JP2016070908A - Frequency measurement device, frequency measurement method and oscillation type sensor - Google Patents

Frequency measurement device, frequency measurement method and oscillation type sensor Download PDF

Info

Publication number
JP2016070908A
JP2016070908A JP2014242787A JP2014242787A JP2016070908A JP 2016070908 A JP2016070908 A JP 2016070908A JP 2014242787 A JP2014242787 A JP 2014242787A JP 2014242787 A JP2014242787 A JP 2014242787A JP 2016070908 A JP2016070908 A JP 2016070908A
Authority
JP
Japan
Prior art keywords
frequency
section
measuring instrument
appropriate
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014242787A
Other languages
Japanese (ja)
Other versions
JP5717912B1 (en
Inventor
雅紀 廣石
Masanori Hiroishi
雅紀 廣石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014242787A priority Critical patent/JP5717912B1/en
Application granted granted Critical
Publication of JP5717912B1 publication Critical patent/JP5717912B1/en
Publication of JP2016070908A publication Critical patent/JP2016070908A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique which can widen a section where frequency can be properly measured without making frequency conversion adjustable even while using a constitution hardly being large size.SOLUTION: A heterodyne unit 2 executes rise conversion forming a sum frequency component fs+fr with respect to a measured frequency fs and down conversion forming a differential frequency component |fs-fr|. If fs is too high to perform measurement with a first measuring instrument A, the differential frequency component |fs-fr| passes through a band pass filter 3 and if fs is too low to perform measurement with the first measuring instrument A, the sum frequency component fs+fr passes through the band pass filter 3 and proper measurement for each component can be performed with a second measuring instrument B. A processor 4 specifies which one of the sum frequency component fs+fr and the differential frequency component |fs-fr| passes through the band pass filter 3 from a measurement result of the first measuring instrument A and performs calculation of corresponding inverse conversion on a frequency represented by a measurement value of the second measuring instrument B in order to calculate fs.SELECTED DRAWING: Figure 1

Description

本発明は,被計測信号に周波数変換を施す手順を含む周波数計測技術と,これを用いたセンシング技術とに関する。   The present invention relates to a frequency measurement technique including a procedure for performing frequency conversion on a signal under measurement, and a sensing technique using the same.

周波数を計測するための計測器として,例えば,レシプロカル方式の周波数カウンタ(以下,レシプロカルカウンタという。)が用いられている。   As a measuring instrument for measuring the frequency, for example, a reciprocal frequency counter (hereinafter referred to as a reciprocal counter) is used.

図12(A)に示すように,レシプロカルカウンタは,被計測信号Sの周期TあたりのクロックパルスCLKの数をカウントする。カウント値が周期Tの長さを表すので,その逆数によって周波数を特定できる。   As shown in FIG. 12A, the reciprocal counter counts the number of clock pulses CLK per period T of the signal under measurement S. Since the count value represents the length of the period T, the frequency can be specified by its reciprocal.

この方式では,被計測信号Sの周波数が高い程,カウント数が減るため分解能が低下し,被計測信号Sの周波数が低い程,1回の計測に要する時間が長期化する。このため,兼ね合いを考慮し,周波数の計測範囲を或る有限区間に限ることが望まれる場合がある。   In this method, the higher the frequency of the signal under measurement S, the lower the resolution because the number of counts decreases, and the lower the frequency of the signal under measurement S, the longer the time required for one measurement. For this reason, it may be desired to limit the frequency measurement range to a certain finite interval in consideration of trade-offs.

ここでは,レシプロカルカウンタについて述べたが,他の計測器でも同様,その計測器が所望の性能を発揮できる適正な計測を保証するために,或る有限区間(以下,適正区間という。)内での使用が推奨される場合がある。   Here, the reciprocal counter has been described, but in the same manner with other measuring instruments, in order to guarantee appropriate measurement that the measuring instrument can exhibit the desired performance, within a certain finite interval (hereinafter referred to as the appropriate interval). May be recommended.

特許文献1〜3に開示されるように,適正区間外の周波数を計測したければ,計測に先立って,被計測信号に既知の周波数変換を施せばよい。変換後の周波数が適正区間に属するような周波数変換を選ぶことで,適正区間での計測が可能となり,対応する逆変換の演算を用いて,被計測信号の周波数を算出できる。   As disclosed in Patent Documents 1 to 3, if a frequency outside the appropriate section is to be measured, a known frequency conversion may be performed on the signal under measurement prior to measurement. By selecting the frequency conversion so that the converted frequency belongs to the appropriate section, measurement in the appropriate section becomes possible, and the frequency of the signal to be measured can be calculated using the corresponding inverse conversion operation.

特開2014-9979号公報JP 2014-9979 特開2007-10593号公報JP 2007-10593 特開2009-5259号公報JP 2009-5259 特開S57-52837号公報JP S57-52837

特許文献1〜3の技術では,適正区間より広い区間にわたって周波数の適正な計測を可能とするには,周波数変換を可変とする構成が必須である。   In the techniques of Patent Documents 1 to 3, a configuration in which the frequency conversion is variable is essential in order to enable proper measurement of the frequency over a wider section than the appropriate section.

特許文献4は,計測対象の物理量が変動しうる区間を,複数の計測器で分担して受けもつ思想を開示する。この思想にならえば,周波数変換を可変とする必要はないが,例えば,適正区間を両側に拡張したい場合,適正区間を受けもつ計測器,適正区間より低域の区間を受けもつ計測器,及び適正区間より高域の区間を受けもつ計測器の3つが必要となり,用いる構成が大型化する。   Patent Document 4 discloses a concept in which a section in which a physical quantity to be measured can vary is shared by a plurality of measuring instruments. According to this idea, it is not necessary to make the frequency conversion variable. For example, when it is desired to extend the appropriate section to both sides, a measuring instrument that handles the proper section, a measuring instrument that handles a section lower than the proper section, and Three measuring instruments that handle the higher section than the appropriate section are required, and the configuration to be used increases.

本発明の目的は,大型化しにくい構成を用いながら,周波数変換を可変とせずとも,周波数を適正に計測できる区間を広げうる技術を提供することである。   An object of the present invention is to provide a technique capable of expanding a section in which a frequency can be appropriately measured without using a variable frequency conversion while using a configuration that is difficult to increase in size.

本発明の一観点によれば,(a)被計測信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を第1の計測器で計測し,その計測値が第1の適正区間の周波数を表す場合に,その計測値によって前記被計測信号の周波数を特定する手順と,(b)前記手順(a)の前又は後になされる手順であって,前記第1の適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,第2の適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記第2の適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,前記被計測信号に施すことにより中間信号を形成し,その中間信号における前記第2の適正区間の周波数成分の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を第2の計測器で計測し,その第2の計測器の計測値と,前記第2の適正区間の周波数成分を形成した周波数変換として,前記第1〜第Nの周波数変換から特定した周波数変換であって,前記被計測信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を前記第1の計測器で計測した結果を用いて特定した前記周波数変換の逆変換を行う演算とを用いて,前記被計測信号の周波数を算出する手順とを含む周波数計測方法が提供される。   According to one aspect of the present invention, (a) the number of repetitions of a signal to be measured per known period, or a period or a time width depending on the period is measured by a first measuring instrument, and the measured value is the first A procedure for specifying the frequency of the signal under measurement based on the measured value, and (b) a procedure performed before or after the procedure (a), wherein the first appropriate frequency When considering the first to Nth (N ≧ 2) extended intervals different from the interval, the i-th frequency conversion converts the frequency of the i-th extended interval to the value in the second appropriate interval. And the frequency in the expansion section of jth (where i and j are any natural numbers from 1 to N where i ≠ j) is converted to a value outside the second appropriate section. An intermediate signal is formed by applying the known first to Nth frequency conversions to the signal to be measured. The frequency of the second appropriate section in the inter-phase signal is measured with a second measuring instrument, the number of repetitions per known period, or the period or time width depending on the period, and the measured value of the second measuring instrument And a frequency conversion identified from the first to Nth frequency conversions as a frequency conversion forming the frequency component of the second appropriate section, the number of repetitions of the signal under measurement per known period, Or a procedure for calculating the frequency of the signal under measurement using an operation for performing an inverse transformation of the frequency transformation specified by using a period or a time width dependent on the period measured by the first measuring instrument. A frequency measurement method is provided.

