JP2016071120A - ND filter - Google Patents

ND filter Download PDF

Info

Publication number
JP2016071120A
JP2016071120A JP2014199889A JP2014199889A JP2016071120A JP 2016071120 A JP2016071120 A JP 2016071120A JP 2014199889 A JP2014199889 A JP 2014199889A JP 2014199889 A JP2014199889 A JP 2014199889A JP 2016071120 A JP2016071120 A JP 2016071120A
Authority
JP
Japan
Prior art keywords
filter
transmittance
wavelength
material layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014199889A
Other languages
Japanese (ja)
Inventor
那由太 嶋田
Nayuta Shimada
那由太 嶋田
健児 矢沢
Kenji Yazawa
健児 矢沢
貴壽 山田
Takatoshi Yamada
貴壽 山田
貴志 八木
Takashi Yagi
貴志 八木
めぐみ 阿子島
Megumi Akoshima
めぐみ 阿子島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Oike and Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Oike and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Oike and Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014199889A priority Critical patent/JP2016071120A/en
Publication of JP2016071120A publication Critical patent/JP2016071120A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ND filter having a constant, wavelength-independent light absorption property in an infrared region with a wavelength of no less than 1500 nm.SOLUTION: An ND filter comprises a base material 11 that exhibits transmittance variation of no greater than 10% in a wavelength range of 1500-2500 nm, inclusive, and a light absorptive material layer 13 provided on a surface of the base material 11, where the light absorptive layer 13 comprises a plurality of laminated graphene films, and features a transmittance of 1-90%, inclusive, at a wavelength of 550 nm, and a difference T(range) between a minimum transmittance T(min)(1500-4000) and a maximum transmittance T(max)(1500-4000) of no greater than 8.0% in a wavelength range of 1500-4000 nm, inclusive.SELECTED DRAWING: Figure 1

Description

本発明は、ND(ニュートラルデンシティ)フィルタに関する。特に、赤外線領域で波長に依存せず一定の光吸収特性を有するNDフィルタに関する。 The present invention relates to an ND (neutral density) filter. In particular, the present invention relates to an ND filter having a constant light absorption characteristic independent of wavelength in the infrared region.

ND(ニュートラルデンシティ)フィルタは、各種の光学機器における透過光量の制御に用いられている。例えば、カメラやビデオカメラなどのレンズ光学系や、テレビやパソコンのディスプレーの光量調節、バスや飛行機の照明の光量や射出方向の制御等、幅広い分野で利用されている。 An ND (neutral density) filter is used to control the amount of transmitted light in various optical devices. For example, it is used in a wide range of fields, such as lens optical systems such as cameras and video cameras, adjustment of the light amount of television and personal computer displays, and control of the light amount and emission direction of bus and airplane lighting.

従来のNDフィルタは、樹脂に有機色素または顔料を混合したり、プラスチック等の透明基材に光学特性を有する膜を蒸着により形成したりして、所定の形状に加工することにより製造されている。このような従来のNDフィルタは、可視光領域の光を均一に吸収(減光)するように構成されているものの、赤外線領域の光については、透過するか、不均一な吸収をするものしか知られていない。 Conventional ND filters are manufactured by mixing organic dyes or pigments into a resin, or forming a film having optical properties on a transparent substrate such as plastic by vapor deposition, and processing it into a predetermined shape. . Such a conventional ND filter is configured to uniformly absorb (reduce) light in the visible light region, but only transmits light in the infrared region or absorbs unevenly. unknown.

赤外線領域の光を吸収するNDフィルタとして、例えば、特許文献1には、不織布層を少なくとも一層有し、繊維間を抵抗無く透過する光と、繊維によって反射・吸収される光が区別され、繊維の太さ、不織布の目付け重量、厚さ等で透過率を任意に調節することができ、可視光線(400〜700nm)から近赤外線(700〜2000nm)の広範囲の波長の光を吸収(減光)して、透過率を0〜80%の範囲で調光を可能なNDフィルタが記載されている。しかし、特許文献1のNDフィルタは、可視光線の範囲の波長の光は均一に吸収するものの、1000nm以上の波長の光では、透過率が不均一となる。 As an ND filter that absorbs light in the infrared region, for example, Patent Document 1 has at least one non-woven fabric layer, and distinguishes between light that is transmitted between fibers without resistance and light that is reflected and absorbed by the fibers. The transmittance can be adjusted arbitrarily according to the thickness of the fiber, the weight of the nonwoven fabric, the thickness, etc., and absorbs light in a wide range of wavelengths from visible light (400 to 700 nm) to near infrared (700 to 2000 nm). ND filter capable of dimming in a transmittance range of 0 to 80%. However, although the ND filter of Patent Document 1 uniformly absorbs light having a wavelength in the visible light range, the transmittance is not uniform for light having a wavelength of 1000 nm or more.

また、特許文献2には、半導体基板と、当該半導体基板の一表面側に形成された広帯域遮断フィルタ部と、当該半導体基板の他表面側に形成された狭帯域透過フィルタ部とを備え、800nm〜20000nmの波長域の赤外線を制御する赤外線光学フィルタが記載されている。特許文献2では、広帯域遮断フィルタ部が、屈折率が異なる複数種類の薄膜が積層された多層膜からなり、当該複数種類の薄膜のうち1種類の薄膜が遠赤外線を吸収する遠赤外線吸収材料(例えば、Alなど)により形成され、残りの1種類の薄膜が上記遠赤外線吸収材料よりも屈折率の高い高屈折率材料(例えば、Geなど)により形成されていることが記載されている。しかし、特許文献2の赤外線光学フィルタにおいても、1000nm以上の波長の光を吸収するものの、広範な赤外線領域の光に対して透過率が均一にはならない。 Patent Document 2 includes a semiconductor substrate, a broadband cutoff filter portion formed on one surface side of the semiconductor substrate, and a narrow band transmission filter portion formed on the other surface side of the semiconductor substrate, and has a wavelength of 800 nm. An infrared optical filter for controlling infrared rays in a wavelength range of ˜20,000 nm is described. In Patent Document 2, the broadband cutoff filter portion is formed of a multilayer film in which a plurality of types of thin films having different refractive indexes are stacked, and one type of thin film among the plurality of types of thin films absorbs far infrared rays ( for example, is formed of Al etc. 2 O 3), the remaining one type of a thin film having a high refractive index than the far-infrared-absorbing material a high refractive index material (e.g., is described to be formed by Ge, etc.) Yes. However, the infrared optical filter of Patent Document 2 also absorbs light having a wavelength of 1000 nm or more, but the transmittance is not uniform for light in a wide infrared region.

特開2006−017832号公報JP 2006-017832 A 特開2010−186145号公報JP 2010-186145 A

本発明は、上述の問題を解決するものであって、波長が1500nm以上の赤外線領域で波長に依存せず一定の光吸収特性を有するNDフィルタを提供することを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to provide an ND filter having a constant light absorption characteristic regardless of the wavelength in an infrared region having a wavelength of 1500 nm or more.

本発明の一実施形態によると、波長1500nm以上2500nm以下における透過率の変化が10%以内の基材と、前記基材表面に配置された光吸収材料層と、を備え、前記光吸収材料層は複数のグラフェン膜が積層した構造を有し、波長550nmの透過率が1%以上90%以下であり、且つ、波長1500nm以上4000nm以下における透過率の最小値T(min)(1500−4000)と最大値T(max)(1500−4000)との差T(range)が8.0%以下を満たすNDフィルタが提供される。 According to an embodiment of the present invention, the light absorption material layer includes: a base material whose transmittance change within a wavelength of 1500 nm to 2500 nm is 10% or less; and a light absorption material layer disposed on the surface of the base material. Has a structure in which a plurality of graphene films are laminated, the transmittance at a wavelength of 550 nm is 1% or more and 90% or less, and the minimum value T (min) of the transmittance at a wavelength of 1500 nm or more and 4000 nm or less (1500-4000) And a maximum value T (max) (1500-4000) is provided with an ND filter that satisfies a T (range) of 8.0% or less.

前記NDフィルタにおいて、前記光吸収材料層は、共鳴ラマン散乱測定法により測定された1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.5以下であってもよい。 In the ND filter, the light-absorbing material layer, the minimum intensity value in the range of 1480 cm -1 or 1560 cm -1 or less as determined by resonance Raman scattering measurement method G 1, 1560 cm -1 or 1600 cm -1 or less When the maximum intensity value within the range is G 2 , the G 1 / G 2 ratio may be 0.5 or less.

