WO2016088469A1 - Drive train testing apparatus - Google Patents

Drive train testing apparatus Download PDF

Info

Publication number
WO2016088469A1
WO2016088469A1 PCT/JP2015/079972 JP2015079972W WO2016088469A1 WO 2016088469 A1 WO2016088469 A1 WO 2016088469A1 JP 2015079972 W JP2015079972 W JP 2015079972W WO 2016088469 A1 WO2016088469 A1 WO 2016088469A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
wheel
pressing force
wheels
movable road
Prior art date
Application number
PCT/JP2015/079972
Other languages
French (fr)
Japanese (ja)
Inventor
峰之 駒田
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2016562347A priority Critical patent/JPWO2016088469A1/en
Publication of WO2016088469A1 publication Critical patent/WO2016088469A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Definitions

  • the present invention relates to a drive system testing apparatus for testing a power train to which wheels are connected or a part thereof.
  • Such a drive system test apparatus cannot reproduce the tire characteristics and the slip state with high accuracy because the dynamometer is directly connected to the power train, unlike a completed vehicle in which wheels are connected to the power train. In addition, when a sudden load is applied to the dynamometer, the shaft or the like may be broken.
  • Patent Document 1 by connecting a wheel to the power train and rotating the wheel while pressing it against the outer peripheral surface of the roller from the horizontal direction, the test can be performed while reproducing the load applied to the wheel in actual traveling. There is something like that.
  • the present invention has been made to solve the above-described problems, and its main purpose is to accurately evaluate the performance of a power train or a part of the power train so that a test in consideration of the influence of wheels can be performed. It is to be an issue.
  • the drive system testing apparatus is for testing a power train to which a wheel is connected or a part of the power train, and the movable road surface on which the wheel is mounted from above and the rotation of the wheel.
  • movement load of the said movable road surface which moves with it, and the pressing force adjustment apparatus for adjusting the pressing force with respect to the said movable road surface of the said wheel are comprised.
  • the pressing force adjusting device can adjust the pressing force in the vertical direction with respect to the movable road surface of the wheel, so that, for example, a load applied to the wheel in actual traveling can be simulated. Thereby, it becomes possible to perform a test in consideration of the influence of the wheel in the actual traveling, and it becomes possible to accurately evaluate the performance of the power train or a part thereof.
  • Left and right wheels are connected to the power train or a part thereof, and the pressing force adjusting device is configured to be able to independently adjust the pressing force of the left and right wheels against the movable road surface
  • the load control device is configured to independently control the operation load of the first movable road surface corresponding to one wheel and the operation load of the second movable road surface corresponding to the other wheel. Is preferred. If this is the case, for example, when the vehicle is cornering or when the vehicle jumps, it can be tested by simulating running conditions in which the load or load applied to the left and right wheels are different, such as the powertrain or part of its performance Can be evaluated more accurately.
  • the movable road surface include those set on the inner peripheral surface of a cylindrical rotating body. If this is the case, the wheel can be arranged inside the rotating body, and the entire apparatus can be reduced in size compared to the case where the wheel is arranged on a rotating drum or an endless flat belt, for example, as in the prior art. it can.
  • a drive system test apparatus 100 (hereinafter also referred to as a powertrain test apparatus) of this embodiment includes a transmission TM (manual, automatic or CVT), a propeller shaft PS, a differential gear DF, a drive shaft DS, and the like.
  • the power train PT (also referred to as driveline) composed of
  • the specimen is described as a power train PT mounted on a FR (front engine / rear drive type) vehicle, but an FF (front engine / front drive type) vehicle or 4WD (four-wheel drive).
  • a power train mounted on the vehicle may be used as a specimen, or a part of the power train PT may be used as a specimen.
  • the powertrain test includes gear change / gear sync test, automatic transmission shift calibration, main components (clutch, torque converter, differential gear, power unit, damper, electronic control unit, suspension, exhaust system) check, Includes endurance test / life test, noise / vibration test, performance / efficiency test, functional test, etc. of powertrain PT and its components.
  • the power train test apparatus 100 includes a drive device 10 connected to the input shaft of the power train PT (specifically, the input shaft TM1 of the transmission TM), and a power train. Wheels W connected to the first output shaft PT1 and the second output shaft PT2 of the PT, a road surface forming member 20 formed with a movable road surface 20a on which the wheels W are placed from above, and an operation load of the movable road surface 20a And a load control device 30 for controlling.
  • a drive device 10 connected to the input shaft of the power train PT (specifically, the input shaft TM1 of the transmission TM), and a power train. Wheels W connected to the first output shaft PT1 and the second output shaft PT2 of the PT, a road surface forming member 20 formed with a movable road surface 20a on which the wheels W are placed from above, and an operation load of the movable road surface 20a
  • a load control device 30 for controlling.
  • the drive device 10 simulates the behavior of the engine, and here is constituted by a drive dynamometer.
  • An actual engine may be used as the driving device 10. In this case, it becomes possible to test the fuel consumption of the actual engine using the actual engine as a specimen.
  • the two output shafts PT1 and PT2 are shafts connected to each other by a differential gear DF.
  • One of the left and right wheels W is connected to the first output shaft PT1
  • the second output shaft PT2 is connected to the second output shaft PT2.
  • the other of the left and right wheels W is connected.
  • the road surface forming member 20 is formed with a movable road surface 20a on which the wheel W is placed along the direction of gravity. It is a rotating body configured to move the road surface 20a. More specifically, this has a substantially cylindrical shape in which one end is opened and the other end is closed by a wall member 23. The diameter of the wheel is larger than the diameter of the wheel W, and the wheel W is disposed inside. A storage space S for storage is formed.
  • the movable road surface 20a is set to the inner peripheral surface of the road surface forming member 20, and here, is the entire inner peripheral surface of the road surface forming member 20, and the width dimension thereof is larger than the width dimension of the wheel W. Is formed. Thereby, even if the direction (steer angle) of the wheel W is changed, the wheel W and the wall member 23 are not in contact with each other.
  • the movable road surface 20a on which one wheel W is placed and the movable road surface 20a on which the other wheel W is placed are formed on different road surface forming members 20. Yes.
  • these road surface formation members 20 they are called the 1st road surface formation member 21 and the 2nd road surface formation member 22, and the movable road surface 20a corresponding to these is the 1st movable road surface 21a and the 2nd movable road surface 22a. That's it.
  • the load control device 30 controls the operation load and inertia of the movable road surface 20a that moves in accordance with the rotation of the wheel W.
  • the absorption of the output shaft 33 connected to the wall member 23 of the road surface forming member 20 is performed.
  • the operating load is a parameter extracted from actual travel data obtained by running a completed vehicle on an actual road surface, for example, and is calculated from vehicle weight, vehicle speed, road gradient, etc. included in the actual travel data. Is done.
  • the inertia is a parameter determined by the weight of the completed vehicle.
  • a torque sensor 34 is provided on the output shaft 33 of the load control device 30, and the load control device 30 controls the operation load and the inertia based on the measured value measured by the torque sensor 34. It is configured to be able to.
  • the load control device 30 configured as described above is provided corresponding to each of the first movable road surface 21a and the second movable road surface 22a, and each load control device 30 includes an operation load of the corresponding movable road surface 21a, 22a. And the inertia can be controlled independently.
  • load control devices 30 when these load control devices 30 are distinguished, they are referred to as a first load control device 31 and a second load control device 32.
  • the powertrain test apparatus 100 of the present embodiment further includes a pressing force adjusting device 50 for adjusting the pressing force of the wheels W against the movable road surface 20a.
