JP2016072098A - Electrode for lithium ion secondary battery - Google Patents

Electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP2016072098A
JP2016072098A JP2014200677A JP2014200677A JP2016072098A JP 2016072098 A JP2016072098 A JP 2016072098A JP 2014200677 A JP2014200677 A JP 2014200677A JP 2014200677 A JP2014200677 A JP 2014200677A JP 2016072098 A JP2016072098 A JP 2016072098A
Authority
JP
Japan
Prior art keywords
electrode
lithium ion
heat
ion secondary
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014200677A
Other languages
Japanese (ja)
Inventor
雅弘 上野
Masahiro Ueno
雅弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014200677A priority Critical patent/JP2016072098A/en
Publication of JP2016072098A publication Critical patent/JP2016072098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a lithium ion secondary battery, which can increase the safety in the event of overcharge without sacrificing various battery characteristics such as current load characteristic and charge and discharge cycle characteristics.SOLUTION: An electrode 10 for a lithium ion secondary battery comprises: a current collector 1; a conductive heat shrinkable layer 2 on the current collector; and a conductive active material layer 3. The heat shrinkable layer 2 includes: a heat shrinkable resin consisting of a polyolefin-based resin such as polypropylene or polyethylene; and at least one material selected from conductive materials consisting of a metal, a metal compound, amorphous carbon, crystal carbon and a conductive polymer.SELECTED DRAWING: Figure 1

Description

本発明は高エネルギー密度を有するリチウムイオン二次電池の電極、特に正極に関するものである。   The present invention relates to an electrode, particularly a positive electrode, of a lithium ion secondary battery having a high energy density.

リチウムイオン二次電池は、そのエネルギー密度の高さから軽量かつ占有面積の少なさに優位性を持ち、ニッケル−カドミウム電池やニッケル−水素電池に比べてメモリー効果の少ない利点を備える事から、携帯電話やノートパソコンなどのポータブルデバイスに幅広く用いられている。また、近年では環境に対する影響から、これまで自動車に用いられてきた石油などの化石燃料に代わる動力源としても用いられる事が多くなってきた。さらに、最近では家庭への電力供給の一部を担う定置型蓄電池に対する期待も高い。   Lithium ion secondary batteries are superior in light weight and small footprint due to their high energy density, and have the advantage of less memory effect than nickel-cadmium batteries and nickel-hydrogen batteries. Widely used in portable devices such as phones and notebook computers. Moreover, in recent years, it has been increasingly used as a power source to replace fossil fuels such as oil that have been used in automobiles because of its environmental impact. In addition, recently, there are high expectations for stationary storage batteries that are responsible for a part of power supply to homes.

一般的に用いられているリチウムイオン二次電池の構成部材は、電極、電解液、セパレーター、集電体、外装体から成り、さらに電極は一般的には正極活物質又は負極活物質、導電助剤、結着材で構成されている。以降、これらの構成材料を所定の混合比率で混合したものを総じて正極材料および負極材料、正極材料と負極材料を総じて電極材料と呼称する。活物質はリチウムイオン二次電池の正極および負極においてリチウムイオンの挿入脱離が可能な材料であり、挿入脱離の際に電子の授受を伴う事で電流を流す役割を担う。導電助剤は活物質・活物質間および活物質・集電体間の電子移動を円滑に進める為に電極内部に配置される。結着材は活物質、導電助剤および集電体の密着を高める為に電極内部に混合される。   Commonly used components of a lithium ion secondary battery include an electrode, an electrolytic solution, a separator, a current collector, and an exterior body. Further, the electrode is generally a positive electrode active material or a negative electrode active material, a conductive assistant. It is composed of an agent and a binder. Hereinafter, a mixture of these constituent materials at a predetermined mixing ratio is collectively referred to as a positive electrode material and a negative electrode material, and a positive electrode material and a negative electrode material are collectively referred to as an electrode material. The active material is a material that can insert and desorb lithium ions in the positive electrode and the negative electrode of the lithium ion secondary battery, and plays a role of flowing current by accompanying the exchange of electrons at the time of insertion and desorption. The conductive auxiliary agent is disposed inside the electrode in order to facilitate the electron transfer between the active material and the active material and between the active material and the current collector. The binder is mixed inside the electrode in order to enhance the adhesion between the active material, the conductive additive and the current collector.

