失率の値でJC08モード走行の方が40Km/h定速時よりも小さいのは、減速時にシャシダイナモメータから与えられるマイナスの慣性力が車両側の転がり抵抗分をキャンセルした結果である。   In the 2WDr mode bench test, only the rear wheel system was shown because the front wheels did not rotate. Looking at the front-to-back ratio in 4WD traveling, the front wheel side is increased in the JC08 mode as compared to when traveling at a constant speed of 40 km / h. With the difference in driving method, the loss rate of the 4WDft mode was slightly higher than that of the direct connection type 4WDpt mode. The loss rate per distance attributed to such rolling resistance is smaller in JC08 mode traveling than at 40 Km / h constant speed. The negative inertia force applied from the chassis dynamometer during deceleration is the amount of rolling resistance on the vehicle side. Is the result of canceling.

(6)JC08モード走行時の車両側損失仕事量の内訳
次に試験車を4WDft、4WDptおよび2WDrの各駆動モードで運転した時の仕事量を、車両内部損失に係わる仕事量とシャシダイナモメータから与えられた負荷による仕事量に分けて求めた。4駆走行の時にシャシダイナモメータで吸収された仕事量は、前側と後側のローラ表面力の合計から求めた。
(6) Breakdown of vehicle-side lost work during JC08 mode travel Next, the work when the test vehicle is driven in each of the 4WDft, 4WDpt, and 2WDr drive modes is calculated from the work related to vehicle internal loss and the chassis dynamometer. It was calculated by dividing it into the workload by the given load. The amount of work absorbed by the chassis dynamometer during four-wheel drive running was determined from the sum of the roller surface forces on the front and rear sides.

また2WDの路上走行を模擬する観点から、試験車を2WDrモードとし、シャシダイナモメータを4WDモードにした試験条件も与えた。この場合、前輪系の転がり抵抗と回転慣性抵抗が働くが、前輪ローラを後輪側の回転速度に追従させる回転力は後輪側ローラ負荷に上乗せされる。   In addition, from the viewpoint of simulating 2WD road running, test conditions were also given in which the test vehicle was set to the 2WDr mode and the chassis dynamometer was set to the 4WD mode. In this case, the rolling resistance and the rotational inertia resistance of the front wheel system work, but the rotational force that causes the front wheel roller to follow the rotational speed of the rear wheel is added to the rear wheel roller load.

これは実路走行での原理と共通する。さらに2WDrの試験で、車両拘束を前輪ベルト固定で行う方法も比較した。この目的は、車両固定法の違いで試験車の揺動とタイヤ変形が変化し、走行仕事量に違いが生じるかを確認するためである。   This is in common with the principle of actual road running. Furthermore, in the 2WDr test, the method of restraining the vehicle by fixing the front belt was also compared. The purpose of this is to check whether the test vehicle swing and tire deformation change due to the difference in the vehicle fixing method, resulting in a difference in the work load.

まずJC08モード走行時の車両内部損失仕事量を、ASR制御で同モードの速度変化を与えてローラ表面力から求める方法と、台上惰行法及びASR定速駆動法で各車速域の抵抗を求め、その値を使ってJC08モードの全体量を計算する方法と、目標走行抵抗の値から計算する方法とを比較した。その結果を図8に示す。   First, the internal work loss of the vehicle during JC08 mode driving is obtained from the roller surface force by applying the speed change of the same mode by ASR control, and the resistance in each vehicle speed range is obtained by the table coasting method and ASR constant speed driving method. The method of calculating the total amount of JC08 mode using the value was compared with the method of calculating from the target running resistance value. The result is shown in FIG.

図8において、黒塗りの棒グラフはASR制御によるJC08モード走行法によるもの、幅広斜線の棒グラフは台上惰行法によるもの、幅狭斜線の棒グラフはASR定速駆動法によるもの、白抜きの棒グラフは目標走行抵抗値から計算したものを各々示している。   In FIG. 8, the black bar graph is based on the JC08 mode running method by ASR control, the wide diagonal line bar graph is based on the table coasting method, the narrow diagonal bar graph is based on the ASR constant speed driving method, and the white bar graph is Each calculated from the target running resistance value is shown.