前記NDフィルタにおいて、前記光吸収材料層は、共鳴ラマン散乱測定法により測定された2550cm−1以上2800cm−1以下の範囲内での最大の強度値を2Dmax、最小の強度値を2Dminとしたときに、2Dmax/2Dmin比が1.5以上であってもよい。 In the ND filter, the light absorbing material layer comprises a 2D min maximum intensity values 2D max, the minimum intensity value in the range of 2550 cm -1 or 2800 cm -1 or less as determined by resonance Raman scattering measurement method The 2D max / 2D min ratio may be 1.5 or more.

前記NDフィルタにおいて、前記光吸収材料層は、マイクロ波表面波プラズマ化学気相成長法により形成されたグラフェン膜が積層した構造体であってもよい。 In the ND filter, the light absorbing material layer may be a structure in which graphene films formed by a microwave surface wave plasma chemical vapor deposition method are stacked.

前記NDフィルタにおいて、前記基材と、前記光吸収材料層は、接着層を介さずに密着してもよい。 In the ND filter, the base material and the light absorbing material layer may be in close contact without an adhesive layer.

前記NDフィルタにおいて、波長1500nm以上2500nm以下における前記基材の透過率が90%以上であってもよい。 In the ND filter, the transmittance of the base material at a wavelength of 1500 nm to 2500 nm may be 90% or more.

本発明によると、波長が1500nm以上の赤外線領域で波長に依存せず一定の光吸収特性を有するNDフィルタが提供される。 According to the present invention, there is provided an ND filter having a constant light absorption characteristic regardless of the wavelength in an infrared region having a wavelength of 1500 nm or more.

本発明の一実施形態に係るNDフィルタ10を示す模式図である。It is a mimetic diagram showing ND filter 10 concerning one embodiment of the present invention. 本発明の一実施形態に係るNDフィルタ20を示す模式図である。It is a mimetic diagram showing ND filter 20 concerning one embodiment of the present invention. 本発明の一実施例に係るNDフィルタの波長1500〜2500nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in wavelength 1500-2500nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長3000〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 3000-4000 nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the laser of 532 nm wavelength of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長1500〜2500nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in wavelength 1500-2500nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長3000〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 3000-4000 nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the laser of 532 nm wavelength of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長1500〜2500nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in wavelength 1500-2500nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長3000〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 3000-4000 nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the laser of 532 nm wavelength of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長1500〜2500nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in wavelength 1500-2500nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長3000〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 3000-4000 nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the laser of 532 nm wavelength of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長1500〜2500nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in wavelength 1500-2500nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの波長3000〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 3000-4000 nm of the ND filter which concerns on one Example of this invention. 本発明の一実施例に係るNDフィルタの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the laser of 532 nm wavelength of the ND filter which concerns on one Example of this invention. 比較例のNDフィルタの波長1500〜2500nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 1500-2500 nm of the ND filter of a comparative example. 比較例のNDフィルタの波長3000〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 3000-4000 nm of the ND filter of a comparative example. 比較例のNDフィルタの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the 532 nm wavelength laser of the ND filter of a comparative example. 比較例のNDフィルタの波長1500〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in wavelength 1500-4000nm of the ND filter of a comparative example. 比較例のNDフィルタの波長3000〜4000nmでの透過率を示す図である。It is a figure which shows the transmittance | permeability in the wavelength of 3000-4000 nm of the ND filter of a comparative example. 比較例のNDフィルタの532nm波長のレーザーを用いて測定したラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum measured using the 532 nm wavelength laser of the ND filter of a comparative example.

上述したように、赤外線を吸収する不織布層や金属材料を用いると、1000nm以上の波長の光では、透過率が不均一となることから、1000nm以上、特に1500nm以上の波長の光に対して透過率が均一となる材料の探索を行った。その結果、グラフェンは260nmの光の吸収ピークを有するものの、1500nm以上の赤外線領域には光の吸収ピークを有しないことを見出し、本発明を完成させた。 As described above, when a non-woven fabric layer or a metal material that absorbs infrared rays is used, the transmittance of light with a wavelength of 1000 nm or more becomes non-uniform, so that it transmits light with a wavelength of 1000 nm or more, particularly 1500 nm or more. We searched for materials with uniform rates. As a result, it was found that graphene has a light absorption peak of 260 nm, but does not have a light absorption peak in the infrared region of 1500 nm or more, and completed the present invention.

以下、図面を参照して本発明に係るNDフィルタについて説明する。但し、本発明のNDフィルタは、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 The ND filter according to the present invention will be described below with reference to the drawings. However, the ND filter of the present invention is not construed as being limited to the description of the embodiments and examples described below. Note that in the drawings referred to in this embodiment mode and examples, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.

(実施形態1)
図1は、本発明の一実施形態に係るNDフィルタ10を示す模式図である。NDフィルタ10は、基材11と、基材11の少なくとも1つの面に配置された光吸収材料層13と、を備える。基材11は、波長1500nm以上2500nm以下における透過率の変化10%以内の基材であって、例えば、ガラス基板、Si基板、Ge基板やZnS基板、フッ化カルシウムなどのフッ化物基板、サファイア等の酸化物基板、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PC(ポリカーボネート)、アクリル等の樹脂基板等を用いることができる。2500nm以下のNDフィルタとして用いる際には、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PC(ポリカーボネート)、アクリル等の樹脂基板が好適である。また、図1において、基材11を平板構造として示したが、本発明に係るNDフィルタは、これに限定されるものではなく、球体、レンズ型構造等の曲面を有する構造体、粗面を有する構造体、所定のパターン形状を有する構造体等であってもよい。
(Embodiment 1)
FIG. 1 is a schematic diagram showing an ND filter 10 according to an embodiment of the present invention. The ND filter 10 includes a base material 11 and a light absorbing material layer 13 disposed on at least one surface of the base material 11. The base material 11 is a base material having a transmittance change within 10% at a wavelength of 1500 nm to 2500 nm. For example, a glass substrate, a Si substrate, a Ge substrate, a ZnS substrate, a fluoride substrate such as calcium fluoride, sapphire, etc. An oxide substrate, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PC (polycarbonate), an acrylic resin substrate, or the like can be used. When used as an ND filter of 2500 nm or less, resin substrates such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PC (polycarbonate), and acrylic are suitable. Moreover, although the base material 11 was shown in FIG. 1 as a flat plate structure, the ND filter according to the present invention is not limited to this, and a structure having a curved surface, such as a sphere or a lens structure, or a rough surface It may be a structure having a predetermined pattern shape or the like.

光吸収材料層13は、複数のグラフェン膜1が積層した構造を有する。グラフェン膜はSP結合した炭素原子による平面状の結晶性炭素膜であり、波長1500nm以上4000nm以下の広範な赤外線領域の光に対して特異的な吸収ピークを有さず、均一な透過率を有する。本実施形態において、光吸収材料層13を構成するグラフェン膜1の層数は、所望の透過率を得られるように適宜変更可能であり、特に限定されない。 The light absorbing material layer 13 has a structure in which a plurality of graphene films 1 are stacked. The graphene film is a planar crystalline carbon film with SP 2 bonded carbon atoms, has no specific absorption peak for light in a wide infrared region with a wavelength of 1500 nm to 4000 nm, and has a uniform transmittance. Have. In the present embodiment, the number of graphene films 1 constituting the light absorption material layer 13 can be appropriately changed so as to obtain a desired transmittance, and is not particularly limited.

一実施形態において、NDフィルタ10の面内での透過率の均一性を確保するためには、光吸収材料層13を構成するグラフェン膜1の結晶性が高く、且つ欠陥が少ないことが好ましい。低品質のグラフェン膜では、部分的に積層されたグラフェン膜の層数が異なり、光吸収材料層13全体として均一な透過率を得ることができない。結晶性が高く、且つ欠陥が少ないグラフェン膜は、例えば、国際公開第2011/115197号に記載されたマイクロ波表面波プラズマ化学気相成長法(マイクロ波表面波プラズマCVD)により形成することができる。 In one embodiment, in order to ensure the uniformity of the transmittance within the surface of the ND filter 10, it is preferable that the graphene film 1 constituting the light absorbing material layer 13 has high crystallinity and few defects. In the low-quality graphene film, the number of partially laminated graphene films is different, and the light absorption material layer 13 as a whole cannot obtain a uniform transmittance. A graphene film having high crystallinity and few defects can be formed by, for example, a microwave surface wave plasma chemical vapor deposition method (microwave surface wave plasma CVD) described in International Publication No. 2011/115197. .

