JP2016079458A - Wear-resistant steel and surface modification method of steel - Google Patents

Wear-resistant steel and surface modification method of steel Download PDF

Info

Publication number
JP2016079458A
JP2016079458A JP2014212053A JP2014212053A JP2016079458A JP 2016079458 A JP2016079458 A JP 2016079458A JP 2014212053 A JP2014212053 A JP 2014212053A JP 2014212053 A JP2014212053 A JP 2014212053A JP 2016079458 A JP2016079458 A JP 2016079458A
Authority
JP
Japan
Prior art keywords
round shaft
powder
steel
tool
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014212053A
Other languages
Japanese (ja)
Inventor
政幸 志摩
Masayuki Shima
政幸 志摩
隆志 菅原
Takashi Sugawara
隆志 菅原
健治 二村
Kenji Nimura
健治 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Marine Science and Technology NUC
Original Assignee
Tokyo University of Marine Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Marine Science and Technology NUC filed Critical Tokyo University of Marine Science and Technology NUC
Priority to JP2014212053A priority Critical patent/JP2016079458A/en
Publication of JP2016079458A publication Critical patent/JP2016079458A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wear-resistant steel capable of exhibiting high wear resistance and having small distortion under a condition free from a lubricant such as a lubricating oil.SOLUTION: A wear-resistant steel of the present invention has, on a surface of a round shaft TS, a structure where a hard powder is bonded to components of the round shaft TS. The structure is formed by embedding treatment of a hard powder into the surface of the round shaft TS, performed by rotating the round shaft TS made of a steel, contacting a tip of a tool 4 with an outer peripheral surface of the round shaft TS, relatively moving the round shaft TS and the tool 4 in the axial direction of the round shaft TS while rotating the tool 4, and supplying the hard powder harder than the round shaft TS to a contact part between the round shaft TS and the tool 4, and then subjecting the round shaft TS, in which the hard powder has been embedded, to surface heat treatment.SELECTED DRAWING: Figure 1

Description

本発明は、潤滑油などの潤滑剤が無い条件下において高い耐摩耗性を発揮することができ、かつ歪みの少ない耐摩耗性鋼材、および鋼材に表面改質を施すことにより耐摩耗性を付与することができる鋼材の表面改質方法に関する。   The present invention provides high wear resistance under conditions where there is no lubricant such as lubricating oil, and imparts wear resistance by surface-modifying the wear-resistant steel with less distortion and the steel. The present invention relates to a method for surface modification of a steel material.

従来、熱処理により鋼表面層のみを強化する方法の一つとして、浸炭処理等の表面熱処理が様々な機械のしゅう動部材に適用されている。表面熱処理は、比較的厚い硬化層が容易に得られ、耐摩耗性も無処理材に比べれば優れているものの、しゅう動条件・環境によっては十分な耐摩耗性を示さないこともある。特に、潤滑油が切れたあるいは潤滑油を適用できないしゅう動部に対しての耐摩耗性は十分ではなく、その改善は緊急の課題である。   Conventionally, as one method for strengthening only the steel surface layer by heat treatment, surface heat treatment such as carburizing treatment has been applied to sliding members of various machines. The surface heat treatment can provide a relatively thick hardened layer easily and has excellent wear resistance compared to the untreated material, but may not exhibit sufficient wear resistance depending on the sliding conditions and environment. In particular, the wear resistance of sliding parts where the lubricating oil has run out or to which the lubricating oil cannot be applied is not sufficient, and its improvement is an urgent issue.

このような状況を踏まえ、基材の表面に硬質薄膜を形成して耐摩耗性を高めることが一般的に行われている。基材の表面に硬質薄膜を形成する方法として、材料を摩擦発熱により加熱軟化させて基材の表面に薄膜を形成する方法(特許文献1)や、アーク式イオンプレーティング法により薄膜を形成する方法(特許文献2および3)が知られていた。   In view of such a situation, it is a common practice to increase the wear resistance by forming a hard thin film on the surface of a substrate. As a method of forming a hard thin film on the surface of the base material, a method of forming a thin film on the surface of the base material by heating and softening the material by frictional heat generation (Patent Document 1), or forming a thin film by an arc ion plating method Methods (Patent Documents 2 and 3) have been known.

しかしながら、材料を高い摩擦熱によって加熱軟化させて薄膜を形成する方法では基材自体が熱の影響で変形する恐れがある等の問題点があった。また、アーク式イオンプレーティング法により薄膜を形成する方法では真空発生装置や複数の処理室を備えた大掛かりな装置が必要でコストが高くつく等の問題点があった。   However, the method of forming a thin film by heating and softening a material with high frictional heat has a problem that the base material itself may be deformed by the influence of heat. In addition, the method of forming a thin film by the arc type ion plating method has a problem that a large-scale apparatus having a vacuum generator and a plurality of processing chambers is required and the cost is high.

そこで、本発明者らは、特許文献4において、丸軸を回転させ、外周面に螺旋溝を形成した工具の平坦な又は円錐状をした先端面を、前記丸軸の外周面に線又は点接触させ、該工具の回転に伴って、前記丸軸よりも硬い微細な硬質粉末を前記丸軸と工具との接触部分へ送り込むことにより、前記丸軸の表面に前記硬質粉末を埋め込むことを特徴とする丸軸表面の改質方法を提案した。   In view of this, the inventors of the present invention disclosed in Patent Document 4 that a flat or conical tip surface of a tool in which a round shaft is rotated and a spiral groove is formed on the outer peripheral surface is connected to a line or a point on the outer peripheral surface of the round shaft. The hard powder is embedded in the surface of the round shaft by bringing it into contact with the round shaft and the tool by feeding fine hard powder harder than the round shaft with the rotation of the tool. A method of modifying the surface of the round shaft was proposed.

特開2006−102803号公報JP 2006-102803 A 特開平7−118832号公報Japanese Patent Laid-Open No. 7-118832 特開2004−138128号公報JP 2004-138128 A 特許第5289990号公報Japanese Patent No. 5289990

本発明者らが特許文献4において提案した改質方法によれば、丸軸の表面に硬質粉末が埋め込まれて方向性のない硬質膜が島状に創成されるので、耐摩耗性が向上し、また、工具と丸軸とが丸軸の軸方向に相対的に移動しながら線接触又は点接触して回転するので、高い熱が発生せず、このため、丸軸の歪みや変形が抑制される等の効果が得られた。しかし、潤滑油などの潤滑剤が無く、摩擦係数が高いしゅう動条件下においては、耐摩耗性を発揮することができない問題があった。   According to the modification method proposed by the present inventors in Patent Document 4, the hard powder is embedded on the surface of the round shaft and a non-directional hard film is created in an island shape, so that the wear resistance is improved. In addition, since the tool and the round shaft rotate relative to each other in the axial direction of the round shaft and rotate in line contact or point contact, high heat is not generated, and therefore, distortion and deformation of the round shaft are suppressed. The effect of being done etc. was acquired. However, there is a problem that the wear resistance cannot be exhibited under the sliding condition where there is no lubricant such as lubricating oil and the friction coefficient is high.

最近では、潤滑ができない無潤滑条件下においても高い耐摩耗性を発揮する鋼材が求められている。耐摩耗性をさらに向上させる技術としては、鋼材の表面を焼成する方法がある。この方法によれば、硬質粉末が埋め込まれた鋼材の表面を焼成することにより、硬質粉末の鋼材への密着力が向上して、更なる耐摩耗性の向上が期待される。しかしながら、単に鋼材を焼成しただけでは、鋼材に歪みが生じてしまう。   Recently, steel materials that exhibit high wear resistance even under non-lubricated conditions where lubrication cannot be performed have been demanded. As a technique for further improving the wear resistance, there is a method of firing the surface of a steel material. According to this method, by firing the surface of the steel material in which the hard powder is embedded, the adhesion of the hard powder to the steel material is improved, and further improvement in wear resistance is expected. However, if the steel material is simply fired, the steel material is distorted.

本発明は、上述の事情に鑑みなされたもので、潤滑油などの潤滑剤が無い条件下において高い耐摩耗性を発揮することができ、かつ歪みの少ない耐摩耗性鋼材を提供することを目的とする。また、鋼材に表面改質を施すことにより、優れた耐摩耗性を持ち、かつ歪みの少ない耐摩耗性鋼材とすることができる鋼材の表面改質方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wear-resistant steel material that can exhibit high wear resistance under conditions where there is no lubricant such as lubricating oil and that has little distortion. And It is another object of the present invention to provide a method for modifying the surface of a steel material that can be made into a wear-resistant steel material having excellent wear resistance and little distortion by subjecting the steel material to surface modification.

上述の目的を達成するため、本発明の耐摩耗性鋼材は、鋼材からなる丸軸を回転させ、工具の先端を前記丸軸の外周面に接触させ、前記工具を回転させながら前記丸軸と工具とを丸軸の軸方向に相対移動させ、前記丸軸よりも硬い硬質粉末を前記丸軸と工具との接触部分に供給することにより、前記丸軸の表面に前記硬質粉末の埋め込み処理をし、前記硬質粉末が埋め込まれた前記丸軸に表面熱処理を施すことにより形成される組織であって、前記硬質粉末が前記丸軸の構成成分と結合された組織を前記丸軸の表面に有することを特徴とする。   In order to achieve the above-mentioned object, the wear-resistant steel material of the present invention rotates a round shaft made of a steel material, makes the tip of a tool contact the outer peripheral surface of the round shaft, and rotates the tool while rotating the tool. The tool is relatively moved in the axial direction of the round shaft, and hard powder harder than the round shaft is supplied to the contact portion between the round shaft and the tool, thereby embedding the hard powder on the surface of the round shaft. And a structure formed by subjecting the round shaft embedded with the hard powder to a surface heat treatment, the hard powder having a structure combined with a component of the round shaft on the surface of the round shaft. It is characterized by that.

本発明の好ましい態様によれば、前記表面熱処理は、浸炭焼入れ処理であることを特徴とする。
本発明の好ましい態様によれば、前記丸軸は、クロムモリブデン鋼または低炭素鋼からなることを特徴とする。
本発明の好ましい態様は、前記硬質粉末は、モリブデン粉末、クロム粉末、シリコン粉末、炭化タングステン粉末のいずれかからなることを特徴とする。
According to a preferred aspect of the present invention, the surface heat treatment is carburizing and quenching.
According to a preferred aspect of the present invention, the round shaft is made of chromium molybdenum steel or low carbon steel.
In a preferred aspect of the present invention, the hard powder is any one of molybdenum powder, chromium powder, silicon powder, and tungsten carbide powder.