4WD時(4WDft、4WDpt)はASR制御によるJC08モード駆動法(図示黒塗りの棒グラフ)の値がやや大きく、ローラの速度変化がタイヤに影響したと思われる。   At the time of 4WD (4WDft, 4WDpt), the value of the JC08 mode driving method (black bar graph in the figure) by ASR control is slightly large, and it seems that the change in the speed of the roller affected the tire.

(7)図9は、各駆動モードにおけるシャシダイナモメータ(CHDY)側の仕事量と車両内部抵抗に起因する仕事量の計算結果を示している。車両側の分は、シャシダイナモメータ側をASR制御にしてJC08モードの速度変化を試験車に与える方法で求めた。図を見ると、どの車両条件でもシャシダイナモメータ側の吸収仕事量(黒塗り部分)が過半数以上あり、これは加速時の慣性抵抗分の影響が大きいことによる。過渡条件であるJC08モードを4WDで走行すると、駆動力や車体姿勢の変化などの要因で前後輪間に回転速度差が生じやすいが、その影響はこの実験方法では捉えられない。   (7) FIG. 9 shows the calculation results of the work on the chassis dynamometer (CHDY) side and the work caused by the vehicle internal resistance in each drive mode. The vehicle side was obtained by a method in which the chassis dynamometer side is ASR controlled and the speed change in the JC08 mode is applied to the test vehicle. As can be seen from the figure, the absorbed work (blacked area) on the chassis dynamometer side is more than half in any vehicle condition, which is due to the large influence of inertial resistance during acceleration. When traveling in the JC08 mode, which is a transient condition, at 4WD, a difference in rotational speed is likely to occur between the front and rear wheels due to factors such as changes in driving force and vehicle body posture, but the effect is not captured by this experimental method.

一方2WDrの図示(3)、(5)の試験では、走行抵抗設定時に路上惰行時の前輪抵抗分も含めて検証し、後側シャシダイナモメータの吸収負荷量で調整するためシャシダイナモメータの負担量(黒塗り部分)が増加し、非回転の前輪分だけ車両側の損失(白抜き部分)が減少した。   On the other hand, in the tests of (3) and (5) of 2WDr, the load of the chassis dynamometer is verified because the verification including the resistance of the front wheel when driving on the road is made and the adjustment is made by the absorption load amount of the rear chassis dynamometer. The amount (black part) increased, and the loss on the vehicle side (outlined part) decreased by the amount of the non-rotating front wheel.

図9の結果を見ると、総仕事量では2輪回転で走行する時の仕事量((3)、(4))が、4輪回転の4WDftモード(1)、4WDpt(2)及び2WDrモードでシャシダイナモメータが4WDモード(4)の時の仕事量に比べてやや少なかった。つまり、シャシダイナモメータでの目標走行抵抗を4WDの路上走行の値に設定しても、2輪回転の試験では総仕事量がやや減少した。2輪回転の試験では車両の回転慣性量がほぼ半減することや、台上走行時のタイヤの実損失が、2輪走行と4輪走行とでは異なる可能性が考えられる。   From the results shown in FIG. 9, the total work amount ((3), (4)) when traveling with two-wheel rotation is 4WDft mode (1), 4WDpt (2) and 2WDr modes with four-wheel rotation. The amount of work was slightly less than that when the chassis dynamometer was in the 4WD mode (4). In other words, even if the target running resistance with the chassis dynamometer was set to a road running value of 4WD, the total work amount was slightly reduced in the two-wheel rotation test. In the two-wheel rotation test, it is possible that the rotational inertia amount of the vehicle is almost halved, and that the actual loss of the tire during table-top traveling may be different between two-wheel traveling and four-wheel traveling.