このため、本実施形態において、光吸収材料層13は、共鳴ラマン散乱測定法により測定された1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.5以下となる。より好ましくは、G/G比が0.4以下、さらに好ましくは、0.35以下である。共鳴ラマン散乱測定法により測定された1480cm−1以上1560cm−1以下の範囲内での最小の強度値Gは、SP結合の不規則性や欠陥、アモルファスカーボンの存在量に応じて大きくなる。一方、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGは、グラフェンのSP結合に起因するピークである。したがって、G/G比が小さいほど、光吸収材料層13の結晶性が高いことを示す。このようなG/G比を有する光吸収材料層13は、波長1500nm以上4000nm以下の範囲の光に対して均一な透過率を有するため好ましい。 Therefore, in the present embodiment, the light absorbing material layer 13, a minimum intensity value within been 1480 cm -1 or 1560 cm -1 or less in a range determined by resonance Raman scattering measurement method G 1, 1560 cm -1 or 1600cm When the maximum intensity value within the range of −1 or less is G 2 , the G 1 / G 2 ratio is 0.5 or less. More preferably, the G 1 / G 2 ratio is 0.4 or less, and more preferably 0.35 or less. Resonance minimum intensity value G 1 in a measured 1480 cm -1 or 1560 cm -1 or less range by Raman scattering measurement method, irregularities and defects SP 2 bond, increases according to the amount of the amorphous carbon . On the other hand, G 2 a maximum intensity value in the range of 1560 cm -1 or 1600 cm -1 or less is a peak due to SP 2 bond graphene. Therefore, the smaller the G 1 / G 2 ratio is, the higher the crystallinity of the light absorbing material layer 13 is. The light absorbing material layer 13 having such a G 1 / G 2 ratio is preferable because it has a uniform transmittance with respect to light in a wavelength range of 1500 nm to 4000 nm.

また、本実施形態において、光吸収材料層13は、共鳴ラマン散乱測定法により測定された2550cm−1以上2800cm−1以下の範囲内での最大の強度値を2Dmax、最小の強度値を2Dminとしたときに、2Dmax/2Dmin比が1.5以上である。より好ましくは、2Dmax/2Dmin比が2以上である。2Dmax/2Dmin比は、光吸収材料層13が単一の物質、即ちグラフェン膜11が形成されていることを示す指標である。したがって、2Dmax/2Dmin比が大きいほど、光吸収材料層13の純度が高いことを示す。このような2Dmax/2Dmin比を有する光吸収材料層13は、波長1500nm以上4000nm以下の範囲の光に対して均一な透過率を有するため好ましい。 Furthermore, 2D in this embodiment, the light absorbing material layer 13, the maximum intensity values 2D max within the range have been 2550 cm -1 or 2800 cm -1 or less measured by resonance Raman scattering measurement, the minimum intensity value When it is set to min , 2Dmax / 2Dmin ratio is 1.5 or more. More preferably, the 2D max / 2D min ratio is 2 or more. The 2D max / 2D min ratio is an index indicating that the light absorbing material layer 13 is a single substance, that is, the graphene film 11 is formed. Therefore, it shows that the purity of the light absorption material layer 13 is so high that 2Dmax / 2Dmin ratio is large. The light absorbing material layer 13 having such a 2D max / 2D min ratio is preferable because it has a uniform transmittance with respect to light in the wavelength range of 1500 nm to 4000 nm.

本実施形態において、基材11と、光吸収材料層13とは、接着層を介さずに密着した構造を有する。従来のNDフィルタにおいては、基材と、光吸収材料層とを積層する場合、材質の違いから接着層が必要であった。しかし、接着層は、一般に有機材料により形成されるため、波長2500nm以上4000nm以下の範囲に特異的な吸収ピークを有するものがほとんどである。したがって、本発明によって2500nm以上4000nm以下のNDフィルタを作製する場合は、基材11と、光吸収材料層13との間に有機材料を含む接着層を介在させるのは好ましくない。本発明においては、光吸収材料層13を構成するグラフェン膜1がガラス基板等の基材11と静電力により結合するため、接着層を配置することなく、密着させることができる。2500nm以下であれば有機材料の特異なピークが観測されない場合もあり、接着層を用いてもよい。 In the present embodiment, the base material 11 and the light absorbing material layer 13 have a structure in which they are in close contact with each other without an adhesive layer. In the conventional ND filter, when a base material and a light absorption material layer are laminated, an adhesive layer is necessary due to the difference in material. However, since the adhesive layer is generally formed of an organic material, most adhesive layers have specific absorption peaks in the wavelength range of 2500 nm to 4000 nm. Therefore, when an ND filter having a wavelength of 2500 nm or more and 4000 nm or less is manufactured according to the present invention, it is not preferable to interpose an adhesive layer containing an organic material between the base material 11 and the light absorbing material layer 13. In the present invention, the graphene film 1 constituting the light-absorbing material layer 13 is bonded to the base material 11 such as a glass substrate by an electrostatic force, and thus can be adhered without arranging an adhesive layer. If it is 2500 nm or less, a specific peak of the organic material may not be observed, and an adhesive layer may be used.

このような構成を有する本実施形態に係るNDフィルタ10は、波長550nmの透過率が1%以上90%以下であり、且つ、光吸収材料層の波長1500nm以上4000nm以下における透過率の最小値T(min)(1500−4000)と最大値T(max)(1500−4000)との差T(range)が8.0以下を満たす。 The ND filter 10 according to the present embodiment having such a configuration has a transmittance at a wavelength of 550 nm of 1% to 90%, and a minimum value T of the transmittance at a wavelength of 1500 nm to 4000 nm of the light absorbing material layer. The difference T (range) between (min) (1500-4000) and the maximum value T (max) (1500-4000) satisfies 8.0 or less.

したがって、本発明に係るNDフィルタは、波長1500nm以上4000nm以下の範囲の光に対して、均一の透過率を示す光吸収材料層が形成された従来にないNDフィルタである。 Therefore, the ND filter according to the present invention is an unconventional ND filter in which a light-absorbing material layer showing a uniform transmittance is formed with respect to light having a wavelength in the range of 1500 nm to 4000 nm.

(実施形態2)
実施形態1においては、基材11の光の透過面に対して一方の面に光吸収材料層13を配置した例を示した。実施形態に2においては、基材11の光の透過面の両面(上面及び下面)に光吸収材料層23及び光吸収材料層25をそれぞれ配置する例について説明する。図2は、本発明の一実施形態に係るNDフィルタ20を示す模式図である。NDフィルタ20は、基材11と、基材11の光が透過する対向する2つの面に配置された光吸収材料層23及び光吸収材料層25と、を備える。基材11の構成は、実施形態1で説明したため、詳細な説明は省略する。
(Embodiment 2)
In Embodiment 1, the example which has arrange | positioned the light absorption material layer 13 in one surface with respect to the light permeable surface of the base material 11 was shown. In the second embodiment, an example in which the light absorbing material layer 23 and the light absorbing material layer 25 are respectively disposed on both surfaces (upper surface and lower surface) of the light transmission surface of the substrate 11 will be described. FIG. 2 is a schematic diagram showing an ND filter 20 according to an embodiment of the present invention. The ND filter 20 includes a base material 11 and a light absorption material layer 23 and a light absorption material layer 25 disposed on two opposing surfaces through which light of the base material 11 is transmitted. Since the structure of the base material 11 was demonstrated in Embodiment 1, detailed description is abbreviate | omitted.

