JP2016074953A - Pure titanium plate and manufacturing method thereof - Google Patents

Pure titanium plate and manufacturing method thereof Download PDF

Info

Publication number
JP2016074953A
JP2016074953A JP2014206631A JP2014206631A JP2016074953A JP 2016074953 A JP2016074953 A JP 2016074953A JP 2014206631 A JP2014206631 A JP 2014206631A JP 2014206631 A JP2014206631 A JP 2014206631A JP 2016074953 A JP2016074953 A JP 2016074953A
Authority
JP
Japan
Prior art keywords
pure titanium
titanium plate
pickling
acid
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014206631A
Other languages
Japanese (ja)
Other versions
JP6361437B2 (en
Inventor
英人 瀬戸
Hideto Seto
英人 瀬戸
松本 啓
Kei Matsumoto
啓 松本
彰洋 西村
Akihiro Nishimura
彰洋 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014206631A priority Critical patent/JP6361437B2/en
Publication of JP2016074953A publication Critical patent/JP2016074953A/en
Application granted granted Critical
Publication of JP6361437B2 publication Critical patent/JP6361437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pure titanium plate descaled after annealing without salt processing or blasting, and being superior in adhesion of plating coating, oil holding property with lubricant and antiglare property.SOLUTION: A manufacturing method of a pure titanium plate pickling a titanium plate after annealing by dipping in a water solution consisting of fluorinated acid of 5-10 mass% and hydrochloric acid of 12-20 mass% at 35-45°C for 60-300 seconds so that the surface roughness has more than 4 μm in arithmetic mean roughness.SELECTED DRAWING: Figure 1

Description

本発明は、めっきなどのコーティングの密着性や潤滑剤塗布、防眩性に適した脱スケールおよび表面粗化を同時に満足する条件で製造された純チタン板およびその製造方法に関する。   The present invention relates to a pure titanium plate manufactured under conditions that simultaneously satisfy descaling and surface roughening suitable for coating adhesion such as plating, lubricant application, and antiglare properties, and a method for manufacturing the same.

チタンは難めっき材として知られている。めっきコーティングの密着性や潤滑剤などとの保油性を向上させるために、従来ではチタン板を粗化することが行われている。この粗化方法としては、特許文献1で検討されている研磨などの機械加工、特許文献2で検討されているダルロール圧延、特許文献3で検討されているショットピーニング加工、特許文献4で検討されているレーザー加工、特許文献5で検討されているエッチング加工、などがある。   Titanium is known as a difficult plating material. Conventionally, a titanium plate is roughened in order to improve the adhesion of the plating coating and the oil retention with a lubricant. As this roughening method, machining such as polishing studied in Patent Document 1, dull roll rolling studied in Patent Document 2, shot peening work studied in Patent Document 3, and studied in Patent Document 4. Laser processing, etching processing studied in Patent Document 5, and the like.

研磨などの機械加工は研磨工程が別途必要になる。ダルロール圧延は、圧延工程、ロールの表面加工工程、ロール交換などの製造工程が別途必要になる。また、ダルロール圧延は、圧下率が高いほど表面粗さは大きくなるが、数%の圧延率で圧延が行われるため、加工硬化により延性が低下し、加工性が損なわれる懸念がある。研磨工程やダルロール圧延は、研磨するツールやロールが使用とともに摩耗し、コイル間で均一性が低下する懸念がある。   A mechanical process such as polishing requires a separate polishing process. In the dull roll rolling, manufacturing processes such as a rolling process, a roll surface processing process, and a roll exchange are separately required. In the dull roll rolling, the higher the rolling reduction, the larger the surface roughness. However, since rolling is performed at a rolling rate of several percent, there is a concern that ductility is lowered by work hardening and workability is impaired. In the polishing process or dull roll rolling, there is a concern that the tool or roll to be worn wears with use, and the uniformity is reduced between the coils.

ショットピーニング加工で仕上げると、表層にひずみが多く導入され、そこから水素吸収が起こりやすくなる問題がある。薄板の場合は、表面を過度に粗くしようとすると形状が悪化する懸念もある。レーザー加工で仕上げると、表面が高温に晒されて等軸α相からβ相に逆変態し、レーザー加工後に室温に戻ると純チタンのミクロ組織はβ相から針状α相に変態する。針状α相は等軸α相よりはるかに腐食しやすいという問題がある。   When finished by shot peening, there is a problem that a large amount of strain is introduced into the surface layer, and hydrogen absorption tends to occur from there. In the case of a thin plate, there is a concern that the shape deteriorates if the surface is too rough. When finished by laser processing, the surface is exposed to a high temperature to reversely transform from the equiaxed α phase to the β phase, and after laser processing returns to room temperature, the microstructure of pure titanium transforms from the β phase to the acicular α phase. There is a problem that the acicular α phase is much more susceptible to corrosion than the equiaxed α phase.