(8)次に4WD車の駆動条件とモード走行時のタイヤ損失の関係を把握するため、先進タイヤ試験機の過渡試験機能(非特許文献1、2)を利用して、4WDft、4WDpt、2WDrの各条件でJC08モードを台上走行した時と等価な負荷、回転条件をタイヤ単体に与え、駆動条件別に前輪と後輪のタイヤ1本あたり損失量を測定した。その結果をもとに車両駆動輪の総タイヤ損失量を計算した。   (8) Next, 4WDft, 4WDpt, 2WDr are utilized by using the transient test function of the advanced tire testing machine (Non-Patent Documents 1 and 2) in order to grasp the relationship between the driving conditions of the 4WD vehicle and the tire loss during mode driving. Under these conditions, the load and rotation conditions equivalent to those when the JC08 mode was run on a table were given to the tire alone, and the amount of loss per tire for the front and rear wheels was measured for each driving condition. Based on the results, the total tire loss of the vehicle drive wheels was calculated.

図10にタイヤ実験の結果を示す。車両側の動力ロス分(白抜き部分)は前述の方法で求めた車両総損失から今回のタイヤロス分(黒塗り部分)を差し引いた値である。JC08モード走行時の車両総損失では、今回の供試タイヤではどの駆動条件でもタイヤの寄与度(図示菱形印)が約60%であった。エコ等級Cのタイヤで且つ差動機構を持つ4WD車なので、ほぼ妥当な数字と思われる。また全く独立に行ったシャシダイナモメータ車両試験とタイヤ単体試験で求めた総損失量の解析結果が、両者でほぼ妥当と思える数字になったことから、タイヤ単体モード試験は実用的手法と考えられる。   FIG. 10 shows the results of the tire experiment. The vehicle-side power loss (outlined portion) is a value obtained by subtracting the current tire loss (blackened portion) from the total vehicle loss obtained by the above-described method. With respect to the total vehicle loss during running in JC08 mode, the contribution of the tire (diamond mark in the figure) was about 60% for the test tire of this time under any driving condition. Since it is an eco-grade C tire and a 4WD vehicle with a differential mechanism, it seems to be a reasonable number. In addition, since the analysis results of the total loss obtained by the chassis dynamometer vehicle test and the tire unit test that were conducted completely independently were numbers that seemed to be appropriate for both, the tire unit mode test is considered to be a practical method .

(9)試験車、シャシダイナモメータの試験条件と燃費との関連性
車両の内部損失分を含むモード走行仕事量が4WD車の駆動条件やシャシダイナモメータの使用条件で変わることがわかった。そこでこれらの違いがモード燃費にどう影響するかをJC08モードの燃費測定により確認した。
(9) Relationship between test vehicle and chassis dynamometer test conditions and fuel consumption It was found that the mode travel work including the internal loss of the vehicle varies depending on the driving conditions of the 4WD vehicle and the usage conditions of the chassis dynamometer. Therefore, how these differences affect the mode fuel efficiency was confirmed by JC08 mode fuel efficiency measurement.

図11は、各駆動条件、シャシダイナモメータ条件で3回づつ測定したJC08モード燃費値である。図中の(1)、(2)が4WD駆動、(3)〜(5)が2WD駆動であり、そのうち(3)と(4)は4輪とも回転し、(5)は後輪だけが回転している。2WD駆動で4輪が回転している(3)と(4)において、(3)は後輪駆動で、前輪は後輪にASRで追従させる制御を行った場合であり、(4)は前輪と後輪を同期させる制御を行った場合である。JC08モード走行では、急な速度変化や、変速時、車両揺動時に前後輪の等速回転が崩れる可能性がある。その速度差を、4WDftはセンターデフ、ビスカスLSDが吸収し、4WDptでは前後のタイヤ接地部付近のゴム部材の変形が吸収・抑制すると考えられる。   FIG. 11 shows JC08 mode fuel efficiency values measured three times under each driving condition and chassis dynamometer condition. In the figure, (1) and (2) are 4WD driving, and (3) to (5) are 2WD driving, among which (3) and (4) rotate all four wheels, and (5) only the rear wheels It is rotating. In (3) and (4), 4 wheels are rotating by 2WD drive. (3) is the case of rear wheel drive, the front wheel is controlled to follow the rear wheel by ASR, and (4) is the front wheel. This is a case where control is performed to synchronize the rear wheel. In JC08 mode traveling, there is a possibility that the constant speed rotation of the front and rear wheels may be disrupted during a sudden speed change or during a gear shift or vehicle swing. It is considered that 4WDft absorbs the speed difference by the center differential and the viscous LSD, and 4WDpt absorbs and suppresses deformation of the rubber members near the front and rear tire contact portions.