  • the pressing force adjusting device 50 is attached to a suspension mechanism 60 connected to the wheels W via, for example, a universal joint (not shown).
  • the suspension mechanism 60 plays a role of reducing vibrations and shocks during traveling of the vehicle in the completed vehicle, and connects the chassis and the wheel to suspend the wheel from the chassis. As shown in FIG. 2, the suspension mechanism 60 of the present embodiment suspends the wheels W from a base frame 70 provided instead of a chassis.
  • the suspension mechanism 60 includes a suspension arm, a spring, a shock absorber, and the like. It is an independent suspension type constructed.
  • the suspension mechanism 60 may be an axle suspension type.
  • the pressing force adjusting device 50 is interposed between the suspension mechanism 60 and the base frame 70, and adjusts the pressing force of the wheels W against the movable road surface 20a via the suspension mechanism 60.
  • this has, for example, a vertical movement mechanism 53 such as a piston that moves in the vertical direction, and the vertical movement mechanism 53 expands and contracts the spring to adjust the pressing force of the wheel W against the movable road surface 20a.
  • the pressing force adjusting device 50 in this embodiment has a load cell 54 that measures the load applied to the spring, and is configured to control the pressing force based on the measured value measured by the load cell 54. ing.
  • the pressing force adjusting device 50 configured as described above is provided corresponding to each of the left and right wheels W, and each pressing force adjusting device 50 applies the pressing force of the corresponding wheel W to the movable road surfaces 21a and 22a, respectively. It is configured so that it can be controlled independently.
  • these pressing force adjusting devices 50 are distinguished, they are referred to as a first pressing force adjusting device 51 and a second pressing force adjusting device 52.
  • the powertrain test apparatus 100 further includes a test management apparatus 40 that manages the powertrain test.
  • the test management apparatus 40 is a dedicated or general-purpose computer having a CPU, an internal memory, an AD converter, an input / output interface, an input means such as a mouse or a keyboard, a display means such as a display DP, and the like, as shown in FIG.
  • the vehicle has functions as an actual travel data storage unit 41, a torque acquisition unit 42, a pressing force acquisition unit 43, and a test management unit 44.
  • the actual travel data storage unit 41 is formed in a predetermined area of the internal memory, and stores actual travel data obtained by actually traveling the completed vehicle on the road surface.
  • This actual traveling data indicates the traveling state of the vehicle over time in actual traveling, for example, accelerator operation amount, brake operation amount, steering wheel operation amount, vehicle weight, engine speed, vehicle speed, vehicle acceleration, wheel rotation. Number, torque, shaft angle, tire temperature, road surface temperature, road surface condition (WET, DRY, ICE, asphalt, gravel, etc.), road surface gradient, traveling wind, and the like.
  • the torque acquisition unit 42 acquires a measurement torque signal indicating the measurement value obtained by the torque sensor 34, and transmits this measurement torque signal to the test management unit 44.
  • the pressing force acquisition unit 43 acquires a measurement pressing force signal indicating the measurement value obtained by the load cell 54, and transmits the measurement pressing force signal to the test management unit 44.
  • the test management unit 44 controls the operations of the drive device 10, the load control device 30, and the pressing force adjustment device 50, for example, to perform a powertrain test based on an operation pattern obtained from actual travel data.
  • the control content in which the test management unit 44 controls the operation of each apparatus will be described.
  • test management unit 44 acquires the accelerator operation amount and the brake operation amount corresponding to the driving pattern from the actual travel data storage unit 41, calculates the torque command (acceleration, deceleration), Based on this, the driving device 10 is operated.
  • the test management unit 44 receives the measurement torque signal from the torque acquisition unit 42, and based on the measurement torque signal, the operation load and inertia of the movable road surface 20a behave in accordance with the operation pattern. Then, the load control device 30 is operated. Specifically, the operation load is calculated by obtaining the vehicle weight, the vehicle speed, the road surface gradient, and the like from the actual travel data storage unit 41, and the inertia determined from the vehicle weight is calculated. And based on these operation load and inertia, each load control apparatus 31 and 32 is operated independently, and the rotation speed of each road surface formation member 21 and 22, ie, the speed of each movable road surface 21a and 22a, is controlled.
  • the test management unit 44 receives the measured pressing force signal from the pressing force acquisition unit 43, and based on the measured pressing force signal, the behavior of the pressing force of the wheels W against the movable road surface 20a corresponds to the operation pattern. Then, the pressing force adjusting device 50 is operated. Specifically, the road surface gradient corresponding to the driving pattern is acquired from the actual travel data storage unit 41, load commands to be applied to the left and right wheels W are calculated, and each pressing force is based on these load commands. The adjusting devices 51 and 52 are operated.
  • the test management unit 44 obtains a steering wheel operation amount corresponding to the driving pattern from the actual travel data storage unit 41, calculates a steering angle command, and calculates the steering angle command.
  • the steering mechanism 80 connected to the output shafts PT1 and PT2 via a gear or the like is operated. Thereby, the direction (steer angle) of the wheel W can be changed corresponding to the driving pattern.
  • the steering angle of the wheel W can be controlled so as to correspond to the driving pattern. Accordingly, it is possible to perform a test in consideration of the influence of the wheels W while simulating actual traveling, and it is possible to accurately evaluate the power train PT or a part of its performance.
  • the output shafts PT1 and PT2 of the power train PT may be damaged if a sudden load is applied to the dynamometer.
  • the wheels W are connected to the output shafts PT1 and PT2 of the powertrain PT, even if a sudden load is applied, the wheels W are loaded to some extent. Absorption can prevent damage to the output shafts PT1, PT2, etc. of the power train PT.
  • the operation load on the first movable road surface 21a and the operation load on the second movable road surface 22a can be controlled independently, and the pressing force of the left and right wheels W against the movable road surfaces 21a and 22a is adjusted independently. Because it can, it can be tested by simulating running conditions with different loads and loads applied to the left and right wheels W, such as when the vehicle is cornering or when the vehicle jumps, and the powertrain PT or part of its performance etc. It can be evaluated more accurately.
  • the performance of the powertrain PT or a part thereof can be evaluated in a state close to the test using the completed vehicle without using the completed vehicle.
  • the present invention is not limited to the above embodiment.
  • the pressing force adjusting device 50 is configured to press the wheel W against the movable road surface 20a.
  • the pressing force adjusting device 50 is configured to adjust the pressing force by pressing the movable road surface 20a against the wheel W. It may be.
  • the left and right wheels W are connected to the output shafts PT1 and PT2.
  • the wheel W is connected to one of the output shafts PT1 (PT2), and the other output shaft PT2 (PT1) is connected.
  • PT2 the other output shaft PT2
  • it may be fixed to the differential gear DF.
  • four wheels W on the front, rear, left and right may be connected to the power train PT.
  • the road surface forming member 20 of the above-described embodiment is a rotating body having a substantially cylindrical shape, but may be configured by an endless flat belt, for example.
  • the movable road surface 20 a is preferably formed on the inner peripheral surface of the road surface forming member 20 as described above, but may be formed on the outer peripheral surface of the road surface forming member 20.
  • the test management unit 44 of the above embodiment is configured to acquire the steering wheel operation amount corresponding to the driving pattern from the actual driving data storage unit 41.
  • the test management unit 44 is input to a steering wheel operation amount input unit having a steering wheel. It may be configured to acquire the handle operation amount. Further, for example, the direction of the wheel W may be manually changed according to the handle operation amount input to the handle operation amount input means by the operator.