上述の目的を達成するため、本発明の鋼材の表面改質方法は、鋼材からなる丸軸を回転させ、工具の先端を前記丸軸の外周面に接触させ、前記工具を回転させながら前記丸軸と工具とを丸軸の軸方向に相対移動させ、前記丸軸よりも硬い硬質粉末を前記丸軸と工具との接触部分に供給することにより、前記丸軸の表面に前記硬質粉末の埋め込み処理をし、前記硬質粉末が埋め込まれた前記丸軸に表面熱処理を施すことを特徴とする。   In order to achieve the above-described object, the surface modification method for a steel material according to the present invention comprises rotating a round shaft made of steel material, bringing a tip of a tool into contact with an outer peripheral surface of the round shaft, and rotating the tool while rotating the tool. The hard powder is embedded in the surface of the round shaft by relatively moving the shaft and the tool in the axial direction of the round shaft and supplying hard powder harder than the round shaft to the contact portion between the round shaft and the tool. It is characterized in that the round shaft embedded with the hard powder is subjected to surface heat treatment.

本発明の好ましい態様によれば、前記表面熱処理は、浸炭焼入れ処理であることを特徴とする。
本発明の好ましい態様によれば、前記丸軸は、クロムモリブデン鋼または低炭素鋼からなることを特徴とする。
本発明の好ましい態様によれば、前記硬質粉末は、モリブデン粉末、クロム粉末、シリコン粉末、炭化タングステン粉末のいずれかからなることを特徴とする。
According to a preferred aspect of the present invention, the surface heat treatment is carburizing and quenching.
According to a preferred aspect of the present invention, the round shaft is made of chromium molybdenum steel or low carbon steel.
According to a preferred aspect of the present invention, the hard powder is made of any one of molybdenum powder, chromium powder, silicon powder, and tungsten carbide powder.

本発明の好ましい態様によれば、前記表面熱処理の後に、前記丸軸を回転させ、仕上げ用工具の先端を前記丸軸の外周面に接触させ、前記仕上げ用工具を回転させながら前記丸軸と仕上げ用工具とを丸軸の軸方向に相対移動させ、仕上げ処理を行うことを特徴とする。
本発明の好ましい態様によれば、前記埋め込み処理の後で、かつ前記表面熱処理の前に、前記丸軸を回転させ、仕上げ用工具の先端を前記丸軸の外周面に接触させ、前記仕上げ用工具を回転させながら前記丸軸と仕上げ用工具とを丸軸の軸方向に相対移動させ、仕上げ処理を行うことを特徴とする。
本発明の好ましい態様によれば、前記丸軸は、潤滑剤の無い条件下で使用されることを特徴とする。
According to a preferred aspect of the present invention, after the surface heat treatment, the round shaft is rotated, the tip of the finishing tool is brought into contact with the outer peripheral surface of the round shaft, and the round shaft is rotated while the finishing tool is rotated. A finishing tool is relatively moved in the axial direction of the round shaft to perform a finishing process.
According to a preferred aspect of the present invention, after the embedding process and before the surface heat treatment, the round shaft is rotated, the tip of a finishing tool is brought into contact with the outer peripheral surface of the round shaft, and the finishing While the tool is rotated, the round shaft and the finishing tool are relatively moved in the axial direction of the round shaft to perform a finishing process.
According to a preferred aspect of the present invention, the round shaft is used under a condition without a lubricant.

本発明によれば、硬質粉末を鋼材の表面に埋め込み、さらに、硬質粉末が埋め込まれた鋼材に表面熱処理を行うことにより、優れた耐摩耗性を持ち、かつ歪みの少ない耐摩耗性鋼材を得ることができる。この耐摩耗性鋼材は、潤滑油などの潤滑剤が無い条件下において高い耐摩耗性を発揮することができる。   According to the present invention, the hard powder is embedded in the surface of the steel material, and further the surface heat treatment is performed on the steel material in which the hard powder is embedded, thereby obtaining a wear-resistant steel material having excellent wear resistance and low distortion. be able to. This wear-resistant steel material can exhibit high wear resistance under conditions where there is no lubricant such as lubricating oil.

図1は、本発明の一実施形態に係る鋼材の表面改質方法における埋め込み処理工程を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an embedding process in a steel surface modification method according to an embodiment of the present invention. 図2は、埋め込み処理工程における試験片と工具との関係を示す模式的斜視図である。FIG. 2 is a schematic perspective view showing the relationship between the test piece and the tool in the embedding process. 図3は、本発明の一実施形態に係る浸炭焼入れ処理のフロー図である。FIG. 3 is a flowchart of carburizing and quenching processing according to an embodiment of the present invention. 図4Aは、仕上げ処理工程における試験片と円錐状工具との関係を示す正面図である。FIG. 4A is a front view showing the relationship between the test piece and the conical tool in the finishing process. 図4Bは、仕上げ処理工程における試験片と円錐状工具との関係を示す側面図である。FIG. 4B is a side view showing the relationship between the test piece and the conical tool in the finishing process. 図5は、改質浸炭鋼の表面組織の光学顕微鏡観察写真である。FIG. 5 is an optical microscope observation photograph of the surface structure of the modified carburized steel. 図6は、浸炭鋼と改質浸炭鋼のマイクロビッカース硬さの測定結果を示すグラフである。FIG. 6 is a graph showing the measurement results of micro Vickers hardness of carburized steel and modified carburized steel. Mo粉末の埋め込み処理の後で仕上げ処理を施したクロムモリブデン鋼の表面組織の低倍率の光学顕微鏡観察写真である。It is the optical microscope observation photograph of the low magnification of the surface structure | tissue of the chromium molybdenum steel which performed the finishing process after the embedding process of Mo powder. Mo粉末の埋め込み処理の後で仕上げ処理を施したクロムモリブデン鋼の表面組織の高倍率の光学顕微鏡観察写真である。It is the optical microscope observation photograph of the high magnification of the surface structure | tissue of the chromium molybdenum steel which performed the finishing process after the embedding process of Mo powder. Mo粉末の埋め込み処理および表面熱処理を行った後で仕上げ処理を施したクロムモリブデン鋼の表面組織の低倍率の光学顕微鏡観察写真である。It is the optical microscope observation photograph of the low magnification of the surface structure | tissue of the chromium molybdenum steel which gave the finishing process after performing the embedding process and surface heat treatment of Mo powder. Mo粉末の埋め込み処理および表面熱処理を行った後で仕上げ処理を施したクロムモリブデン鋼の表面組織の高倍率の光学顕微鏡観察写真である。It is the optical microscope observation photograph of the high magnification of the surface structure | tissue of the chromium molybdenum steel which gave the finishing process after performing the embedding process and surface heat treatment of Mo powder. 図9は、往復動試験の形態を示す図である。FIG. 9 is a diagram showing a form of a reciprocating test. 図10は、往復動試験およびフレッチング摩耗試験の条件を示す表である。FIG. 10 is a table showing conditions for a reciprocating test and a fretting wear test. 図11Aは、往復動試験によって生じた浸炭鋼の摩耗痕を示す図である。FIG. 11A is a diagram showing wear marks of carburized steel produced by a reciprocating test. 図11Bは、往復動試験によって生じた改質浸炭鋼の摩耗痕を示す図である。FIG. 11B is a diagram showing wear marks of the modified carburized steel generated by the reciprocating test. 図12Aは、フレッチング摩耗試験によって生じた浸炭鋼の摩耗痕を示す図である。FIG. 12A is a diagram showing wear marks of carburized steel produced by a fretting wear test. 図12Bは、フレッチング摩耗試験によって生じた改質浸炭鋼の摩耗痕を示す図である。FIG. 12B is a diagram showing wear marks of the modified carburized steel produced by the fretting wear test. 図13は、往復動試験およびフレッチング摩耗試験における改質浸炭鋼および浸炭鋼の比摩耗量を示す表である。FIG. 13 is a table showing specific wear amounts of the modified carburized steel and carburized steel in the reciprocating test and the fretting wear test. 図14は、図13に示される比摩耗量を比較するための棒グラフである。FIG. 14 is a bar graph for comparing the specific wear amounts shown in FIG. 図15Aは、Mo粉末の埋め込み処理のみを施したクロムモリブデン鋼に1往復動試験を実施した後の試験片の表面の光学顕微鏡観察写真である。FIG. 15A is an optical microscope observation photograph of the surface of the test piece after performing a reciprocating motion test on chromium molybdenum steel subjected only to the Mo powder embedding process. 図15Bは、Mo粉末の埋め込み処理のみを施したクロムモリブデン鋼に1往復動試験を実施した後の試験片の表面に粘着テープを貼り付けて剥がした後の表面の光学顕微鏡観察写真である。FIG. 15B is an optical microscopic observation photograph of the surface after the adhesive tape has been applied to the surface of the test piece after the reciprocating motion test was performed on chromium molybdenum steel subjected only to the Mo powder embedding process and peeled off. 図16Aは、Mo粉末の埋め込み処理および表面熱処理を施したクロムモリブデン鋼に1往復動試験を実施した後の表面の光学顕微鏡観察写真である。FIG. 16A is an optical microscope observation photograph of the surface after performing a reciprocation test on chromium molybdenum steel subjected to Mo powder embedding treatment and surface heat treatment. 図16Bは、Mo粉末の埋め込み処理および表面熱処理を施したクロムモリブデン鋼に1往復動試験を実施した後の試験片の表面に粘着テープを貼り付けて剥がした後の表面の光学顕微鏡観察写真である。FIG. 16B is an optical microscopic observation photograph of the surface after the adhesive tape is attached to the surface of the test piece after the reciprocation test was performed on the chromium molybdenum steel subjected to the Mo powder embedding treatment and the surface heat treatment, and then peeled off. is there. 図17は、埋め込み処理が施されていないクロムモリブデン鋼の試験片に表面熱処理を施した場合と表面熱処理を施さなかった場合の比摩耗量、Mo粉末を埋め込んだクロムモリブデン鋼の試験片に表面熱処理を施した場合と表面熱処理を施さなかった場合の比摩耗量、およびCr粉末を埋め込んだクロムモリブデン鋼の試験片に表面熱処理を施した場合と表面熱処理を施さなかった場合の比摩耗量を示す表である。FIG. 17 shows the specific wear amount when the surface heat treatment is applied to the test piece of chromium molybdenum steel not subjected to the embedding treatment, and the surface of the test piece of chromium molybdenum steel embedded with Mo powder. Specific wear amount when heat treatment is performed and when surface heat treatment is not performed, and specific wear amount when the surface heat treatment is applied to the specimen of chromium molybdenum steel embedded with Cr powder and when surface heat treatment is not performed It is a table | surface which shows. 図18は、図17に示される比摩耗量を比較するための棒グラフである。FIG. 18 is a bar graph for comparing the specific wear amounts shown in FIG. 図19は、Si粉末を埋め込んだクロムモリブデン鋼の試験片に表面熱処理を施した場合の比摩耗量と、WC粉末を埋め込んだクロムモリブデン鋼の試験片に表面熱処理を施した場合の比摩耗量を示す表である。FIG. 19 shows a specific wear amount when a surface heat treatment is applied to a chromium molybdenum steel specimen embedded with Si powder and a specific wear amount when a surface heat treatment is applied to a chromium molybdenum steel specimen embedded with WC powder. It is a table | surface which shows.