上述のように、自動車や家庭への電力供給を目的にリチウムイオン二次電池が使用される場合、携帯電話等の従来の民生用途に比べ、より大きな電池容量が必要とされる。このように電池内に大きなエネルギーを蓄える事は、電池に異常が生じた際の危険度が飛躍的に上昇する事を意味する。特に電池を充電する際に本来の充電電位を超えて充電する状況、所謂過充電状態になると、正極の結晶構造変化に伴う発熱および電解液の分解、正極構造崩壊に伴う酸素の放出等によって電池内部の温度が異常に高まり(所謂熱暴走状態になり)、発熱・発火に至る。一般的には、このような過充電における対策として、電池内の温度が上昇した際にセパレーターの空孔が閉じ、リチウムイオンの移動を妨げる事で電流を遮蔽する所謂シャットダウン機能を持たせたり、過充電に伴う電池内のガス発生による内圧上昇を検知手段とした外部回路による電流遮断機構を設ける事で、熱暴走に至る前に充電電流を止め、発火や発熱を抑制・停止する仕組みが組み込まれている。しかしながら、上記対応だけでは安全性を確保する事ができない為、様々な取組みがなされている。   As described above, when a lithium ion secondary battery is used for the purpose of supplying power to an automobile or a home, a larger battery capacity is required as compared with a conventional consumer application such as a mobile phone. Thus, storing a large amount of energy in the battery means that the degree of danger when an abnormality occurs in the battery dramatically increases. In particular, when the battery is charged beyond the original charging potential, in a so-called overcharged state, the battery generates heat due to the change in the crystal structure of the positive electrode, decomposition of the electrolyte, release of oxygen due to the collapse of the positive electrode structure, etc. The internal temperature rises abnormally (so-called thermal runaway state), leading to heat generation and ignition. In general, as a countermeasure against such overcharge, when the temperature in the battery rises, the separator vacancy closes, so as to prevent the movement of lithium ions, so-called shutdown function to shield the current, Incorporates a mechanism to stop the charging current before thermal runaway and suppress or stop ignition or heat generation by providing a current interruption mechanism with an external circuit that detects the increase in internal pressure due to gas generation in the battery due to overcharge. It is. However, since it is not possible to ensure safety only by the above measures, various efforts have been made.

特許文献1および2では、電解液中にLiCOやビフェニルのような過充電となる電位で分解し気体を発生する材料を添加する事によって過充電時に電池の内圧上昇を促進し、より早期に所定圧力で起動する電流遮断機構を作動させる事で熱暴走を防止している。 In Patent Documents 1 and 2, the increase in the internal pressure of the battery during overcharge is promoted by adding a material that decomposes at a potential that causes overcharge, such as Li 2 CO 3 or biphenyl, and generates gas in the electrolyte, Thermal runaway is prevented by operating a current interrupt mechanism that starts at a predetermined pressure at an early stage.

また特許文献3では、電極中あるいは電極と集電体との間に設けた層中に熱膨張性マイクロカプセルを含ませる事で過充電に伴う発熱により熱膨張マイクロカプセルが膨張し、電極の抵抗増加を引き起こす事で電流を遮断し、熱暴走を抑制している。   In Patent Document 3, the thermal expansion microcapsule expands due to the heat generated by overcharging by including the thermal expansion microcapsule in the electrode or in the layer provided between the electrode and the current collector. Current is cut off by causing an increase, and thermal runaway is suppressed.

特許3061759号公報Japanese Patent No. 3061759 特許第3575735号公報Japanese Patent No. 3575735 特許第4727021号公報Japanese Patent No. 4727021

しかしながら特許文献1および2に示すような、電解液中に電位分解性材料を含有させる方法では、電解液中に分散した電位分解性材料が電池の充放電に伴うリチウムイオン移動の妨げとなり、大電流を流したときの電池容量維持特性(以降、電流負荷特性という)や充放電を繰り返した場合の電池容量維持特性(以降、充放電サイクル特性という)が低下する。また、分解に伴うガス発生によって内圧が上昇する場合、容器が内圧上昇に耐えられず、もしくは内圧の過上昇を抑える為に故意的に内部ガスが容器外に放出される事があるが、同時に可燃性の電解液溶媒も放出される事になり、外部環境によっては危険性が増す恐れがある。   However, in the method of incorporating a potential decomposable material in the electrolyte solution as shown in Patent Documents 1 and 2, the potential decomposable material dispersed in the electrolyte solution hinders lithium ion movement associated with charge / discharge of the battery, Battery capacity maintenance characteristics when current flows (hereinafter referred to as current load characteristics) and battery capacity maintenance characteristics when charging and discharging are repeated (hereinafter referred to as charge / discharge cycle characteristics) are degraded. In addition, when the internal pressure rises due to gas generation accompanying decomposition, the container may not withstand the internal pressure rise, or the internal gas may be deliberately released outside the container in order to suppress an excessive rise in internal pressure. The flammable electrolyte solvent is also released, and the danger may increase depending on the external environment.

一方、特許文献3に示したような電極中あるいは電極と集電体との間に設けた層中に、熱によって機能する熱膨張性マイクロカプセルを含有する場合においては、電極の基本構成は上述の通り活物質、導電助剤、結着材で構成されており、活物質の量によって電池の容量が決まるため、電極層内に基本構成以外の材料を混入すると電極層内の活物質比率が減少してしまい、電極体積当たりの電池容量が減少してしまうという課題が残る。   On the other hand, in the case where thermal expandable microcapsules that function by heat are contained in the electrode as shown in Patent Document 3 or in the layer provided between the electrode and the current collector, the basic configuration of the electrode is as described above. Since the capacity of the battery is determined by the amount of active material, the active material ratio in the electrode layer will be reduced if materials other than the basic composition are mixed in the electrode layer. It decreases, and the subject that the battery capacity per electrode volume decreases will remain.

本発明は上述の問題を解決する為になされたものであり、電流負荷特性や充放電サイクル特性等の種々の電池特性を損ねることなく、過充電時の安全性を向上させる事のできるリチウムイオン二次電池用電極を提供する事を目的としている。   The present invention has been made in order to solve the above-mentioned problems, and lithium ions that can improve safety during overcharge without impairing various battery characteristics such as current load characteristics and charge / discharge cycle characteristics. It aims at providing the electrode for secondary batteries.