本明細書において,或る区間と他の区間が異なるとは,それら区間の少なくともいずれか一方が,他方と重複しない区間をもつことをいう。但し,第1〜第Nの各拡張区間は,第1の適正区間と重複をもたず,かつ拡張区間どうしも重複をもたない概念とする。   In this specification, the fact that a certain section is different from another section means that at least one of the sections has a section that does not overlap with the other section. However, the first to Nth extended sections do not overlap with the first appropriate section, and the extended sections do not overlap each other.

被計測信号の周波数が属する拡張区間に対応した周波数変換の効果のみを,第2の計測器での計測に供するから,周波数変換を可変とせずとも,周波数を適正に計測できる区間を,第1〜第Nの拡張区間の分だけ広げうる。   Since only the effect of the frequency conversion corresponding to the extended section to which the frequency of the signal under measurement belongs is used for the measurement by the second measuring instrument, the section in which the frequency can be measured appropriately without changing the frequency conversion is the first. It can be expanded by the Nth expansion section.

第2の適正区間の周波数成分を形成した周波数変換を,第1の計測器を用いて特定するから,第1〜第Nの拡張区間の周波数の計測に,第2の計測器を共通して用いることができ,構成を大型化しにくくすることができる。   Since the frequency conversion which formed the frequency component of the 2nd appropriate area is specified using the 1st measuring instrument, the 2nd measuring instrument is shared in the measurement of the frequency of the 1st-Nth expansion section. It can be used, and the configuration can be made difficult to increase in size.

実施例による周波数計測装置の概念図,Conceptual diagram of the frequency measuring device according to the embodiment, バンドパスフィルタの利得を示す概念図,Conceptual diagram showing the gain of the bandpass filter, 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; 他の実施例による周波数計測装置の概念図,Conceptual diagram of a frequency measurement device according to another embodiment, 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; 第1〜第4の周波数変換を表す関数のグラフ,A graph of functions representing the first to fourth frequency transformations; プロセッサの処理手順を示すフローチャート,A flowchart showing the processing procedure of the processor; 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; さらに他の実施例による周波数計測装置の概念図,Further, a conceptual diagram of a frequency measuring device according to another embodiment, 計測器としての周波数カウンタの概念図,Conceptual diagram of a frequency counter as a measuring instrument, 実施例による発振型圧力センサの概念図。The conceptual diagram of the oscillation type pressure sensor by an Example.

図1に,実施例による周波数計測装置の概念図を示す。   In FIG. 1, the conceptual diagram of the frequency measuring device by an Example is shown.

分配器1が,被計測周波数fsをもつ被計測信号SAを,第1の計測器Aと,ヘテロダイン器2とに同時に与える。分配器1は,例えばノードで構成されうる。   The distributor 1 simultaneously supplies the signal to be measured SA having the frequency to be measured fs to the first measuring device A and the heterodyne device 2. The distributor 1 can be composed of nodes, for example.

第1の計測器Aは,レシプロカルカウンタで構成され,被計測信号SAの周期を,その周期あたりのクロックパルス数のカウントにより計測する。そのカウント値が,第1の計測器Aの計測値である。   The first measuring instrument A is composed of a reciprocal counter, and measures the period of the signal under measurement SA by counting the number of clock pulses per period. The count value is the measurement value of the first measuring instrument A.

ヘテロダイン器2は,局発信号源21と,混合器22とを含む。局発信号源21が,既知の周波数frをもつ局発信号を発する。混合器22が,その局発信号と被計測信号SAとを掛け算することで,周波数fs+frの和周波成分と,周波数|fs−fr|の差周波成分とをもつ中間信号を形成する。   The heterodyne device 2 includes a local oscillation signal source 21 and a mixer 22. The local signal source 21 generates a local signal having a known frequency fr. The mixer 22 multiplies the local signal and the signal to be measured SA to form an intermediate signal having a sum frequency component of frequency fs + fr and a difference frequency component of frequency | fs−fr |.

バンドパスフィルタ(以下,BPFと記す。)3に,その中間信号が入力される。BPF3は,固定された通過バンドをもつが,fsの値に応じて,和周波成分fs+frを通過させる場合もあり,差周波成分|fs−fr|を通過させる場合もある。   The intermediate signal is input to a band-pass filter (hereinafter referred to as BPF) 3. The BPF 3 has a fixed pass band, but the sum frequency component fs + fr may be allowed to pass or the difference frequency component | fs−fr | may be allowed to pass depending on the value of fs.

第2の計測器Bに,BPF3を通過した通過信号SBが入力される。第2の計測器Bもレシプロカルカウンタで構成され,通過信号SBの周期を,その周期あたりのクロックパルス数のカウントにより計測する。そのカウント値が,第2の計測器Bの計測値である。   The passing signal SB that has passed through the BPF 3 is input to the second measuring instrument B. The second measuring instrument B is also composed of a reciprocal counter, and measures the cycle of the passing signal SB by counting the number of clock pulses per cycle. The count value is the measurement value of the second measuring instrument B.

プロセッサ4が,第1及び第2の計測器A及びBから計測値を取得し,取得した計測値の逆数を求めること等により,被計測周波数fsを特定する。   The processor 4 acquires measured values from the first and second measuring instruments A and B, specifies the measured frequency fs by obtaining the reciprocal of the acquired measured values, and the like.

図2に,BPF3の利得の周波数依存性を模式的に示す。   FIG. 2 schematically shows the frequency dependence of the gain of BPF3.

図2(A)に示すように,BPF3の下側カットオフ周波数をfL,上側カットオフ周波数をfHとする。fL以上,fH以下の区間が,通過バンドPである。   As shown in FIG. 2A, the lower cutoff frequency of BPF 3 is fL, and the upper cutoff frequency is fH. The section between fL and fH is the pass band P.

本例では,第1の計測器Aで適正な計測を行える適正区間と,第2の計測器Bで適正な計測を行える適正区間とが等しく,その共通の適正区間Mが,通過バンドPとも等しい。   In this example, the appropriate interval in which the first measuring instrument A can perform an appropriate measurement is equal to the appropriate interval in which the second measuring instrument B can perform an appropriate measurement, and the common appropriate interval M is the same as the pass band P. equal.

通過バンドPの幅fH−fLが,局発信号の周波数frと等しい。このため,fsが区間P(=M)に属するとき,和周波成分fs+frと,差周波成分|fs−fr|の双方がBPF3で遮断され,通過信号SBがゼロとなりうる。そこで,fsが区間Pに属するときは,第1の計測器Aでfsの適正な計測を行える。   The width fH−fL of the pass band P is equal to the frequency fr of the local oscillation signal. Therefore, when fs belongs to the section P (= M), both the sum frequency component fs + fr and the difference frequency component | fs-fr | are blocked by the BPF 3, and the passing signal SB can be zero. Therefore, when fs belongs to the section P, the first measuring instrument A can appropriately measure fs.

図2(B)に示すように,fsが,適正区間Mの上限値fHより高くても,fH+fr以下であれば,差周波成分|fs−fr|がBPF3を通過する。適正区間Mの高域側に隣接するこの区間H(fH<fs≦fH+fr)を上側拡張区間と呼ぶことにする。   As shown in FIG. 2 (B), even if fs is higher than the upper limit value fH of the appropriate section M, if fH + fr or less, the difference frequency component | fs-fr | passes through the BPF 3. This section H (fH <fs ≦ fH + fr) adjacent to the high frequency side of the appropriate section M will be referred to as the upper extended section.

上側拡張区間Hにfsが属するとき,fsそれ自体は高すぎるため第1の計測器Aで適正に計測できないが,差周波成分|fs−fr|を第2の計測器Bで適正に計測できる。   When fs belongs to the upper extended section H, fs itself is too high and cannot be properly measured by the first measuring instrument A, but the difference frequency component | fs-fr | can be properly measured by the second measuring instrument B. .