エッチング加工は、電解液を用いて電解する工程が別途必要となる。
しかもいずれも、一般的なチタン板の製造工程以外に表面を粗くする製造工程が余分に必要となる。つまり、製造にかかる時間とコストが余分に必要となることを意味する。
Etching requires a separate step of electrolysis using an electrolytic solution.
In addition, in addition to the general titanium plate manufacturing process, an extra manufacturing process for roughening the surface is required. In other words, it means that extra time and cost are required for manufacturing.

一方、特許文献6には、焼鈍後のスケール除去のため、ふっ酸、塩酸の混合酸による酸洗が提示されている。酸洗による表面の粗化を考慮した場合、特許文献6に記載の酸洗では、同文献の実施例によると処理時間が長く、実用的な時間範囲では酸化スケールを除去するのが限界であり、表面粗化に適用することが困難である。   On the other hand, Patent Document 6 proposes pickling with a mixed acid of hydrofluoric acid and hydrochloric acid for removing scale after annealing. In consideration of surface roughening by pickling, the pickling described in Patent Document 6 has a long processing time according to the embodiment of the same document, and it is the limit to remove the oxide scale in a practical time range. It is difficult to apply to surface roughening.

特開2007−262470号公報JP 2007-262470 A 特開2000−015304号公報JP 2000-015304 A 特開2010−030015号公報JP 2010-030015 A 特開2009−274345号公報JP 2009-274345 A 特開平6−306620号公報JP-A-6-306620 特開2012−224894号公報JP 2012-224894 A

このように、従来の表面の粗化方法は、焼鈍酸洗後にショットブラスト加工やダルロール圧延加工など塑性変形を伴う方法しかなく、焼鈍状態で表面が粗いチタン板を得るのは困難である。また、塑性変形による加工硬化がチタン材の加工性を劣化させてしまう。さらに、チタン材には塑性変形による歪が加わっているため、水素吸収や形状不良などの問題が生じていた。   Thus, the conventional surface roughening methods include only methods involving plastic deformation such as shot blasting and dull roll rolling after annealing pickling, and it is difficult to obtain a titanium plate having a rough surface in the annealed state. In addition, work hardening by plastic deformation deteriorates the workability of the titanium material. Furthermore, since distortion due to plastic deformation is added to the titanium material, problems such as hydrogen absorption and shape defects have occurred.

そこで、本発明は、最終焼鈍する工程と表面を粗くする工程を同時に行い、延性を維持しつつ形状不良が抑制され、めっきコーティングの密着性や、潤滑剤などとの保油性、ならびに防眩性に優れた純チタン板を提供することを目的とする。   Therefore, the present invention simultaneously performs the final annealing step and the surface roughening step, suppresses shape defects while maintaining ductility, adhesion of the plating coating, oil retention with a lubricant, and antiglare properties. An object of the present invention is to provide a pure titanium plate excellent in the above.

本発明者らは、焼鈍後に機械的な加工を行わずにかつ脱スケールされたチタン板を得るために鋭意検討を行った。具体的には、従来では表面粗化に適用することができないとされてきた酸洗条件に敢えて着目し、酸洗条件を詳細に調査した。その結果、予想外にも、大気焼鈍後にふっ酸と塩酸とを所定量含有する水溶液にソルト処理、ブラスト処理することなく浸漬することで、焼鈍材のまま脱スケールと表面粗化が可能な知見を得た。焼鈍後の一般的な表面粗化の手法および本発明での表面粗化の手法の概略を表1に示す。   The inventors of the present invention have made extensive studies in order to obtain a descaled titanium plate without performing mechanical processing after annealing. Specifically, attention was paid to pickling conditions that have been considered to be unusable for surface roughening in the past, and the pickling conditions were investigated in detail. As a result, it is unexpectedly possible to descal and roughen the surface of the annealed material by dipping it in an aqueous solution containing a predetermined amount of hydrofluoric acid and hydrochloric acid after atmospheric annealing without salt treatment or blast treatment. Got. Table 1 shows an outline of a general surface roughening method after annealing and a surface roughening method in the present invention.