Abstract

In order to carry out testing so as to take the effect of wheels W into consideration, and accurately evaluate the performance of a power train PT or a part thereof, the apparatus is equipped with moveable road surfaces 20a on which the wheels W rest from above, a load control device 30 for controlling the operating load of the moveable road surfaces 20a which move in association with the rotation of the wheels W, and a pressing force adjustment device 50 for adjusting the pressing force of the wheels W against the moveable road surfaces 20a.

Description

駆動系試験装置Drive system test equipment
 本発明は、車輪が接続されたパワートレイン又はその一部を試験するための駆動系試験装置に関するものである。 The present invention relates to a drive system testing apparatus for testing a power train to which wheels are connected or a part thereof.
 この種の駆動系試験装置としては、例えば、パワートレインを構成するドライブシャフトにダイナモメータを直接接続し、このダイナモメータの動作負荷を制御してパワートレインの性能などを試験するものがある。 As this type of drive system test apparatus, for example, there is an apparatus in which a dynamometer is directly connected to a drive shaft that constitutes a power train, and the operation load of the dynamometer is controlled to test the performance of the power train.
 このような駆動系試験装置は、パワートレインに車輪が接続されている完成車両と異なり、パワートレインにダイナモメータが直接接続されているので、タイヤ特性やスリップ状態を精度良く再現することができない。
 また、ダイナモメータに急激な負荷がかかった場合には、シャフト等が破断する恐れもある。
Such a drive system test apparatus cannot reproduce the tire characteristics and the slip state with high accuracy because the dynamometer is directly connected to the power train, unlike a completed vehicle in which wheels are connected to the power train.
In addition, when a sudden load is applied to the dynamometer, the shaft or the like may be broken.
 そこで、特許文献1に示すように、パワートレインに車輪を接続し、この車輪をローラの外周面に水平方向から押し付けながら回転させることにより、実走行で車輪に加わる荷重を再現しながら試験を行えるように図ったものがある。 Therefore, as shown in Patent Document 1, by connecting a wheel to the power train and rotating the wheel while pressing it against the outer peripheral surface of the roller from the horizontal direction, the test can be performed while reproducing the load applied to the wheel in actual traveling. There is something like that.
 しかしながら、実際の走行では、車輪が路面等に水平方向に押し付けられることはなく、上述した構成では、車輪の影響を考慮した試験を行っているとはいえず、パワートレインの性能を正確に評価することはできない。 However, in actual driving, the wheels are not pressed against the road surface in the horizontal direction, and in the configuration described above, it cannot be said that the test considering the influence of the wheels is performed, and the performance of the powertrain is accurately evaluated. I can't do it.
特開2011-257173号公報JP 2011-257173 A
 そこで本発明は、上記問題点を解決すべくなされたものであって、車輪の影響を考慮した試験を行えるようにして、パワートレイン又はその一部の性能などを正確に評価することをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-described problems, and its main purpose is to accurately evaluate the performance of a power train or a part of the power train so that a test in consideration of the influence of wheels can be performed. It is to be an issue.
 すなわち本発明に係る駆動系試験装置は、車輪が接続されたパワートレイン又はその一部を試験するためのものであって、前記車輪が上から載置される可動路面と、前記車輪の回転に伴って動く前記可動路面の動作負荷を制御する負荷制御装置と、前記車輪の前記可動路面に対する押付力を調整するための押付力調整装置とを具備することを特徴とするものである。 That is, the drive system testing apparatus according to the present invention is for testing a power train to which a wheel is connected or a part of the power train, and the movable road surface on which the wheel is mounted from above and the rotation of the wheel. The load control apparatus which controls the operation | movement load of the said movable road surface which moves with it, and the pressing force adjustment apparatus for adjusting the pressing force with respect to the said movable road surface of the said wheel are comprised.
 このような駆動系試験装置であれば、押付力調整装置によって、車輪の可動路面に対する上下方向の押付力を調整することができるので、例えば実走行において車輪に加わる荷重を模擬することができる。これにより、前記実走行での車輪の影響を考慮した試験を行えるようになり、パワートレイン又はその一部の性能などを正確に評価することが可能となる。 With such a drive system testing device, the pressing force adjusting device can adjust the pressing force in the vertical direction with respect to the movable road surface of the wheel, so that, for example, a load applied to the wheel in actual traveling can be simulated. Thereby, it becomes possible to perform a test in consideration of the influence of the wheel in the actual traveling, and it becomes possible to accurately evaluate the performance of the power train or a part thereof.
 前記パワートレイン又はその一部に左右の車輪が接続されており、前記押付力調整装置が、前記左右の車輪の前記可動路面に対する押付力をそれぞれ独立して調整できるように構成されているものや、前記負荷制御装置が、一方の車輪に対応する第1可動路面の動作負荷と、他方の車輪に対応する第2可動路面の動作負荷とをそれぞれ独立して制御できるように構成されているものが好ましい。
 これならば、例えば、車両のコーナリング時や車両が跳ねたときなど、左右の車輪に加わる荷重や負荷などが異なる走行状態を模擬して試験することができ、パワートレイン又はその一部の性能などをより正確に評価することができる。
Left and right wheels are connected to the power train or a part thereof, and the pressing force adjusting device is configured to be able to independently adjust the pressing force of the left and right wheels against the movable road surface, The load control device is configured to independently control the operation load of the first movable road surface corresponding to one wheel and the operation load of the second movable road surface corresponding to the other wheel. Is preferred.
If this is the case, for example, when the vehicle is cornering or when the vehicle jumps, it can be tested by simulating running conditions in which the load or load applied to the left and right wheels are different, such as the powertrain or part of its performance Can be evaluated more accurately.
 前記可動路面の具体的実施態様としては、筒形状をなす回転体の内周面に設定されているものが挙げられる。
 これならば、車輪を回転体の内側に配置することができ、従来のように、例えば回転ドラムや無端フラットベルトなどの上に車輪を配置する場合に比べて、装置全体を小型化することができる。
Specific embodiments of the movable road surface include those set on the inner peripheral surface of a cylindrical rotating body.
If this is the case, the wheel can be arranged inside the rotating body, and the entire apparatus can be reduced in size compared to the case where the wheel is arranged on a rotating drum or an endless flat belt, for example, as in the prior art. it can.
 前記車輪のステア角を制御するステアリング機構をさらに具備しているものが好ましい。
 これならば、ステアリングをきった状態でのパワートレイン又はその一部の性能を評価することができる。
What further has the steering mechanism which controls the steering angle of the said wheel is preferable.
In this case, it is possible to evaluate the performance of the power train or a part of the power train with the steering turned off.
 このように構成した本発明によれば、車輪がパワートレインやその一部に与える影響を考慮した試験を行うことができ、パワートレイン又はその一部の性能などを正確に評価することができる。 According to the present invention configured as described above, it is possible to perform a test in consideration of the influence of the wheels on the power train and a part thereof, and to accurately evaluate the performance of the power train or a part thereof.
本実施形態の駆動系試験装置の構成を模式的に示す図。The figure which shows typically the structure of the drive-train test apparatus of this embodiment. 同実施形態の押付力調整機構を示す模式図。The schematic diagram which shows the pressing force adjustment mechanism of the embodiment. 同実施形態の制御装置の機能を示す機能ブロック図。The functional block diagram which shows the function of the control apparatus of the embodiment. 変形実施形態の駆動系試験装置の構成を模式的に示す図。The figure which shows typically the structure of the drive system testing apparatus of deformation | transformation embodiment.
100・・・パワートレイン試験装置
PT ・・・パワートレイン
PT1・・・出力軸
PT2・・・出力軸
10 ・・・駆動装置
20 ・・・路面形成部材
20a・・・可動路面
30 ・・・負荷制御装置
34 ・・・トルクセンサ
50 ・・・押付力調整装置
W  ・・・車輪
DESCRIPTION OF SYMBOLS 100 ... Power train test apparatus PT ... Power train PT1 ... Output shaft PT2 ... Output shaft 10 ... Drive device 20 ... Road surface formation member 20a ... Movable road surface 30 ... Load Control device 34 ・ ・ ・ Torque sensor 50 ・ ・ ・ Pushing force adjusting device W ・ ・ ・ Wheel