請求項1に記載の本発明は、集電体上に導電性を有する熱収縮層と活物質層からなるリチウムイオン二次電池用電極であって、
前記熱収縮層が熱収縮性樹脂からなることを特徴とするリチウムイオン二次電池用電極である。
The present invention according to claim 1 is an electrode for a lithium ion secondary battery comprising a heat-shrinkable layer having conductivity and an active material layer on a current collector,
The electrode for a lithium ion secondary battery, wherein the heat shrinkable layer is made of a heat shrinkable resin.

請求項2に記載の本発明は、前記熱収縮性樹脂がポリオレフィン系樹脂からなることを特徴とする請求項1に記載のリチウムイオン二次電池用電極である。   According to a second aspect of the present invention, in the electrode for a lithium ion secondary battery according to the first aspect, the heat-shrinkable resin is made of a polyolefin resin.

請求項3に記載の本発明は、前記ポリオレフィン系樹脂がポリプロピレン、またはポリエチレンである事を特徴とする請求項2に記載のリチウムイオン二次電池用電極である。   The present invention according to claim 3 is the electrode for a lithium ion secondary battery according to claim 2, wherein the polyolefin resin is polypropylene or polyethylene.

請求項4に記載の本発明は、前記熱収縮層の熱収縮開始温度が130℃から160℃の範囲であることを特徴とする請求項1〜3のいずれかに記載のリチウムイオン二次電池用電極である。   According to a fourth aspect of the present invention, in the lithium ion secondary battery according to any one of the first to third aspects, the heat shrinkage start temperature of the heat shrinkable layer is in the range of 130 ° C to 160 ° C. Electrode.

請求項5に記載の本発明は、前記熱収縮層が導電性を有する材料として金属、金属化合物、非晶性炭素、結晶性炭素、導電性ポリマーのうち一つ以上から選ばれる材料を含むことを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極である。   According to a fifth aspect of the present invention, the heat shrinkable layer includes a material selected from one or more of a metal, a metal compound, amorphous carbon, crystalline carbon, and a conductive polymer as a conductive material. It is an electrode for lithium ion secondary batteries in any one of Claims 1-4 characterized by these.

本発明の請求項1〜3によれば、集電体上に導電性を有する熱収縮層と活物質層からなるリチウムイオン二次電池用電極であって、前記熱収縮層が熱収縮性樹脂からなることにより、過充電に伴う発熱によって熱収縮層の収縮が生じる。その結果、集電体と熱収縮層との界面で剥離が生じ、電池抵抗の増加により充電電流を遮蔽して過充電の進行を抑制する事ができる。   According to the first to third aspects of the present invention, an electrode for a lithium ion secondary battery comprising a conductive heat shrink layer and an active material layer on a current collector, wherein the heat shrink layer is a heat shrink resin. Therefore, the heat shrinkable layer contracts due to heat generated by overcharging. As a result, peeling occurs at the interface between the current collector and the heat-shrinkable layer, and the charging current is shielded by the increase in battery resistance, and the progress of overcharging can be suppressed.

また、前記熱収縮層として前記ポリオレフィン系樹脂、特にポリプロピレン、またはポリエチレンはリチウムイオン二次電池(以下、単に二次電池と記す)のセパレーターとしても用いられており、耐電解液性や耐電位性において実績のある優れた材料であり、上記効果をより一層促すことができる。   In addition, the polyolefin-based resin, particularly polypropylene or polyethylene, is used as a separator of a lithium ion secondary battery (hereinafter simply referred to as a secondary battery) as the heat-shrinkable layer. Is an excellent material with a proven track record and can further promote the above effects.

請求項4によれば、前記熱収縮層の熱収縮開始温度が130℃から160℃の範囲であることにより、活物質層を形成する後工程で活物質層形成用組成物に含まれる溶媒を除去する温度(通常80〜120℃)で、前記熱収縮層が収縮することを防ぐことができる。また、一般に二次電池の熱暴走は140℃前後で生じることが多く、この熱暴走時にも適性に熱収縮を起こすことで大事を防ぐことができる。   According to claim 4, when the heat shrink start temperature of the heat shrink layer is in the range of 130 ° C. to 160 ° C., the solvent contained in the active material layer forming composition in the subsequent step of forming the active material layer The heat shrinkable layer can be prevented from shrinking at the temperature to be removed (usually 80 to 120 ° C.). In general, the thermal runaway of the secondary battery often occurs around 140 ° C., and it is possible to prevent an important matter by causing the thermal contraction appropriately even during the thermal runaway.

請求項5によれば、前記熱収縮層が導電性を有する材料として金属、金属化合物、非晶性炭素、結晶性炭素、導電性ポリマーのうち一つ以上から選ばれる材料を含むことにより、集電体と活物質層を電気的に接続することができ、電極としての機能を損ねること異常時にのみ過充電の進行を抑制するができる。   According to claim 5, the heat shrinkable layer includes a material selected from one or more of a metal, a metal compound, amorphous carbon, crystalline carbon, and a conductive polymer as a conductive material. The electric body and the active material layer can be electrically connected, and the progress of overcharge can be suppressed only at the time of abnormality that impairs the function as an electrode.