このように、本発明は、焼鈍後に酸洗を行うだけで、表面粗化された純チタン板を得て完成された。   Thus, the present invention was completed by obtaining a pure titanium plate having a roughened surface only by performing pickling after annealing.

脱スケールおよび表面粗化の機構については、以下のように説明される。
例えば純チタンにおいては、α相におけるFeの固溶限は極めて低いことが知られており、結晶粒界へのわずかな偏析は避けられないため、Fe含有量が不純物レベルの濃度であっても偏析部にFeが濃化する。これが酸溶液との反応により溶出するとスケールの内部応力が不均一となり、微小クラック発生の起点となる。このクラックに酸液が浸透し一部金属面が露出してTi4+が溶出すると、電気的中性を保つために塩酸中のClが泳動して濃化し、孔食が発生する。そして、塩酸とふっ酸によりチタン金属が溶解されスケールが母材から剥離して脱スケールされる。このうえで、塩酸濃度を高めると、孔食速度が速くなり、孔食部分と孔食されていない部分とが大きな凹凸になる。つまり、塩酸濃度を高くすることで粗さを大きくすることができる。塩酸が少ないと、孔食が発生しないため、母材へ酸液が浸透しにくく、スケール残りが生じやすい。
The mechanism of descaling and surface roughening is described as follows.
For example, in pure titanium, it is known that the solid solubility limit of Fe in the α phase is extremely low, and slight segregation to the grain boundary is inevitable, so even if the Fe content is at the impurity level concentration Fe concentrates in the segregation part. When this is eluted by reaction with an acid solution, the internal stress of the scale becomes non-uniform, which becomes the starting point for the generation of microcracks. When the acid solution penetrates into the crack and a part of the metal surface is exposed to elute Ti 4+ , Cl in hydrochloric acid migrates and concentrates to maintain electrical neutrality and pitting corrosion occurs. Then, titanium metal is dissolved by hydrochloric acid and hydrofluoric acid, the scale is peeled off from the base material, and descaling is performed. On this basis, when the hydrochloric acid concentration is increased, the pitting corrosion speed is increased, and the pitting corrosion portion and the non-pitting corrosion portion become large unevenness. That is, the roughness can be increased by increasing the hydrochloric acid concentration. When there is little hydrochloric acid, since pitting corrosion does not generate | occur | produce, an acid liquid does not osmose | permeate a base material easily and a scale remainder tends to arise.

このような表面粗化の機構から、本発明者らは以下の知見を得た。
(1)ふっ酸と組み合わせる酸として、孔食を発生させかつ適度な溶解速度の塩酸が最も有効であり、且つその濃度をある程度高くすることにより表面を粗くすることができる。
From the surface roughening mechanism, the present inventors have obtained the following knowledge.
(1) As an acid combined with hydrofluoric acid, hydrochloric acid that generates pitting corrosion and has an appropriate dissolution rate is most effective, and the surface can be roughened by increasing its concentration to some extent.

(2)特許文献6には塩酸濃度が12%を超えるとスケールの溶解反応およびチタン地金の溶解反応が生じないことが記載されている。しかし、通常は、塩酸濃度に対してチタンの溶解量は増加するため、溶解反応が生じなくなることは考え難い。特許文献6の表1では塩酸濃度が15%と高い条件では硫酸濃度も高い。そこで、本発明者らがさらに検討を重ねた結果、硫酸を添加した混酸では、硫酸が塩酸とふっ酸の混合酸の反応を抑制する効果があることがわかった。したがって、特許文献6では硫酸濃度が高いために減肉量が少なかったと考えられる。これらの知見から、効率的な表面処理を行うためには混酸に硫酸を添加しないことが必要である。   (2) Patent Document 6 describes that when the hydrochloric acid concentration exceeds 12%, the dissolution reaction of scale and the dissolution reaction of titanium metal do not occur. However, since the amount of titanium dissolved usually increases with respect to the hydrochloric acid concentration, it is unlikely that the dissolution reaction will occur. In Table 1 of Patent Document 6, the sulfuric acid concentration is high at a high hydrochloric acid concentration of 15%. Therefore, as a result of further studies by the present inventors, it was found that in the mixed acid to which sulfuric acid was added, the sulfuric acid had an effect of suppressing the reaction of the mixed acid of hydrochloric acid and hydrofluoric acid. Therefore, in patent document 6, since the sulfuric acid concentration is high, it is thought that the amount of thinning was small. From these findings, it is necessary not to add sulfuric acid to the mixed acid in order to perform efficient surface treatment.