光吸収材料層23及び光吸収材料層25は、複数のグラフェン膜1が積層した構造を有し、上述した光吸収材料層13と同様の構成を有する。ここで、光吸収材料層23と光吸収材料層25とは、所望の透過率を得られるようにグラフェン膜1の層数を適宜変更可能であり、特に限定されない。また、光吸収材料層23を構成するグラフェン膜1の層数と光吸収材料層25を構成するグラフェン膜1の層数とは、等しくてもよく、異なっていてもよい。 The light absorbing material layer 23 and the light absorbing material layer 25 have a structure in which a plurality of graphene films 1 are stacked, and have the same configuration as the light absorbing material layer 13 described above. Here, the number of layers of the graphene film 1 can be appropriately changed between the light absorbing material layer 23 and the light absorbing material layer 25 so as to obtain a desired transmittance, and is not particularly limited. Further, the number of graphene films 1 constituting the light absorbing material layer 23 and the number of graphene films 1 constituting the light absorbing material layer 25 may be equal or different.

その他のNDフィルタ20の構成は、実施形態1のNDフィルタ10と同様であるため、詳細な説明は省略する。本発明に係るNDフィルタは、波長1500nm以上4000nm以下の範囲の光に対して、均一の透過率を示す光吸収材料層が形成された、従来にないNDフィルタである。 Since the configuration of the other ND filter 20 is the same as that of the ND filter 10 of the first embodiment, detailed description thereof is omitted. The ND filter according to the present invention is an unconventional ND filter in which a light-absorbing material layer showing a uniform transmittance is formed with respect to light in the wavelength range of 1500 nm to 4000 nm.

(NDフィルタの製造方法)
NDフィルタの製造方法について説明する。所定形状の基材11を準備する。基材11は、実施形態1で説明した材質及び形状の基材を任意に選択可能である。また、グラフェン膜1を準備する。グラフェン膜1は、上述したように、結晶性が高く、且つ欠陥が少ないことが好ましい。結晶性が高く、且つ欠陥が少ないグラフェン膜は、例えば、国際公開第2011/115197号、に記載されたマイクロ波表面波プラズマ化学気相成長法(マイクロ波表面波プラズマCVD)や熱CVD法(S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishan, T. Lei, H. R. Kim, Y. I. Somg, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B, H. Hong and S. Iijima, Nature Nanotechnol. 5, 574 (2011).)により形成することができる。若しくは、数ナノメートルサイズのグラフェン片の集合体であってもよい。なお、グラフェン膜1は、グラフェンが1層の膜であってもよく、複数層が積層した膜であってもよい。グラフェン膜1の取扱い上、複数層から形成されたグラフェン膜であることが好ましい。
(ND filter manufacturing method)
A method for manufacturing the ND filter will be described. A base material 11 having a predetermined shape is prepared. The base material 11 can arbitrarily select the base material having the material and shape described in the first embodiment. In addition, the graphene film 1 is prepared. As described above, the graphene film 1 preferably has high crystallinity and few defects. A graphene film having high crystallinity and few defects can be obtained by, for example, a microwave surface wave plasma chemical vapor deposition method (microwave surface wave plasma CVD) or a thermal CVD method (described in International Publication No. 2011/115197). S. Bae, H. Kim, Y. Lee, X. Xu, JS Park, Y. Zheng, J. Balakrishan, T. Lei, HR Kim, YI Somg, YJ Kim, KS Kim, B. Ozyilmaz, JH Ahn, B, H. Hong and S. Iijima, Nature Nanotechnol. 5, 574 (2011).). Alternatively, it may be an aggregate of graphene pieces having a size of several nanometers. The graphene film 1 may be a single-layer film of graphene or a film in which a plurality of layers are stacked. In view of handling the graphene film 1, a graphene film formed from a plurality of layers is preferable.

基材11の光透過面にグラフェン膜を配置することにより、光吸収材料層13を形成する。ここで、所望の透過率を得るため、必要な層数のグラフェン膜を配置して光吸収材料層13を形成する。グラフェン膜を配置する場合、所望の透過率を得られる層数のグラフェン膜を準備して、基材11に配置してもよく、複数層のグラフェン膜を何枚か用意して積層してもよい。上述したように、本実施形態において、基材11と、光吸収材料層13との間に有機材料を含む接着層を介在させるのは好ましくない。本発明においては、光吸収材料層13を構成するグラフェン膜1がガラス基板等の基材11と静電力により結合するため、接着層を配置することなく、密着させることができる。 The light absorbing material layer 13 is formed by disposing a graphene film on the light transmission surface of the substrate 11. Here, in order to obtain a desired transmittance, the light-absorbing material layer 13 is formed by disposing a required number of graphene films. When a graphene film is arranged, a graphene film having a number of layers that can obtain a desired transmittance may be prepared and arranged on the substrate 11, or a plurality of graphene films may be prepared and laminated. Good. As described above, in the present embodiment, it is not preferable to interpose an adhesive layer containing an organic material between the base material 11 and the light absorbing material layer 13. In the present invention, the graphene film 1 constituting the light-absorbing material layer 13 is bonded to the base material 11 such as a glass substrate by an electrostatic force, and thus can be adhered without arranging an adhesive layer.

なお、実施形態2のNDフィルタ20を形成する場合、光吸収材料層23と光吸収材料層25とは、所望の透過率を得られるようにグラフェン膜1の層数を適宜変更可能であり、光吸収材料層23を構成するグラフェン膜1の層数と光吸収材料層25を構成するグラフェン膜1の層数とは、等しくてもよく、異なっていてもよい。 In addition, when forming the ND filter 20 of Embodiment 2, the number of layers of the graphene film 1 can be changed as appropriate so that the light absorption material layer 23 and the light absorption material layer 25 can obtain a desired transmittance. The number of graphene films 1 constituting the light absorbing material layer 23 and the number of graphene films 1 constituting the light absorbing material layer 25 may be the same or different.

上述した本発明に係るNDフィルタについて、実施例を示してさらに説明する。 The ND filter according to the present invention described above will be further described with reference to examples.

(実施例1)
圧延銅箔(33μm、福田金属箔粉工業)を石英ガラスチューブ内に設置し、メタンガス10sccmとアルゴンガス50sccmを流しながら圧力バルブで1.0Paに圧力調整した。ガラスチューブにヒーターを巻きつけて銅箔を約1000℃で30分間加熱し、銅箔上にグラフェン膜を形成した。グラフェン膜を形成した銅箔を塩化第二鉄10%水溶液に入れて銅箔を溶解し、イオン交換水で洗浄した。銅箔を除去したグラフェン膜を基材として石英ガラス(USD−300、大興製作所)に4枚積層して、実施例1のNDフィルタを作製した。
Example 1
Rolled copper foil (33 μm, Fukuda Metal Foil Powder Industry) was placed in a quartz glass tube, and the pressure was adjusted to 1.0 Pa with a pressure valve while flowing 10 sccm of methane gas and 50 sccm of argon gas. A heater was wound around the glass tube, and the copper foil was heated at about 1000 ° C. for 30 minutes to form a graphene film on the copper foil. The copper foil on which the graphene film was formed was put into a 10% ferric chloride aqueous solution to dissolve the copper foil, and washed with ion-exchanged water. Four sheets of the graphene film from which the copper foil was removed were laminated on quartz glass (USD-300, Daiko Seisakusho) to produce the ND filter of Example 1.

(NDフィルタの近赤外領域及び赤外領域の透過率測定)
実施例1のNDフィルタの近赤外吸収について紫外可視分光光度計(SolidSpec-3700DUV、島津製作所)を用いて1500nm〜2500nmまでの透過スペクトル(透過率)を測定した。また、3000nm〜4000nmまでの赤外領域はフーリエ変換赤外分光光度計(FT−IR)(Spectrum100、PerkinElmer)を用いて測定した。なお、波長2500nm〜3000nmの領域には、大気中に含まれる水の吸収が現れる。測定装置の熱等の影響により測定試料を配置する測定部の水分量(湿度)が変化するため、波長2500nm〜3000nmの領域の透過率を規格化することができない。このため、本明細書においては、波長2500nm〜3000nmの領域の透過率を示さないが、以下に示す波長1500〜2500nm及び3000〜4000nmの領域における透過率の測定結果から、波長2500nm〜3000nmの領域の透過率も均一となることが理解できるであろう。
(Measurement of transmittance in the near infrared region and infrared region of the ND filter)
About the near-infrared absorption of the ND filter of Example 1, the transmission spectrum (transmittance) from 1500 nm to 2500 nm was measured using an ultraviolet-visible spectrophotometer (SolidSpec-3700DUV, Shimadzu Corporation). The infrared region from 3000 nm to 4000 nm was measured using a Fourier transform infrared spectrophotometer (FT-IR) (Spectrum 100, PerkinElmer). The absorption of water contained in the atmosphere appears in the wavelength range of 2500 nm to 3000 nm. Since the amount of moisture (humidity) of the measurement unit in which the measurement sample is arranged changes due to the influence of heat or the like of the measurement device, it is not possible to normalize the transmittance in the wavelength range of 2500 nm to 3000 nm. For this reason, in this specification, although the transmittance | permeability of the area | region of wavelength 2500nm-3000nm is not shown, the area | region of wavelength 2500nm-3000nm from the measurement result of the transmittance | permeability in the area | region of the wavelength 1500-2500nm and 3000-4000nm shown below. It will be understood that the transmittance is uniform.