上記で説明したように、本発明に係るリチウムイオン二次電池用電極を用いた二次電池は、過充電に伴う発熱によって熱収縮層の収縮が生じ、その結果集電体と熱収縮層との界面が剥離して電池抵抗が増大し、充電電流を遮蔽し過充電の進行を抑制する事ができる。   As described above, in the secondary battery using the lithium ion secondary battery electrode according to the present invention, the heat contraction layer contracts due to heat generated by overcharging, and as a result, the current collector, the heat contraction layer, As a result, the battery resistance increases, the charging current is shielded, and the progress of overcharging can be suppressed.

本発明に係るリチウムイオン二次電池用電極の一実施形態を示す概略断面図。The schematic sectional drawing which shows one Embodiment of the electrode for lithium ion secondary batteries which concerns on this invention. 図1の熱収縮層の製造方法の一実施形態を示す概略断面図。The schematic sectional drawing which shows one Embodiment of the manufacturing method of the heat contraction layer of FIG.

以下、本発明の実施の一例を、図1および図2を用いながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本発明は図1に示すように、集電体1上に導電性を有する熱収縮層2と活物質層3からなるリチウムイオン二次電池用電極10であって、前記熱収縮層2が熱収縮性樹脂からなることを特徴とする。   As shown in FIG. 1, the present invention is an electrode 10 for a lithium ion secondary battery comprising a heat-shrinkable layer 2 having conductivity and an active material layer 3 on a current collector 1, wherein the heat-shrinkable layer 2 is heated. It consists of a shrinkable resin.

本発明に係る集電体1としては、導電性を有する材料を使用することができ、例えばアルミニウムやステンレス鋼、銅などが挙げられる。その中でも箔状のアルミニウムや銅(以降、アルミニウム箔および銅箔という)が好適である。   As the current collector 1 according to the present invention, a conductive material can be used, and examples thereof include aluminum, stainless steel, and copper. Among these, foil-like aluminum and copper (hereinafter referred to as aluminum foil and copper foil) are preferable.

アルミニウム箔や銅箔は一般的にリチウムイオン二次電池の正極または負極集電体に用いられる材料であり、安価で且つアルミニウム箔であれば正極の電位においてリチウムと合金化せず、銅箔であれば一般的に用いられる黒鉛負極の電位においてリチウムと合金しない。各々の電極の電位においてリチウムと合金化する材料では、リチウムイオンが挿入脱離する充放電に伴い集電体が脆化する為、電池の充放電サイクル特性が著しく低下する。   Aluminum foil or copper foil is a material generally used for the positive electrode or negative electrode current collector of a lithium ion secondary battery. If it is cheap and aluminum foil is not alloyed with lithium at the potential of the positive electrode, it is made of copper foil. If present, it is not alloyed with lithium at the potential of a commonly used graphite negative electrode. In a material that is alloyed with lithium at the potential of each electrode, the current collector becomes brittle with charge and discharge in which lithium ions are inserted and released, so that the charge and discharge cycle characteristics of the battery are significantly reduced.

また、集電体1の厚みは特に限定されないが、電池製造工程における負荷に耐え得る強度を維持し、且つ電池の重量及び体積当りに対して最も高いエネルギー密度が得られる範囲でより薄い方が好ましい。一般的なリチウムイオン二次電池の集電体に用いられるアルミニウム箔や銅箔の厚みは8μmから20μm程度である。   Further, the thickness of the current collector 1 is not particularly limited, but it is preferable that the current collector 1 is thinner as long as the strength that can withstand the load in the battery manufacturing process is maintained and the highest energy density is obtained with respect to the weight and volume of the battery. preferable. The thickness of an aluminum foil or copper foil used for a current collector of a general lithium ion secondary battery is about 8 μm to 20 μm.

次に、本発明の特徴である熱収縮層2に関して以下に説明する。   Next, the heat shrinkable layer 2 that is a feature of the present invention will be described below.

前記熱収縮層2は前記集電体1の上に形成され、電極として電池に組み込まれた際に過充電時に伴う発熱によって収縮することを特徴とする。すなわち、前記発熱により集電体1と熱収縮層2との界面で剥離が生じ、電池抵抗の増加により充電電流を遮蔽して過充電の進行を抑制する事ができる。   The heat-shrinkable layer 2 is formed on the current collector 1 and contracts due to heat generated during overcharge when it is incorporated in a battery as an electrode. That is, peeling occurs at the interface between the current collector 1 and the heat shrinkable layer 2 due to the heat generation, and the charging current is shielded by the increase in battery resistance, thereby suppressing the progress of overcharging.

本発明に係る前記熱収縮層2は、導電性材料を含んだ熱収縮性樹脂からなり、前記熱収縮性樹脂としては加熱によって収縮する性質を持つ樹脂、例えば、ポリオレフィン系樹脂が好ましい。その中でもポリエチレンやポリプロピレンはリチウムイオン二次電池のセパレーターとしても用いられる材料であり、耐電解液性や耐電位性においてより好適である。熱収縮層2の厚みは、熱収縮性樹脂や導電性材料にもよるが、電池内の通常作動時の抵抗を低減する為に、熱収縮機能を維持する範囲でより薄い方が好ましい。   The heat-shrinkable layer 2 according to the present invention is made of a heat-shrinkable resin containing a conductive material, and the heat-shrinkable resin is preferably a resin that has a property of shrinking by heating, such as a polyolefin resin. Among them, polyethylene and polypropylene are materials that are also used as separators for lithium ion secondary batteries, and are more suitable in terms of electrolytic solution resistance and potential resistance. The thickness of the heat-shrinkable layer 2 depends on the heat-shrinkable resin and the conductive material, but it is preferable that the heat-shrinkable layer 2 is thinner as long as the heat-shrinkable function is maintained in order to reduce the resistance during normal operation in the battery.