図中の(1)の4WDftと(2)の4WDptの燃費比較では、差動吸収機構が間にある(1)の方が良かった。前後が直結された(2)の4WDptでは、回転差の影響がタイヤに向かうため、タイヤ損失が増大した結果、燃費悪化につながったと思われる。これに対して(1)ではセンターデフやビスカスの働きで回転差をそれほど無理なく吸収できるため、損失が相対的に少なかったと考える。(1)の4WDftと(3)の2WDrではほとんど燃費差がなかった。試験車の固定が、両者とも前後に張力を持たせたチェーン拘束法のため、試験車のローラ上の揺動状態が実路走行に近かったことと、図8のモード総仕事量で差が少なかったことが燃費差の少ない原因と思われる。(5)のベルト巻き付けによる前輪固定の試験では、同じ2WDrの(3)より燃費がやや低下した。この条件では、車体が前後のチェーンで拘束されていないので、加減速時に駆動輪である後輪側の上下動が(3)の時よりも拡大し、これに伴ってモード走行時のタイヤ変形ロスが増加したのが原因ではないかと判断する。   In the fuel consumption comparison of 4WDft (1) and 4WDpt (2) in the figure, (1) with a differential absorption mechanism in between was better. In 4WDpt of (2) in which the front and rear are directly connected, the influence of the rotation difference is directed to the tire, and as a result, the tire loss is increased, leading to deterioration in fuel consumption. On the other hand, in (1), since the rotation difference can be absorbed without difficulty by the action of the center differential and the viscous, it is considered that the loss is relatively small. There was almost no difference in fuel consumption between 4WDft (1) and 2WDr (3). Because the test vehicle is fixed in a chain restraint method in which both are tensioned back and forth, the rocking state on the roller of the test vehicle is close to the actual road running, and there is a difference in the mode total work amount in FIG. The small amount seems to be the cause of the small difference in fuel consumption. In the test of fixing the front wheels by winding the belt in (5), the fuel consumption was slightly reduced from (3) of the same 2WDr. Under this condition, since the vehicle body is not restrained by the front and rear chains, the vertical movement on the rear wheel side that is the driving wheel during acceleration / deceleration is larger than that in (3), and the tire deformation during mode driving is accordingly accompanied. Judge that the increase in loss may be the cause.

実験条件の中で最も燃費が悪かったのは、(4)の2WD駆動で台上4輪回転の条件であった。理由は、図9に示したモード総仕事量が最も大きいことと、負荷設定時の前輪側の転がり抵抗相当分とJC08の過渡走行時の前輪側の実転がり抵抗に違いがあり、結果としてシャシダイナモメータの後輪ローラの吸収力が増加したためと推測する。さらに前輪側のタイヤに車両冷却ファンの風が直接当たるため、後述するようにタイヤ温度が下りやすい条件になり、前輪の実転がり抵抗が増加する要因になったと思われる。   Among the experimental conditions, the fuel consumption was the worst under the condition of (4) 2WD driving and 4 wheel rotations on the table. The reason is that the mode total work shown in FIG. 9 is the largest, and there is a difference between the rolling resistance equivalent to the front wheel side when the load is set and the actual rolling resistance on the front wheel side during the transient running of JC08. This is presumably because the absorption capacity of the rear wheel roller of the dynamometer has increased. Further, since the wind of the vehicle cooling fan directly hits the tire on the front wheel side, the tire temperature is likely to fall as described later, and this seems to have caused the actual rolling resistance of the front wheel to increase.

(10)次に各種試験条件での燃費消費率(mL/km)と以前に求めた車両側仕事率(KJ/km)の関係性を調べた。結果を図12に示す。両者間には相関性があるが、バラツキも見られる。これまでの仕事率の計算では、シャシダイナモメータ上のタイヤ挙動の動的変化による仕事量変化分が反映されていないため、図12のバラツキを生む要因になりうる。そこで台上走行時のタイヤ特性に影響するその他の要因についても調べた。   (10) Next, the relationship between the fuel consumption rate (mL / km) under various test conditions and the vehicle-side work rate (KJ / km) obtained previously was examined. The results are shown in FIG. There is a correlation between the two, but there are also variations. Since the calculation of the work rate so far does not reflect the change in the work amount due to the dynamic change in the tire behavior on the chassis dynamometer, it can be a factor causing the variation in FIG. Therefore, other factors affecting the tire characteristics when traveling on a table were also investigated.