以下、本発明に係る鋼材の表面改質方法の実施形態を図1乃至図19を参照して説明する。図1乃至図19において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。   Hereinafter, an embodiment of a surface modification method for a steel material according to the present invention will be described with reference to FIGS. In FIG. 1 to FIG. 19, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の一実施形態に係る鋼材の表面改質方法における埋め込み処理工程を示す模式的断面図である。図1に示すように、埋め込み処理工程を実施する装置は、下端が開口した筒状部1と、筒状部1の上端部に接続されている漏斗状部2とを備えている。試験片(test specimen)TSは、筒状部1の下端開口部に設置されている。本実施形態では、試験片TSとして、クロムモリブデン鋼(SCM420)の丸棒(丸軸)を用いている。筒状部1内には工具挿入孔3が形成されており、工具挿入孔3に円柱状の工具4が挿入されている。工具挿入孔3の内径は工具4の外径よりやや大きく設定されている。漏斗状部2には、ホッパー(図示せず)等から硬質粉末としてのMo粉末(モリブデン粉末)が連続的に供給されるようになっている。本実施形態では、Mo粉末として、#300メッシュのものを用い、またMo粉末の流動性を高めるために平均粒径50μmのハイス球状粒子(高速度鋼(HSS)粒子)をかさ比で1:9の割合(Mo粉末1に対してハイス粒子9の割合)で混合している。   FIG. 1 is a schematic cross-sectional view showing an embedding process in a steel surface modification method according to an embodiment of the present invention. As shown in FIG. 1, the apparatus for performing the embedding process includes a cylindrical portion 1 having an open lower end and a funnel-shaped portion 2 connected to the upper end portion of the cylindrical portion 1. The test specimen TS is installed in the lower end opening of the cylindrical portion 1. In the present embodiment, a round bar (round shaft) of chromium molybdenum steel (SCM420) is used as the test piece TS. A tool insertion hole 3 is formed in the cylindrical portion 1, and a cylindrical tool 4 is inserted into the tool insertion hole 3. The inner diameter of the tool insertion hole 3 is set slightly larger than the outer diameter of the tool 4. Mo powder (molybdenum powder) as hard powder is continuously supplied to the funnel-shaped portion 2 from a hopper (not shown) or the like. In this embodiment, the # 3 mesh is used as the Mo powder, and in order to improve the fluidity of the Mo powder, high-speed spherical particles (high-speed steel (HSS) particles) having an average particle diameter of 50 μm are used in a bulk ratio of 1: 9 is mixed (the ratio of the high-speed particles 9 to the Mo powder 1).

本実施形態では、試験片(丸軸)TSを構成する鋼材はクロムモリブデン鋼(SCM材)であるが、炭素含有率(質量パーセント濃度)が0.3%以下である鋼材を使用してもよい。したがって、炭素含有率が0.25%以下である低炭素鋼を鋼材として用いることができる。このような低炭素鋼として、例えば、S20CおよびS25Cなどが挙げられる。   In the present embodiment, the steel material constituting the test piece (round shaft) TS is chromium molybdenum steel (SCM material), but a steel material having a carbon content (mass percent concentration) of 0.3% or less may be used. Good. Therefore, a low carbon steel having a carbon content of 0.25% or less can be used as a steel material. Examples of such low carbon steel include S20C and S25C.

試験片TSの外周面に埋め込まれる硬質粉末は、試験片(丸軸)TSよりも硬い粉末である。このような硬質粉末として、Mo粉末以外に、シリコン(Si)、炭化タングステン(WC)、クロム(Cr)などの溶射に使用される材料(溶射材)からなる粉末を用いてもよい。硬質粉末として、トライボロジー特性(特に、摩擦・摩耗特性)が優れた材料が選択されるのが好ましい。また、後述する表面熱処理を施すことにより、試験片TSの構成成分と良好に結合する材料が選択されるのが好ましい。例えば、クロムモリブデン鋼には、鋼材中に既にCrとMoが含まれているので、Cr粉末とMo粉末はクロムモリブデン鋼からなる試験片TSの構成成分と良好に結合することが想定される。したがって、試験片TSにクロムモリブデン鋼を用いた場合、硬質粉末としてMo粉末かまたはCr粉末が選択されるのが好ましい。   The hard powder embedded in the outer peripheral surface of the test piece TS is harder than the test piece (round shaft) TS. As such a hard powder, in addition to the Mo powder, a powder made of a material (spraying material) used for thermal spraying such as silicon (Si), tungsten carbide (WC), or chromium (Cr) may be used. As the hard powder, it is preferable to select a material having excellent tribological characteristics (particularly friction / wear characteristics). Moreover, it is preferable that the material which couple | bonds favorably with the structural component of test piece TS is selected by performing the surface heat processing mentioned later. For example, since chromium molybdenum steel already contains Cr and Mo in the chromium material, it is assumed that the Cr powder and the Mo powder are well bonded to the constituent components of the specimen TS made of chromium molybdenum steel. Therefore, when chromium molybdenum steel is used for the test piece TS, it is preferable to select Mo powder or Cr powder as the hard powder.

工具4は、炭化タングステン(WC)など、硬くて耐摩耗性のある材料を素材とした円柱体よりなる。工具4には、工具挿入孔3に挿入されている部分の外周面に螺旋溝4sが形成されている。工具4は平坦な或いは円錐状の先端面4fを有している。工具4の基端部はボール盤等の工作機械に取り付けられており、工具4を回転させながら、先端面4fを介して丸棒(丸軸)からなる試験片TSに対し荷重を加えられるようになっている。   The tool 4 is made of a cylindrical body made of a hard and wear-resistant material such as tungsten carbide (WC). In the tool 4, a spiral groove 4 s is formed on the outer peripheral surface of the portion inserted in the tool insertion hole 3. The tool 4 has a flat or conical tip surface 4f. The base end portion of the tool 4 is attached to a machine tool such as a drilling machine so that a load can be applied to the test piece TS made of a round bar (round shaft) through the tip surface 4f while the tool 4 is rotated. It has become.

図1に示すように構成された装置を用いて丸棒からなる試験片TSの表面にMo粉末を埋め込むには、工具4の先端面4fを試験片TSの外周面に線接触又は点接触させ、漏斗状部2にMo粉末とハイス粒子を連続的に供給する。そして、工具4を回転させるとともに試験片TSを回転させる。工具4の回転に伴い、螺旋溝4sによってMo粉末とハイス粒子が工具4と試験片TSとの接触部へ送り込まれる。工具4は、回転されながら試験片TSの表面に沿って試験片TSの軸方向に移動される。工具4は試験片TSの軸方向に複数回往復移動させると良い。なお、工具4を移動させる代わりに試験片TSを試験片TSの軸方向に移動させてもよい。   In order to embed Mo powder in the surface of the test piece TS made of a round bar using the apparatus configured as shown in FIG. 1, the tip surface 4f of the tool 4 is brought into line contact or point contact with the outer peripheral surface of the test piece TS. Then, Mo powder and high-speed particles are continuously supplied to the funnel-shaped portion 2. Then, the tool 4 is rotated and the test piece TS is rotated. As the tool 4 rotates, Mo powder and high-speed particles are fed into the contact portion between the tool 4 and the test piece TS by the spiral groove 4s. The tool 4 is moved in the axial direction of the test piece TS along the surface of the test piece TS while being rotated. The tool 4 may be reciprocated a plurality of times in the axial direction of the test piece TS. Instead of moving the tool 4, the test piece TS may be moved in the axial direction of the test piece TS.

図2は、埋め込み処理工程における試験片TSと工具4との関係を示す模式的斜視図である。図2に示すように、試験片TSを回転させ、かつ工具4を回転させるとともに試験片TSの表面に沿って工具4を試験片TSの軸方向に移動させて埋め込み処理を行う。   FIG. 2 is a schematic perspective view showing the relationship between the test piece TS and the tool 4 in the embedding process. As shown in FIG. 2, the test piece TS is rotated, the tool 4 is rotated, and the tool 4 is moved in the axial direction of the test piece TS along the surface of the test piece TS to perform the embedding process.

埋め込み処理工程中、工具4の先端面4fと試験片TSの外周面とは線接触又は点接触して回転及び摺動しているため、大きな荷重を加えなくても、接触部に送り込まれたMo粉末と試験片TSとの間には高面圧が作用して、冷間溶着、即ち、高い接触圧力又はせん断力による低温下での溶着が生ずる。この結果、試験片TSの外周面にMo粉末が埋め込まれ、試験片TSの表面に方向性のない島状の膜が形成される。このように、工具4の先端面4fと試験片TSの外周面との間にMo粉末が存在した状態で、試験片TSと工具4とを回転させながら互いに接触させることにより、試験片TSの外周面にMoを埋め込むことができる。   During the embedding process, the tip surface 4f of the tool 4 and the outer peripheral surface of the test piece TS rotate and slide in line contact or point contact, so that they were fed into the contact portion without applying a large load. A high surface pressure acts between the Mo powder and the test piece TS to cause cold welding, that is, welding at a low temperature due to high contact pressure or shear force. As a result, Mo powder is embedded in the outer peripheral surface of the test piece TS, and an island-like film having no directionality is formed on the surface of the test piece TS. Thus, in the state where Mo powder exists between the front end surface 4f of the tool 4 and the outer peripheral surface of the test piece TS, the test piece TS and the tool 4 are brought into contact with each other while being rotated, whereby the test piece TS Mo can be embedded in the outer peripheral surface.