(3)また、特許文献6にはふっ酸が10%を超えると過酸洗状態となり酸洗反応の制御が困難になることが記載されている。ここでいう「制御」とは板厚の制御である。しかし、本発明のように表面粗さを制御する上では、塩酸・ふっ酸濃度に加えて、好ましくは処理時間および混酸水溶液の温度を適正に設定すれば所望の粗さを得ることができる。   (3) Further, Patent Document 6 describes that when the amount of hydrofluoric acid exceeds 10%, it becomes a peracid wash state and it becomes difficult to control the pickling reaction. Here, “control” is control of the plate thickness. However, in controlling the surface roughness as in the present invention, the desired roughness can be obtained by setting the treatment time and the temperature of the mixed acid aqueous solution appropriately in addition to the hydrochloric acid / hydrofluoric acid concentration.

上記の知見に基づき完成された本発明は以下の通りである。
(1)純チタン素材を、5〜10mass%のふっ酸と12〜20mass%の塩酸とからなる混酸を含有する水溶液により酸洗した後の、表面粗さが算術平均粗さで4μm以上を有することを特徴とする純チタン板。
The present invention completed based on the above findings is as follows.
(1) The surface roughness after pickling a pure titanium material with an aqueous solution containing a mixed acid composed of 5 to 10 mass% hydrofluoric acid and 12 to 20 mass% hydrochloric acid has an arithmetic average roughness of 4 μm or more. Pure titanium plate characterized by this.

(2)前記酸洗は、前記水溶液を35〜45℃に保持した浴に、前記純チタン素材を前記60〜300s浸漬して行われることを特徴とする上記(1)に記載の純チタン板。   (2) The pure titanium plate according to (1), wherein the pickling is performed by immersing the pure titanium material in the bath holding the aqueous solution at 35 to 45 ° C. for 60 to 300 seconds. .

(3)上記(1)または(2)に記載の純チタン板の製造方法であって、純チタンインゴットに対して熱間加工、冷間圧延および焼鈍を順に行い、焼鈍後の純チタン素材に対して前記酸洗を行うことを特徴とする純チタン板の製造方法。   (3) A method for producing a pure titanium plate according to the above (1) or (2), wherein a pure titanium ingot is subjected to hot working, cold rolling and annealing in this order, and a pure titanium material after annealing is produced. A method for producing a pure titanium plate, wherein the pickling is performed.

本発明によれば、酸洗により脱スケールされるとともに表面粗さが算術平均粗さで4μm以上の純チタン板を提供することができる。本発明は、めっきコーティングの密着性や、潤滑剤などとの保油性、ならびに防眩性に優れた純チタン板を提供することができる、産業上の利用可能性が高い優れた発明である。   According to the present invention, it is possible to provide a pure titanium plate which is descaled by pickling and has a surface roughness of 4 μm or more in terms of arithmetic average roughness. INDUSTRIAL APPLICABILITY The present invention is an excellent invention with high industrial applicability that can provide a pure titanium plate excellent in adhesion of a plating coating, oil retention with a lubricant, and antiglare.

図1は、ふっ酸および塩酸の濃度を調整した40℃の酸液に、焼鈍後のチタン板を120秒間浸漬したときの、算術平均粗さ(μm)と塩酸濃度(mass%)との関係を示す図である。FIG. 1 shows the relationship between the arithmetic average roughness (μm) and hydrochloric acid concentration (mass%) when the annealed titanium plate is immersed in an acid solution at 40 ° C. with adjusted concentrations of hydrofluoric acid and hydrochloric acid for 120 seconds. FIG.

以下の説明では、特に記載がない限り、「%」は「質量%」を表す。
1.純チタン板
(1)純チタン
本発明では純チタンを対象とする。β型チタン合金はβ安定型元素である水素の吸収が著しいため、水素脆化が生じるためである。
In the following description, “%” represents “mass%” unless otherwise specified.
1. Pure titanium plate (1) Pure titanium In the present invention, pure titanium is used. This is because the β-type titanium alloy significantly absorbs hydrogen, which is a β-stable element, and thus causes hydrogen embrittlement.