図3に実施例1のNDフィルタの波長1500〜2500nmでの透過率、図4に実施例1のNDフィルタの波長3000〜4000nmでの透過率を示す。図3、4の結果から、実施例1のNDフィルタは、1500〜2500nmおよび、3000〜4000nmの領域において、最小透過率92.9%、最大透過率97.2%であり、最大透過率と最小透過率の差は4.3%であった。 FIG. 3 shows the transmittance of the ND filter of Example 1 at a wavelength of 1500 to 2500 nm, and FIG. 4 shows the transmittance of the ND filter of Example 1 at a wavelength of 3000 to 4000 nm. From the results of FIGS. 3 and 4, the ND filter of Example 1 has a minimum transmittance of 92.9% and a maximum transmittance of 97.2% in the 1500 to 2500 nm and 3000 to 4000 nm regions. The difference in minimum transmittance was 4.3%.

(NDフィルタの共鳴ラマン散乱測定)
実施例1のNDフィルタについて、共鳴ラマン散乱測定を行った。RENISYOUラマン装置により、532nm波長のレーザーを用いて測定したラマンスペクトルを図5に示す。1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.12であった。また、2550〜2800cm−1の領域にピークがあり、最大強度(2Dmax)と最小強度(2Dmin)の比率 2Dmax/2Dminは20.68であった。
(Resonance Raman scattering measurement of ND filter)
Resonance Raman scattering measurement was performed on the ND filter of Example 1. FIG. 5 shows a Raman spectrum measured using a 532 nm wavelength laser with a RENISYO Raman apparatus. The minimum intensity values at 1480 cm -1 or 1560 cm -1 in the range of maximum intensity value in the range of G 1, 1560 cm -1 or 1600 cm -1 or less is taken as G 2, G 1 / G The 2 ratio was 0.12. Moreover, there was a peak in the region of 2550 to 2800 cm −1 , and the ratio 2D max / 2D min between the maximum intensity (2D max ) and the minimum intensity (2D min ) was 20.68.

(実施例2)
圧延銅箔(33μm、福田金属箔粉工業)をプラズマCVD装置に配置し、真空ポンプによりプラズマCVD装置内を1.0−5Paとした。アルゴンガス 10sccm、メタンガス 30sccm、水素ガス 20sccmをプラズマCVD装置へ導入し、圧力調整バルブで成膜時の圧力を10Paに調整した。グラフェン膜の成膜には、出力1.5kWに設定した高周波電源からマイクロ波を、導波管を用いてプラズマCVD装置内に導入し、プラズマを発生させることで銅箔上にグラフェン膜を成膜した。プラズマ照射時間は60secとした。グラフェン膜を形成した銅箔を塩化第二鉄10%水溶液に入れて銅箔を溶解し、イオン交換水で洗浄した。銅箔を除去したグラフェン膜を石英ガラス(USD−300大興製作所)へ4枚積層して、実施例2のNDフィルタを作製した。
(Example 2)
Rolled copper foil (33 μm, Fukuda Metal Foil Powder Industry) was placed in a plasma CVD apparatus, and the inside of the plasma CVD apparatus was set to 1.0 −5 Pa by a vacuum pump. Argon gas 10 sccm, methane gas 30 sccm, and hydrogen gas 20 sccm were introduced into the plasma CVD apparatus, and the pressure during film formation was adjusted to 10 Pa with a pressure adjusting valve. In forming the graphene film, a microwave is introduced into a plasma CVD apparatus using a waveguide from a high-frequency power source set to an output of 1.5 kW, and plasma is generated to form the graphene film on the copper foil. Filmed. The plasma irradiation time was 60 sec. The copper foil on which the graphene film was formed was put into a 10% ferric chloride aqueous solution to dissolve the copper foil, and washed with ion-exchanged water. Four graphene films from which the copper foil was removed were laminated on quartz glass (USD-300 Daiko Seisakusho) to produce an ND filter of Example 2.

(NDフィルタの近赤外領域及び赤外領域の透過率測定)
実施例2のNDフィルタの近赤外及び赤外領域の透過率を、実施例1に記載の方法で測定した。図6に実施例2のNDフィルタの波長1500〜2500nmでの透過率、図7に実施例2のNDフィルタの波長3000〜4000nmでの透過率を示す。図6、7の結果から、実施例2のNDフィルタは、1500〜2500nmおよび、3000〜4000nmの領域において、最小透過率72.9%、最大透過率79.6%であり、最大透過率と最小透過率の差は6.7%であった。
(Measurement of transmittance in the near infrared region and infrared region of the ND filter)
The transmittance in the near infrared and infrared regions of the ND filter of Example 2 was measured by the method described in Example 1. FIG. 6 shows the transmittance of the ND filter of Example 2 at a wavelength of 1500 to 2500 nm, and FIG. 7 shows the transmittance of the ND filter of Example 2 at a wavelength of 3000 to 4000 nm. From the results of FIGS. 6 and 7, the ND filter of Example 2 has a minimum transmittance of 72.9% and a maximum transmittance of 79.6% in the 1500 to 2500 nm and 3000 to 4000 nm regions. The difference in minimum transmittance was 6.7%.

(NDフィルタの共鳴ラマン散乱測定)
また、実施例2のNDフィルタのラマンスペクトルを、実施例1と同様に測定した。図8にNDフィルタのラマンスペクトルを示す。1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.35であった。また、実施例1と同様に2550〜2800cm−1の領域にピークがあり、最大の強度値(2Dmax)と最小の強度値(2Dmin)の比率 2Dmax/2Dminは2.03であった。
(Resonance Raman scattering measurement of ND filter)
Further, the Raman spectrum of the ND filter of Example 2 was measured in the same manner as in Example 1. FIG. 8 shows the Raman spectrum of the ND filter. The minimum intensity values at 1480 cm -1 or 1560 cm -1 in the range of maximum intensity value in the range of G 1, 1560 cm -1 or 1600 cm -1 or less is taken as G 2, G 1 / G The 2 ratio was 0.35. Further, as in Example 1, there is a peak in the region of 2550 to 2800 cm −1 , and the ratio of the maximum intensity value (2D max ) to the minimum intensity value (2D min ) 2D max / 2D min is 2.03. It was.

(実施例3)
実施例2の銅箔を除去したグラフェン膜を石英ガラスへ乗せる回数を5回繰り返し、グラフェン膜を5枚積層したこと以外は、実施例2と同様の方法でNDフィルタを作製した。
(Example 3)
An ND filter was produced in the same manner as in Example 2 except that the number of times the graphene film from which the copper foil of Example 2 was removed was placed on quartz glass was repeated 5 times and five graphene films were laminated.

(NDフィルタの近赤外領域及び赤外領域の透過率測定)
実施例3のNDフィルタの近赤外及び赤外領域の透過率を、実施例1に記載の方法で測定した。図9に実施例3のNDフィルタの波長1500〜2500nmでの透過率、図10に実施例3のNDフィルタの波長3000〜4000nmでの透過率を示す。図9、10の結果から、実施例3のNDフィルタは、1500〜2500nmおよび、3000〜4000nmの領域において、最小透過率52.3%、最大透過率59.0%であり、最大透過率と最小透過率の差は6.7%であった。
(Measurement of transmittance in the near infrared region and infrared region of the ND filter)
The transmittance in the near infrared and infrared regions of the ND filter of Example 3 was measured by the method described in Example 1. FIG. 9 shows the transmittance of the ND filter of Example 3 at a wavelength of 1500 to 2500 nm, and FIG. 10 shows the transmittance of the ND filter of Example 3 at a wavelength of 3000 to 4000 nm. From the results of FIGS. 9 and 10, the ND filter of Example 3 has a minimum transmittance of 52.3% and a maximum transmittance of 59.0% in the 1500 to 2500 nm and 3000 to 4000 nm regions. The difference in minimum transmittance was 6.7%.