試験片TSの表面は高面圧とせん断力を受けて摩耗するが、その摩耗粉のほとんどはMo粉末と混じり合って再移着が生じるため、結果的に、試験片TSの摩耗はきわめて少なく、しかも、高温が発生しないため、試験片TSの歪みや変形を抑制できる。   The surface of the specimen TS wears under high surface pressure and shearing force, but most of the wear powder mixes with the Mo powder and retransfer occurs, resulting in very little wear on the specimen TS. And since high temperature does not generate | occur | produce, distortion and deformation | transformation of the test piece TS can be suppressed.

次に、硬質粉末が埋め込まれた試験片TSに対して表面熱処理が行われる。この表面熱処理は、試験片TSの表面を加熱することにより、試験片TSの表面に埋め込まれた硬質粉末を強固に試験片TSの構成成分に結合させること、すなわち、硬質粉末と試験片TSの構成成分との間での原子レベルの浸透拡散による合金化および固相接合を実現するために実行される処理である。   Next, surface heat treatment is performed on the test piece TS in which the hard powder is embedded. In this surface heat treatment, by heating the surface of the test piece TS, the hard powder embedded in the surface of the test piece TS is firmly bonded to the constituent components of the test piece TS, that is, the hard powder and the test piece TS are bonded. It is a process executed to realize alloying and solid phase bonding by permeation diffusion at an atomic level between constituent components.

本実施形態では、表面熱処理は、炭素浸透処理と、その炭素浸透処理の後に行われる焼入れ処理とを含んだ浸炭焼入れ処理である。炭素浸透処理とは、浸炭剤中で鋼材を加熱することで炭素を鋼材の表面に浸透させる処理である。焼入れ処理とは、所定の高温状態まで加熱された鋼材を急冷させる処理である。焼入れ処理を行うことで、鋼材の組織はマルテンサイト組織に変態する。浸炭焼入れ処理に代えて窒化処理または浸炭窒化焼入れ処理を行ってもよい。窒化処理とは、アンモニアなどの窒素を含んだ雰囲気中で鋼材を加熱することで窒素を鋼材の表面に浸透させる処理である。浸炭窒化焼入れ処理は、炭素と窒素を含んだ雰囲気中で鋼材を加熱することで炭素と窒素を鋼材の表面に浸透させ、その後、焼入れ処理を行い、これにより鋼材の表面を硬化させる処理である。   In the present embodiment, the surface heat treatment is a carburizing and quenching process including a carbon infiltration process and a quenching process performed after the carbon infiltration process. The carbon infiltration treatment is a treatment for infiltrating carbon into the surface of the steel material by heating the steel material in the carburizing agent. The quenching process is a process of rapidly cooling a steel material heated to a predetermined high temperature state. By performing the quenching process, the structure of the steel material is transformed into a martensite structure. A nitriding treatment or a carbonitriding quenching treatment may be performed instead of the carburizing quenching treatment. The nitriding treatment is a treatment for permeating nitrogen into the surface of the steel material by heating the steel material in an atmosphere containing nitrogen such as ammonia. Carbonitriding and quenching treatment is a treatment that heats steel in an atmosphere containing carbon and nitrogen to infiltrate the surface of the steel with carbon and nitrogen, and then performs a quenching treatment, thereby hardening the surface of the steel. .

本実施形態に係る浸炭焼入れ処理のフロー図が図3に示される。図3に示される浸炭焼入れ処理では、試験片TSは、浸炭剤中(例えば、二酸化炭素、水素、メタン、および水蒸気などを含むガス雰囲気中)で約7時間にわたって930℃の温度に保持される(炭素浸透処理)。炭素浸透処理における試験片TSの保持温度および保持時間は、試験片TSの材質や硬質粉末の材質などに応じて適宜決定される。保持温度は、例えば、900℃以上950℃以下の範囲から決定される。炭素浸透処理を行うことにより、炭素が試験片TSの表面に浸透および拡散する。   FIG. 3 shows a flowchart of the carburizing and quenching process according to the present embodiment. In the carburizing and quenching process shown in FIG. 3, the specimen TS is maintained at a temperature of 930 ° C. for about 7 hours in a carburizing agent (for example, in a gas atmosphere containing carbon dioxide, hydrogen, methane, water vapor, and the like). (Carbon permeation treatment). The holding temperature and holding time of the test piece TS in the carbon infiltration treatment are appropriately determined according to the material of the test piece TS, the material of the hard powder, and the like. The holding temperature is determined from, for example, a range from 900 ° C. to 950 ° C. By performing the carbon infiltration treatment, carbon penetrates and diffuses on the surface of the test piece TS.

次いで、試験片TSは、試験片TSの温度を830℃に下げた状態で約1.5時間保持され、その直後に油の中に浸漬されて急速に冷却される(焼入れ処理)。冷却された試験片TSの温度は20℃である。油中での冷却に代えて、試験片TSを水中に浸漬することで冷却してもよい。図3に示される浸炭焼入れ処理では、焼入れ処理完了後に、試験片TSの焼戻し処理を行う。図3に示される焼戻し処理では、試験片TSは、約1.5時間にわたって180℃の温度に保持される。浸炭焼入れ処理は、炭素浸透処理と焼入れ処理とを少なくとも含む処理である。したがって、浸炭焼入れ処理は、焼戻し処理を含まなくてもよいし、含んでもよい。   Next, the test piece TS is held for about 1.5 hours in a state where the temperature of the test piece TS is lowered to 830 ° C., and immediately after that, it is immersed in oil and rapidly cooled (quenching treatment). The temperature of the cooled specimen TS is 20 ° C. Instead of cooling in oil, the test piece TS may be cooled by immersing it in water. In the carburizing and quenching process shown in FIG. 3, after the quenching process is completed, the test piece TS is tempered. In the tempering process shown in FIG. 3, the test specimen TS is held at a temperature of 180 ° C. for about 1.5 hours. The carburizing and quenching process is a process including at least a carbon infiltration process and a quenching process. Therefore, the carburizing and quenching process may or may not include a tempering process.

炭素浸透処理は、鋼材の表面にカーボンリッチな層を作り出して、鋼材を焼入れが可能な状態にする。炭素浸透処理が施された鋼材に焼入れを行うことにより、Mo粉末が埋め込まれた鋼材の表面の組織がマルテンサイトに変態し、硬い針状組織が形成される。このような表面熱処理(浸炭焼入れ処理)を行うことにより、鋼材の表面に埋め込まれた硬質粉末が鋼材の構成成分と強固に結合した組織が試験片TSの表面に形成されるので、鋼材の表面に高い耐摩耗性を付与することができる。また、浸炭焼入れ処理を行うことにより、鋼材の表面自体が硬化するので、鋼材の表面にさらに高い耐摩耗性を付与することができる。さらに、浸炭焼入れ処理時に鋼材に発生する歪みは極めて少ないので、鋼材に大きな歪みが生じない。   The carbon infiltration treatment creates a carbon-rich layer on the surface of the steel material and makes the steel material ready for quenching. By quenching the steel material subjected to the carbon infiltration treatment, the surface structure of the steel material in which the Mo powder is embedded is transformed into martensite, and a hard needle-like structure is formed. By performing such surface heat treatment (carburizing and quenching treatment), a hard powder embedded in the surface of the steel material is formed on the surface of the specimen TS because the structure in which the hard powder is firmly bonded to the structural components of the steel material is formed. High wear resistance can be imparted. Moreover, since the surface of steel material itself hardens | cures by performing a carburizing quenching process, still higher abrasion resistance can be provided to the surface of steel material. Furthermore, since the distortion generated in the steel material during the carburizing and quenching process is extremely small, no large distortion occurs in the steel material.

次に、試験片TSの改質面の表面粗さの改善を目的に円錐状工具を用いて仕上げ処理(潤滑油中でのバニシ仕上)を行う。図4Aおよび図4Bは、仕上げ処理工程における試験片TSと円錐状工具6との関係を示す図である。円錐状工具6にはDLC膜付超硬工具を用いている。図4Aおよび図4Bに示すように、円錐状工具6の円錐面6cを潤滑下で試験片TSの外周面に押し付けた状態で試験片TSを回転させ、かつ円錐状工具6を回転させるとともに試験片TSの表面に沿って試験片TSの軸方向に移動させてバニシ仕上げ処理を行う。これにより、試験片TSの表面粗さを改善して平滑にする。   Next, for the purpose of improving the surface roughness of the modified surface of the test piece TS, a finishing process (burnishing in a lubricating oil) is performed using a conical tool. 4A and 4B are views showing the relationship between the test piece TS and the conical tool 6 in the finishing process. The conical tool 6 is a cemented carbide tool with a DLC film. 4A and 4B, the test piece TS is rotated while the conical surface 6c of the conical tool 6 is pressed against the outer peripheral surface of the test piece TS under lubrication, and the conical tool 6 is rotated and tested. The burnishing process is performed by moving the specimen TS in the axial direction along the surface of the specimen TS. Thereby, the surface roughness of the test piece TS is improved and smoothed.

本実施形態では、埋め込み処理、表面熱処理、仕上げ処理をこの順に行っているが、本発明の表面改質方法はこの順に限定されない。埋め込み処理、仕上げ処理、表面熱処理をこの順に行ってもよい。   In this embodiment, the embedding process, the surface heat treatment, and the finishing process are performed in this order, but the surface modification method of the present invention is not limited to this order. The embedding process, the finishing process, and the surface heat treatment may be performed in this order.

図5は、改質浸炭鋼の表面組織の光学顕微鏡観察写真である。改質浸炭鋼とは、上述した実施形態に従って、埋め込み処理、仕上げ処理、および表面熱処理(浸炭処理および焼入れ)がこの順で行われた試験片TS(クロムモリブデン鋼)をいう。仕上げ処理と表面熱処理の順序は逆でもよい。   FIG. 5 is an optical microscope observation photograph of the surface structure of the modified carburized steel. The modified carburized steel refers to a test piece TS (chromium molybdenum steel) in which embedding treatment, finishing treatment, and surface heat treatment (carburizing treatment and quenching) are performed in this order in accordance with the above-described embodiment. The order of finishing treatment and surface heat treatment may be reversed.