本発明の純チタンとは、JIS規格の1種〜4種、およびそれに対応するASTM規格のGrade1〜4、DIN規格の3・7025,3・7035、3・7055、3・7065で規定される工業用純チタンを含むものとする。すなわち、本発明の対象である工業用純チタンは、質量%で、C:0.1%以下、H:0.015%以下、O:0.4%以下、N:0.07%以下、Fe:0.5%以下、残部Tiからなるもの、と言うことができる。さらに、これらに若干の白金族元素を添加し、モディファイド(改良)純チタンと呼ばれている高耐食性合金(ASTM Grade 7、11、16、26、13、30、33あるいはこれらに対応するJIS種や更に種々の元素を少量含有させたチタン材)も、本発明では、純チタンに含まれるものとして扱う。   The pure titanium of the present invention is defined by JIS standards 1 to 4 and ASTM standards Grades 1 to 4, and DIN standards 3.7025, 3.7035, 3.7055, 3.7065. It shall contain industrial pure titanium. That is, the industrial pure titanium that is the subject of the present invention is, in mass%, C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, It can be said that Fe: 0.5% or less and the balance Ti. Further, a small amount of platinum group elements are added to these, and a high corrosion resistance alloy (ASTM Grade 7, 11, 16, 26, 13, 30, 33, or a JIS species corresponding to these is called modified (improved) pure titanium. In addition, titanium materials containing a small amount of various elements are treated as being included in pure titanium in the present invention.

(2)純チタン板の表面粗さ
本発明の純チタン板は、表面粗さが算術平均粗さで4μm以上を有する。Raが4μm以上であると、めっきとの接触面積が増加するためにめっきの密着性が高まる。また、これにともない潤滑剤などとの保油性が高まり、さらには防眩性も高まる。
(2) Surface Roughness of Pure Titanium Plate The pure titanium plate of the present invention has a surface roughness of 4 μm or more in terms of arithmetic average roughness. When Ra is 4 μm or more, the contact area with the plating increases, so that the adhesion of the plating is enhanced. In addition, along with this, the oil retention with a lubricant and the like is enhanced, and further the antiglare property is enhanced.

(3)酸洗
本発明の純チタン板は、所定量のふっ酸および塩酸からなる混酸を含有する水溶液で酸洗されたものである。各々について詳述する。
(3) Pickling The pure titanium plate of the present invention is pickled with an aqueous solution containing a mixed acid composed of a predetermined amount of hydrofluoric acid and hydrochloric acid. Each will be described in detail.

(3−1)ふっ酸の含有量:5〜10%
ふっ酸は、水溶液中に質量で5〜10%含有される。5%を下回るとチタン金属母材の溶解力が弱く脱スケールが困難となる。10%を超えると、表面粗さは十分得られるが、廃酸処理やコスト増の問題が生じる。好ましくは6〜9%である。
(3-1) Content of hydrofluoric acid: 5 to 10%
The hydrofluoric acid is contained in the aqueous solution by 5 to 10% by mass. If it is less than 5%, the dissolving power of the titanium metal base material is weak, and descaling becomes difficult. If it exceeds 10%, sufficient surface roughness can be obtained, but problems with waste acid treatment and cost increase arise. Preferably it is 6 to 9%.

(3−2)塩酸の含有量:12〜20%
塩酸は、水溶液中に質量で12〜20%含有される。12%を下回ると、孔食が発生しにくく、母材に酸液が浸透しにくくなるため、スケール残りが生じやすくなる。また、20%を超えて含有させると、塩酸の蒸発による損失が大きくなる。好ましくは14〜18%である。
(3-2) Hydrochloric acid content: 12-20%
Hydrochloric acid is contained in the aqueous solution by 12 to 20% by mass. If it is less than 12%, pitting corrosion is unlikely to occur, and the acid solution is less likely to penetrate into the base material. Moreover, when it contains exceeding 20%, the loss by evaporation of hydrochloric acid will become large. Preferably it is 14 to 18%.

2.製造方法
(1)純チタンインゴットに対して熱間加工、冷間圧延および焼鈍を行う。
2. Manufacturing Method (1) Hot working, cold rolling and annealing are performed on a pure titanium ingot.