図2(C)に示すように,fsが,適正区間Mの下限値fLより低くても,fL−fr以上であれば,和周波成分fs+frがBPF3を通過する。適正区間Mの低域側に隣接するこの区間L(fL−fr≦fs<fL)を下側拡張区間と呼ぶことにする。   As shown in FIG. 2C, even if fs is lower than the lower limit value fL of the appropriate section M, the sum frequency component fs + fr passes through the BPF 3 if it is equal to or greater than fL−fr. This section L (fL−fr ≦ fs <fL) adjacent to the lower section side of the appropriate section M will be referred to as a lower extended section.

下側拡張区間Lにfsが属するとき,fsそれ自体は低すぎるため第1の計測器Aで適正に計測できないが,和周波成分fs+frを第2の計測器Bで適正に計測できる。   When fs belongs to the lower extended section L, fs itself is too low and cannot be properly measured by the first measuring instrument A, but the sum frequency component fs + fr can be properly measured by the second measuring instrument B.

図3は,y=fs+fr及びy=|fs−fr|のグラフ,即ち和周波成分及び差周波成分の,被計測周波数fsに対する依存性,並びにy=fsのグラフを示す。   FIG. 3 shows a graph of y = fs + fr and y = | fs-fr |, that is, a dependency of the sum frequency component and the difference frequency component on the measured frequency fs, and a graph of y = fs.

以下,被計測周波数fsの,和周波成分fs+frへの変換を上昇変換といい,差周波成分|fs−fr|への変換を下降変換という。y軸が変換後の周波数を示す。   Hereinafter, the conversion of the measured frequency fs into the sum frequency component fs + fr is referred to as “upward conversion”, and the conversion into the difference frequency component | fs−fr | is referred to as “downward conversion”. The y axis shows the frequency after conversion.

fsは,ヘテロダイン器2で上昇変換と下降変換を同時にうける。fsが下側拡張区間Lに属するとき,上昇変換がfsを通過バンドP内の値に変換し,下降変換はfsを通過バンドP外の値に変換する。fsが上側拡張区間Hに属するとき,下降変換がfsを通過バンドP内の値に変換し,上昇変換はfsを通過バンドP外の値に変換する。   fs undergoes up-conversion and down-conversion at the heterodyne unit 2 at the same time. When fs belongs to the lower extended section L, the up conversion converts fs into a value in the pass band P, and the down conversion converts fs into a value outside the pass band P. When fs belongs to the upper extended section H, the down conversion converts fs to a value in the pass band P, and the up conversion converts fs to a value outside the pass band P.

こうして,上昇変換と下降変換のうち,fsが属する拡張区間に対応した周波数変換の効果のみがBPF3で選ばれる。通過信号SBが単一周波数成分のみをもつから,第2の計測器Bでその周波数を適切に計測できる。その計測値が表す周波数をfBとする。   Thus, only the effect of the frequency conversion corresponding to the extended section to which fs belongs is selected by the BPF 3 among the up conversion and the down conversion. Since the passing signal SB has only a single frequency component, the frequency can be appropriately measured by the second measuring instrument B. The frequency represented by the measured value is assumed to be fB.

但し,知りたいのはfsの値である。fBからfsを知るために,fBに対し,上昇変換と下降変換のいずれの逆変換の演算を施せばよいかを特定する必要がある。そのためには,fsが拡張区間LとHのいずれに属するかを特定すればよい。   However, what we want to know is the value of fs. In order to know fs from fB, it is necessary to specify which of up-conversion and down-conversion operations should be performed on fB. For that purpose, it suffices to specify whether fs belongs to the extended section L or H.

fsが属する拡張区間の特定は,第1の計測器Aによるfsの測定結果を用いて行う。拡張区間L又はHの周波数は適正に計測できず,計測値の確度又は計測の時間的な分解能に劣るが,fsが拡張区間LとHのいずれに属するかさえ特定できれば充分である。   The extended section to which fs belongs is specified using the measurement result of fs by the first measuring instrument A. The frequency of the extended section L or H cannot be measured properly and is inferior in the accuracy of the measurement value or the temporal resolution of the measurement, but it is sufficient if it can be specified whether fs belongs to the extended section L or H.

fsが下側拡張区間Lに属することが分かれば,その値は,fBに上昇変換の逆変換(以下,逆上昇変換という。),即ちfrを減じる演算を施したfA1であり,上側拡張区間Hに属することが分かれば,その値は,fBに下降変換の逆変換(以下,逆下降変換という。),即ちfrを加算する演算を施したfA2である。   If it is known that fs belongs to the lower extended section L, the value is fA1 obtained by performing an inverse conversion of the upward conversion (hereinafter referred to as reverse upward conversion) to fB, that is, an operation for reducing fr. If it is known that it belongs to H, its value is fA2 obtained by performing an inverse conversion of the downward conversion (hereinafter referred to as reverse downward conversion), that is, an operation of adding fr to fB.

このように,fBが上昇変換後の値なのか下降変換後の値なのかの特定を行うことで,拡張区間LとHの周波数の計測に,第2の計測器Bを共通して用いることができる。   In this way, by specifying whether fB is the value after the up-conversion or the value after the down-conversion, the second measuring instrument B is commonly used for measuring the frequencies of the extended sections L and H. Can do.

表1に,fsを特定する処理の内容と,その処理が行われる条件とをまとめる。   Table 1 summarizes the contents of the process for specifying fs and the conditions under which the process is performed.

区分(1)に示すように,第1の計測器Aの計測値がfL未満の周波数を表し(アンダー),かつ第2の計測器Bの計測値が,適正区間Mの周波数を表す場合(適正),下側拡張区間Lに属するfsが上昇変換をうけたことを表すので,プロセッサ4は,第2の計測器Bの計測値が表す周波数に,逆上昇変換を施した値をもってfsを特定する。   As shown in section (1), when the measured value of the first measuring instrument A represents a frequency less than fL (under) and the measured value of the second measuring instrument B represents the frequency of the appropriate section M ( Appropriate) represents that fs belonging to the lower extended section L has undergone an up-conversion, so the processor 4 uses the value obtained by performing the reverse up-conversion to the frequency represented by the measurement value of the second measuring instrument B. Identify.

区分(2)に示すように,第1の計測器Aの計測値がfHを超える周波数を表し(オーバー),かつ第2の計測器Bの計測値が,適正区間Mの周波数を表す場合(適正),上側拡張区間Hに属するfsが下降変換をうけたことを表すので,プロセッサ4は,第2の計測器Bの計測値が表す周波数に,逆下降変換を施した値をもってfsを特定する。   As shown in section (2), when the measured value of the first measuring instrument A represents a frequency exceeding fH (over), and the measured value of the second measuring instrument B represents the frequency of the appropriate section M ( Appropriate), because it indicates that fs belonging to the upper extended section H has undergone down-conversion, the processor 4 identifies fs with the value obtained by performing reverse down-conversion on the frequency represented by the measurement value of the second measuring instrument B. To do.

なお,第1の計測器Aは,自己に入力された信号の周波数が,適正区間Mから外れている場合,具体的な計測値を示さなくても,その周波数が,適正区間Mを上下どちら側に外れているかを特定できる情報量をもつ計測結果を示せばよい。   When the frequency of the signal input to the first measuring device A is out of the appropriate section M, the frequency of the first measuring instrument A is higher or lower than the appropriate section M even if no specific measurement value is shown. What is necessary is just to show the measurement result which has the information amount which can specify whether it has deviated to the side.

例えば,第1の計測器Aは,fsが適正区間Mを上側に外れたこと示す信号,又は下側に外れたこと示す信号を出力してもよい。プロセッサ4は,その信号で表1の“アンダー”か“オーバー”かの判断を行える。かかる信号としては,例えば,第1の計測器Aを構成するカウンタのボロー信号やオーバーフロー信号等が挙げられる。   For example, the first measuring instrument A may output a signal indicating that fs has deviated from the appropriate interval M to the upper side, or a signal indicating that fs has deviated from the lower side. The processor 4 can determine whether the signal is “under” or “over” in Table 1. Examples of such a signal include a borrow signal and an overflow signal of a counter constituting the first measuring instrument A.