図5に示すように、改質浸炭鋼の表面には窪みが観察された。この窪みは埋め込み処理時に形成されたものであり、この窪みの存在により、浸炭処理時に、試験片TSの内部への炭素の浸透が可能であると考えられる。この点を確認するために、表面熱処理(浸炭焼入れ処理)のみが施された鋼材と、埋め込み処理、仕上げ処理、および表面熱処理が施された上述の改質浸炭鋼のマイクロビッカース硬さ(押込荷重:0.49N)を測定した。以下の説明では、表面熱処理(浸炭焼入れ処理)のみが施された鋼材を浸炭鋼という。   As shown in FIG. 5, depressions were observed on the surface of the modified carburized steel. This depression is formed during the embedding process, and the presence of this depression is considered to allow carbon to penetrate into the test piece TS during the carburizing process. In order to confirm this point, the micro Vickers hardness (indentation load) of the steel material subjected only to the surface heat treatment (carburizing and quenching treatment) and the above modified carburized steel subjected to the embedding treatment, finishing treatment, and surface heat treatment. : 0.49 N). In the following description, a steel material that has undergone only surface heat treatment (carburizing and quenching treatment) is referred to as carburized steel.

図6は、改質浸炭鋼と浸炭鋼のマイクロビッカース硬さの測定結果を示すグラフである。図6において、横軸は試験片のビッカース硬さ[HV]を表し、縦軸は試験片の表面から内部に向かった距離[μm]を表す。図6において、白丸は改質浸炭鋼の測定結果を示しており、黒丸は浸炭鋼の測定結果を示している。上述したように、浸炭鋼には、Mo粉末の埋め込み処理は行われていない。   FIG. 6 is a graph showing the measurement results of the micro Vickers hardness of the modified carburized steel and the carburized steel. In FIG. 6, the horizontal axis represents the Vickers hardness [HV] of the test piece, and the vertical axis represents the distance [μm] from the surface of the test piece toward the inside. In FIG. 6, white circles show the measurement results of the modified carburized steel, and black circles show the measurement results of the carburized steel. As described above, the Mo powder is not embedded in the carburized steel.

図6に示す測定結果から明らかなように、改質浸炭鋼の最表面は、浸炭鋼の最表面よりもマイクロビッカース硬さで90程度硬い。これは、Mo粉末が埋め込まれた改質浸炭鋼の最表面が、表面熱処理(浸炭焼入れ処理)によって硬化したためと考えられる。最表面以外のマイクロビッカース硬さは、改質浸炭鋼と浸炭鋼との間に明確な差異は見られなかった。この測定結果から分かるように、Mo粉末の埋め込み処理を行った後に浸炭焼入れ処理を行うことによって、Mo粉末が埋め込まれた最表面に炭素が浸透して、鋼材の最表面を硬化させることができる。   As is apparent from the measurement results shown in FIG. 6, the outermost surface of the modified carburized steel is about 90 harder in micro Vickers hardness than the outermost surface of the carburized steel. This is presumably because the outermost surface of the modified carburized steel in which the Mo powder was embedded was hardened by surface heat treatment (carburizing and quenching treatment). The micro Vickers hardness other than the outermost surface showed no clear difference between the modified carburized steel and the carburized steel. As can be seen from this measurement result, by performing the carburizing and quenching process after the Mo powder embedding process, the carbon penetrates the outermost surface where the Mo powder is embedded, and the outermost surface of the steel material can be cured. .

浸炭焼入れ処理によって鋼材の最表面が硬化することを確認するために、Mo粉末の埋め込み処理の後で仕上げ処理を実施したクロムモリブデン鋼と、Mo粉末の埋め込み処理および表面熱処理(浸炭焼入れ処理)を行った後で仕上げ処理を実施したクロムモリブデン鋼を用意した。図7Aおよび図7Bは、Mo粉末の埋め込み処理の後で仕上げ処理を実施したクロムモリブデン鋼の表面組織の光学顕微鏡観察写真である。図7Aは低倍率の光学顕微鏡観察写真であり、図7Bは高倍率の光学顕微鏡観察写真である。図8Aおよび図8Bは、Mo粉末の埋め込み処理および表面熱処理を行った後で仕上げ処理を実施したクロムモリブデン鋼の表面組織の光学顕微鏡観察写真である。図8Aは低倍率の光学顕微鏡観察写真であり、図8Bは高倍率の光学顕微鏡観察写真である。   In order to confirm that the outermost surface of the steel material is hardened by carburizing and quenching treatment, chromium molybdenum steel that has been subjected to finishing treatment after the Mo powder embedding treatment, Mo powder embedding treatment and surface heat treatment (carburizing and quenching treatment) A chromium-molybdenum steel was prepared after finishing. FIG. 7A and FIG. 7B are optical microscopic observation photographs of the surface structure of chromium molybdenum steel that has been subjected to a finishing process after the Mo powder embedding process. FIG. 7A is a low-magnification optical microscope observation photograph, and FIG. 7B is a high-magnification optical microscope observation photograph. FIG. 8A and FIG. 8B are optical microscope observation photographs of the surface structure of chromium molybdenum steel that has been subjected to the finishing treatment after the Mo powder embedding treatment and the surface heat treatment. FIG. 8A is a low magnification optical microscope observation photograph, and FIG. 8B is a high magnification optical microscope observation photograph.

図7Aおよび図8Aで黒く見えている箇所は、埋め込み処理時に形成された窪みである。図7Aおよび図8Aを比較すると、図7Aに示す浸炭焼入れ処理を実施していないクロムモリブデン鋼は、図8Aに示す浸炭焼入れ処理を実施したクロムモリブデン鋼よりも窪みの面積が少ないことが分かる。また、図8Bの写真における細かい黒点は、Mo粉末である。図8Bでは、Mo粉末を多数観察できるのに対して、図7Bでは、Mo粉末をほとんど観察することができない。これは、浸炭焼入れ処理を実施したクロムモリブデン鋼は、その最表面が硬化しているので、仕上げ処理時に円錐状工具6(図4Aおよび図4B参照)によって最表面が削られず、埋め込み処理時に形成された窪みや埋め込まれたMo粉末がほとんどそのまま残っていることによる。これに対して、浸炭焼入れ処理を実施していないクロムモリブデン鋼では、仕上げ処理時に円錐状工具6によって最表面が削られてしまうので、窪みの面積が減少し、Mo粉末が最表面の鋼材とともに削り取られてしまう。これらの比較から、埋め込み処理の後で浸炭焼入れ処理を行うと、鋼材の最表面が硬化することが分かる。   7A and FIG. 8A are black spots that are formed during the embedding process. Comparing FIG. 7A and FIG. 8A, it can be seen that the chromium molybdenum steel that has not been subjected to the carburizing and quenching treatment shown in FIG. 7A has a smaller dent area than the chromium molybdenum steel that has been subjected to the carburizing and quenching treatment shown in FIG. 8A. Moreover, the fine black spot in the photograph of FIG. 8B is Mo powder. In FIG. 8B, many Mo powders can be observed, whereas in FIG. 7B, almost no Mo powder can be observed. This is because the outermost surface of the chrome molybdenum steel that has been carburized and hardened is hardened, so that the outermost surface is not scraped by the conical tool 6 (see FIGS. 4A and 4B) during the finishing process, and is formed during the embedding process. This is because the hollows and the embedded Mo powder remain almost intact. On the other hand, in chromium molybdenum steel that has not been carburized and quenched, the outermost surface is scraped by the conical tool 6 during the finishing process, so the area of the dent is reduced, and the Mo powder together with the outermost steel material It will be scraped off. From these comparisons, it can be seen that when the carburizing and quenching process is performed after the embedding process, the outermost surface of the steel material is hardened.

次に、表面改質処理による耐摩耗性の改善効果を調べるために、摩耗試験として、改質浸炭鋼と浸炭鋼に対して往復動試験およびフレッチング摩耗試験を実施した。浸炭鋼は、改質浸炭鋼の耐摩耗性を検討するための比較材料として用いられた。   Next, in order to investigate the effect of improving the wear resistance by the surface modification treatment, a reciprocating test and a fretting wear test were performed on the modified carburized steel and the carburized steel as a wear test. Carburized steel was used as a comparative material to study the wear resistance of the modified carburized steel.

図9は、往復動試験の形態を示す図である。往復動試験では、図9に示すように、試験片(耐摩耗性を調べようとする鋼材、すなわち改質浸炭鋼または浸炭鋼)と硬質材料とを点接触させた状態で、硬質材料を往復動させた。フレッチング摩耗試験では、試験片と硬質材料とを点接触させた状態で、硬質材料を微小ストロークで往復動させた。   FIG. 9 is a diagram showing a form of a reciprocating test. In the reciprocating test, as shown in FIG. 9, the hard material is reciprocated in a state where the test piece (steel material whose wear resistance is to be investigated, that is, modified carburized steel or carburized steel) and the hard material are in point contact. I moved it. In the fretting wear test, the hard material was reciprocated with a small stroke while the test piece and the hard material were in point contact.

図10は、往復動試験およびフレッチング摩耗試験の条件を示す表である。図10に示すように、硬質材料として、高炭素クロム軸受鋼材(SUJ2,HV770)を使用した。往復動試験およびフレッチング摩耗試験は、大気中で、かつ無潤滑の条件下で実施した。本試験では、相対湿度の影響を考慮して可能な限り同条件となるように、相対湿度を調整した。具体的には、相対湿度(relative humidity:RH)は29±7%に調整した。往復動のストロークは20mmであり、往復動の繰り返し数は21600回(繰り返し速度1.0Hz、6時間)であり、接触荷重は4.9Nであった。フレッチング摩耗試験での往復動のストロークは0.1mmであり、往復動の繰り返し数は216000回(繰り返し速度3.0Hz、20時間)であり、接触荷重は9.8Nであった。   FIG. 10 is a table showing conditions for a reciprocating test and a fretting wear test. As shown in FIG. 10, high-carbon chromium bearing steel (SUJ2, HV770) was used as the hard material. The reciprocating test and the fretting wear test were performed in the atmosphere and under non-lubricated conditions. In this test, the relative humidity was adjusted so that the conditions were as much as possible in consideration of the influence of the relative humidity. Specifically, the relative humidity (RH) was adjusted to 29 ± 7%. The stroke of the reciprocating motion was 20 mm, the number of repetitions of the reciprocating motion was 21600 times (repetition speed 1.0 Hz, 6 hours), and the contact load was 4.9 N. The stroke of the reciprocating motion in the fretting wear test was 0.1 mm, the number of reciprocating motions was 216000 times (repetition speed 3.0 Hz, 20 hours), and the contact load was 9.8 N.

図11Aは、往復動試験によって生じた浸炭鋼の摩耗痕を示す図であり、図11Bは、往復動試験によって生じた改質浸炭鋼の摩耗痕を示す図である。図12Aは、フレッチング摩耗試験によって生じた浸炭鋼の摩耗痕を示す図であり、図12Bは、フレッチング摩耗試験によって生じた改質浸炭鋼の摩耗痕を示す図である。   FIG. 11A is a diagram showing wear marks of carburized steel produced by a reciprocating test, and FIG. 11B is a diagram showing wear marks of modified carburized steel produced by a reciprocating test. FIG. 12A is a diagram showing the wear marks of the carburized steel produced by the fretting wear test, and FIG. 12B is a diagram showing the wear marks of the modified carburized steel produced by the fretting wear test.