(11)モード総仕事量に対するタイヤ実作動条件の影響
車両駆動力をローラ面に伝える実働時のタイヤ変形とそれによる駆動損失への影響について考察した。その一環で2WDと4WDでの定速走行時にシャシダイナモメータから勾配条件を付加する実験を行い、その際の後輪側ローラ表面力とタイヤ半径の関係を求めた。タイヤ半径はローラ周速度とタイヤ軸回転速度の検出値から求め、スリップは計算に入れなかった。図13に結果を示すが、ローラ表面力(横軸)の増加とともにタイヤ径(縦軸)がほぼ直線的に低下する傾向がでた。駆動力が増加することでタイヤ変形量(つぶれ)が拡大し、結果的にタイヤ損失が増加することが考えられる。この影響は、図12の仕事率の計算には含まれないので、潜在的な変動要因といえる。
(11) Effect of tire actual operating conditions on total mode work load The tire deformation during actual operation in which the vehicle driving force is transmitted to the roller surface and the influence on the driving loss due to this were considered. As part of the experiment, an experiment was performed in which gradient conditions were added from a chassis dynamometer during constant speed running at 2WD and 4WD, and the relationship between the surface force of the rear wheel roller and the tire radius was determined. The tire radius was obtained from the detected values of the roller peripheral speed and the tire shaft rotational speed, and slip was not included in the calculation. As shown in FIG. 13, the tire diameter (vertical axis) tended to decrease almost linearly as the roller surface force (horizontal axis) increased. It is conceivable that the amount of tire deformation (collapse) increases as the driving force increases, resulting in an increase in tire loss. Since this influence is not included in the calculation of the power of FIG. 12, it can be said that it is a potential fluctuation factor.

(12)次に、タイヤ温度によってRRC(転がり抵抗係数)が変わる点に着目した。モード走行中の前輪と後輪のタイヤ側壁温度を赤外線式の非接触温度計により連続計測し、タイヤ温度の頻度分布を求めた。結果を図14に示す。図14において、横軸はタイヤ側壁温度であり、縦軸は頻度分布である。後輪タイヤ温度は2WDrの方が4WDftより平均的に高く、後輪ブレーキ熱の違いの影響が考えられる。一方4輪走行時の前輪タイヤ温度は明らかに後輪側より低下した。前輪側には車両冷却ファンの風が直接当たるのに対して、後輪側は車体で遮られてタイヤ周辺の冷却風速が抑えられ、またエンジンや排気管の熱で暖められた風が床下から後輪側に回り込んでタイヤに伝熱したことが原因と思われる。その意味で、前後のタイヤに当たる風の状態を実路走行時に近付けることの可能なタイヤ冷却装置も検討する必要があると考える。   (12) Next, attention was paid to the fact that the RRC (rolling resistance coefficient) changes depending on the tire temperature. The tire side wall temperatures of the front and rear wheels during mode running were continuously measured with an infrared non-contact thermometer to determine the tire temperature frequency distribution. The results are shown in FIG. In FIG. 14, the horizontal axis is the tire sidewall temperature, and the vertical axis is the frequency distribution. The rear wheel tire temperature is 2WDr higher than 4WDft on average, and the effect of the difference in rear wheel brake heat is considered. On the other hand, the temperature of the front wheel tire during four-wheel drive clearly decreased from the rear wheel side. The wind of the vehicle cooling fan directly hits the front wheel side, while the rear wheel side is blocked by the vehicle body to suppress the cooling air speed around the tire, and the wind warmed by the heat of the engine and exhaust pipe from under the floor The cause seems to have been the heat transferred to the tire by going around the rear wheel. In that sense, it is necessary to consider a tire cooling device that can approach the state of the wind hitting the front and rear tires when traveling on a real road.