本発明では、酸洗までの工程は一般的なチタン板の製造方法により製造することができる。例えば、スポンジチタン等からチタンインゴットを製造する工程、このインゴットを鍛造や熱間圧延などの熱間加工により熱延板にする工程、熱延板にショットブラストを施す工程、熱延板を酸洗する工程、酸洗により脱スケールした熱延板を冷間圧延によって冷延板にする工程、冷延板を焼鈍する工程により、酸洗に供するチタン素材を製造する。これらの工程での条件は特に限定されるものではないが、例えば冷間圧延では、30〜90%の圧下率で0.1〜3mmの厚さに圧延することが好ましく、焼鈍では700〜820℃で60〜180s保持することが好ましい。   In this invention, the process until pickling can be manufactured with the manufacturing method of a general titanium plate. For example, a process for producing a titanium ingot from sponge titanium or the like, a process for making the ingot hot-rolled by hot working such as forging or hot rolling, a process for shot blasting the hot-rolled steel, and pickling the hot-rolled steel The titanium raw material used for pickling is manufactured by the process of performing, the process of making the hot-rolled sheet descaled by pickling cold-rolled by cold rolling, and the process of annealing the cold-rolled sheet. The conditions in these steps are not particularly limited. For example, in cold rolling, it is preferable to roll to a thickness of 0.1 to 3 mm at a rolling reduction of 30 to 90%, and in annealing, 700 to 820. It is preferable to hold at a temperature of 60 to 180 s.

(2)酸洗を行う。
本発明では、脱スケールおよび凹凸の付与を、ソルトバスを用いることなく酸洗だけで完了することができる。本発明の方法では、熱間圧延または焼鈍時の加熱によってチタン板の表面に生成したスケールを除去するとともに表面に凹凸を付与する酸洗工程において、塩酸を12〜20%およびふっ酸を5〜10%含有する水溶液を用いる。
(2) Pickling.
In the present invention, descaling and provision of irregularities can be completed only by pickling without using a salt bath. In the method of the present invention, in the pickling step of removing scale generated on the surface of the titanium plate by hot rolling or heating during annealing and imparting irregularities to the surface, 12 to 20% hydrochloric acid and 5 to 5 hydrofluoric acid are used. An aqueous solution containing 10% is used.

この水溶液が保持された酸浴は、温度が35〜45℃に規定されることが好ましい。35℃を下回ると酸液とチタン板の反応性が乏しく目標の表面粗さが得られない。45℃を超えると反応が過剰になり粗くなりすぎてしまう。   It is preferable that the temperature of the acid bath in which the aqueous solution is held is regulated to 35 to 45 ° C. When the temperature is lower than 35 ° C., the reactivity between the acid solution and the titanium plate is poor, and the target surface roughness cannot be obtained. When it exceeds 45 ° C., the reaction becomes excessive and becomes too coarse.

このような酸浴に、焼鈍後にスケールが生成されたチタン素材を浸漬する。浸漬時間は60〜300sに規定されることが好ましい。60sを下回ると十分に表面を粗化することができない。また、スケール残りが生じる。300sを超えると、表面が粗くなりすぎてしまう。また、300sを超えて酸洗するには極端にライン速度を遅くする必要がある。さらに、遅くできない場合は再度酸洗だけするために連続ラインに通板する必要も生じてしまう。   In such an acid bath, a titanium material having a scale formed after annealing is immersed. It is preferable that the immersion time is defined as 60 to 300 s. If it is less than 60 s, the surface cannot be sufficiently roughened. In addition, a scale residue occurs. If it exceeds 300 s, the surface becomes too rough. Moreover, it is necessary to extremely slow the line speed for pickling over 300 s. Furthermore, if it is not possible to slow down, it is necessary to pass through a continuous line in order to perform pickling again.

真空アーク溶解で酸素量およびFe量の異なる種々のチタンインゴットを製造し、鍛造、熱延、焼鈍、表面切削、冷延、最終焼鈍、酸洗を経て、チタン板を得た。   Various titanium ingots having different amounts of oxygen and Fe were produced by vacuum arc melting, and titanium plates were obtained through forging, hot rolling, annealing, surface cutting, cold rolling, final annealing, and pickling.

具体的な冷延条件、最終焼鈍、酸洗条件を表2に示す。表2中、「35〜45℃」は浴中の水溶液温度であり、「60〜300s」は最終焼鈍後のチタン板の浴への浸漬時間である。   Specific cold rolling conditions, final annealing, and pickling conditions are shown in Table 2. In Table 2, “35 to 45 ° C.” is the temperature of the aqueous solution in the bath, and “60 to 300 s” is the immersion time of the titanium plate in the bath after the final annealing.