図11Aに示すように、往復動試験によって生じた浸炭鋼の摩耗痕の直径は1.88mmであった。これに対し、図11Bに示すように、往復動試験によって生じた改質浸炭鋼の摩耗痕の直径は1.63mmであった。この試験結果は、改質浸炭鋼の摩耗痕の直径は、浸炭鋼の摩耗痕の直径よりも約13%小さいことを示している。さらに、図11Aに示すように、往復動試験によって生じた浸炭鋼の摩耗痕の最大深さは73.6μmであった。これに対し、図11Bに示すように、往復動試験によって生じた改質浸炭鋼の摩耗痕の最大深さは43.8μmであった。この試験結果から、改質浸炭鋼の摩耗痕の深さは、浸炭鋼の摩耗痕の深さよりも約40%小さいことが分かる。   As shown in FIG. 11A, the wear scar diameter of the carburized steel produced by the reciprocating test was 1.88 mm. On the other hand, as shown in FIG. 11B, the diameter of the wear scar of the modified carburized steel produced by the reciprocating test was 1.63 mm. This test result shows that the wear scar diameter of the modified carburized steel is about 13% smaller than the wear scar diameter of the carburized steel. Furthermore, as shown to FIG. 11A, the maximum depth of the wear trace of the carburized steel produced by the reciprocation test was 73.6 micrometers. On the other hand, as shown in FIG. 11B, the maximum depth of the wear scar of the modified carburized steel produced by the reciprocating test was 43.8 μm. From this test result, it can be seen that the depth of the wear mark of the modified carburized steel is about 40% smaller than the depth of the wear mark of the carburized steel.

図12Aに示すように、フレッチング摩耗試験によって生じた浸炭鋼の摩耗痕の直径は1.15mmであった。これに対し、図12Bに示すように、フレッチング摩耗試験によって生じた改質浸炭鋼の摩耗痕の直径は0.87mmであった。この試験結果は、改質浸炭鋼の摩耗痕の直径は、浸炭鋼の摩耗痕の直径よりも約24%小さいことを示している。さらに、図12Aに示すように、フレッチング摩耗試験によって生じた浸炭鋼の摩耗痕の最大深さは15.1μmであった。これに対し、図12Bに示すように、フレッチング摩耗試験によって生じた改質浸炭鋼の摩耗痕の最大深さは6.4μmであった。この試験結果から、改質浸炭鋼の摩耗痕の深さは、浸炭鋼の摩耗痕の深さよりも約60%小さいことが分かる。   As shown in FIG. 12A, the wear scar diameter of the carburized steel produced by the fretting wear test was 1.15 mm. On the other hand, as shown in FIG. 12B, the diameter of the wear scar of the modified carburized steel produced by the fretting wear test was 0.87 mm. This test result shows that the diameter of the wear marks of the modified carburized steel is about 24% smaller than the diameter of the wear marks of the carburized steel. Furthermore, as shown to FIG. 12A, the maximum depth of the wear trace of the carburized steel produced by the fretting wear test was 15.1 μm. On the other hand, as shown in FIG. 12B, the maximum depth of the wear scar of the modified carburized steel produced by the fretting wear test was 6.4 μm. From this test result, it can be seen that the depth of the wear mark of the modified carburized steel is about 60% smaller than the depth of the wear mark of the carburized steel.

図11Aおよび図11Bに示す摩耗痕の形状から、往復動試験における改質浸炭鋼および浸炭鋼の比摩耗量を算出した。同様に、図12Aおよび図12Bに示す摩耗痕の形状から、フレッチング摩耗試験における改質浸炭鋼および浸炭鋼の比摩耗量を算出した。図13は、往復動試験およびフレッチング摩耗試験における改質浸炭鋼および浸炭鋼の比摩耗量[mm/N]を示す表である。図14は、図13に示される比摩耗量を比較するための棒グラフである。 The specific wear amount of the modified carburized steel and carburized steel in the reciprocating motion test was calculated from the shape of the wear marks shown in FIGS. 11A and 11B. Similarly, the specific wear amount of the modified carburized steel and carburized steel in the fretting wear test was calculated from the shape of the wear marks shown in FIGS. 12A and 12B. FIG. 13 is a table showing specific wear amounts [mm 2 / N] of the modified carburized steel and carburized steel in the reciprocating test and the fretting wear test. FIG. 14 is a bar graph for comparing the specific wear amounts shown in FIG.

図13および図14に示すように、往復動試験における浸炭鋼の比摩耗量は2.2×10−8mm/Nであり、往復動試験における改質浸炭鋼の比摩耗量は0.9×10−8mm/Nであった。この結果から、大気中で、かつ無潤滑の条件下では、改質浸炭鋼の比摩耗量は浸炭鋼の比摩耗量の約41%に軽減されることが分かる。また、フレッチング摩耗試験における浸炭鋼の比摩耗量は2.2×10−8mm/Nであり、フレッチング摩耗試験における改質浸炭鋼の比摩耗量は0.5×10−8mm/Nであった。この結果から、大気中で、かつ無潤滑の条件下では、改質浸炭鋼の比摩耗量は浸炭鋼の比摩耗量の約23%に軽減されることが分かる。 As shown in FIGS. 13 and 14, the specific wear amount of the carburized steel in the reciprocating test is 2.2 × 10 −8 mm 2 / N, and the specific wear amount of the modified carburized steel in the reciprocating test is 0. It was 9 × 10 −8 mm 2 / N. From this result, it can be seen that the specific wear amount of the modified carburized steel is reduced to about 41% of the specific wear amount of the carburized steel in the atmosphere and under non-lubricated conditions. The specific wear amount of the carburized steel in the fretting wear test is 2.2 × 10 −8 mm 2 / N, and the specific wear amount of the modified carburized steel in the fretting wear test is 0.5 × 10 −8 mm 2 / N. N. From this result, it is understood that the specific wear amount of the modified carburized steel is reduced to about 23% of the specific wear amount of the carburized steel under the atmosphere and in the non-lubricated condition.

耐摩耗性が向上する理由として、試験片TSの表面に埋め込まれたMo粉末が試験片TSの構成成分と強固に結合すること、および浸炭焼入れ処理による試験片TSの表面自体が硬化することが考えられる。これらの理由以外にも、表面改質処理による圧縮残留応力の発生や、この圧縮残留応力の発生に伴う表面硬さの増加が考えられる。また、鋼材の最表面には、Moがリッチな組織が創成されるため、浸炭焼入れ処理時のMo炭化物やMo酸化物の形成に伴う摩耗の減少(摩擦係数の減少)も考えられる。図13および図14に示す試験結果は、大気中で、かつ無潤滑での改質浸炭鋼の耐摩耗性が著しく向上することを示している。改質浸炭鋼の耐摩耗性は、真空中または不活性ガスの雰囲気中でも同様に著しく向上する。   The reason why the wear resistance is improved is that the Mo powder embedded in the surface of the test piece TS is firmly bonded to the constituent components of the test piece TS, and the surface of the test piece TS by the carburizing and quenching process is cured. Conceivable. In addition to these reasons, the generation of compressive residual stress due to the surface modification treatment and the increase in surface hardness associated with the generation of this compressive residual stress can be considered. Moreover, since a structure rich in Mo is created on the outermost surface of the steel material, a decrease in wear (decrease in friction coefficient) associated with the formation of Mo carbides and Mo oxides during carburizing and quenching can be considered. The test results shown in FIGS. 13 and 14 show that the wear resistance of the modified carburized steel is significantly improved in the air and without lubrication. The wear resistance of the modified carburized steel is also significantly improved in a vacuum or in an inert gas atmosphere.

試験片TSの表面に埋め込まれたMo粉末が浸炭焼入れ処理を施すことで試験片TSの構成成分と強固に結合することを確認するために、Mo粉末の埋め込み処理のみを施したクロムモリブデン鋼と、Mo粉末の埋め込み処理および表面熱処理(浸炭焼入れ処理)を施したクロムモリブデン鋼を用意した。用意したクロムモリブデン鋼を、硬質材料に点接触させ(図9参照)、この状態で硬質材料を1往復だけ移動させる1往復動試験を実施した。接触荷重は24.5Nであった。1往復動試験を実施した直後のクロムモリブデン鋼の表面組織を光学顕微鏡で観察した。また、光学顕微鏡での観察の後で、クロムモリブデン綱の表面の上に粘着テープを貼り付けて剥がしてから、再度、クロムモリブデン鋼の表面組織を光学顕微鏡で観察した。   In order to confirm that the Mo powder embedded in the surface of the test specimen TS is firmly bonded to the constituent components of the test specimen TS by performing a carburizing and quenching process, a chromium molybdenum steel subjected only to the Mo powder embedding process and A chromium molybdenum steel subjected to Mo powder embedding treatment and surface heat treatment (carburizing and quenching treatment) was prepared. The prepared chromium-molybdenum steel was brought into point contact with the hard material (see FIG. 9), and a single reciprocation test was performed in which the hard material was moved by one reciprocation in this state. The contact load was 24.5N. The surface structure of the chromium molybdenum steel immediately after the reciprocation test was performed was observed with an optical microscope. Further, after observation with an optical microscope, an adhesive tape was attached to the surface of the chromium molybdenum steel and peeled off, and then the surface structure of the chromium molybdenum steel was again observed with an optical microscope.

図15Aは、Mo粉末の埋め込み処理のみを施したクロムモリブデン鋼に1往復動試験を実施した後の試験片TSの表面の光学顕微鏡観察写真である。図15Bは、Mo粉末の埋め込み処理のみを施したクロムモリブデン鋼に1往復動試験を実施した後の試験片TSの表面に粘着テープを貼り付けて剥がした後の表面の光学顕微鏡観察写真である。図15Aと図15Bとの比較から分かるように、写真中央部の表面組織が粘着テープにより除去されていることが観察された。したがって、Mo粉末の埋め込み処理のみを施しただけでは、埋め込まれたMo粉末が容易に摩耗粉として脱離してしまう。   FIG. 15A is an optical microscope observation photograph of the surface of the test piece TS after performing a reciprocation test on chromium molybdenum steel subjected only to the Mo powder embedding process. FIG. 15B is an optical microscopic observation photograph of the surface after the adhesive tape is applied to the surface of the test piece TS after the reciprocating motion test is performed on the chromium molybdenum steel subjected only to the Mo powder embedding process and peeled off. . As can be seen from the comparison between FIG. 15A and FIG. 15B, it was observed that the surface texture at the center of the photograph was removed by the adhesive tape. Therefore, if only the Mo powder embedding process is performed, the embedded Mo powder is easily detached as wear powder.