次に、図1の車両損失計測装置を用いて車両損失を計測する処理の一例を図2のフローチャートとともに説明する。   Next, an example of a process for measuring vehicle loss using the vehicle loss measurement device of FIG. 1 will be described with reference to the flowchart of FIG.

<ステップS1>
被試験車両1を乗せた状態でシャシダイナモメータと被試験車両1を暖機運転する。これにより、タイヤ温度などが十分暖機され、転がり抵抗などが安定した状態となる(車両1の変速機はニュートラルとする)。
<Step S1>
The chassis dynamometer and the vehicle under test 1 are warmed up while the vehicle under test 1 is on. As a result, the tire temperature and the like are sufficiently warmed up and the rolling resistance and the like are stabilized (the transmission of the vehicle 1 is neutral).

<ステップS2>
シャシダイナモメータを速度制御モードとして、排ガス燃費試験モード(例えば図3のJC08モード)の車速パターンで運転する。
<Step S2>
The chassis dynamometer is used as a speed control mode, and the vehicle is operated in a vehicle speed pattern in an exhaust gas fuel consumption test mode (for example, JC08 mode in FIG. 3).

<ステップS3>
上記の運転中に、シャシダイナモメータのロードセルで検出される値を計測する。
<Step S3>
During the above operation, the value detected by the load cell of the chassis dynamometer is measured.

<ステップS4>
上記で計測された値から、予め計測したシャシダイナモメータ単体のロス値を差し引いて、車両ロスを求める。
<Step S4>
The vehicle loss is obtained by subtracting the previously measured loss value of the chassis dynamometer alone from the value measured above.

1…被試験車両
2…ローラ
3…車両冷却ファン
4…タイヤ冷却ファン
10…制御装置
20…演算部
DESCRIPTION OF SYMBOLS 1 ... Test vehicle 2 ... Roller 3 ... Vehicle cooling fan 4 ... Tire cooling fan 10 ... Control apparatus 20 ... Calculation part

Claims (5)

ローラ上に搭載した被試験車両の各種試験を行うシャシダイナモメータにおける車両損失計測装置であって、
前記シャシダイナモメータを速度制御モードとし、排ガス燃費試験モードの車速パターンで運転制御する制御手段と、
前記排ガス燃費試験モードでの運転中にシャシダイナモメータのロードセルによって検出された機械損失から、シャシダイナモメータ単体の損失を減算して車両損失を求める演算手段と、
を備えたことを特徴とするシャシダイナモメータにおける車両損失計測装置。
A vehicle loss measuring device in a chassis dynamometer that performs various tests of a vehicle under test mounted on a roller,
The chassis dynamometer is set to a speed control mode, and control means for controlling operation with a vehicle speed pattern in an exhaust gas fuel consumption test mode;
Calculation means for subtracting the loss of the chassis dynamometer alone from the mechanical loss detected by the load cell of the chassis dynamometer during operation in the exhaust gas fuel consumption test mode, and obtaining vehicle loss;
A vehicle loss measuring device in a chassis dynamometer, comprising:
前記排ガス燃費試験モードによる速度制御は、シャシダイナモメータの自動速度維持制御機能によって実行されることを特徴とする請求項1に記載のシャシダイナモメータにおける車両損失計測装置。   The vehicle loss measuring device for a chassis dynamometer according to claim 1, wherein the speed control in the exhaust gas fuel consumption test mode is executed by an automatic speed maintenance control function of the chassis dynamometer. ローラ上に搭載した被試験車両の各種試験を行うシャシダイナモメータにおける車両損失計測方法であって、
制御手段が、前記シャシダイナモメータを速度制御モードとし、排ガス燃費試験モードの車速パターンで運転制御する運転制御ステップと、
演算手段が、前記排ガス燃費試験モードでの運転中にシャシダイナモメータのロードセルによって検出された機械損失から、シャシダイナモメータ単体の損失を減算して車両損失を求める演算ステップと、
を備えたことを特徴とするシャシダイナモメータにおける車両損失計測方法。
A vehicle loss measurement method in a chassis dynamometer that performs various tests of a vehicle under test mounted on a roller,
An operation control step, wherein the control means sets the chassis dynamometer in a speed control mode, and performs operation control with a vehicle speed pattern in an exhaust gas fuel consumption test mode;
A calculating step for calculating a vehicle loss by subtracting the loss of the chassis dynamometer alone from the mechanical loss detected by the load cell of the chassis dynamometer during operation in the exhaust gas fuel consumption test mode;
A vehicle loss measuring method in a chassis dynamometer, comprising:
前記制御手段が、前記運転制御ステップの実行前に、被試験車両の変速機をニュートラルにした状態でシャシダイナモメータおよび被試験車両を暖機運転させるステップを備えたことを特徴とする請求項3に記載のシャシダイナモメータにおける車両損失計測方法。   4. The step of warming up the chassis dynamometer and the vehicle under test in a state where the transmission of the vehicle under test is in a neutral state before executing the operation control step. The vehicle loss measurement method in the chassis dynamometer described in 1. 前記運転制御ステップは、シャシダイナモメータの自動速度維持制御機能によって実行されることを特徴とする請求項3又は4に記載のシャシダイナモメータにおける車両損失計測方法。   5. The vehicle loss measurement method for a chassis dynamometer according to claim 3, wherein the operation control step is executed by an automatic speed maintenance control function of the chassis dynamometer.
JP2014214801A 2014-10-21 2014-10-21 Vehicle loss measurement device and vehicle loss measurement method in chassis dynamometer Pending JP2016080636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214801A JP2016080636A (en) 2014-10-21 2014-10-21 Vehicle loss measurement device and vehicle loss measurement method in chassis dynamometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214801A JP2016080636A (en) 2014-10-21 2014-10-21 Vehicle loss measurement device and vehicle loss measurement method in chassis dynamometer