 以下に本発明に係る駆動系試験装置の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of a drive system testing apparatus according to the present invention will be described with reference to the drawings.
 本実施形態の駆動系試験装置100(以下、パワートレイン試験装置ともいう)は、図1に示すように、トランスミッションTM(マニュアル、オートマチック又はCVT)、プロペラシャフトPS、ディファレンシャルギアDF、ドライブシャフトDS等から構成されるパワートレインPT(ドライブラインともいう。)の試験を行うものである。
 なお、以下においては、供試体をFR(フロントエンジン・リアドライブ形式)の車両に搭載されるパワートレインPTとして説明するが、FF(フロントエンジン・フロントドライブ形式)の車両や4WD(四輪駆動)の車両に搭載されるパワートレインを供試体としても良いし、パワートレインPTの一部を供試体としても良い。
As shown in FIG. 1, a drive system test apparatus 100 (hereinafter also referred to as a powertrain test apparatus) of this embodiment includes a transmission TM (manual, automatic or CVT), a propeller shaft PS, a differential gear DF, a drive shaft DS, and the like. The power train PT (also referred to as driveline) composed of
In the following description, the specimen is described as a power train PT mounted on a FR (front engine / rear drive type) vehicle, but an FF (front engine / front drive type) vehicle or 4WD (four-wheel drive). A power train mounted on the vehicle may be used as a specimen, or a part of the power train PT may be used as a specimen.
 ここで、パワートレイン試験には、ギアチェンジ・ギアシンクロ試験、オートマチックトランスミッションのシフト校正、主要部品(クラッチ、トルクコンバータ、ディファレンシャルギア、動力ユニット、ダンパ、電子制御装置、サスペンション、排気システム)のチェック、パワートレインPT及びその構成部品の耐久試験/寿命試験、騒音・振動試験、性能・効率試験、機能試験等が含まれる。 Here, the powertrain test includes gear change / gear sync test, automatic transmission shift calibration, main components (clutch, torque converter, differential gear, power unit, damper, electronic control unit, suspension, exhaust system) check, Includes endurance test / life test, noise / vibration test, performance / efficiency test, functional test, etc. of powertrain PT and its components.
 具体的にこのパワートレイン試験装置100は、図1及び図2に示すように、パワートレインPTの入力軸(具体的にはトランスミッションTMの入力軸TM1)に接続された駆動装置10と、パワートレインPTの第1出力軸PT1及び第2出力軸PT2それぞれに接続された車輪Wと、車輪Wが上から載置される可動路面20aが形成された路面形成部材20と、可動路面20aの動作負荷を制御する負荷制御装置30とを具備している。 Specifically, as shown in FIGS. 1 and 2, the power train test apparatus 100 includes a drive device 10 connected to the input shaft of the power train PT (specifically, the input shaft TM1 of the transmission TM), and a power train. Wheels W connected to the first output shaft PT1 and the second output shaft PT2 of the PT, a road surface forming member 20 formed with a movable road surface 20a on which the wheels W are placed from above, and an operation load of the movable road surface 20a And a load control device 30 for controlling.
 以下、各部について説明する。 Hereafter, each part will be described.
 駆動装置10は、エンジンの挙動を模擬するものであり、ここでは、駆動用ダイナモメータにより構成されている。
 なお、駆動装置10として、実エンジンを用いても構わない。この場合、実エンジンを供試体として、実エンジンの燃費などの試験を行うことが可能になる。
The drive device 10 simulates the behavior of the engine, and here is constituted by a drive dynamometer.
An actual engine may be used as the driving device 10. In this case, it becomes possible to test the fuel consumption of the actual engine using the actual engine as a specimen.
 2つの出力軸PT1、PT2は、ディファレンシャルギアDFにより、互いに連結された軸であり、第1出力軸PT1には、左右の車輪Wの一方が接続されており、第2出力軸PT2には、左右の車輪Wの他方が接続されている。 The two output shafts PT1 and PT2 are shafts connected to each other by a differential gear DF. One of the left and right wheels W is connected to the first output shaft PT1, and the second output shaft PT2 is connected to the second output shaft PT2. The other of the left and right wheels W is connected.
 路面形成部材20は、図2に示すように、車輪Wが重力方向に沿って載置される可動路面20aが形成されたものであり、車輪Wの回転に伴って回転することで、前記可動路面20aが動くように構成された回転体である。より具体的にこのものは、一端が開口するとともに他端が壁部材23で閉塞された概略円筒形状をなすものであり、その径寸法が車輪Wの径寸法よりも大きく、内部に車輪Wを収容する収容空間Sが形成されている。 As shown in FIG. 2, the road surface forming member 20 is formed with a movable road surface 20a on which the wheel W is placed along the direction of gravity. It is a rotating body configured to move the road surface 20a. More specifically, this has a substantially cylindrical shape in which one end is opened and the other end is closed by a wall member 23. The diameter of the wheel is larger than the diameter of the wheel W, and the wheel W is disposed inside. A storage space S for storage is formed.
 前記可動路面20aは、路面形成部材20の内周面に設定されており、ここでは、路面形成部材20の内周面全体であり、その幅寸法が車輪Wの幅寸法よりも大きくなるように形成されている。これにより、車輪Wの向き(ステア角)を変更したとしても、車輪Wと前記壁部材23とが接触しない構成になっている。 The movable road surface 20a is set to the inner peripheral surface of the road surface forming member 20, and here, is the entire inner peripheral surface of the road surface forming member 20, and the width dimension thereof is larger than the width dimension of the wheel W. Is formed. Thereby, even if the direction (steer angle) of the wheel W is changed, the wheel W and the wall member 23 are not in contact with each other.
 本実施形態では、左右の車輪Wのうち、一方の車輪Wが載置される可動路面20aと、他方の車輪Wが載置される可動路面20aとが別の路面形成部材20に形成されている。以下、これらの路面形成部材20を区別する場合は、第1路面形成部材21、第2路面形成部材22といい、これらに対応する可動路面20aを、第1可動路面21a、第2可動路面22aという。 In the present embodiment, of the left and right wheels W, the movable road surface 20a on which one wheel W is placed and the movable road surface 20a on which the other wheel W is placed are formed on different road surface forming members 20. Yes. Hereinafter, when distinguishing these road surface formation members 20, they are called the 1st road surface formation member 21 and the 2nd road surface formation member 22, and the movable road surface 20a corresponding to these is the 1st movable road surface 21a and the 2nd movable road surface 22a. That's it.
 負荷制御装置30は、車輪Wの回転に伴って動く可動路面20aの動作負荷及び慣性を制御するものであり、ここでは、出力軸33が前記路面形成部材20の壁部材23に接続された吸収用ダイナモメータである。
 前記動作負荷は、例えば完成車両を実際の路面で走行させることにより得られる実走行データから抽出されるパラメータであり、該実走行データに含まれる、車両重量、車両速度、路面の勾配などから算出される。また、前記慣性は、完成車両の重量により定まるパラメータである。
 本実施形態では、負荷制御装置30の出力軸33にトルクセンサ34が設けられており、前記負荷制御装置30は、トルクセンサ34により測定された測定値に基づいて前記動作負荷及び前記慣性を制御できるように構成されている。
The load control device 30 controls the operation load and inertia of the movable road surface 20a that moves in accordance with the rotation of the wheel W. Here, the absorption of the output shaft 33 connected to the wall member 23 of the road surface forming member 20 is performed. Dynamometer.
The operating load is a parameter extracted from actual travel data obtained by running a completed vehicle on an actual road surface, for example, and is calculated from vehicle weight, vehicle speed, road gradient, etc. included in the actual travel data. Is done. The inertia is a parameter determined by the weight of the completed vehicle.
In the present embodiment, a torque sensor 34 is provided on the output shaft 33 of the load control device 30, and the load control device 30 controls the operation load and the inertia based on the measured value measured by the torque sensor 34. It is configured to be able to.
 このように構成された負荷制御装置30は、第1可動路面21a及び第2可動路面22aそれぞれに対応して設けられており、各負荷制御装置30は、対応する可動路面21a、22aの動作負荷及び慣性をそれぞれ独立して制御できるように構成されている。以下、これらの負荷制御装置30を区別する場合は、第1負荷制御装置31、第2負荷制御装置32という。 The load control device 30 configured as described above is provided corresponding to each of the first movable road surface 21a and the second movable road surface 22a, and each load control device 30 includes an operation load of the corresponding movable road surface 21a, 22a. And the inertia can be controlled independently. Hereinafter, when these load control devices 30 are distinguished, they are referred to as a first load control device 31 and a second load control device 32.
 しかして、本実施形態のパワートレイン試験装置100は、車輪Wの可動路面20aに対する押付力を調整するための押付力調整装置50をさらに具備している。
 この押付力調整装置50は、図2に示すように、例えば図示しないユニバーサルジョイント等を介して車輪Wに接続されたサスペンション機構60に取り付けられている。