熱収縮層2の熱収縮開始温度としては130℃から160℃の温度範囲である事が好適である。一般的にリチウムイオン二次電池が使用される環境温度は−20℃から70℃程度と想定される為、熱収縮開始温度が80℃以下であると、通常の電池使用環境で熱収縮を開始してしまい、集電体と熱収縮層との界面剥離による抵抗上昇によって電池性能が著しく劣化する恐れがある。   The heat shrink start temperature of the heat shrink layer 2 is preferably in the temperature range of 130 ° C to 160 ° C. Generally, the environmental temperature in which lithium ion secondary batteries are used is assumed to be about -20 ° C to 70 ° C. Therefore, when the thermal shrinkage start temperature is 80 ° C or less, thermal shrinkage starts in a normal battery usage environment. Therefore, the battery performance may be significantly deteriorated due to the increase in resistance due to the interface peeling between the current collector and the heat-shrinkable layer.

また、活物質層3は活物資や溶媒からなる活物質層形成用組成物を集電体上の前記熱収縮層2上に活物質層形成用組成物を塗布し、その後乾燥工程などを経て不要の前記溶媒を除去することで形成される。一般には80℃から120℃の温度範囲で乾燥工程を経る事が多い。この時、熱収縮開始温度が130℃未満の場合には電極層形成工程で熱収縮層が機能してしまい、通常の電池動作に支障を来たす。   The active material layer 3 is formed by applying a composition for forming an active material layer comprising an active material or a solvent onto the heat-shrinkable layer 2 on a current collector, followed by a drying step and the like. It is formed by removing the unnecessary solvent. In general, the drying process is often performed in a temperature range of 80 ° C to 120 ° C. At this time, if the heat shrinkage start temperature is lower than 130 ° C., the heat shrink layer functions in the electrode layer forming step, which hinders normal battery operation.

さらに、電池の熱暴走は選択される正極活物質種および負極活物質種にもよるが一般的に140℃前後で生じる事が多い。通常、リチウムイオン電池に使用されるセパレーターは120℃以上の温度においてセパレーター内の空孔が閉じリチウムイオンの移動を遮蔽する働きを備えている(シャットダウン機能という)が、160℃を超えるとセパレーター自体が溶融してシャットダウン機能が働かなくなる為、本発明の熱収縮層の熱収縮開始温度の上限は160℃とすることが好ましい。   Furthermore, although the thermal runaway of the battery depends on the positive electrode active material species and the negative electrode active material species selected, in general, it often occurs around 140 ° C. Usually, a separator used for a lithium ion battery has a function of closing a vacancy in the separator at a temperature of 120 ° C. or more and shielding the movement of lithium ions (referred to as a shutdown function). Therefore, the upper limit of the heat shrinkage starting temperature of the heat shrinkable layer of the present invention is preferably 160 ° C.

本発明に係る導電性材料としては、集電体1と接触し、且つ熱収縮層2上に形成する活物質層3との電気的に接続が得る材料であれば特に限定されず、適宜選択する事が出来る。例えば金属、金属化合物、非晶性炭素、結晶性炭素、導電性ポリマーやその組合せなどを用いても良い。具体的には前記熱収縮性樹脂に混合し、均一に分散して用いることが好ましい。なお、混合する量は前記集電体1とその後に形成される前記活物資層3とが電気的に接続でき、電気特性を損ねることがない範囲であれば特に限定するものではない。   The conductive material according to the present invention is not particularly limited as long as it is a material that is in contact with the current collector 1 and can be electrically connected to the active material layer 3 formed on the heat shrinkable layer 2. I can do it. For example, a metal, a metal compound, amorphous carbon, crystalline carbon, a conductive polymer, or a combination thereof may be used. Specifically, it is preferable to mix with the heat-shrinkable resin and uniformly disperse it. The amount to be mixed is not particularly limited as long as the current collector 1 and the active material layer 3 formed thereafter can be electrically connected and the electrical characteristics are not impaired.

集電体1上に熱収縮層2を形成する方法としては、例えば図2に示すような押出成形機20を用いて、導電性を有する材料を含んだ熱収縮性樹脂を、冷却ロール22上を搬送する集電体1上に押出すことで熱収縮層2を形成することができる。   As a method for forming the heat-shrinkable layer 2 on the current collector 1, for example, using an extruder 20 as shown in FIG. 2, a heat-shrinkable resin containing a conductive material is applied to the cooling roll 22. The heat-shrinkable layer 2 can be formed by extruding onto the current collector 1 that conveys.

上記で形成された熱収縮層2の上に、さらに活物質層を形成することで本発明の二次電池用電極を作製することができる。   By forming an active material layer on the heat-shrinkable layer 2 formed as described above, the secondary battery electrode of the present invention can be produced.

なお、上記で説明した活物質層3を形成する活物質層形成用組成物には、活物質、導電助剤、結着材(バインダー樹脂)及び溶媒などが含まれる。   Note that the active material layer forming composition for forming the active material layer 3 described above includes an active material, a conductive additive, a binder (binder resin), a solvent, and the like.