(NDフィルタの共鳴ラマン散乱測定)
実施例3のNDフィルタのラマンスペクトルを、ラマンスペクトルを実施例1と同様に測定した。図11に実施例3のNDフィルタのラマンスペクトルを示す。1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.28であった。また、実施例1と同様に2550〜2800cm−1の領域にピークがあり、最大の強度値(2Dmax)と最小の強度値(2Dmin)の比率 2Dmax/2Dminは2.66であった。
(Resonance Raman scattering measurement of ND filter)
The Raman spectrum of the ND filter of Example 3 was measured in the same manner as in Example 1. FIG. 11 shows the Raman spectrum of the ND filter of Example 3. The minimum intensity values at 1480 cm -1 or 1560 cm -1 in the range of maximum intensity value in the range of G 1, 1560 cm -1 or 1600 cm -1 or less is taken as G 2, G 1 / G The 2 ratio was 0.28. Further, as in Example 1, there is a peak in the region of 2550 to 2800 cm −1 , and the ratio 2D max / 2D min between the maximum intensity value (2D max ) and the minimum intensity value (2D min ) is 2.66. It was.

(実施例4)
実施例2のプラズマ照射時間を600secに変更し、また、銅箔を除去したグラフェン膜を石英ガラスに1枚配置したこと以外は、実施例2と同様の条件で実施例4のNDフィルタを作製した。
Example 4
The ND filter of Example 4 was produced under the same conditions as in Example 2 except that the plasma irradiation time of Example 2 was changed to 600 sec and one graphene film from which the copper foil was removed was placed on quartz glass. did.

(NDフィルタの近赤外領域及び赤外領域の透過率測定)
実施例4のNDフィルタの近赤外及び赤外領域の透過率を、実施例1に記載の方法で測定した。図12に実施例4のNDフィルタの波長1500〜2500nmでの透過率、図13に実施例4のNDフィルタの波長3000〜4000nmでの透過率を示す。図12、13の結果から、実施例4のNDフィルタは、1500〜2500nmおよび、3000〜4000nmの領域において、最小透過率44.1%、最大透過率51.5%であり、最大透過率と最小透過率の差は7.4%であった。
(Measurement of transmittance in the near infrared region and infrared region of the ND filter)
The transmittance in the near infrared and infrared regions of the ND filter of Example 4 was measured by the method described in Example 1. FIG. 12 shows the transmittance of the ND filter of Example 4 at a wavelength of 1500 to 2500 nm, and FIG. 13 shows the transmittance of the ND filter of Example 4 at a wavelength of 3000 to 4000 nm. From the results of FIGS. 12 and 13, the ND filter of Example 4 has a minimum transmittance of 44.1% and a maximum transmittance of 51.5% in the 1500 to 2500 nm and 3000 to 4000 nm regions. The difference in minimum transmittance was 7.4%.

(NDフィルタの共鳴ラマン散乱測定)
実施例4のNDフィルタのラマンスペクトルを、ラマンスペクトルを実施例1と同様に測定した。図14に実施例4のNDフィルタのラマンスペクトルを示す。1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.14であった。また、実施例1と同様に2550〜2800cm−1の領域にピークがあり、最大の強度値(2Dmax)と最小の強度値(2Dmin)の比率 2Dmax/2Dminは4.93であった。
(Resonance Raman scattering measurement of ND filter)
The Raman spectrum of the ND filter of Example 4 was measured in the same manner as in Example 1. FIG. 14 shows the Raman spectrum of the ND filter of Example 4. The minimum intensity values at 1480 cm -1 or 1560 cm -1 in the range of maximum intensity value in the range of G 1, 1560 cm -1 or 1600 cm -1 or less is taken as G 2, G 1 / G The 2 ratio was 0.14. Further, as in Example 1, there is a peak in the region of 2550 to 2800 cm −1 , and the ratio 2D max / 2D min between the maximum intensity value (2D max ) and the minimum intensity value (2D min ) is 4.93. It was.

(実施例5)
ニッケル箔(30μm、ニラコ社)を石英ガラスチューブ内に設置し、メタンガス 10sccmとアルゴンガス 50sccmを流しながら圧力バルブで100Paに圧力を調整した。ガラスチューブにヒーターを巻きつけて銅箔を約1000℃で30分間加熱し、ニッケル箔上にグラフェン膜を形成した。グラフェン膜付きニッケル箔を塩化第二鉄10%水溶液に入れて銅箔を溶解し、イオン交換水で洗浄した。ニッケル箔を除去したグラフェン膜を石英ガラス(USD−300、大興製作所)へ1枚配置し、実施例5のNDフィルタを作製した。
(Example 5)
Nickel foil (30 μm, Niraco) was placed in a quartz glass tube, and the pressure was adjusted to 100 Pa with a pressure valve while flowing 10 sccm of methane gas and 50 sccm of argon gas. A heater was wrapped around the glass tube and the copper foil was heated at about 1000 ° C. for 30 minutes to form a graphene film on the nickel foil. The nickel foil with graphene film was placed in a 10% aqueous solution of ferric chloride to dissolve the copper foil, and washed with ion-exchanged water. One graphene film from which the nickel foil was removed was placed on quartz glass (USD-300, Daiko Seisakusho), and an ND filter of Example 5 was produced.

(NDフィルタの近赤外領域及び赤外領域の透過率測定)
実施例5のNDフィルタの近赤外及び赤外領域の透過率を、実施例1に記載の方法で測定した。図15に実施例5のNDフィルタの波長1500〜2500nmでの透過率、図16に実施例5のNDフィルタの波長3000〜4000nmでの透過率を示す。図15、16の結果から、実施例5のNDフィルタは、1500〜2500nmおよび、3000〜4000nmの領域において、最小透過率17.7%、最大透過率19.3%であり、最大透過率と最小透過率の差は1.6%であった。
(Measurement of transmittance in the near infrared region and infrared region of the ND filter)
The transmittance in the near infrared and infrared regions of the ND filter of Example 5 was measured by the method described in Example 1. FIG. 15 shows the transmittance of the ND filter of Example 5 at a wavelength of 1500 to 2500 nm, and FIG. 16 shows the transmittance of the ND filter of Example 5 at a wavelength of 3000 to 4000 nm. From the results of FIGS. 15 and 16, the ND filter of Example 5 has a minimum transmittance of 17.7% and a maximum transmittance of 19.3% in the 1500 to 2500 nm and 3000 to 4000 nm regions. The difference in minimum transmittance was 1.6%.

(NDフィルタの共鳴ラマン散乱測定)
実施例5のNDフィルタのラマンスペクトルを、ラマンスペクトルを実施例1と同様に測定した。図17に実施例5のNDフィルタのラマンスペクトルを示す。1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.07であった。また、2550〜2800cm−1の領域にピークがあり、最大の強度値(2Dmax)と最小の強度値(2Dmin)の比率 2Dmax/2Dminは7.27であった。
(Resonance Raman scattering measurement of ND filter)
The Raman spectrum of the ND filter of Example 5 was measured in the same manner as in Example 1. FIG. 17 shows the Raman spectrum of the ND filter of Example 5. The minimum intensity values at 1480 cm -1 or 1560 cm -1 in the range of maximum intensity value in the range of G 1, 1560 cm -1 or 1600 cm -1 or less is taken as G 2, G 1 / G The 2 ratio was 0.07. Moreover, there was a peak in the region of 2550 to 2800 cm −1 , and the ratio 2D max / 2D min between the maximum intensity value (2D max ) and the minimum intensity value (2D min ) was 7.27.

(比較例1)
電子銃による黒鉛粉末の蒸発と高周波電源で、Arガスとカーボン粒子の一部イオン化を行い、石英ガラスへ約150nmの炭素膜を製膜し、比較例1のNDフィルタを作製した。
(Comparative Example 1)
Graphite powder was evaporated with an electron gun and Ar gas and carbon particles were partially ionized with a high frequency power source, and a carbon film of about 150 nm was formed on quartz glass to produce an ND filter of Comparative Example 1.