Thus, the powertrain test apparatus 100 of the present embodiment further includes a pressing force adjusting device 50 for adjusting the pressing force of the wheels W against the movable road surface 20a.
As shown in FIG. 2, the pressing force adjusting device 50 is attached to a suspension mechanism 60 connected to the wheels W via, for example, a universal joint (not shown).
 まず、サスペンション機構60について説明する。
 サスペンション機構60は、完成車両において、車両の走行時の振動や衝撃などをやわらげる役割を担い、シャシと車輪とを連結して、車輪をシャシから懸架するものである。
 本実施形態のサスペンション機構60は、図2に示すように、シャシの代わりに設けられたベースフレーム70から車輪Wを懸架するものであり、具体的には、サスペンションアーム、スプリング、ショックアブソーバ等から構成された独立懸架式のものである。
 なお、サスペンション機構60は、車軸懸架式のものであっても構わない。
First, the suspension mechanism 60 will be described.
The suspension mechanism 60 plays a role of reducing vibrations and shocks during traveling of the vehicle in the completed vehicle, and connects the chassis and the wheel to suspend the wheel from the chassis.
As shown in FIG. 2, the suspension mechanism 60 of the present embodiment suspends the wheels W from a base frame 70 provided instead of a chassis. Specifically, the suspension mechanism 60 includes a suspension arm, a spring, a shock absorber, and the like. It is an independent suspension type constructed.
The suspension mechanism 60 may be an axle suspension type.
 次に、上述した押付力調整装置50について説明する。
 押付力調整装置50は、前記サスペンション機構60とベースフレーム70との間に介在し、サスペンション機構60を介して車輪Wの可動路面20aに対する押付力を調整するものである。
 具体的にこのものは、例えば、上下方向に移動するピストン等の上下移動機構53を有し、この上下移動機構53によって前記スプリングを伸縮させることで、車輪Wの可動路面20aに対する押付力を調整するように構成されている。
 なお、本実施形態での押付力調整装置50は、前記スプリングに与える荷重を測定するロードセル54を有し、このロードセル54により測定された測定値に基づいて前記押付力を制御できるように構成されている。
Next, the pressing force adjusting device 50 described above will be described.
The pressing force adjusting device 50 is interposed between the suspension mechanism 60 and the base frame 70, and adjusts the pressing force of the wheels W against the movable road surface 20a via the suspension mechanism 60.
Specifically, this has, for example, a vertical movement mechanism 53 such as a piston that moves in the vertical direction, and the vertical movement mechanism 53 expands and contracts the spring to adjust the pressing force of the wheel W against the movable road surface 20a. Is configured to do.
Note that the pressing force adjusting device 50 in this embodiment has a load cell 54 that measures the load applied to the spring, and is configured to control the pressing force based on the measured value measured by the load cell 54. ing.
 このように構成された押付力調整装置50は、左右の車輪Wそれぞれに対応して設けられており、各押付力調整装置50は、対応する車輪Wの可動路面21a、22aに対する押付力をそれぞれ独立して制御できるように構成されている。以下、これらの押付力調整装置50を区別する場合は、第1押付力調整装置51、第2押付力調整装置52という。 The pressing force adjusting device 50 configured as described above is provided corresponding to each of the left and right wheels W, and each pressing force adjusting device 50 applies the pressing force of the corresponding wheel W to the movable road surfaces 21a and 22a, respectively. It is configured so that it can be controlled independently. Hereinafter, when these pressing force adjusting devices 50 are distinguished, they are referred to as a first pressing force adjusting device 51 and a second pressing force adjusting device 52.
 本実施形態のパワートレイン試験装置100は、パワートレイン試験を管理する試験管理装置40をさらに具備している。
 この試験管理装置40は、CPU、内部メモリ、AD変換器、入出力インターフェイス、マウス又はキーボード等の入力手段、ディスプレイDP等の表示手段等を備えた専用乃至汎用のコンピュータであり、図3に示すように、実走行データ格納部41、トルク取得部42、押付力取得部43、及び試験管理部44としての機能を有するものである。
The powertrain test apparatus 100 according to the present embodiment further includes a test management apparatus 40 that manages the powertrain test.
The test management apparatus 40 is a dedicated or general-purpose computer having a CPU, an internal memory, an AD converter, an input / output interface, an input means such as a mouse or a keyboard, a display means such as a display DP, and the like, as shown in FIG. As described above, the vehicle has functions as an actual travel data storage unit 41, a torque acquisition unit 42, a pressing force acquisition unit 43, and a test management unit 44.
 以下、各部について説明する。 Hereafter, each part will be described.
 実走行データ格納部41は、前記内部メモリの所定領域に形成されており、完成車両を実際に路面で走行させることにより得られる実走行データを格納している。
 この実走行データは、実走行における車両の経時的な走行状態を示すものであり、例えばアクセル操作量、ブレーキ操作量、ハンドル操作量、車両重量、エンジン回転数、車両速度、車両加速度、ホイール回転数、トルク、シャフトアングル、タイヤ温度、路面温度、路面状態(WET、DRY、ICE、アスファルト、砂利等)、路面の勾配、走行風等が挙げられる。
The actual travel data storage unit 41 is formed in a predetermined area of the internal memory, and stores actual travel data obtained by actually traveling the completed vehicle on the road surface.
This actual traveling data indicates the traveling state of the vehicle over time in actual traveling, for example, accelerator operation amount, brake operation amount, steering wheel operation amount, vehicle weight, engine speed, vehicle speed, vehicle acceleration, wheel rotation. Number, torque, shaft angle, tire temperature, road surface temperature, road surface condition (WET, DRY, ICE, asphalt, gravel, etc.), road surface gradient, traveling wind, and the like.
 トルク取得部42は、前記トルクセンサ34により得られた測定値を示す測定トルク信号を取得し、この測定トルク信号を試験管理部44に送信する。 The torque acquisition unit 42 acquires a measurement torque signal indicating the measurement value obtained by the torque sensor 34, and transmits this measurement torque signal to the test management unit 44.
 押付力取得部43は、前記ロードセル54により得られた測定値を示す測定押付力信号を取得し、この測定押付力信号を試験管理部44に送信する。 The pressing force acquisition unit 43 acquires a measurement pressing force signal indicating the measurement value obtained by the load cell 54, and transmits the measurement pressing force signal to the test management unit 44.
 試験管理部44は、例えば、実走行データから得られた運転パターンに基づいてパワートレイン試験をすべく、駆動装置10、負荷制御装置30及び押付力調整装置50の動作を制御するものである。
 以下、試験管理部44が各装置の動作を制御する制御内容について説明する。
The test management unit 44 controls the operations of the drive device 10, the load control device 30, and the pressing force adjustment device 50, for example, to perform a powertrain test based on an operation pattern obtained from actual travel data.
Hereinafter, the control content in which the test management unit 44 controls the operation of each apparatus will be described.
 まず、駆動装置10の動作制御について説明する。
 この制御では、試験管理部44は、実走行データ格納部41から前記運転パターンに対応するアクセル操作量及びブレーキ操作量を取得し、トルク指令(加速、減速)を算出して、このトルク指令に基づいて駆動装置10を動作させる。
First, operation control of the drive device 10 will be described.
In this control, the test management unit 44 acquires the accelerator operation amount and the brake operation amount corresponding to the driving pattern from the actual travel data storage unit 41, calculates the torque command (acceleration, deceleration), Based on this, the driving device 10 is operated.
 次に、負荷制御装置30の動作制御について説明する。
 この制御では、試験管理部44は、トルク取得部42から測定トルク信号を受信し、この測定トルク信号に基づいて、可動路面20aの動作負荷及び慣性が前記運転パターンに対応した挙動となるように、負荷制御装置30を動作させる。
 具体的には、実走行データ格納部41から車両重量、車両速度、路面の勾配などを取得して前記動作負荷を算出するとともに、前記車両重量から定まる慣性を算出する。そして、これら動作負荷及び慣性に基づいて、各負荷制御装置31、32を独立して動作させ、各路面形成部材21、22の回転数、つまり各可動路面21a、22aの速度を制御する。
Next, operation control of the load control device 30 will be described.
In this control, the test management unit 44 receives the measurement torque signal from the torque acquisition unit 42, and based on the measurement torque signal, the operation load and inertia of the movable road surface 20a behave in accordance with the operation pattern. Then, the load control device 30 is operated.
Specifically, the operation load is calculated by obtaining the vehicle weight, the vehicle speed, the road surface gradient, and the like from the actual travel data storage unit 41, and the inertia determined from the vehicle weight is calculated. And based on these operation load and inertia, each load control apparatus 31 and 32 is operated independently, and the rotation speed of each road surface formation member 21 and 22, ie, the speed of each movable road surface 21a and 22a, is controlled.