区分(3)に示すように,第1の計測器Aの計測値が,適正区間Mの周波数を表し(適正),かつ第2の計測器Bの計測結果が,適正区間Mの周波数を表さない場合(不適正),プロセッサ4は,第1の計測器Aの計測値が表す周波数をもってfsを特定する。   As shown in section (3), the measurement value of the first measuring instrument A represents the frequency of the appropriate section M (appropriate), and the measurement result of the second measuring instrument B represents the frequency of the proper section M. When not (inappropriate), the processor 4 specifies fs with the frequency represented by the measurement value of the first measuring instrument A.

ここで,第2の計測器Bの計測結果が“不適性”とは,具体的には,第2の計測器Bの計測値が表す周波数が,BPF3の下側ゼロクロス周波数を超え,fLに未満の区間に属する場合,及びfHを超え,BPF3の上側ゼロクロス周波数に未満の区間に属する場合のみならず,通過信号SBの振幅がゼロの場合も含む。   Here, the measurement result of the second measuring instrument B is “unsuitable”, specifically, the frequency represented by the measured value of the second measuring instrument B exceeds the lower zero cross frequency of the BPF 3 and becomes fL. This includes not only the case where the amplitude of the passing signal SB exceeds zero, but also the case where the amplitude of the passing signal SB is zero, as well as the case where it belongs to a zone that exceeds fH and falls below the upper zero cross frequency of BPF3.

即ち,fsが適正区間Mに属するとき,通過信号SBがゼロになり得(図2(A)参照),和周波成分が適正区間Mを下回るとき,及び差周波成分が適正区間Mを上回るとき,通過信号SBがゼロになる。通過信号SBがゼロになったことは,例えば,第2の計測器Bの計測結果を通じて,プロセッサ4で検知できる。   That is, when fs belongs to the proper section M, the passing signal SB can be zero (see FIG. 2A), when the sum frequency component is below the proper section M, and when the difference frequency component is above the proper section M , The passing signal SB becomes zero. That the passage signal SB has become zero can be detected by the processor 4 through the measurement result of the second measuring instrument B, for example.

区分(4)に示すように,第1の計測器Aの計測結果が“アンダー”であり,かつ第2の計測器Bの計測結果が“不適正”の場合,プロセッサ4は,エラーを出力する。この場合,fsは下側拡張区間Lにも満たない。   As shown in section (4), when the measurement result of the first measuring instrument A is “under” and the measurement result of the second measuring instrument B is “inappropriate”, the processor 4 outputs an error. To do. In this case, fs is less than the lower extended section L.

区分(5)に示すように,第1の計測器Aの計測結果が“オーバー”であり,かつ第2の計測器Bの計測結果が“不適正”の場合も,プロセッサ4は,エラーを出力する。この場合,fsは上側拡張区間Hすら超えている。   As shown in section (5), when the measurement result of the first measuring instrument A is “over” and the measurement result of the second measuring instrument B is “inappropriate”, the processor 4 gives an error. Output. In this case, fs exceeds even the upper extended section H.

次に,図4を参照し,上昇変換と下降変換の変形例について述べる。   Next, with reference to FIG. 4, a modified example of ascending conversion and descending conversion will be described.

図4で,適正区間Mにおける低域側の端部の区間MLを,下端部区間と呼び,適正区間Mにおける高域側の端部の区間MHを,上端部区間と呼ぶことにする。   In FIG. 4, the section ML at the lower end in the appropriate section M is referred to as a lower end section, and the section MH at the higher end in the appropriate section M is referred to as an upper end section.

本例では,上昇変換が,下端部区間MLの周波数を上端部区間MHの値に変換する役割をさらに果たし,下降変換が,上端部区間MHの周波数を下端部区間MLの値に変換する役割をさらに果たす。これにより,端部区間MHとMLでは,第2の計測器Bでも適正な計測が行える。これは,例えば,fH−fL>frとすることで実現できる。   In this example, the up conversion further plays a role of converting the frequency of the lower end section ML into the value of the upper end section MH, and the down conversion plays a role of converting the frequency of the upper end section MH into a value of the lower end section ML. Fulfill further. As a result, in the end sections MH and ML, the second measuring device B can perform appropriate measurement. This can be realized by, for example, fH−fL> fr.

表2に,図4の構成を採った場合の,fsを特定する処理の内容と,その処理が行われる条件とを示す。下記区分(6)及び(7)が,表1に追加される。   Table 2 shows the contents of the process for specifying fs and the conditions under which the process is performed when the configuration of FIG. 4 is adopted. The following categories (6) and (7) are added to Table 1.

区分(6)に示すように,第1の計測器Aの計測値が,下端部区間MLの周波数を表し,かつ第2の計測器Bの計測値が,上端部区間MHの周波数を表す場合,プロセッサ4は,第2の計測器Bの計測値が表す周波数の逆上昇変換をもってfsを特定する。   As shown in section (6), when the measured value of the first measuring instrument A represents the frequency of the lower end section ML, and the measured value of the second measuring instrument B represents the frequency of the upper end section MH. , The processor 4 specifies fs with the inverse increase conversion of the frequency represented by the measurement value of the second measuring instrument B.

ここで,第1の計測器Aの計測値でなく,第2の計測器Bの計測値を採用するのは,レシプロカルカウンタによる計測の時間的な分解能,即ち1回の計測に要する時間の短さは,周波数が高い程,良好なためである。即ち,区分(6)の場合,計測の時間的な分解能の観点からは,第2の計測器Bの計測値を採用した方が有利である。   Here, the measurement value of the second measuring instrument B, not the measurement value of the first measuring instrument A, is adopted because of the temporal resolution of the measurement by the reciprocal counter, that is, the short time required for one measurement. This is because the higher the frequency, the better. That is, in the case of category (6), it is advantageous to adopt the measurement value of the second measuring instrument B from the viewpoint of the temporal resolution of measurement.

区分(7)に示すように,第1の計測器Aの計測値が,上端部区間MHの周波数を表し,かつ第2の計測器Bの計測値が,下端部区間MLの周波数を表す場合,プロセッサ4は,第1の計測器Aの計測値が表す周波数をもってfsを特定する。   As shown in section (7), when the measured value of the first measuring instrument A represents the frequency of the upper end section MH and the measured value of the second measuring instrument B represents the frequency of the lower end section ML The processor 4 identifies fs with the frequency represented by the measurement value of the first measuring instrument A.

ここで,第2の計測器Bの計測値でなく,第1の計測器Aの計測値を採用するのは,測の時間的な分解能の観点からは,高い方の周波数を表す第1の計測器Aの計測値を採用した方が有利だからである。   Here, the measurement value of the first measuring instrument A, not the measurement value of the second measuring instrument B, is adopted from the viewpoint of the temporal resolution of the measurement. This is because it is advantageous to employ the measurement value of the measuring instrument A.

以上の区分(6)及び(7)で,外乱等により,例えば第2の計測器Bの計測結果が“不適性”となっても,表1の区分(3)の処理により,適正な計測は確保される。このように,第1及び第2の計測器A及びBの双方で適正な計測が行える区間ML及びMHを構成することで,周波数計測装置の信頼性を高めることができる。   In the above categories (6) and (7), even if the measurement result of the second measuring instrument B becomes “inappropriate” due to disturbance, etc., appropriate measurement is performed by the processing of category (3) in Table 1. Is secured. Thus, the reliability of the frequency measuring device can be improved by configuring the sections ML and MH in which appropriate measurements can be performed by both the first and second measuring instruments A and B.

表2では,レシプロカルカウンタの使用下で,時間的な分解能を重視したため,高い方の周波数を表す計測値を採用したが,計測値の分解能(確度)を重視するならば,低い方の周波数を表す計測値を採用してもよい。   In Table 2, because the temporal resolution was emphasized under the use of the reciprocal counter, the measurement value representing the higher frequency was adopted. However, if the resolution (accuracy) of the measurement value is important, the lower frequency is selected. You may employ | adopt the measured value to represent.

次に,図5及び図6を参照し,他の実施例について述べる。   Next, another embodiment will be described with reference to FIGS.

図5は,周波数変換を分周と逓倍で実現する構成を示す。分周逓倍器5に,被計測信号SAが分配される。分周逓倍器5は,分配器51,逓倍器52,分周器53,及び加算器54を含む。分配器51が,被計測信号SAを逓倍器52と分周器53とに同時に与える。分配器51は,例えばノードで構成されうる。   FIG. 5 shows a configuration for realizing frequency conversion by frequency division and multiplication. The signal under measurement SA is distributed to the frequency divider / multiplier 5. The frequency divider / multiplier 5 includes a distributor 51, a multiplier 52, a frequency divider 53, and an adder 54. The distributor 51 supplies the signal under measurement SA to the multiplier 52 and the frequency divider 53 simultaneously. The distributor 51 can be composed of nodes, for example.