前記活物質としては特に限定されるものではなく、一般的に用いられる材料を適宜選択する事ができる。例えばLiCoO、LiNiO、LiMn、LiFePO
、LiMnPO、LiCo(1−x)(M:Mn、Niなどの繊維金属、0<x<1)、LiNiCoMn(1−x−y)(0<x<1,0<y<1,0<x+y<1)などが挙げられ、電池に求める電圧および容量特性に応じて適宜選択する事ができる。特にLiCoOやLiNiO、LiNiCoMn(1−x−y)(0<x<1,0<y<1,0<x+y<1)などのような層状化合物を活物質として用いる場合、過充電時に熱暴走を起こしやすい事が知られている。
The active material is not particularly limited, and a commonly used material can be appropriately selected. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4
, LiMnPO 4 , LiCo x M (1-x) O 2 (M: fiber metal such as Mn, Ni, 0 <x <1), LiNi x Co y Mn (1-xy) O 2 (0 <x <1, 0 <y <1, 0 <x + y <1) and the like, and can be appropriately selected according to the voltage and capacity characteristics required for the battery. In particular, a layered compound such as LiCoO 2 , LiNiO 2 , LiNi x Co y Mn (1-xy) O 2 (0 <x <1, 0 <y <1, 0 <x + y <1) is used as an active material. When used, it is known that thermal runaway tends to occur during overcharge.

また、導電助剤としては、例えば非晶性炭素材料、結晶性炭素材料、金属粒子、金属化合物粒子などの高導電性材料を適宜選択する事ができる。   Moreover, as a conductive support agent, highly conductive materials, such as an amorphous carbon material, a crystalline carbon material, a metal particle, a metal compound particle, can be selected suitably, for example.

またさらに、電極層内に用いる結着材には、例えばポリフッ化ビニリデン、スチレンブタジエンラバー、ポリイミド、ポリテトラフルオロエチレンなどが選択できる。   Furthermore, as the binder used in the electrode layer, for example, polyvinylidene fluoride, styrene butadiene rubber, polyimide, polytetrafluoroethylene, or the like can be selected.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

<実施例1>
厚さ20μmのアルミニウム箔を集電体として、その上にポリプロピレンとアセチレンブラックとからなる熱収縮層を以下の方法で形成した。
<Example 1>
A heat shrink layer made of polypropylene and acetylene black was formed on the aluminum foil having a thickness of 20 μm as a current collector by the following method.

(熱収縮層の形成)
一軸攪拌機を用いてポリプロピレンとアセチレンブラックとを重量比で70対30の割合で均一に混合した後、押出成形機を用いて、温度240℃の条件下で前記アルミニウム箔上に押出し同時に冷却して、厚さ2μmの熱収縮層を形成した。
(Formation of heat shrink layer)
Polypropylene and acetylene black are uniformly mixed at a weight ratio of 70:30 using a uniaxial stirrer, and then extruded onto the aluminum foil at a temperature of 240 ° C. and simultaneously cooled using an extruder. A heat-shrinkable layer having a thickness of 2 μm was formed.

(正極の作製)
別途、活物質としてLiCoO、導電助剤としてアセチレンブラック、結着材としてポリフッ化ビニリデン、溶媒としてn−メチル−2−ピロリドンからなる混合物を、二軸混練攪拌機により30分間攪拌して活物質層形成用組成物を調整した。なお、LiCoO2とアセチレンブラックとポリフッ化ビニリデンとの重量比は90対5対5とした。
(Preparation of positive electrode)
Separately, a mixture of LiCoO 2 as an active material, acetylene black as a conductive additive, polyvinylidene fluoride as a binder, and n-methyl-2-pyrrolidone as a solvent is stirred for 30 minutes with a biaxial kneading stirrer for 30 minutes. A forming composition was prepared. The weight ratio of LiCoO 2, acetylene black, and polyvinylidene fluoride was 90: 5: 5.

次に、前記集電体の熱収縮層上に前記活物質層形成用組成物を、アプリケーターを用いて13mg/cmとなるように塗工した。その後、前記溶媒を完全に除去する為に、100℃で1時間乾燥処理を実施し、さらに真空環境下で再度100℃で12時間乾燥処理を実施して正極を作製した。 Next, the active material layer-forming composition was applied onto the heat-shrinkable layer of the current collector so as to be 13 mg / cm 2 using an applicator. Thereafter, in order to completely remove the solvent, a drying process was performed at 100 ° C. for 1 hour, and further, a drying process was performed again at 100 ° C. for 12 hours in a vacuum environment to produce a positive electrode.

(負極の作製)
集電体である銅箔上に、鱗片状黒鉛、導電助剤としてアセチレンブラック、結着材としてスチレンブタジエンラバー、粘度を調整するためのカルボキシメチルセルロースからなる負極用活物質層形成用組成物を用いて、以下の方法により負極を作製した。
(Preparation of negative electrode)
A composition for forming an active material layer for a negative electrode comprising scaly graphite, acetylene black as a conductive additive, styrene butadiene rubber as a binder, and carboxymethyl cellulose for adjusting viscosity is used on a copper foil as a current collector. Thus, a negative electrode was produced by the following method.