 次に、押付力調整装置50の動作制御について説明する。
 この制御では、試験管理部44は、押付力取得部43から測定押付力信号を受信し、この測定押付力信号に基づいて、車輪Wの可動路面20aに対する押付力が前記運転パターンに対応した挙動となるように、押付力調整装置50を動作させる。
 具体的には、実走行データ格納部41から前記運転パターンに対応する路面の勾配などを取得し、左右の車輪Wに加える荷重指令をそれぞれ算出して、これらの荷重指令に基づいて各押付力調整装置51、52を動作させる。
Next, operation control of the pressing force adjusting device 50 will be described.
In this control, the test management unit 44 receives the measured pressing force signal from the pressing force acquisition unit 43, and based on the measured pressing force signal, the behavior of the pressing force of the wheels W against the movable road surface 20a corresponds to the operation pattern. Then, the pressing force adjusting device 50 is operated.
Specifically, the road surface gradient corresponding to the driving pattern is acquired from the actual travel data storage unit 41, load commands to be applied to the left and right wheels W are calculated, and each pressing force is based on these load commands. The adjusting devices 51 and 52 are operated.
 本実施形態では、上述した制御に加えて、試験管理部44は、実走行データ格納部41から前記運転パターンに対応するハンドル操作量を取得し、ステア角指令を算出して、このステア角指令に基づいて例えば出力軸PT1、PT2にギア等を介して接続されたステアリング機構80を動作させる。これにより、車輪Wの向き(ステア角)を、前記運転パターンに対応して変更することができる。 In the present embodiment, in addition to the control described above, the test management unit 44 obtains a steering wheel operation amount corresponding to the driving pattern from the actual travel data storage unit 41, calculates a steering angle command, and calculates the steering angle command. For example, the steering mechanism 80 connected to the output shafts PT1 and PT2 via a gear or the like is operated. Thereby, the direction (steer angle) of the wheel W can be changed corresponding to the driving pattern.
 このように構成された本実施形態に係るパワートレイン試験装置100によれば、実走行データに基づいて、可動路面20aの動作負荷及び慣性と、車輪Wの可動路面20aに対する上下方向の押付力と、車輪Wのステア角とを、運転パターンに対応するように制御することができる。これにより、実走行を模擬するとともに、車輪Wの影響を考慮した試験を行うことができ、パワートレインPT又はその一部の性能などを正確に評価することができる。 According to the powertrain test apparatus 100 according to the present embodiment configured as described above, based on the actual travel data, the operation load and inertia of the movable road surface 20a, and the vertical pressing force of the wheels W against the movable road surface 20a, The steering angle of the wheel W can be controlled so as to correspond to the driving pattern. Accordingly, it is possible to perform a test in consideration of the influence of the wheels W while simulating actual traveling, and it is possible to accurately evaluate the power train PT or a part of its performance.
 ここで、従来のように、パワートレインPTの出力軸PT1、PT2にダイナモメータを接続した場合、ダイナモメータに急激な負荷が加わるとパワートレインPTの出力軸PT1、PT2などが破損する恐れがある。
 一方、本実施形態に係るパワートレイン試験装置100であれば、パワートレインPTの出力軸PT1、PT2に車輪Wが接続されているので、急激な負荷が加わったとしても、車輪Wが負荷をある程度吸収し、パワートレインPTの出力軸PT1、PT2などの破損を防ぐことができる。
Here, when a dynamometer is connected to the output shafts PT1 and PT2 of the power train PT as in the prior art, the output shafts PT1 and PT2 of the power train PT may be damaged if a sudden load is applied to the dynamometer. .
On the other hand, in the powertrain test apparatus 100 according to the present embodiment, since the wheels W are connected to the output shafts PT1 and PT2 of the powertrain PT, even if a sudden load is applied, the wheels W are loaded to some extent. Absorption can prevent damage to the output shafts PT1, PT2, etc. of the power train PT.
 さらに、第1可動路面21aの動作負荷と第2可動路面22aの動作負荷とをそれぞれ独立して制御することができ、左右の車輪Wの可動路面21a、22aに対する押付力をそれぞれ独立して調整できるので、車両のコーナリング時や車両が跳ねたときなど、左右の車輪Wに加わる荷重や負荷などが異なる走行状態を模擬して試験することができ、パワートレインPT又はその一部の性能などをより正確に評価することができる。 Furthermore, the operation load on the first movable road surface 21a and the operation load on the second movable road surface 22a can be controlled independently, and the pressing force of the left and right wheels W against the movable road surfaces 21a and 22a is adjusted independently. Because it can, it can be tested by simulating running conditions with different loads and loads applied to the left and right wheels W, such as when the vehicle is cornering or when the vehicle jumps, and the powertrain PT or part of its performance etc. It can be evaluated more accurately.
 加えて、車輪Wが可動路面20a上でスリップするので、ステアリングを切った状態でのパワートレインPT又はその一部の性能などを評価することができる。 In addition, since the wheel W slips on the movable road surface 20a, it is possible to evaluate the power train PT or a part of the performance when the steering is turned off.
 そのうえ、供試体を実際の走行状態に近づけることができるので、完成車両を使わなくても、完成車両を使った試験に近い状態でパワートレインPT又はその一部の性能を評価することができる。 Moreover, since the specimen can be brought close to the actual running state, the performance of the powertrain PT or a part thereof can be evaluated in a state close to the test using the completed vehicle without using the completed vehicle.
 なお、本発明は前記実施形態に限られるものではない。 The present invention is not limited to the above embodiment.
 例えば、前記実施形態では、押付力調整装置50が、車輪Wを可動路面20aに押し付けるように構成されていたが、可動路面20aを車輪Wに押し付けることにより、押付力を調整できるように構成されたものであっても良い。 For example, in the embodiment, the pressing force adjusting device 50 is configured to press the wheel W against the movable road surface 20a. However, the pressing force adjusting device 50 is configured to adjust the pressing force by pressing the movable road surface 20a against the wheel W. It may be.
 また、前記実施形態では、出力軸PT1、PT2に左右の車輪Wが接続されていたが、いずれか一方の出力軸PT1(PT2)に車輪Wを接続し、他方の出力軸PT2(PT1)を例えばディファレンシャルギアDFに固定しても良い。
 さらに、図4に示すように、パワートレインPTに前後左右の4つの車輪Wを接続しても構わない。
In the embodiment, the left and right wheels W are connected to the output shafts PT1 and PT2. However, the wheel W is connected to one of the output shafts PT1 (PT2), and the other output shaft PT2 (PT1) is connected. For example, it may be fixed to the differential gear DF.
Furthermore, as shown in FIG. 4, four wheels W on the front, rear, left and right may be connected to the power train PT.
 加えて、前記実施形態の路面形成部材20は、概略円筒形状をなす回転体であったが、例えば、無端フラットベルトにより構成されたものであっても良い。
 なお、可動路面20aは、上述したように、路面形成部材20の内周面に形成されていることが好ましいが、路面形成部材20の外周面に形成されていても構わない。
In addition, the road surface forming member 20 of the above-described embodiment is a rotating body having a substantially cylindrical shape, but may be configured by an endless flat belt, for example.
The movable road surface 20 a is preferably formed on the inner peripheral surface of the road surface forming member 20 as described above, but may be formed on the outer peripheral surface of the road surface forming member 20.
 前記実施形態の試験管理部44は、実走行データ格納部41から運転パターンに対応するハンドル操作量を取得するように構成されていたが、例えば、ステアリングホイールを有するハンドル操作量入力手段に入力されたハンドル操作量を取得するように構成されていても良い。
 また、例えば、オペレータが前記ハンドル操作量入力手段に入力したハンドル操作量に応じて、車輪Wの向きを手動で変更できるようにしても構わない。
The test management unit 44 of the above embodiment is configured to acquire the steering wheel operation amount corresponding to the driving pattern from the actual driving data storage unit 41. For example, the test management unit 44 is input to a steering wheel operation amount input unit having a steering wheel. It may be configured to acquire the handle operation amount.
Further, for example, the direction of the wheel W may be manually changed according to the handle operation amount input to the handle operation amount input means by the operator.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 以上に述べた本発明によれば、車輪Wの影響を考慮した試験を行えるようにして、パワートレインPT又はその一部の性能などを正確に評価することができる。 According to the present invention described above, it is possible to accurately evaluate the performance of the power train PT or a part of the power train PT by allowing a test in consideration of the influence of the wheel W.