逓倍器52はfsをn倍し,分周器53はfsを1/m倍する。加算器54が,それら逓倍された信号と分周された信号とを加算することで,周波数n・fsの逓倍波成分と,周波数fs/mの分周波成分とをもつ中間信号を形成する。ここでnとmは,1以上の自然数とする(但し,nとmの双方が1となる場合を除く。)。   The multiplier 52 multiplies fs by n, and the frequency divider 53 multiplies fs by 1 / m. The adder 54 adds the multiplied signal and the divided signal, thereby forming an intermediate signal having a multiplied wave component of frequency n · fs and a divided frequency component of frequency fs / m. Here, n and m are natural numbers of 1 or more (except when both n and m are 1).

図6に,y=n・fs,y=fs/m,及びy=fsのグラフを示す。図6では,n,m≧2とした。   FIG. 6 shows a graph of y = n · fs, y = fs / m, and y = fs. In FIG. 6, n, m ≧ 2.

以下,被計測周波数fsの,逓倍波成分n・fsへの変換を逓倍変換,分周波成分fs/mへの変換を分周変換という。y軸が変換後の周波数を示す。   Hereinafter, conversion of the frequency fs to be measured into the multiplied wave component n · fs is referred to as multiplication conversion, and conversion into the divided frequency component fs / m is referred to as frequency division conversion. The y axis shows the frequency after conversion.

逓倍変換は,下側拡張区間Lの周波数を適正区間M内の値に変換し,上側拡張区間Hの周波数は適正区間M外の値に変換する。分周変換は,上側拡張区間Hの周波数を適正区間M内の値に変換し,下側拡張区間Lの周波数は適正区間M外の値に変換する。   In the multiplication conversion, the frequency in the lower extension section L is converted into a value in the appropriate section M, and the frequency in the upper extension section H is converted into a value outside the proper section M. In the frequency division conversion, the frequency in the upper extended section H is converted into a value in the appropriate section M, and the frequency in the lower extended section L is converted into a value outside the proper section M.

本例では,下側拡張区間Lの幅は,(fH−fL)/nであり,上側拡張区間Hの幅は,m・(fH−fL)である。   In this example, the width of the lower extended section L is (fH−fL) / n, and the width of the upper expanded section H is m · (fH−fL).

本例でも,表1及び表2の処理を,“逆上昇変換”を逓倍変換の逆変換,即ち1/n倍する演算に読み替え,“逆下降変換”を分周変換の逆変換,即ちm倍する演算に読み替えて適用することができる。   Also in this example, the processing of Tables 1 and 2 is read as an operation of multiplying "reverse rising conversion" by inverse conversion of multiplication conversion, that is, 1 / n, and "reverse falling conversion" is reverse conversion of frequency division conversion, that is, m It can be read and applied to the multiplication operation.

次に,図7及び図8を参照し,拡張区間の配置数の変形例について述べる。   Next, a modified example of the number of extended sections will be described with reference to FIGS.

図7に,一点鎖線で示すように,周波数変換y=ξ・fsを追加することで,拡張区間L2が追加され,周波数変換y=fs/ηを追加することで,拡張区間H2が追加される。ここで,ξ,ηは,それぞれξ>n,η>mを満たす自然数とする。   In FIG. 7, as indicated by the alternate long and short dash line, an extension section L2 is added by adding the frequency transformation y = ξ · fs, and an extension section H2 is added by adding the frequency transformation y = fs / η. The Here, ξ and η are natural numbers that satisfy ξ> n and η> m, respectively.

これは,図5の加算器54の後段に,ξ逓倍された周波数ξ・fsの信号を加算する加算器と,η分周された周波数fs/ηの信号を加算する加算器とを追加することで実現できる。こうして,加算を繰り返し用いることで,所望数の拡張区間を構成しうることが当業者に理解できるであろう。   This adds an adder for adding a signal of frequency ξ · fs multiplied by ξ and an adder for adding a signal of frequency fs / η divided by η, after the adder 54 of FIG. This can be achieved. Thus, it will be understood by those skilled in the art that a desired number of extended intervals can be constructed by repeatedly using addition.

図8は,図7の構成を採った場合のフローチャートである。   FIG. 8 is a flowchart when the configuration of FIG. 7 is adopted.

プロセッサ4が,計測器A及びBの計測結果を参照する(S1)。その結果に応じフローが4分岐する。図8中,区分(1)〜(5)は,表1の区分と対応する。   The processor 4 refers to the measurement results of the measuring instruments A and B (S1). According to the result, the flow branches into four branches. In FIG. 8, the categories (1) to (5) correspond to the categories in Table 1.

区分(3)の場合の処理(S10),及び区分(4)又は(5)の場合の処理(S11)は,表1の例と同じである。   The process (S10) in the case of the category (3) and the process (S11) in the case of the category (4) or (5) are the same as the example in Table 1.

区分(1)の場合の処理(S2〜5),及び区分(2)の場合の処理(S6〜9)は,fsが適正区間M内の初期値から連続的に変動する場合に適用できる。以下,計測器A及びBによる計測の繰り返しがfsの変動に対して充分に速いことを前提として,これらの処理について述べる。   The processing (S2 to 5) in the case of the section (1) and the processing (S6 to 9) in the case of the section (2) can be applied when fs continuously varies from the initial value in the appropriate section M. Hereinafter, these processes will be described on the premise that the repetition of measurement by the measuring instruments A and B is sufficiently fast with respect to fs fluctuation.

S1の判定結果が区分(1)に該当する場合,プロセッサ4は,fsが拡張区間L1とL2のいずれに属するかを判定し(S2),fsが区間L1に属する場合,第2の計測器Bの計測値が表す周波数にn逓倍変換の逆変換を施した値でfsを特定し(S3),区間L2に属する場合,ξ逓倍変換の逆変換を施した値でfsを特定する(S4)。   When the determination result of S1 corresponds to the category (1), the processor 4 determines whether fs belongs to the extended section L1 or L2 (S2), and when fs belongs to the section L1, the second measuring instrument The fs is specified by the value obtained by performing the inverse transformation of the n multiplication conversion on the frequency represented by the measurement value of B (S3), and if belonging to the section L2, the fs is identified by the value obtained by performing the inverse transformation of the ξ multiplication transformation (S4). ).

次に,プロセッサ4は,第1の計測器Aの計測結果が“アンダー”であり,かつ第2の計測器Bの計測結果が“適正”であるか判定し(S5),YESならばS2に戻り,NOならばS1に戻る。区分(2)の場合の処理(S6〜9)も同様である。   Next, the processor 4 determines whether the measurement result of the first measuring instrument A is “under” and the measurement result of the second measuring instrument B is “appropriate” (S5). If NO, return to S1. The processing (S6 to 9) in the case of section (2) is the same.

以下,S2の判定を具体例に挙げて,拡張区間を特定する手法を述べる。   Hereinafter, a method for specifying an extended section will be described with the determination of S2 as a specific example.

S2〜S5のループ処理の1巡目のとき,即ち最初にS1からS2に分岐したとき,S2では“L1”と判定する。これは,fsの変動が連続的であることに依拠する。   At the first round of the loop processing of S2 to S5, that is, when the first branch from S1 to S2 is made, it is determined as “L1” in S2. This relies on the fs variation being continuous.

上記ループ処理の2巡目以降では,第2の計測器Bの計測値の変化によって,fsの属する拡張区間を特定できる。この点につき,図7に戻って説明する。   In the second and subsequent rounds of the loop processing, the extended section to which fs belongs can be specified by the change in the measurement value of the second measuring instrument B. This point will be described with reference to FIG.