(NDフィルタの近赤外領域及び赤外領域の透過率測定)
比較例1のNDフィルタの近赤外及び赤外領域の透過率を、実施例1に記載の方法で測定した。図18に比較例1のNDフィルタの波長1500〜2500nmでの透過率、図19に比較例1のNDフィルタの波長3000〜4000nmでの透過率を示す。図18、19の結果から、比較例1のNDフィルタは、1500〜2500nmおよび、3000〜4000nmの領域において、最小透過率84.2%、最大透過率94.0%であり、最大透過率と最小透過率の差は9.8%であった。
(Measurement of transmittance in the near infrared region and infrared region of the ND filter)
The transmittance in the near infrared and infrared regions of the ND filter of Comparative Example 1 was measured by the method described in Example 1. FIG. 18 shows the transmittance of the ND filter of Comparative Example 1 at a wavelength of 1500 to 2500 nm, and FIG. 19 shows the transmittance of the ND filter of Comparative Example 1 at a wavelength of 3000 to 4000 nm. From the results of FIGS. 18 and 19, the ND filter of Comparative Example 1 has a minimum transmittance of 84.2% and a maximum transmittance of 94.0% in the 1500 to 2500 nm and 3000 to 4000 nm regions. The difference in minimum transmittance was 9.8%.

(NDフィルタの共鳴ラマン散乱測定)
比較例1のNDフィルタのラマンスペクトルを、ラマンスペクトルを実施例1と同様に測定した。図20に比較例1のNDフィルタのラマンスペクトルを示す。1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.89であった。また、2550〜2800cm−1の領域にピークがあり、最大の強度値(2Dmax)と最小の強度値(2Dmin)の比率 2Dmax/2Dminは1.24であった。
(Resonance Raman scattering measurement of ND filter)
The Raman spectrum of the ND filter of Comparative Example 1 was measured in the same manner as in Example 1. FIG. 20 shows the Raman spectrum of the ND filter of Comparative Example 1. The minimum intensity values at 1480 cm -1 or 1560 cm -1 in the range of maximum intensity value in the range of G 1, 1560 cm -1 or 1600 cm -1 or less is taken as G 2, G 1 / G The 2 ratio was 0.89. Moreover, there was a peak in the region of 2550 to 2800 cm −1 , and the ratio 2D max / 2D min between the maximum intensity value (2D max ) and the minimum intensity value (2D min ) was 1.24.

(比較例2)
蝋燭(大創産業)に火をつけ、石英ガラスをその火に近づけることで炭素膜を石英ガラスに形成し、比較例2のNDフィルタを作製した。
(Comparative Example 2)
A ND filter of Comparative Example 2 was fabricated by setting a candle on fire (Taisho Sangyo) and forming a carbon film on the quartz glass by bringing the quartz glass close to the fire.

(NDフィルタの近赤外領域及び赤外領域の透過率測定)
比較例2のNDフィルタの近赤外及び赤外領域の透過率を、実施例1に記載の方法で測定した。図21に比較例2のNDフィルタの波長1500〜2500nmでの透過率、図22に比較例2のNDフィルタの波長3000〜4000nmでの透過率を示す。図21、22の結果から、比較例2のNDフィルタは、1500〜2500nmおよび、3000〜4000nmの領域において、最小透過率57.3%、最大透過率86.8%であり、最大透過率と最小透過率の差は29.5%であった。
(Measurement of transmittance in the near infrared region and infrared region of the ND filter)
The transmittance in the near infrared and infrared regions of the ND filter of Comparative Example 2 was measured by the method described in Example 1. FIG. 21 shows the transmittance of the ND filter of Comparative Example 2 at a wavelength of 1500 to 2500 nm, and FIG. 22 shows the transmittance of the ND filter of Comparative Example 2 at a wavelength of 3000 to 4000 nm. From the results of FIGS. 21 and 22, the ND filter of Comparative Example 2 has a minimum transmittance of 57.3% and a maximum transmittance of 86.8% in the 1500 to 2500 nm and 3000 to 4000 nm regions. The difference in minimum transmittance was 29.5%.

(NDフィルタの共鳴ラマン散乱測定)
比較例2のNDフィルタのラマンスペクトルを、ラマンスペクトルを実施例1と同様に測定した。図23に比較例2のNDフィルタのラマンスペクトルを示す。1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.69であった。また、2550〜2800cm−1の領域にピークがあり、最大の強度値(2Dmax)と最小の強度値(2Dmin)の比率 2Dmax/2Dminは1.13であった。
(Resonance Raman scattering measurement of ND filter)
The Raman spectrum of the ND filter of Comparative Example 2 was measured in the same manner as in Example 1. FIG. 23 shows the Raman spectrum of the ND filter of Comparative Example 2. The minimum intensity values at 1480 cm -1 or 1560 cm -1 in the range of maximum intensity value in the range of G 1, 1560 cm -1 or 1600 cm -1 or less is taken as G 2, G 1 / G The 2 ratio was 0.69. Moreover, there was a peak in the region of 2550 to 2800 cm −1 , and the ratio 2D max / 2D min between the maximum intensity value (2D max ) and the minimum intensity value (2D min ) was 1.13.

実施例1、2、3、4、5及び比較例1、2のNDフィルタの500〜2500nmおよび、3000〜4000nmの領域内の最小透過率、最大透過率、そして最大透過率と最小透過率の差を表1にまとめる。また、表2に、実施例1、2、3、4、5及び比較例1、2の1480cm−1以上1560cm−1以下の範囲内での最小の強度値(G)と1560cm−1以上1600cm−1以下の範囲内での最大の強度値(G)のG/G比、2550〜2800cm−1領域の最大の強度値(2Dmax)と最小の強度値(2Dmin)の比率 2Dmax/2Dminを示す。 The minimum transmittance, the maximum transmittance, and the maximum transmittance and the minimum transmittance in the region of 500 to 2500 nm and 3000 to 4000 nm of the ND filters of Examples 1, 2, 3, 4, 5 and Comparative Examples 1 and 2. The differences are summarized in Table 1. Further, in Table 2, the minimum intensity value in the range 1480 cm -1 or 1560 cm -1 The following Examples 1, 2, 3, 4 and Comparative Examples 1, 2 (G 1) and 1560 cm -1 or more G 1 / G 2 ratio of maximum intensity value (G 2 ) within a range of 1600 cm −1 or less, maximum intensity value (2D max ) and minimum intensity value (2D min ) of 2550-2800 cm −1 region The ratio 2D max / 2D min is shown.

Figure 2016071120
Figure 2016071120

Figure 2016071120
Figure 2016071120

表1より実施例1〜5は最大透過率と最小透過率の差は8.0以下と小さく、1500〜4000nmにおいて波長依存の少ない光吸収材料層が形成されたNDフィルタである。一方、比較例1と2のNDフィルタは9.8以上と最大透過率と最小透過率の差が大きい。表2のG/G比は値がより小さいほど結晶性が良く、2Dmax/2Dminは値がより大きいほどsp2平面構造の乱れが小さい。実施例1〜5はG/G2比が0.35以下、2Dmax/2Dminは2以上であり、比較例1と2はG/G比が0.69以上、2Dmax/2Dminは1.24以下である。比較例1と2に比べて、実施例1〜5がグラファイトやグラフェン等に観られる結晶構造を有し、構造の乱れも少ないことが解った。 From Table 1, Examples 1 to 5 are ND filters in which the difference between the maximum transmittance and the minimum transmittance is as small as 8.0 or less, and a light absorbing material layer having a small wavelength dependence is formed at 1500 to 4000 nm. On the other hand, the ND filters of Comparative Examples 1 and 2 have a large difference between the maximum transmittance and the minimum transmittance of 9.8 or more. The smaller the value of the G 1 / G 2 ratio in Table 2, the better the crystallinity, and the larger the 2D max / 2D min value, the smaller the disorder of the sp2 planar structure. In Examples 1 to 5, the G 1 / G 2 ratio is 0.35 or less, 2D max / 2D min is 2 or more, and in Comparative Examples 1 and 2, the G 1 / G 2 ratio is 0.69 or more and 2D max / 2 2D min is 1.24 or less. Compared to Comparative Examples 1 and 2, it was found that Examples 1 to 5 had a crystal structure observed in graphite, graphene, and the like, and the disorder of the structure was small.