Claims (5)

  1.  車輪が接続されたパワートレイン又はその一部を試験するためのものであって、
     前記車輪が上から載置される可動路面と、
     前記車輪の回転に伴って動く前記可動路面の動作負荷を制御する負荷制御装置と、
     前記車輪の前記可動路面に対する押付力を調整するための押付力調整装置とを具備することを特徴とする駆動系試験装置。
    For testing a powertrain or a part thereof with wheels connected thereto,
    A movable road surface on which the wheels are mounted from above;
    A load control device that controls an operation load of the movable road surface that moves with rotation of the wheel;
    A drive system testing device comprising: a pressing force adjusting device for adjusting a pressing force of the wheel against the movable road surface.
  2.  前記パワートレイン又はその一部に左右の車輪が接続されており、
     前記押付力調整装置が、前記左右の車輪の前記可動路面に対する押付力をそれぞれ独立して調整できるように構成されていることを特徴とする請求項1記載の駆動系試験装置。
    Left and right wheels are connected to the power train or part thereof,
    The drive system test apparatus according to claim 1, wherein the pressing force adjusting device is configured to independently adjust the pressing force of the left and right wheels against the movable road surface.
  3.  前記パワートレイン又はその一部に左右の車輪が接続されており、
     前記負荷制御装置が、一方の車輪に対応する第1可動路面の動作負荷と、他方の車輪に対応する第2可動路面の動作負荷とをそれぞれ独立して制御できるように構成されていることを特徴とする請求項1又は2記載の駆動系試験装置。
    Left and right wheels are connected to the power train or part thereof,
    The load control device is configured to be able to independently control the operation load of the first movable road surface corresponding to one wheel and the operation load of the second movable road surface corresponding to the other wheel. The drive system testing apparatus according to claim 1 or 2, characterized in that:
  4.  前記可動路面が、筒形状をなす回転体の内周面に設定されていることを特徴とする請求項1乃至3のうち何れか一項に記載の駆動系試験装置。 The drive system test apparatus according to any one of claims 1 to 3, wherein the movable road surface is set on an inner peripheral surface of a cylindrical rotating body.
  5.  前記車輪のステア角を制御するステアリング機構をさらに具備していることを特徴とする請求項1乃至4のうち何れか一項に記載の駆動系試験装置。 5. The drive system testing apparatus according to claim 1, further comprising a steering mechanism that controls a steering angle of the wheel.
PCT/JP2015/079972 2014-12-05 2015-10-23 Drive train testing apparatus WO2016088469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562347A JPWO2016088469A1 (en) 2014-12-05 2015-10-23 Drive system test equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246987 2014-12-05
JP2014246987 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088469A1 true WO2016088469A1 (en) 2016-06-09