酸素量、Fe量、および表面粗さ(算術平均粗さ)Ra、光沢度の評価方法を表3に示す。   Table 3 shows an evaluation method of the oxygen amount, Fe amount, surface roughness (arithmetic average roughness) Ra, and glossiness.

このようにして得られた結果を図1に示す。図1によれば、ふっ酸が5%以上であり、且つ塩酸が12%以上である水溶液を用いて酸洗を行ったチタン板は、いずれもRaが4μm以上を示した。そして、Raが4μm以上を示す本発明のチタン板は、いずれも防眩性に優れることが明らかになった。また、これらのチタン板はめっき付着性および保油性に優れる。スケールも目視にて確認されなかった。なお、得られたチタン板の化学組成は、JIS規格で定める範囲内であることを確認した。   The results obtained in this way are shown in FIG. According to FIG. 1, all of the titanium plates subjected to pickling using an aqueous solution containing 5% or more hydrofluoric acid and 12% or more hydrochloric acid showed Ra of 4 μm or more. And it became clear that all the titanium plates of the present invention in which Ra is 4 μm or more are excellent in antiglare property. Moreover, these titanium plates are excellent in plating adhesion and oil retention. The scale was not confirmed visually. In addition, it confirmed that the chemical composition of the obtained titanium plate was in the range prescribed | regulated by JIS specification.

これに対して、ふっ酸が4%以下の場合、Raが4μm未満と劣った。
ふっ酸が5%であったとしても、塩酸が12%未満であると、Raが4μm未満となった。また、ふっ酸が5%以上であり塩酸が12%未満であってもRaが4μm以上を示すものもあった。これらは、孔食が起こりにくく母材へ酸液が浸透しにくいため脱スケール性で劣った。
On the other hand, when hydrofluoric acid was 4% or less, Ra was inferior to less than 4 μm.
Even if hydrofluoric acid was 5%, Ra was less than 4 μm when hydrochloric acid was less than 12%. Moreover, even if the hydrofluoric acid was 5% or more and the hydrochloric acid was less than 12%, there was also one in which Ra was 4 μm or more. These were poor in descalability because pitting corrosion hardly occurred and the acid solution did not easily penetrate into the base material.

ふっ酸が5%以上であり、且つ塩酸が20%を超えた水溶液を用いたとしても、Raは増加しなかった。   Even if an aqueous solution containing 5% or more hydrofluoric acid and 20% hydrochloric acid was used, Ra did not increase.

また、表2の条件に加えて、更に硫酸を1〜15mass%添加した混酸を用いて酸洗し、表3に記載の条件で算術平均粗さを評価した。その結果、硫酸の含有量が上記範囲では、いずれも処理時間が300sであっても算術平均粗さRaが4μmを下回ることを確認した。このため、防眩性は本発明より劣る結果となった。また、これに伴いめっき付着性および保油性が劣る。   Moreover, in addition to the conditions of Table 2, it pickled using the mixed acid which added 1-15 mass% of sulfuric acid further, and arithmetic mean roughness was evaluated on the conditions of Table 3. As a result, it was confirmed that when the sulfuric acid content was in the above range, the arithmetic average roughness Ra was less than 4 μm even when the treatment time was 300 s. For this reason, the antiglare property was inferior to the present invention. In addition, the plating adhesion and oil retention are inferior.

Claims (3)

純チタン素材を、5〜10mass%のふっ酸と12〜20mass%の塩酸とからなる混酸を含有する水溶液により酸洗した後の、表面粗さが算術平均粗さで4μm以上を有することを特徴とする純チタン板。   A surface roughness after pickling a pure titanium material with an aqueous solution containing a mixed acid composed of 5 to 10 mass% hydrofluoric acid and 12 to 20 mass% hydrochloric acid has an arithmetic average roughness of 4 μm or more. Pure titanium plate. 前記酸洗は、前記水溶液を35〜45℃に保持した浴に、前記純チタン素材を前記60〜300s浸漬して行われることを特徴とする請求項1に記載の純チタン板。   2. The pure titanium plate according to claim 1, wherein the pickling is performed by immersing the pure titanium material in the bath holding the aqueous solution at 35 to 45 ° C. for 60 to 300 s. 請求項1または2に記載の純チタン板の製造方法であって、
純チタンインゴットに対して熱間加工、冷間圧延および焼鈍を順に行い、焼鈍後の純チタン素材に対して前記酸洗を行うことを特徴とする純チタン板の製造方法。
It is a manufacturing method of the pure titanium board according to claim 1 or 2,
A method for producing a pure titanium plate, comprising: sequentially performing hot working, cold rolling and annealing on a pure titanium ingot, and performing the pickling on the pure titanium material after annealing.
JP2014206631A 2014-10-07 2014-10-07 Production method of pure titanium plate Active JP6361437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206631A JP6361437B2 (en) 2014-10-07 2014-10-07 Production method of pure titanium plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206631A JP6361437B2 (en) 2014-10-07 2014-10-07 Production method of pure titanium plate