上記負極用活物質層形成用組成物は、鱗片状黒鉛とアセチレンブラックとスチレンブタジエンラバーの重量比を96対3対1として、水及び粘度調整用のカルボキシメチルセルロースを加えて、一軸混練攪拌機にて時間攪拌して調整した。なお、カルボキシメチルセルロースの添加量は前記組成物の総重量部100に対して1重量部とした。   The negative electrode active material layer forming composition was prepared by adding water and viscosity-adjusting carboxymethylcellulose at a weight ratio of scaly graphite, acetylene black, and styrene butadiene rubber of 96 to 3 to 1, and using a uniaxial kneading stirrer. Stir for hours to adjust. The amount of carboxymethyl cellulose added was 1 part by weight with respect to 100 parts by weight of the total composition.

次に、前記組成物をアプリケーターを用いて銅箔上に6mg/cmとなるように塗工した。その後、溶媒を完全に除去する為に、100℃で1時間乾燥処理を実施し、さらに真空環境下で再度100℃で12時間乾燥処理を実施して負極を作製した。 Next, the composition was coated on a copper foil using an applicator so as to be 6 mg / cm 2 . Then, in order to remove a solvent completely, the drying process was implemented at 100 degreeC for 1 hour, and also the drying process was implemented again at 100 degreeC for 12 hours in a vacuum environment, and the negative electrode was produced.

(二次電池の作製)
上記で作製した正極および負極を用いて、電解液に1mol/Lの六フッ化燐酸リチウムを含有し、且つ重量比が1対1となるような割合でエチレンカーボネイトとジエチルカーボネイトが混合された溶媒を用いたラミネート型の二次電池を作製した。なお、上記二次電池の容量は、正極と負極を積層し500mAhとなるように設計した。
(Production of secondary battery)
A solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1 to 1 in a weight ratio of 1 mol / L lithium hexafluorophosphate using the positive electrode and the negative electrode prepared above. A laminate type secondary battery using was manufactured. The capacity of the secondary battery was designed to be 500 mAh by stacking the positive electrode and the negative electrode.

<比較例1>
集電体に熱収縮層を形成せずに、他は実施例1と同様にして二次電池を作製した。
<Comparative Example 1>
A secondary battery was fabricated in the same manner as in Example 1 except that the heat shrink layer was not formed on the current collector.

<評価及び方法>
実施例1及び比較例1で作製した二次電池を用いて、過充電時の外観、電流負荷特性及び充放電サイクル特性を以下の方法で評価した。結果を以下の表1に記す。
<Evaluation and method>
Using the secondary batteries produced in Example 1 and Comparative Example 1, the appearance, current load characteristics, and charge / discharge cycle characteristics during overcharging were evaluated by the following methods. The results are shown in Table 1 below.

(過充電時の外観評価)
25℃の環境下にて、充電電流1500mAで12Vまで充電し、その時の電池の様子を目視観察した。
(Appearance evaluation during overcharge)
Under an environment of 25 ° C., the battery was charged to 12 V at a charging current of 1500 mA, and the state of the battery at that time was visually observed.

(電流負荷特性の評価)
25℃の環境下にて、充電電流250mAで4.1Vまで充電した後、放電電流250mAで3Vまで放電し、さらにその後充電電流250mAで4.1Vまで充電した後、放電電流2000mAで3Vまで放電した。この試験における放電電流250mAで放電した時に得られた電池容量に対する放電電流2000mAで放電した時に得られた電池容量の比率を負荷容量維持率として算出した。
(Evaluation of current load characteristics)
In an environment of 25 ° C., the battery is charged to 4.1 V at a charging current of 250 mA, then discharged to 3 V at a discharging current of 250 mA, and further charged to 4.1 V at a charging current of 250 mA, and then discharged to 3 V at a discharging current of 2000 mA. did. The ratio of the battery capacity obtained when discharged at a discharge current of 2000 mA to the battery capacity obtained when discharged at a discharge current of 250 mA in this test was calculated as the load capacity retention rate.

(充放電サイクル特性の評価)
25℃の環境下にて、充電電流500mAで4.1Vまで充電した後、放電電流500mAで3Vまで放電する充放電を1サイクルとし、200サイクルまで実施したときの1サイクル目の放電容量に対する200サイクル目の放電容量を容量維持率として算出した。
(Evaluation of charge / discharge cycle characteristics)
In an environment of 25 ° C., after charging to 4.1 V at a charging current of 500 mA, charging / discharging to discharge to 3 V at a discharging current of 500 mA is defined as one cycle. The discharge capacity at the cycle was calculated as the capacity retention rate.

<比較結果>
実施例1で得られた本発明品からなる二次電池は、電流負荷特性及び充放電サイクル特性のいずれも良好で、また過充電時の目視観察においても異常は観察されず優れた結果が得られた。一方、比較例1で得られた二次電池は、電流負荷特性及び充放電サイクル特性とも実施例1と同等であったが、過充電時の目視観察において白煙の発生が確認された。これらの結果から、本発明のリチウムイオン二次電池用電極は、充放電性能を損ねることなく、過充電時の安全性を向上させることができる事が示された。
<Comparison result>
The secondary battery comprising the product of the present invention obtained in Example 1 has both good current load characteristics and charge / discharge cycle characteristics, and no abnormalities are observed in visual observation during overcharge, and excellent results are obtained. It was. On the other hand, the secondary battery obtained in Comparative Example 1 was equivalent to Example 1 in both current load characteristics and charge / discharge cycle characteristics, but generation of white smoke was confirmed by visual observation during overcharge. From these results, it was shown that the electrode for lithium ion secondary batteries of this invention can improve the safety | security at the time of overcharge, without impairing charging / discharging performance.