Family

ID=56091425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079972 WO2016088469A1 (en) 2014-12-05 2015-10-23 Drive train testing apparatus

Country Status (2)

Country Link
JP (1) JPWO2016088469A1 (en)
WO (1) WO2016088469A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020350A (en) * 2017-07-21 2019-02-07 株式会社エー・アンド・デイ Transmission test equipment
CN112525740A (en) * 2020-07-20 2021-03-19 宝丰县公路管理局 Rut test device and double-wheel dynamic stability calculation method
JP2021509478A (en) * 2017-12-27 2021-03-25 ホリバ ヨーロッパ ゲーエムベーハー Equipment and methods for testing using a dynamometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111735640B (en) * 2020-05-29 2022-02-15 东南大学 Intelligent networking automobile test model with automatically variable local road and operation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412330B2 (en) * 1982-10-15 1989-02-28 Nissan Motor
JPH03142336A (en) * 1989-10-30 1991-06-18 Nissan Motor Co Ltd Simulated chassis
JP2002148150A (en) * 2000-11-13 2002-05-22 Automax Kk Dynamo measuring method, dynamo measuring device, and tire pressing device
JP2006208265A (en) * 2005-01-31 2006-08-10 Mitsubishi Heavy Ind Ltd Flat-belt type tire testing machine and testing method
JP2008082709A (en) * 2006-09-25 2008-04-10 Sumitomo Rubber Ind Ltd Device of measuring performance of tire and method of measuring performance of racing tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412330B2 (en) * 1982-10-15 1989-02-28 Nissan Motor
JPH03142336A (en) * 1989-10-30 1991-06-18 Nissan Motor Co Ltd Simulated chassis
JP2002148150A (en) * 2000-11-13 2002-05-22 Automax Kk Dynamo measuring method, dynamo measuring device, and tire pressing device
JP2006208265A (en) * 2005-01-31 2006-08-10 Mitsubishi Heavy Ind Ltd Flat-belt type tire testing machine and testing method
JP2008082709A (en) * 2006-09-25 2008-04-10 Sumitomo Rubber Ind Ltd Device of measuring performance of tire and method of measuring performance of racing tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020350A (en) * 2017-07-21 2019-02-07 株式会社エー・アンド・デイ Transmission test equipment
JP2021509478A (en) * 2017-12-27 2021-03-25 ホリバ ヨーロッパ ゲーエムベーハー Equipment and methods for testing using a dynamometer
JP7317019B2 (en) 2017-12-27 2023-07-28 ホリバ ヨーロッパ ゲーエムベーハー Apparatus and method for testing using a dynamometer
CN112525740A (en) * 2020-07-20 2021-03-19 宝丰县公路管理局 Rut test device and double-wheel dynamic stability calculation method

Also Published As

Publication number Publication date
JPWO2016088469A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
CN106895981B (en) A kind of automotive transmission test-bed acceleration inertia electric simulation control method
WO2016088469A1 (en) Drive train testing apparatus
CN107209083B (en) Method and device for carrying out a test run on a test bench
US8590369B2 (en) Vehicle drivetrain test stand and method of controlling same
US20180024019A1 (en) Method for operating a driving simulator
JP7431145B2 (en) Automotive test system and road driving simulator
US20130068006A1 (en) Tire testing systems and methods
JP2018505399A5 (en)
JP2017110956A (en) Vehicle test apparatus and simulation wheel used for vehicle test apparatus
JP6801525B2 (en) Test equipment
US11037381B2 (en) Vehicle drive train test system and vehicle drive train test method
JP2023541223A (en) Test stand for testing physical test objects in driving motions
JP2018059894A (en) Vehicle testing system, test vehicle moving method, and simulation wheel
US11255754B2 (en) Specimen test apparatus controlled in part based on tire diameter in deformed state
Bauer New methodology for dynamic drive train testing
JP2016529508A (en) Method for simulating curve driving
Sondkar et al. Longitudinal vehicle dynamics modeling for AWD/4WD vehicles to study torque split between front and rear axles
JP5603665B2 (en) Automotive powertrain testing equipment
Albers et al. Extended flexible environment and vehicle simulation for an automated validation
JP5217830B2 (en) Chassis dynamometer and synchronous control method for 4WD vehicle
Yoo et al. Front loading NVH test on the highly dynamic powertrain test bed
Amparo et al. Study of Power Hop on Front Wheel Drive Vehicles Influence of Mounts, Driveline, Tires and Wheels
CN214426978U (en) Road adhesion coefficient simulation device for abs braking detection
Mavros Contact mechanics of tyre–road interactions and its role in vehicle shuffle
RU2431814C1 (en) Test bench

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866245

Country of ref document: EP

Kind code of ref document: A1