図16Aは、Mo粉末の埋め込み処理および表面熱処理を施したクロムモリブデン鋼に1往復動試験を実施した後の試験片TSの表面の光学顕微鏡観察写真である。図16Bは、Mo粉末の埋め込み処理および表面熱処理を施したクロムモリブデン鋼に1往復動試験を実施した後の試験片TSの表面に粘着テープを貼り付けて剥がした後の表面の光学顕微鏡観察写真である。図16Aと図16Bとの比較から分かるように、クロムモリブデン鋼の表面組織に差異は観察されなかった。したがって、Mo粉末の埋め込み処理の後に表面熱処理を施すと、Mo粉末は鋼材の構成成分と強固に結合して、容易には脱離しない。   FIG. 16A is an optical microscope observation photograph of the surface of the test piece TS after performing a reciprocation test on chromium molybdenum steel subjected to Mo powder embedding treatment and surface heat treatment. FIG. 16B is an optical microscope observation photograph of the surface after the adhesive tape is attached to the surface of the test piece TS after the reciprocation test was performed on the chromium molybdenum steel subjected to the Mo powder embedding treatment and the surface heat treatment, and then peeled off. It is. As can be seen from the comparison between FIG. 16A and FIG. 16B, no difference was observed in the surface structure of the chromium molybdenum steel. Therefore, when surface heat treatment is performed after the Mo powder embedding process, the Mo powder is firmly bonded to the constituent components of the steel material and is not easily detached.

図17は、硬質粉末の埋め込み処理が施されていないクロムモリブデン鋼の試験片に表面熱処理(浸炭焼入れ処理)を施した場合と、そのような表面熱処理を施さなかった場合の比摩耗量、Mo粉末を埋め込んだクロムモリブデン鋼の試験片に表面熱処理を施した場合と表面熱処理を施さなかった場合の比摩耗量、およびCr粉末(クロム粉末)を埋め込んだクロムモリブデン鋼の試験片に表面熱処理を施した場合と表面熱処理を施さなかった場合の比摩耗量を示す表である。また、図18は、図17に示される比摩耗量を比較するための棒グラフである。図18の縦軸は比摩耗量[mm/N]を表す。Cr粉末は、図1に示される装置を用いて、Mo粉末と同様にクロムモリブデン鋼の表面に埋め込まれた。図17および図18に示される比摩耗量は、図10に示される実験条件で往復動試験(図9参照)を実施した後に測定された。 FIG. 17 shows the specific wear amount when Mo is applied to a test piece of chromium molybdenum steel that has not been subjected to embedding treatment of hard powder, and Mo when Mo is not subjected to such surface heat treatment. The specific wear amount when the surface heat treatment is applied to the chrome molybdenum steel specimen embedded with powder and when the surface heat treatment is not applied, and the surface heat treatment is applied to the chrome molybdenum steel specimen embedded with Cr powder (chromium powder) It is a table | surface which shows the amount of specific abrasion when not giving surface heat processing with the case where it gave. FIG. 18 is a bar graph for comparing the specific wear amounts shown in FIG. The vertical axis in FIG. 18 represents the specific wear amount [mm 2 / N]. Cr powder was embedded in the surface of chromium molybdenum steel in the same manner as Mo powder using the apparatus shown in FIG. The specific wear amount shown in FIGS. 17 and 18 was measured after a reciprocating test (see FIG. 9) was performed under the experimental conditions shown in FIG.

表面熱処理を行わなかった場合では、埋め込み処理が施されていない試験片の比摩耗量は2.8×10−8mm/Nであり、Mo粉末を埋め込んだ試験片の比摩耗量は2.8×10−8mm/Nであり、Cr粉末を埋め込んだ試験片の比摩耗量は3.4×10−8mm/Nであった。したがって、これら比摩耗量の間に大きな差はなく、Mo粉末やCr粉末をクロムモリブデン鋼に埋め込んだだけでは、耐摩耗性はあまり向上しないことが分かる。 When the surface heat treatment was not performed, the specific wear amount of the test piece not subjected to the embedding treatment was 2.8 × 10 −8 mm 2 / N, and the specific wear amount of the test piece embedded with the Mo powder was 2 .8 × a 10 -8 mm 2 / N, the specific wear rate of embedded specimens Cr powder was 3.4 × 10 -8 mm 2 / N . Therefore, there is no great difference between these specific wear amounts, and it is understood that the wear resistance is not improved so much by simply embedding Mo powder or Cr powder in chromium molybdenum steel.

埋め込み処理が施されていない試験片に表面熱処理を施した場合の比摩耗量と、表面熱処理を施さなかった場合の比摩耗量は、それぞれ、2.2×10−8mm/Nと、2.8×10−8mm/Nであり、表面熱処理を施すことにより耐摩耗性がある程度向上することが分かる。これに対し、Mo粉末を埋め込んだ試験片TSに表面熱処理を施した場合の比摩耗量と、表面熱処理を施さなかった場合の比摩耗量は、それぞれ、0.9×10−8mm/Nと、2.8×10−8mm/Nであった。また、Cr粉末を埋め込んだ試験片TSに表面熱処理を施した場合の比摩耗量と、表面熱処理を施さなかった場合の比摩耗量は、それぞれ、0.6×10−8mm/Nと、3.4×10−8mm/Nであった。これらの結果から、埋め込み処理によってMo粉末またはCr粉末などの硬質粉末が埋め込まれた鋼材に表面熱処理(浸炭焼入れ処理、窒化処理、または浸炭窒化焼入れ処理)を施すことによって、耐摩耗性が著しく向上することが分かる。 The specific wear amount when the surface heat treatment was performed on the test piece not subjected to the embedding treatment and the specific wear amount when the surface heat treatment was not performed were 2.2 × 10 −8 mm 2 / N, respectively. It is 2.8 × 10 −8 mm 2 / N, and it can be seen that the wear resistance is improved to some extent by performing the surface heat treatment. On the other hand, the specific wear amount when the surface heat treatment is performed on the specimen TS embedded with Mo powder and the specific wear amount when the surface heat treatment is not performed are 0.9 × 10 −8 mm 2 / N and 2.8 × 10 −8 mm 2 / N. Moreover, the specific wear amount when the surface heat treatment is performed on the specimen TS embedded with the Cr powder and the specific wear amount when the surface heat treatment is not performed are 0.6 × 10 −8 mm 2 / N, respectively. It was 3.4 × 10 −8 mm 2 / N. From these results, the wear resistance is significantly improved by applying surface heat treatment (carburizing quenching treatment, nitriding treatment, or carbonitriding quenching treatment) to steel materials embedded with hard powder such as Mo powder or Cr powder by embedding treatment. I understand that

図19は、硬質粉末としてSi粉末(シリコン粉末)を埋め込んだクロムモリブデン鋼の試験片に表面熱処理(浸炭焼入れ処理)を施した場合の比摩耗量と、WC粉末(炭化タングステン粉末)を埋め込んだクロムモリブデン鋼の試験片に表面熱処理(浸炭焼入れ処理)を施した場合の比摩耗量を示す表である。Si粉末およびWC粉末は、図1に示される装置を用いて、Mo粉末と同様にクロムモリブデン鋼の表面に埋め込まれた。図19に示される比摩耗量は、図10に示される実験条件で往復動試験(図9参照)を実施した後に測定された。ただし、相対湿度RHは、Si粉末の埋め込み処理および表面熱処理を施した試験片の往復動試験では、35±1%に調整され、WC粉末の埋め込み処理および表面熱処理を施した試験片の往復動試験では、29±3%に調整された。   FIG. 19 shows the specific wear amount and the WC powder (tungsten carbide powder) embedded when surface heat treatment (carburizing and quenching) was performed on a specimen of chromium molybdenum steel embedded with Si powder (silicon powder) as a hard powder. It is a table | surface which shows the specific wear amount at the time of giving surface heat processing (carburizing hardening process) to the test piece of chromium molybdenum steel. Si powder and WC powder were embedded on the surface of chromium molybdenum steel in the same manner as Mo powder using the apparatus shown in FIG. The specific wear amount shown in FIG. 19 was measured after a reciprocating test (see FIG. 9) was performed under the experimental conditions shown in FIG. However, the relative humidity RH is adjusted to 35 ± 1% in the reciprocating test of the specimen subjected to the Si powder embedding treatment and the surface heat treatment, and the reciprocating motion of the test specimen subjected to the WC powder embedding treatment and the surface heat treatment. In the test, it was adjusted to 29 ± 3%.

図19に示されるように、Si粉末を埋め込んだ試験片TSに表面熱処理を施した場合の比摩耗量と、WC粉末を埋め込んだ試験片TSに表面熱処理を施した場合の比摩耗量は、それぞれ、0.5×10−8mm/Nと、0.8×10−8mm/Nであった。これらの比摩耗量と、図17に示す、Mo粉末を埋め込んだ試験片TSに表面熱処理を施した場合の比摩耗量、およびCr粉末を埋め込んだ試験片TSに表面熱処理を施した場合の比摩耗量との間に大きな差はない。これらの結果から、埋め込み処理によってSi粉末またはWC粉末の硬質粉末が埋め込まれた鋼材に表面熱処理(浸炭焼入れ処理、または窒化処理、または浸炭窒化焼入れ処理)を施すことによって、耐摩耗性が著しく向上することが分かる。 As shown in FIG. 19, the specific wear amount when the surface heat treatment is performed on the test piece TS embedded with Si powder and the specific wear amount when the surface heat treatment is performed on the test piece TS embedded with WC powder are They were 0.5 × 10 −8 mm 2 / N and 0.8 × 10 −8 mm 2 / N, respectively. These specific wear amounts, the specific wear amount when the surface heat treatment is applied to the test piece TS embedded with Mo powder, and the ratio when the surface heat treatment is applied to the test piece TS embedded with Cr powder shown in FIG. There is no significant difference between the amount of wear. From these results, wear resistance is significantly improved by applying surface heat treatment (carburizing quenching, nitriding, or carbonitriding quenching) to steel materials embedded with hard powder of Si powder or WC powder by embedding process. I understand that