図7に示すように,fsが区間L1からL2に移行する際,L1とL2の境で,第2の計測器Bの計測値が表す周波数が,fL近傍の値からfH近傍の値に不連続に変化する。この不連続な変化で区間L2への移行を検知できる。同様に,fsが区間L2からL1に戻る際,L2とL1の境で,第2の計測器Bの計測値が表す周波数が,fH近傍の値からfL近傍の値に不連続に変化するから,区間L1への戻りを検知できる。   As shown in FIG. 7, when fs shifts from the section L1 to L2, the frequency represented by the measurement value of the second measuring instrument B at the boundary between L1 and L2 is not changed from the value near fL to the value near fH. It changes continuously. The transition to the section L2 can be detected by this discontinuous change. Similarly, when fs returns from the section L2 to L1, the frequency represented by the measurement value of the second measuring instrument B changes discontinuously from a value near fH to a value near fL at the boundary between L2 and L1. , Return to section L1 can be detected.

こうして,最初の基準となる区間がL1であることを用い,そこからの相対変位によって現在のfsが属する拡張区間を特定できる。S6の判定も,同様にして行えることが当業者に理解できるであろう。   Thus, using the fact that the first reference section is L1, the extended section to which the current fs belongs can be specified by the relative displacement therefrom. It will be understood by those skilled in the art that the determination of S6 can be similarly performed.

以上の例では,第1の計測器Aの計測結果について“適正”以外に“オーバー”か“アンダー”かの区別しかしなかったが,S1で,第1の計測器Aの計測結果から,fsが拡張区間L2,L1,H1,H2のいずれに属するかを特定できる場合は,上記ループ処理は不要であり,表1の例と同様,拡張区間に対応する逆変換の演算を行う毎にS1に戻る処理を行うこともできる。   In the above example, the measurement result of the first measuring instrument A was only distinguished from “over” or “under” in addition to “appropriate”, but from S 1 the measurement result of the first measuring instrument A is fs. If it can be specified which of the extended sections L2, L1, H1, and H2 belongs to, the above loop processing is unnecessary, and S1 is performed each time the inverse transformation corresponding to the extended section is performed, as in the example of Table 1. It is also possible to perform processing to return to step (b).

次に,図9及び図10を参照し,適正区間の配置位置の変形例について述べる。   Next, with reference to FIG. 9 and FIG. 10, a modified example of the arrangement position of the appropriate section will be described.

これまで,第1の計測器Aで適正な計測を行える適正区間(以下,第1の適正区間という。)と,第2の計測器Bで適正な計測を行える適正区間(以下,第2の適正区間という。)とが一致する例について述べてきた。   Up to now, an appropriate section (hereinafter referred to as the first appropriate section) in which proper measurement can be performed with the first measuring instrument A and an appropriate section (hereinafter referred to as the second appropriate section) in which appropriate measurement can be performed with the second measuring instrument B. Has been described as an example of a match with the appropriate section.

しかし,本来,第2の適正区間を記述する集合は,第1の適正区間及び拡張区間を記述する集合とは別の概念である。図3,図4,図6,及び図7で,縦軸のMが,第2の適正区間を示し,横軸のMは,第1の適正区間を示す。第1の適正区間と拡張区間,及び拡張区間どうしは,重複をもたないが,第2の適正区間が,第1の適正区間や拡張区間と重複をもつか否かは任意である。   However, the set describing the second appropriate interval is a concept different from the set describing the first appropriate interval and the extended interval. 3, 4, 6, and 7, the vertical axis M indicates the second appropriate section, and the horizontal axis M indicates the first appropriate section. The first appropriate section, the extended section, and the extended sections do not overlap each other, but it is arbitrary whether the second appropriate section overlaps with the first appropriate section or the extended section.

例えば,第2の適正区間は,第1の適正区間と重複をもたなくてもよいし,拡張区間と重複をもってもよい。第2の適正区間が拡張区間と重複してもよいのであるから,後者から前者への写像,即ち周波数変換は,恒等写像も含みうる。なお,通過バンドPは,第2の適正区間MBに一致させる。   For example, the second appropriate section may not overlap with the first appropriate section, or may overlap with the extended section. Since the second appropriate interval may overlap with the extended interval, the mapping from the latter to the former, that is, the frequency conversion, may include an identity mapping. The pass band P is matched with the second appropriate section MB.

図9(A)に,第2の適正区間MBを,第1の適正区間MAより高域に配置した例を示す(図中,nは2以上の自然数とする)。逓倍変換が,下側拡張区間Lの周波数を第2の適正区間MB内の値に変換する。上側拡張区間Hの周波数を第2の適正区間MB内の値に変換する周波数変換が,恒等写像である(図5のm=1)。   FIG. 9A shows an example in which the second appropriate section MB is arranged higher than the first appropriate section MA (in the figure, n is a natural number of 2 or more). The multiplication conversion converts the frequency of the lower extended section L into a value in the second appropriate section MB. The frequency conversion for converting the frequency of the upper extended section H into the value in the second appropriate section MB is an identity map (m = 1 in FIG. 5).

図9(B)は,第2の適正区間MBを,第1の適正区間MAより低域に配置した例を示す(図中,mは2以上の自然数とする)。分周変換が,上側拡張区間Hの周波数を第2の適正区間MB内の値に変換する。下側拡張区間Lの周波数を第2の適正区間MB内の値に変換する周波数変換が,恒等写像である(図5のn=1)。   FIG. 9B shows an example in which the second appropriate section MB is arranged in a lower range than the first appropriate section MA (in the figure, m is a natural number of 2 or more). The frequency division conversion converts the frequency of the upper extended section H into a value in the second appropriate section MB. The frequency conversion for converting the frequency of the lower extended section L into the value in the second appropriate section MB is the identity map (n = 1 in FIG. 5).

図10は,第2の適正区間MBを,第1の適正区間MAと重複をもたせて異ならせた例を示す。y=α・fsが,第1の適正区間MAを第2の適正区間MBに写像する仮想的な写像であり,α≠1である。   FIG. 10 shows an example in which the second appropriate section MB is made different from the first appropriate section MA with an overlap. y = α · fs is a virtual mapping that maps the first appropriate section MA to the second appropriate section MB, and α ≠ 1.

逓倍変換が,下側拡張区間Lの周波数を第2の適正区間MB内の値に変換し,上側拡張区間Hの周波数は第2の適正区間MB外の値に変換する。分周変換が,上側拡張区間Hの周波数を第2の適正区間MB内の値に変換し,下側拡張区間Lの周波数は第2の適正区間MB外の値に変換する。   The multiplication conversion converts the frequency in the lower extended section L into a value in the second appropriate section MB, and converts the frequency in the upper extended section H into a value outside the second appropriate section MB. The frequency division conversion converts the frequency of the upper extended section H into a value within the second appropriate section MB, and converts the frequency of the lower extended section L into a value outside the second appropriate section MB.

逓倍変換はまた,第1の適正区間MAの下端部区間MLの周波数を,第2の適正区間MBの上端部区間MH´の値に変換する役割をさらに果たし,分周変換は,第1の適正区間MAの上端部区間MHの周波数を,第2の適正区間MBの下端部区間ML´の値に変換する役割をさらに果たす。   The multiplication conversion further plays a role of converting the frequency of the lower end section ML of the first appropriate section MA into the value of the upper end section MH ′ of the second appropriate section MB. It further plays a role of converting the frequency of the upper end section MH of the proper section MA into the value of the lower end section ML ′ of the second proper section MB.

例えば,逓倍変換の上記役割は,(fL/α)<(fH/n)とすることで実現でき,分周変換の上記役割は,(fH/α)>(m・fL)とすることで実現できる。   For example, the above-mentioned role of the multiplication conversion can be realized by (fL / α) <(fH / n), and the above-mentioned role of the division conversion is (fH / α)> (m · fL). realizable.

fsが区間MH又はMLに属するとき,第1及び第2の計測器A及びBの双方で,適正な計測が行える。このように,第1及び第2の計測器A及びBの双方で適正な計測が行える区間を構成することで,周波数計測装置の信頼性を高めることができる。   When fs belongs to the section MH or ML, both the first and second measuring instruments A and B can perform appropriate measurement. Thus, the reliability of the frequency measuring device can be improved by configuring a section in which both the first and second measuring instruments A and B can perform appropriate measurement.