本発明の電極の構成は、リチウムイオン二次電池分野のみならず、安全性を必要とするエネルギーデバイスに関わる全ての分野に適用する事ができる。   The configuration of the electrode of the present invention can be applied not only to the field of lithium ion secondary batteries but also to all fields related to energy devices that require safety.

1・・・集電体
2・・・熱収縮層
3・・・活物質層
10・・リチウムイオン二次電池用電極
20・・押出成形機
21・・巻出部
22・・冷却ロール
23・・巻取部
DESCRIPTION OF SYMBOLS 1 ... Current collector 2 ... Heat shrink layer 3 ... Active material layer 10 ... Electrode 20 for lithium ion secondary batteries ... Extruder 21 ... Unwinding part 22 ... Cooling roll 23・ Winding part

Claims (5)

集電体上に導電性を有する熱収縮層と活物質層からなるリチウムイオン二次電池用電極であって、
前記熱収縮層が熱収縮性樹脂からなることを特徴とするリチウムイオン二次電池用電極。
An electrode for a lithium ion secondary battery comprising an electrically conductive heat shrink layer and an active material layer on a current collector,
The electrode for a lithium ion secondary battery, wherein the heat shrinkable layer is made of a heat shrinkable resin.
前記熱収縮性樹脂がポリオレフィン系樹脂からなることを特徴とする請求項1に記載のリチウムイオン二次電池用電極。   The electrode for a lithium ion secondary battery according to claim 1, wherein the heat-shrinkable resin is made of a polyolefin-based resin. 前記ポリオレフィン系樹脂がポリプロピレン、またはポリエチレンである事を特徴とする請求項2に記載のリチウムイオン二次電池用電極。   The electrode for a lithium ion secondary battery according to claim 2, wherein the polyolefin resin is polypropylene or polyethylene. 前記熱収縮層の熱収縮開始温度が130℃から160℃の範囲であることを特徴とする請求項1〜3のいずれかに記載のリチウムイオン二次電池用電極。   The electrode for a lithium ion secondary battery according to any one of claims 1 to 3, wherein a heat shrink start temperature of the heat shrink layer is in a range of 130 ° C to 160 ° C. 前記熱収縮層が導電性を有する材料として金属、金属化合物、非晶性炭素、結晶性炭素、導電性ポリマーのうち一つ以上から選ばれる材料を含むことを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極。   The heat shrink layer includes a material selected from one or more of a metal, a metal compound, amorphous carbon, crystalline carbon, and a conductive polymer as the conductive material. The electrode for lithium ion secondary batteries in any one.
JP2014200677A 2014-09-30 2014-09-30 Electrode for lithium ion secondary battery Pending JP2016072098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014200677A JP2016072098A (en) 2014-09-30 2014-09-30 Electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014200677A JP2016072098A (en) 2014-09-30 2014-09-30 Electrode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2016072098A true JP2016072098A (en) 2016-05-09

Family

ID=55865111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014200677A Pending JP2016072098A (en) 2014-09-30 2014-09-30 Electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016072098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351793A (en) * 2018-12-03 2019-02-19 恩力能源科技有限公司 Battery pole piece extrusion device and battery pole piece manufacturing system
CN114520303A (en) * 2020-11-19 2022-05-20 宁德新能源科技有限公司 Electrochemical device and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351793A (en) * 2018-12-03 2019-02-19 恩力能源科技有限公司 Battery pole piece extrusion device and battery pole piece manufacturing system
CN109351793B (en) * 2018-12-03 2024-03-15 北京恩力动力科技有限公司 Battery pole piece manufacturing system
CN114520303A (en) * 2020-11-19 2022-05-20 宁德新能源科技有限公司 Electrochemical device and electronic device

Similar Documents

Publication Publication Date Title
CN102110853B (en) Lithium-ion secondary battery, anode for lithium-ion secondary battery, power tool, electric vehicle and energy storage system
JP4915390B2 (en) Non-aqueous electrolyte battery
JP5183016B2 (en) Porous separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US20230127888A1 (en) Secondary battery with improved high-temperature and low-temperature properties
KR20140147412A (en) Case for electrochemical device containing volume expansibile material and electrochemical device comprising the same
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP2012164655A (en) Separator for lithium secondary battery and lithium secondary battery including the same
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
JP5776663B2 (en) Non-aqueous electrolyte secondary battery
US20060251963A1 (en) Non-aqueous electrolyte secondary battery
US20080206645A1 (en) Non-aqueous electrolyte secondary battery and method for producing same
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2018116831A (en) Manufacturing method of battery
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP5699890B2 (en) Non-aqueous electrolyte secondary battery
JP2016072098A (en) Electrode for lithium ion secondary battery
JP6083289B2 (en) Lithium ion secondary battery
CN102723458A (en) Lithium ion battery and cathode pole piece thereof
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2023550220A (en) Electrolytes, secondary batteries and power consumption devices
JP2008243441A (en) Nonaqueous electrolyte secondary battery
JP2015069881A (en) Electrode and battery arranged by use thereof
JP2005251446A (en) Nonaqueous electrolyte secondary battery
KR101756938B1 (en) Anode active material and lithium secondary battery comprising the same