Publications (1)

Publication Number Publication Date
JP2016080636A true JP2016080636A (en) 2016-05-16

Family

ID=55958492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214801A Pending JP2016080636A (en) 2014-10-21 2014-10-21 Vehicle loss measurement device and vehicle loss measurement method in chassis dynamometer

Country Status (1)

Country Link
JP (1) JP2016080636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525463A (en) * 2016-12-30 2017-03-22 纳恩博(天津)科技有限公司 Balance vehicle test device
JPWO2018105168A1 (en) * 2016-12-05 2019-10-24 株式会社堀場製作所 Vehicle test system, vehicle test system management device, vehicle test system program, and vehicle test method
EP3591368A1 (en) 2018-07-04 2020-01-08 HORIBA, Ltd. Chassis dynamometer, control method for the same, and chassis dynamometer program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433401A (en) * 1977-08-16 1979-03-12 Meidensha Electric Mfg Co Ltd Method of driving equivaent road simulation system
JPH0592683U (en) * 1992-05-22 1993-12-17 株式会社明電舎 Intermediate lift device for chassis dynamometer
JPH06249754A (en) * 1993-02-25 1994-09-09 Mitsubishi Motors Corp Mechanical loss measuring method for chassis dynamometer
JPH0674951U (en) * 1993-03-27 1994-10-21 株式会社堀場製作所 Engine dynamometer device
JPH08278231A (en) * 1995-04-10 1996-10-22 Meidensha Corp Mechanical loss setting method in chassis dynamometer
JPH09178619A (en) * 1995-12-25 1997-07-11 Mitsubishi Electric Corp Method and apparatus for measuring running resistance
JPH10267797A (en) * 1997-03-27 1998-10-09 Toyota Motor Corp Measuring device for rolling resistance of vehicle
JP2008045871A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Cruise testing device for vehicle
JP2009002714A (en) * 2007-06-20 2009-01-08 Meidensha Corp Controller for dynamometer
JP2012184980A (en) * 2011-03-04 2012-09-27 Meidensha Corp Inertia verification apparatus for chassis dynamometer system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433401A (en) * 1977-08-16 1979-03-12 Meidensha Electric Mfg Co Ltd Method of driving equivaent road simulation system
JPH0592683U (en) * 1992-05-22 1993-12-17 株式会社明電舎 Intermediate lift device for chassis dynamometer
JPH06249754A (en) * 1993-02-25 1994-09-09 Mitsubishi Motors Corp Mechanical loss measuring method for chassis dynamometer
JPH0674951U (en) * 1993-03-27 1994-10-21 株式会社堀場製作所 Engine dynamometer device
JPH08278231A (en) * 1995-04-10 1996-10-22 Meidensha Corp Mechanical loss setting method in chassis dynamometer
JPH09178619A (en) * 1995-12-25 1997-07-11 Mitsubishi Electric Corp Method and apparatus for measuring running resistance
JPH10267797A (en) * 1997-03-27 1998-10-09 Toyota Motor Corp Measuring device for rolling resistance of vehicle
JP2008045871A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Cruise testing device for vehicle
JP2009002714A (en) * 2007-06-20 2009-01-08 Meidensha Corp Controller for dynamometer