本例でも,図4の例と同様,表2の処理を行える。表1及び表2で,第1の計測器の計測結果が“適正”か“オーバー”か“アンダー”かは第1の適正区間MAを基準に判断し,第2の計測器の計測結果が“適正”か“不適正”かは第2の適正区間MBを基準に判断すればよい。   Also in this example, the processing of Table 2 can be performed as in the example of FIG. In Tables 1 and 2, whether the measurement result of the first measuring instrument is “appropriate”, “over” or “under” is determined based on the first appropriate section MA, and the measurement result of the second measuring instrument is Whether “appropriate” or “inappropriate” may be determined based on the second appropriate section MB.

第1の計測器Aで第1の適正区間MAの周波数を表す計測値を得,かつ第2の計測器Bで第2の適正区間MBの周波数を表す計測値を得た場合,いずれの計測値を採用するかは,それら計測値が表す周波数の大小関係で決定すればよい。   When the measurement value representing the frequency of the first appropriate section MA is obtained by the first measuring instrument A and the measurement value representing the frequency of the second appropriate section MB is obtained by the second measuring instrument B, any measurement is performed. Whether to adopt a value may be determined by the magnitude relationship of the frequencies represented by these measured values.

図11は,他の実施例による周波数計測装置の概念図である。周波数変換器6は,図1のヘテロダイン器2,又は図5の分周逓倍器5で構成される。   FIG. 11 is a conceptual diagram of a frequency measuring device according to another embodiment. The frequency converter 6 includes the heterodyne unit 2 shown in FIG. 1 or the frequency divider 5 shown in FIG.

事前変換器7が,入力信号S0に,可変な既知の周波数変換(以下,事前変換という。)を施す。事前変換には,ヘテロダイン法,分周,逓倍等が用いられる。事前変換が施された信号が,被計測信号SAとなる。   The pre-converter 7 performs variable known frequency conversion (hereinafter referred to as pre-conversion) on the input signal S0. For the pre-conversion, the heterodyne method, frequency division, multiplication, etc. are used. The signal subjected to the pre-conversion is the signal under measurement SA.

プロセッサ4が,表1や図8の処理で特定したfsの値に,事前変換の逆変換の演算を施すことで,入力信号S0の周波数を算出し,またその算出した周波数に基づいて,事前変換を制御する。例えば,fsが第1の適正区間MAの中央値に追随するよう事前変換を制御する。これにより,周波数を適正に計測できる区間のさらなる拡大が図られる。   The processor 4 calculates the frequency of the input signal S0 by performing an inverse conversion operation on the value of fs specified in the processing of Table 1 and FIG. 8, and based on the calculated frequency, Control the conversion. For example, the pre-conversion is controlled so that fs follows the median value of the first appropriate interval MA. Thereby, the further expansion of the area which can measure a frequency appropriately is achieved.

事前変換の制御が間に合わず,fsが急に第1の適正区間MAから外れても,拡張区間L又はHに属していれば,これを第2の計測器Bで適正にリアルタイムに計測できる。従来は,同様のフィードバック制御を行っても,fsが急に変動した瞬間は,適正な計測が行えなかった。   Even if the pre-conversion control is not in time and fs suddenly deviates from the first appropriate section MA, if it belongs to the extended section L or H, this can be appropriately measured in real time by the second measuring instrument B. Conventionally, even if the same feedback control is performed, proper measurement cannot be performed at the moment when fs suddenly fluctuates.

以上,周波数計測装置の実施例を述べた。例えば,次のような変形も可能である。   The embodiment of the frequency measuring device has been described above. For example, the following modifications are possible.

上記各例では,第1の適正区間と拡張区間,及び相隣る拡張区間どうしを隣接させたが,それらの間に隙間があってもよい。本明細書で“隣接する”とは,2つの区間が両者の境に共通の端点をもつことをいう。それら区間は重複をもたないから,その端点は一方の区間にのみ含まれる。“隣る”とは,間に隙間が存することを許容する意味とする。   In each of the above examples, the first appropriate section, the extended section, and the adjacent expanded sections are adjacent to each other, but there may be a gap between them. In this specification, “adjacent” means that two sections have a common end point at the boundary between them. Since these sections have no overlap, their end points are included in only one section. “Adjacent” means to allow a gap between them.

上記各例では,第2の適正区間をBPF3の通過バンドと一致させたが,そうである必要はない。例えば,第2の適正区間は,BPF3の通過バンドに内包させてもよいし,BPF3の下側ゼロクロス周波数から上側ゼロクロス周波数までに内包させてもよい。   In each of the above examples, the second appropriate section is matched with the pass band of BPF 3, but this need not be the case. For example, the second appropriate section may be included in the pass band of the BPF 3, or may be included from the lower zero cross frequency to the upper zero cross frequency of the BPF 3.

上記各例では,周波数変換器を常時作動させたが,周波数変換器を休止させたまま,被計測信号SAを第1の計測器Aで計測することを原則とし,fsが第1の適正区間の端点に近づいたときだけ,周波数変換器を起動させて,第2の計測器Bの計測値の参照に備える制御をプロセッサが行ってもよい。   In each of the above examples, the frequency converter is always operated. However, in principle, the signal to be measured SA is measured by the first measuring instrument A while the frequency converter is stopped, and fs is the first appropriate section. The processor may perform control for starting up the frequency converter and preparing for reference to the measurement value of the second measuring instrument B only when approaching the end point.

上記各例では,計測器を構成するレシプロカルカウンタが,被計測信号の周期を計測したが,周期の整数倍や半周期等,周期に依存する時間幅を計測してもよい。   In each of the above examples, the reciprocal counter constituting the measuring instrument measures the period of the signal under measurement. However, a time width depending on the period, such as an integral multiple of the period or a half period, may be measured.

図12(B)は,計測器の他の例としての,ダイレクト方式の周波数カウンタ(以下,ダイレクトカウンタという。)を示す。ダイレクトカウンタは,既知のゲート期間G,例えば1秒あたりの,被計測信号Sの繰り返し数をカウントする。そのカウント値によって被計測信号Sの周波数を特定できる。   FIG. 12B shows a direct frequency counter (hereinafter referred to as a direct counter) as another example of a measuring instrument. The direct counter counts the number of repetitions of the signal under measurement S per known gate period G, for example, per second. The frequency of the signal to be measured S can be specified by the count value.

ダイレクトカウンタでは,例えば,被計測周波数が低すぎると,カウント数が少ないため充分な分解能が得られず,被計測周波数が高すぎると,カウント値が飽和したりして充分な確度が得られないといった理由で,適正区間が決まる。計測器AとBの一方がダイレクトカウンタで,他方がレシプロカルカウンタであってもよい。   With a direct counter, for example, if the frequency to be measured is too low, the number of counts is small and sufficient resolution cannot be obtained. If the frequency to be measured is too high, the count value is saturated and sufficient accuracy cannot be obtained. For this reason, the appropriate section is determined. One of the measuring instruments A and B may be a direct counter and the other may be a reciprocal counter.

図12(A)及び(B)には,矩形波の被計測信号Sを示したが,図1,図5,及び図11の被計測信号SA,並びに図11の入力信号S0は,正弦波であっても,矩形波その他の非正弦波であってもよい。計測器は,自己に与えられる信号を矩形波に整形するシュミットトリガ等の整形器を必要に応じ含む。計測器5は,アナログ式のものでもよい。   FIGS. 12A and 12B show the measured signal S having a rectangular wave, but the measured signal SA in FIGS. 1, 5, and 11 and the input signal S0 in FIG. Or a rectangular wave or other non-sinusoidal wave. The measuring instrument includes a shaping device such as a Schmitt trigger for shaping the signal given to itself into a rectangular wave as necessary. The measuring instrument 5 may be an analog type.

図13は,実施例による発振型圧力センサの概念図である。   FIG. 13 is a conceptual diagram of an oscillation type pressure sensor according to an embodiment.

以下,便宜上,CsとRi(但し,i=1〜3)の記号を,図面参照符号の意味だけでなく,それぞれキャパシタンスを表す変数,抵抗値を表す変数の意味でも用いる。   Hereinafter, for the sake of convenience, the symbols Cs and Ri (where i = 1 to 3) are used not only for the meanings of the reference numerals of the drawings but also for the variables representing the capacitance and the resistance.