1500〜4000nmにおいて波長依存の少ないNDフィルタを作製する際には、共鳴ラマン散乱測定法によりG/G比が0.5以下、2Dmax/2Dminが1.5以上となるグラフェン膜を基材へ形成することで、1500〜4000nmにおいて波長依存の少ない光吸収材料層を有するNDフィルタを提供できることが明らかとなった。 When producing an ND filter with less wavelength dependence at 1500 to 4000 nm, a graphene film having a G 1 / G 2 ratio of 0.5 or less and a 2D max / 2D min of 1.5 or more by a resonance Raman scattering measurement method is used. It became clear that the ND filter having a light-absorbing material layer with little wavelength dependence at 1500 to 4000 nm can be provided by forming on the substrate.

1:グラフェン膜、10:NDフィルタ、11:基材、13:光吸収材料層、20:NDフィルタ、23:光吸収材料層、25:光吸収材料層 1: graphene film, 10: ND filter, 11: base material, 13: light absorbing material layer, 20: ND filter, 23: light absorbing material layer, 25: light absorbing material layer

Claims (6)

波長1500nm以上2500nm以下における透過率の変化が10%以内の基材と、
前記基材表面に配置された光吸収材料層と、を備え、
前記光吸収材料層は複数のグラフェン膜が積層した構造を有し、波長550nmの透過率が1%以上90%以下であり、且つ、波長1500nm以上4000nm以下における透過率の最小値T(min)(1500−4000)と最大値T(max)(1500−4000)との差T(range)が8.0%以下を満たすことを特徴とするNDフィルタ。
A base material having a change in transmittance within a wavelength of 1500 nm or more and 2500 nm or less within 10%;
A light-absorbing material layer disposed on the substrate surface,
The light absorbing material layer has a structure in which a plurality of graphene films are laminated, the transmittance at a wavelength of 550 nm is 1% to 90%, and the minimum transmittance T (min) at a wavelength of 1500 nm to 4000 nm. An ND filter characterized in that a difference T (range) between (1500-4000) and a maximum value T (max) (1500-4000) satisfies 8.0% or less.
前記光吸収材料層は、共鳴ラマン散乱測定法により測定された1480cm−1以上1560cm−1以下の範囲内での最小の強度値をG、1560cm−1以上1600cm−1以下の範囲内での最大の強度値をGとしたときに、G/G比が0.5で以下あることを特徴とする請求項1に記載のNDフィルタ。 The light-absorbing material layer, the minimum intensity value within been 1480 cm -1 or 1560 cm -1 or less in a range determined by resonance Raman scattering measurement method G 1, at 1560 cm -1 or 1600 cm -1 in the range maximum intensity value is taken as G 2, ND filter according to claim 1, G 1 / G 2 ratio, characterized in that below 0.5. 前記光吸収材料層は、共鳴ラマン散乱測定法により測定された2550cm−1以上2800cm−1以下の範囲内での最大の強度値を2Dmax、最小の強度値を2Dminとしたときに、2Dmax/2Dmin比が1.5以上であることを特徴とする請求項1又は2に記載のNDフィルタ。 The light-absorbing material layer, when the maximum intensity value within been 2550 cm -1 or 2800 cm -1 or less in a range determined by resonance Raman scattering measurement method was 2D max, the minimum intensity value and 2D min, 2D The ND filter according to claim 1 or 2, wherein a max / 2D min ratio is 1.5 or more. 前記光吸収材料層は、マイクロ波表面波プラズマ化学気相成長法により形成されたグラフェン膜が積層した構造体であることを特徴とする請求項1乃至3の何れか一に記載のNDフィルタ。 The ND filter according to claim 1, wherein the light absorbing material layer is a structure in which graphene films formed by a microwave surface wave plasma chemical vapor deposition method are stacked. 前記基材と、前記光吸収材料層は、接着層を介さずに密着することを特徴とする請求項1乃至4の何れか一に記載のNDフィルタ。 The ND filter according to claim 1, wherein the base material and the light absorption material layer are in close contact with each other without an adhesive layer. 波長1500nm以上2500nm以下における前記基材の透過率が90%以上であることを特徴とする請求項1乃至5の何れか一に記載のNDフィルタ。 The ND filter according to any one of claims 1 to 5, wherein a transmittance of the substrate at a wavelength of 1500 nm to 2500 nm is 90% or more.
JP2014199889A 2014-09-30 2014-09-30 ND filter Pending JP2016071120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014199889A JP2016071120A (en) 2014-09-30 2014-09-30 ND filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014199889A JP2016071120A (en) 2014-09-30 2014-09-30 ND filter

Publications (1)

Publication Number Publication Date
JP2016071120A true JP2016071120A (en) 2016-05-09

Family

ID=55864555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014199889A Pending JP2016071120A (en) 2014-09-30 2014-09-30 ND filter

Country Status (1)

Country Link
JP (1) JP2016071120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514835A (en) * 2017-03-24 2020-05-21 ソウル大学校産学協力団Seoul National University R&Db Foundation Functional contact lens and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001686A1 (en) * 2008-07-01 2010-01-07 日本電気株式会社 Semiconductor device using grapheme-graphite film and method of fabricating the same
WO2011115197A1 (en) * 2010-03-17 2011-09-22 独立行政法人産業技術総合研究所 Manufacturing method for transparent conductive carbon film, and transparent conductive carbon film
US20130027778A1 (en) * 2011-07-27 2013-01-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Broadband Absorptive Neutral Density Optical Filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001686A1 (en) * 2008-07-01 2010-01-07 日本電気株式会社 Semiconductor device using grapheme-graphite film and method of fabricating the same
WO2011115197A1 (en) * 2010-03-17 2011-09-22 独立行政法人産業技術総合研究所 Manufacturing method for transparent conductive carbon film, and transparent conductive carbon film
US20130027778A1 (en) * 2011-07-27 2013-01-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Broadband Absorptive Neutral Density Optical Filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514835A (en) * 2017-03-24 2020-05-21 ソウル大学校産学協力団Seoul National University R&Db Foundation Functional contact lens and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2011162331A1 (en) Method for producing wavelength plate
CN212515117U (en) Optical filter
KR101324523B1 (en) carbon nanotube sheets and polarizer using thereof
Wu Multichannel absorption enhancement in graphene based on metal-photonic crystal hetero-structure
JP2015125280A (en) Grid polarizing element, method and apparatus for emitting polarized ultraviolet light, method for manufacturing substrate having optical alignment layer and optical alignment device
Yang et al. Visible-infrared (0.4–20 μm) ultra-broadband absorber based on cascade film stacks
CN111235527B (en) Method for manufacturing optical thin film, film system structure, film coating method and laser reflector
Saleki et al. Omnidirectional broadband THz filter based on a one-dimensional Thue–Morse quasiperiodic structure containing graphene nanolayers
WO2016190259A1 (en) Low-reflection graphene and low-reflection graphene for optical member use
CN108196326B (en) Broadband wave absorber based on black phosphorus and super surface
US8164727B2 (en) Liquid crystal display with refractive index matched electrodes
JP2016071120A (en) ND filter
CN109324361A (en) A kind of closely perfect absorber of ultra wide wave band and its manufacturing method
JP2012042726A (en) Terahertz band optical element
KR102068516B1 (en) Optical filter
JP2011221412A (en) Wire grid polarization plate
Gao et al. Fabrication and optical properties of two-dimensional ZnO hollow half-shell arrays
Liu et al. Electrically tunable switching based on photonic-crystal waveguide loaded graphene stacks
Chai et al. Modulation of photoelectric properties of indium tin oxide thin films via oxygen control, and its application to epsilon-near-zero properties for an infrared absorber
Li et al. Hemi‐Shell Arrays Harvesting Ultra‐Broadband Light
Srivastava Electrically controlled reflection band and tunable defect modes in one-dimensional photonic crystal by using potassium titanyl phosphate (KTP) crystal
Hou et al. Analysis of angular-selective performances of obliquely deposited birefringent thin film
Mukherjee et al. Aluminium coated carbon nanotube film for wavelength-selective surface
JP2015092282A (en) Manufacturing method for wavelength plate
Shi et al. Infrared anti-reflection film device for electromagnetic interference shielding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113