JP2012184980A (en) * 2011-03-04 2012-09-27 Meidensha Corp Inertia verification apparatus for chassis dynamometer system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018105168A1 (en) * 2016-12-05 2019-10-24 株式会社堀場製作所 Vehicle test system, vehicle test system management device, vehicle test system program, and vehicle test method
CN106525463A (en) * 2016-12-30 2017-03-22 纳恩博(天津)科技有限公司 Balance vehicle test device
EP3591368A1 (en) 2018-07-04 2020-01-08 HORIBA, Ltd. Chassis dynamometer, control method for the same, and chassis dynamometer program
JP2020008356A (en) * 2018-07-04 2020-01-16 株式会社堀場製作所 Chassis dynamometer device, control method therefor, and program for chassis dynamometer device
JP7045946B2 (en) 2018-07-04 2022-04-01 株式会社堀場製作所 Chassis dynamometer device, its control method, and program for chassis dynamometer device
US11359997B2 (en) 2018-07-04 2022-06-14 Horiba, Ltd. Chassis dynamometer for testing a two wheel drive vehicle, control method for the same, and chassis dynamometer program for testing a two wheel drive vehicle

Similar Documents

Publication Publication Date Title
JP6552624B2 (en) Method and apparatus for carrying out a test run on a test bench
CN107490492B (en) Load and inertia detect vehicle dynamic quality method
EP3591368B1 (en) Chassis dynamometer, control method for the same, and chassis dynamometer program
US9360395B2 (en) Method and device for dynamometer testing of a motor vehicle
CN104670206B (en) Method and apparatus for monitoring unexpected vehicle movement
CN107907345B (en) The detection method of power of vehicle inertia platform examination
JP2016080636A (en) Vehicle loss measurement device and vehicle loss measurement method in chassis dynamometer
JP6310828B2 (en) Automotive test equipment
CN104833518A (en) Vehicle brake test device and method
JP2009300432A (en) Chassis dynamometer
WO2016143492A1 (en) Vehicle testing device, vehicle testing method, and program for vehicle testing device
JP4644085B2 (en) Chassis dynamometer
JP3327342B2 (en) Vehicle performance inspection method
WO2016088469A1 (en) Drive train testing apparatus
CN102156014A (en) Heavy vehicle chassis dynamometer
BRPI0308160B1 (en) apparatus and method for inspecting a motorcycle, apparatus and method for inspecting the operation of a motorcycle anti-lock brake system and apparatus and method for inspecting the operation of a motorcycle front / rear combined wheel brake system
JP5245679B2 (en) Chassis dynamometer for 4WD vehicles
CN105784229B (en) Balance loaded type heavy vehicle chassis dynamometer
JP5875078B2 (en) Tire evaluation method and tire evaluation system
CN104155069B (en) A kind of multiaxis full-time wheeled vehicle chassis power testing method
JP5603665B2 (en) Automotive powertrain testing equipment
JP4488619B2 (en) Chassis dynamometer for motorcycle
CN113984405A (en) Method for testing braking performance of retarder
JP2010071771A (en) Chassis dynamometer for 4wd vehicle and synchronous control method
Butsch et al. Tests with a Dynamometer Related to the Determination of Energy Consumption, Dynamic Behavior and Slippage of Vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522