以上説明したように、本発明によれば、鋼材に、Mo粉末、Cr粉末、Si粉末、またはWC粉末などの硬質粉末とハイス粒子とからなる混合粉末による埋め込み処理を行い、その後、この鋼材に表面熱処理を施すことにより、高い耐摩耗性を持ち、かつ歪みのない耐摩耗性鋼材を得ることができる。この耐摩耗性鋼材は、ガス雰囲気中で無潤滑の条件下において、高い耐摩耗性を示す。   As described above, according to the present invention, the steel material is embedded with a mixed powder composed of hard powder such as Mo powder, Cr powder, Si powder, or WC powder and Heiss particles, and then the steel material By performing the surface heat treatment, it is possible to obtain a wear-resistant steel material having high wear resistance and no distortion. This wear-resistant steel material exhibits high wear resistance under non-lubricated conditions in a gas atmosphere.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 筒状部
2 漏斗状部
3 工具挿入孔
4 工具
4f 先端面
4s 螺旋溝
6 円錐状工具
6c 円錐面
TS 試験片
DESCRIPTION OF SYMBOLS 1 Cylindrical part 2 Funnel-shaped part 3 Tool insertion hole 4 Tool 4f Tip surface 4s Spiral groove 6 Conical tool 6c Conical surface TS Test piece

Claims (11)

鋼材からなる丸軸を回転させ、工具の先端を前記丸軸の外周面に接触させ、前記工具を回転させながら前記丸軸と工具とを丸軸の軸方向に相対移動させ、前記丸軸よりも硬い硬質粉末を前記丸軸と工具との接触部分に供給することにより、前記丸軸の表面に前記硬質粉末の埋め込み処理をし、前記硬質粉末が埋め込まれた前記丸軸に表面熱処理を施すことにより形成される組織であって、前記硬質粉末が前記丸軸の構成成分と結合された組織を前記丸軸の表面に有することを特徴とする耐摩耗性鋼材。   Rotate a round shaft made of steel, bring the tip of the tool into contact with the outer peripheral surface of the round shaft, and move the round shaft and the tool relative to each other in the axial direction of the round shaft while rotating the tool. By supplying hard hard powder to the contact portion between the round shaft and the tool, the hard powder is embedded in the surface of the round shaft, and the round shaft embedded with the hard powder is subjected to surface heat treatment. A wear-resistant steel material having a structure formed on the surface of the round shaft, wherein the hard powder is combined with a component of the round shaft. 前記表面熱処理は、浸炭焼入れ処理であることを特徴とする請求項1に記載の耐摩耗性鋼材。   The wear-resistant steel material according to claim 1, wherein the surface heat treatment is carburizing and quenching. 前記丸軸は、クロムモリブデン鋼または低炭素鋼からなることを特徴とする請求項1または2に記載の耐摩耗性鋼材。   The wear-resistant steel material according to claim 1 or 2, wherein the round shaft is made of chromium molybdenum steel or low-carbon steel. 前記硬質粉末は、モリブデン粉末、クロム粉末、シリコン粉末、炭化タングステン粉末のいずれかからなることを特徴とする請求項3に記載の耐摩耗性鋼材。   The wear-resistant steel material according to claim 3, wherein the hard powder is made of any one of molybdenum powder, chromium powder, silicon powder, and tungsten carbide powder. 鋼材からなる丸軸を回転させ、工具の先端を前記丸軸の外周面に接触させ、前記工具を回転させながら前記丸軸と工具とを丸軸の軸方向に相対移動させ、前記丸軸よりも硬い硬質粉末を前記丸軸と工具との接触部分に供給することにより、前記丸軸の表面に前記硬質粉末の埋め込み処理をし、
前記硬質粉末が埋め込まれた前記丸軸に表面熱処理を施すことを特徴とする鋼材の表面改質方法。
Rotate a round shaft made of steel, bring the tip of the tool into contact with the outer peripheral surface of the round shaft, and move the round shaft and the tool relative to each other in the axial direction of the round shaft while rotating the tool. By supplying the hard powder to the contact portion between the round shaft and the tool, the hard powder is embedded in the surface of the round shaft,
A method for modifying the surface of a steel material, wherein the round shaft in which the hard powder is embedded is subjected to surface heat treatment.
前記表面熱処理は、浸炭焼入れ処理であることを特徴とする請求項5に記載の鋼材の表面改質方法。   The steel surface modification method according to claim 5, wherein the surface heat treatment is a carburizing and quenching treatment. 前記丸軸は、クロムモリブデン鋼または低炭素鋼からなることを特徴とする請求項5または6に記載の鋼材の表面改質方法。   The method for surface modification of a steel material according to claim 5 or 6, wherein the round shaft is made of chromium molybdenum steel or low carbon steel. 前記硬質粉末は、モリブデン粉末、クロム粉末、シリコン粉末、炭化タングステン粉末のいずれかからなることを特徴とする請求項7に記載の鋼材の表面改質方法。   The steel material surface modification method according to claim 7, wherein the hard powder is made of any one of molybdenum powder, chromium powder, silicon powder, and tungsten carbide powder. 前記表面熱処理の後に、前記丸軸を回転させ、仕上げ用工具の先端を前記丸軸の外周面に接触させ、前記仕上げ用工具を回転させながら前記丸軸と仕上げ用工具とを丸軸の軸方向に相対移動させ、仕上げ処理を行うことを特徴とする請求項5乃至8のいずれか一項に記載の鋼材の表面改質方法。   After the surface heat treatment, the round shaft is rotated, the tip of the finishing tool is brought into contact with the outer peripheral surface of the round shaft, and the round shaft and the finishing tool are rotated while the finishing tool is rotated. The method for surface modification of a steel material according to any one of claims 5 to 8, wherein the finishing treatment is performed by relatively moving in a direction. 前記埋め込み処理の後で、かつ前記表面熱処理の前に、前記丸軸を回転させ、仕上げ用工具の先端を前記丸軸の外周面に接触させ、前記仕上げ用工具を回転させながら前記丸軸と仕上げ用工具とを丸軸の軸方向に相対移動させ、仕上げ処理を行うことを特徴とする請求項5乃至8のいずれか一項に記載の鋼材の表面改質方法。   After the embedding process and before the surface heat treatment, the round shaft is rotated, the tip of the finishing tool is brought into contact with the outer peripheral surface of the round shaft, and the round shaft is rotated while the finishing tool is rotated. The method for surface modification of a steel material according to any one of claims 5 to 8, wherein a finishing process is performed by relatively moving the finishing tool in the axial direction of the round shaft. 前記丸軸は、潤滑剤の無い条件下で使用されることを特徴とする請求項5乃至10のいずれか一項に記載の鋼材の表面改質方法。   The method for surface modification of a steel material according to any one of claims 5 to 10, wherein the round shaft is used under a condition without a lubricant.
JP2014212053A 2014-10-16 2014-10-16 Wear-resistant steel and surface modification method of steel Pending JP2016079458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212053A JP2016079458A (en) 2014-10-16 2014-10-16 Wear-resistant steel and surface modification method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212053A JP2016079458A (en) 2014-10-16 2014-10-16 Wear-resistant steel and surface modification method of steel

Publications (1)

Publication Number Publication Date
JP2016079458A true JP2016079458A (en) 2016-05-16

Family

ID=55957757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212053A Pending JP2016079458A (en) 2014-10-16 2014-10-16 Wear-resistant steel and surface modification method of steel

Country Status (1)

Country Link
JP (1) JP2016079458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131868A (en) * 2018-02-01 2019-08-08 日立オートモティブシステムズ株式会社 Slide member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116769A (en) * 1981-01-09 1982-07-20 Chobe Taguchi Improvement of surface treatment
JP2010100881A (en) * 2008-10-22 2010-05-06 Sumitomo Metal Ind Ltd Sliding component
JP2010172995A (en) * 2009-01-28 2010-08-12 Masayuki Shima Reforming method of round shaft surface and reforming device used for the reforming method
WO2014024899A1 (en) * 2012-08-07 2014-02-13 国立大学法人東京海洋大学 Surface modification method for carbon steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116769A (en) * 1981-01-09 1982-07-20 Chobe Taguchi Improvement of surface treatment
JP2010100881A (en) * 2008-10-22 2010-05-06 Sumitomo Metal Ind Ltd Sliding component
JP2010172995A (en) * 2009-01-28 2010-08-12 Masayuki Shima Reforming method of round shaft surface and reforming device used for the reforming method
WO2014024899A1 (en) * 2012-08-07 2014-02-13 国立大学法人東京海洋大学 Surface modification method for carbon steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131868A (en) * 2018-02-01 2019-08-08 日立オートモティブシステムズ株式会社 Slide member
WO2019150660A1 (en) * 2018-02-01 2019-08-08 日立オートモティブシステムズ株式会社 Sliding member
JP7015181B2 (en) 2018-02-01 2022-02-02 日立Astemo株式会社 Sliding member

Similar Documents

Publication Publication Date Title
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
Ooi et al. Duplex hardening of steels for aeroengine bearings
CN107110208B (en) Bearing components and manufacturing method
JP4789141B2 (en) Manufacturing method of iron parts
JP2015533931A (en) Method for heat treating steel components and steel components
JP2016079458A (en) Wear-resistant steel and surface modification method of steel
Pyun et al. Ultrasonic nanocrystal surface modification technology
JP2008151236A (en) Rolling bearing
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2017088958A (en) Rolling slide member and manufacturing method therefor, rolling shaft bearing
KR101759923B1 (en) Fatigue-resistant coating for metal forming members
JP2002030338A (en) High concentration carburizing and quenching method of steel, and high concentration carburizing and quenching parts
JP6558602B2 (en) Carburized parts and manufacturing method thereof
US5985428A (en) Steel member for use under hot or warm conditions and method for producing same
Adedipe et al. Sustainable carburization of low carbon steel using organic additives: A review
Velkavrh et al. Properties of nitrocarburised and oxidised steel surfaces and the correlation with their tribological behaviour under unlubricated sliding conditions
JP4104570B2 (en) Manufacturing method of sliding member
WO2014024899A1 (en) Surface modification method for carbon steel
JP3596674B2 (en) High surface pressure resistant member and method of manufacturing the same
JP2009236145A (en) Steelmaking equipment bearing component, steelmaking rolling bearing, and steelmaking equipment
JP2019035111A (en) Steel member and method for producing the same
Fuller Jr Carburizing
JP6043078B2 (en) Electric car motor gear with excellent seizure resistance
WO2021070344A1 (en) Die and method for producing die
US20150196956A1 (en) Sintered and carburized porous stainless steel part and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108