Publications (2)

Publication Number Publication Date
JP2016074953A true JP2016074953A (en) 2016-05-12
JP6361437B2 JP6361437B2 (en) 2018-07-25

Family

ID=55949650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206631A Active JP6361437B2 (en) 2014-10-07 2014-10-07 Production method of pure titanium plate

Country Status (1)

Country Link
JP (1) JP6361437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107893232A (en) * 2017-12-20 2018-04-10 西安泰金工业电化学技术有限公司 A kind of surface etching method before titanium plate anodic coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175890A (en) * 1988-12-27 1990-07-09 Nippon Mining Co Ltd Production of material for anode
JPH0347999A (en) * 1989-06-30 1991-02-28 Eltech Syst Corp Support metal having improved surface mor- phology
JPH06101083A (en) * 1992-06-25 1994-04-12 Eltech Syst Corp Electrode with improved durable length of time
JP2004277758A (en) * 2003-03-12 2004-10-07 Showa Entetsu:Kk Electrode for electrochemical treatment, and production method therefor
WO2014136702A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石金属株式会社 Titanium target for sputtering and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175890A (en) * 1988-12-27 1990-07-09 Nippon Mining Co Ltd Production of material for anode
JPH0347999A (en) * 1989-06-30 1991-02-28 Eltech Syst Corp Support metal having improved surface mor- phology
JPH06101083A (en) * 1992-06-25 1994-04-12 Eltech Syst Corp Electrode with improved durable length of time
JP2004277758A (en) * 2003-03-12 2004-10-07 Showa Entetsu:Kk Electrode for electrochemical treatment, and production method therefor
WO2014136702A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石金属株式会社 Titanium target for sputtering and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107893232A (en) * 2017-12-20 2018-04-10 西安泰金工业电化学技术有限公司 A kind of surface etching method before titanium plate anodic coating

Also Published As

Publication number Publication date
JP6361437B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6082625B2 (en) Stainless steel strip manufacturing method
JP5081570B2 (en) Titanium material and titanium material manufacturing method
JP6361437B2 (en) Production method of pure titanium plate
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
JP2003286592A (en) Pickling process for stainless steel strip
KR102030158B1 (en) Method of manufacturing lean duplex stainless steel with good surface quality
JP6168826B2 (en) Steel with Mn layer
JP2005307283A (en) Method for producing cold rolled steel sheet comprising easily oxidizable component
JP4316029B2 (en) Stainless steel pickling method and pickling solution
JP5790540B2 (en) Method for judging chemical conversion treatment of steel and method for producing steel excellent in chemical conversion treatment
JP6670441B2 (en) Manufacturing method of steel strip for metal belt
JP4651837B2 (en) Tableware and manufacturing method thereof
JP2008266697A (en) Pickling method and manufacturing method for stainless steel material
Song et al. Surface processing and alloying to improve the corrosion resistance of magnesium (Mg) alloys
JP2008260992A (en) Method for pickling stainless steel stock and method for producing the same
JP2702371B2 (en) Manufacturing method of exterior stainless steel sheet having anti-glare property and corrosion resistance
JP6536076B2 (en) Titanium plate and method of manufacturing the same
JP3059376B2 (en) Austenitic stainless steel sheet excellent in gloss and corrosion resistance and method for producing the same
JP2014009363A (en) Method for producing titanium plate
JP4322726B2 (en) Manufacturing method of stainless steel sheet with excellent surface gloss
JP5334648B2 (en) Copper alloy sheet with excellent heat resistance for tin plating
KR20150066115A (en) Method for manufacturing titanium plate having excellent surface quality
JP2008106318A (en) Method for pickling stainless steel material and manufacturing method therefor
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP2001335868A (en) Aluminum alloy foil for electrolytic capacitor cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R151 Written notification of patent or utility model registration

Ref document number: 6361437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350