発振回路8は,オペアンプと,オペアンプの非反転入力端子とグランドとの間に置かれた抵抗R1と,オペアンプの出力端子から非反転入力端子に至る帰還路に置かれた抵抗R2と,オペアンプの出力端子から反転入力端子に至る帰還路に置かれた抵抗R3と,その反転入力端子とグランドとの間に置かれたキャパシタCsとを備えた無安定マルチバイブレータよりなり,発振周波数が,1/{2・R3・Cs・log((R1+R2)/R1)}で表される発振信号を出力する。   The oscillation circuit 8 includes an operational amplifier, a resistor R1 placed between the non-inverting input terminal of the operational amplifier and the ground, a resistor R2 placed on a feedback path from the output terminal of the operational amplifier to the non-inverting input terminal, and the operational amplifier. It comprises an astable multivibrator comprising a resistor R3 placed in a feedback path from the output terminal to the inverting input terminal, and a capacitor Cs placed between the inverting input terminal and the ground, and the oscillation frequency is 1 / An oscillation signal represented by {2.R3.Cs.log ((R1 + R2) / R1)} is output.

キャパシタCsは,圧力をうけると,その極板間距離が変化し,キャパシタンスCsが変化する構造をもつ。上式の如く,キャパシタンスCsは発振周波数を決定づけるため,発振回路8は,圧力の値に応じた発振周波数をもつ発振信号を出力する。   The capacitor Cs has a structure in which the distance between the electrode plates changes and the capacitance Cs changes when pressure is applied. Since the capacitance Cs determines the oscillation frequency as in the above equation, the oscillation circuit 8 outputs an oscillation signal having an oscillation frequency corresponding to the pressure value.

周波数計測装置9に,発振信号が入力される。周波数計測装置9は,図1,図5,又は図11の装置で構成され,上記プロセッサは,表1や図8の処理で特定した発振周波数から圧力の値を求め,その圧力を表示出力する。圧力を求めるには,発振周波数を圧力と対応付ける関係式や対応表を記憶するメモリをさらに備えればよい。   An oscillation signal is input to the frequency measuring device 9. The frequency measuring device 9 comprises the device shown in FIG. 1, FIG. 5, or FIG. 11, and the processor obtains a pressure value from the oscillation frequency specified in the processing of Table 1 or FIG. 8, and displays the pressure. . In order to obtain the pressure, a memory for storing a relational expression for associating the oscillation frequency with the pressure or a correspondence table may be further provided.

本例では,センシング素子にキャパシタを用いたが,熱の影響をうけて抵抗値が変化する抵抗,コアが変位をうけてインダクタンスが変化するインダクタ,湿度やガス濃度の影響をうけて共振周波数が変化する水晶振動子等を用いることもできる。また,発振回路は,マルチバイブレータ等の弛張発振回路の他,各種の調和発振回路でも構成できる。   In this example, a capacitor is used as the sensing element. However, the resistance whose resistance value changes due to the influence of heat, the inductor whose inductance changes due to the displacement of the core, and the resonance frequency that is affected by humidity and gas concentration. A changing crystal unit or the like can also be used. Further, the oscillation circuit can be configured by various harmonic oscillation circuits in addition to a relaxation oscillation circuit such as a multivibrator.

以上,実施例に沿って本発明を説明したが,本発明はこれらに限られない。種々の変更,改良,及び組み合わせ等が可能なことは当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

本発明の周波数計測装置は,発信型センサにおける物理量の計測に限らず,例えば,通信における送受信周波数の計測,電力供給における周波数の監視,集積回路の試験,電子機器の検査といった周波数を計測するあらゆる用途に利用することができる。   The frequency measuring device of the present invention is not limited to the measurement of a physical quantity in a transmission type sensor. For example, the frequency measuring apparatus measures all frequencies such as measurement of transmission / reception frequency in communication, monitoring of frequency in power supply, testing of integrated circuits, and inspection of electronic equipment. It can be used for applications.

1…分配器,
2…ヘテロダイン器(周波数変換器),
21…局発信号源,
22…混合器,
3…バンドパスフィルタ(濾波器),
4…プロセッサ(演算手段),
5…分周逓倍器(周波数変換器),
51…分配器,
52…逓倍器,
53…分周器,
54…加算器,
6…周波数変換器,
7…事前変換器,
8…無安定マルチバイブレータ(発振回路),
9…周波数計測装置,
A…第1の計測器,
B…第2の計測器,
SA…被計測信号,
SB…通過信号,
P…通過バンド,
M…適正区間(第1の適正区間,第2の適正区間),
MA…第1の適正区間,
MB…第2の適正区間,
ML…第1の適正区間の下端部区間,
MH…第1の適正区間の上端部区間,
ML´…第2の適正区間の下端部区間,
MH´…第2の適正区間の上端部区間,
L,L1…下側拡張区間(第1の拡張区間),
H,H1…上側拡張区間(第2の拡張区間),
L2…第3の拡張区間,
H2…第4の拡張区間,
R1,R2,R3…抵抗,
Cs…キャパシタ(センシング素子)。
1 ... distributor,
2 ... Heterodyne device (frequency converter),
21 ... Local signal source,
22 ... Mixer,
3 ... Band pass filter (filter),
4 ... Processor (calculation means),
5. Frequency divider / multiplier (frequency converter),
51. Distributor,
52 ... multiplier,
53 ... frequency divider,
54 ... Adder,
6 ... Frequency converter,
7 ... Pre-converter,
8: Astable multivibrator (oscillation circuit),
9: Frequency measuring device,
A ... First measuring instrument,
B ... Second measuring instrument,
SA: Signal to be measured,
SB ... Pass signal,
P ... pass band,
M ... appropriate section (first appropriate section, second appropriate section),
MA: first appropriate section,
MB ... 2nd proper section,
ML ... lower end section of the first appropriate section,
MH ... upper end section of the first appropriate section,
ML '... lower end section of the second appropriate section,
MH ′: upper end section of the second appropriate section,
L, L1 ... lower extended section (first extended section),
H, H1 ... upper extended section (second extended section),
L2 ... third extended section,
H2 ... Fourth extended section,
R1, R2, R3 ... resistance,
Cs: Capacitor (sensing element).

Claims (6)

被計測信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する第1の計測器と,
或る第1の適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,或る第2の適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記第2の適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,前記被計測信号に施すことにより中間信号を形成する周波数変換器と,
前記中間信号が入力され,前記第2の適正区間の周波数を通過させ,前記周波数変換器で前記第2の適正区間外の値に変換された周波数を遮断する濾波器と,
前記濾波器を通過した通過信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する第2の計測器と,
(A)前記第1の計測器の計測値が,前記第1の適正区間の周波数を表す場合に,その計測値によって前記被計測信号の周波数を特定する機能,(B)前記第1の計測器の計測結果を用いて,前記被計測信号の周波数が,前記第1〜第Nの拡張区間のいずれに属するかを特定する機能,及び(C)前記第2の計測器の計測値が,前記第2の適正区間の周波数を表す場合に,その計測値と,前記第1〜第Nの周波数変換のうち,前記機能(B)により特定した拡張区間の周波数を前第2の適正区間内の値に変換する周波数変換の逆変換を行う演算とを用いて,前記被計測信号の周波数を算出する機能をもつ演算手段と
を備えた周波数計測装置。
A first measuring instrument for measuring the number of repetitions of the signal under measurement, or a period or a time width dependent on the period;
Considering the first to Nth (N ≧ 2) extended sections different from a first appropriate section, the i-th frequency transform converts the frequency of the i-th extended section to a certain The frequency in the second appropriate interval is converted and the frequency of the jth (where i and j are any natural numbers from 1 to N where i ≠ j) is the second appropriate frequency. A frequency converter that forms an intermediate signal by performing known first to Nth frequency conversions such as conversion to values outside the interval on the signal under measurement;
A filter that receives the intermediate signal, passes the frequency of the second appropriate section, and cuts off the frequency converted by the frequency converter to a value outside the second appropriate section;
A second measuring device for measuring a known number of repetitions per period of the passing signal that has passed through the filter, or a period or a time width depending on the period;
(A) A function for specifying the frequency of the signal under measurement based on the measured value when the measured value of the first measuring instrument represents the frequency of the first appropriate section, (B) the first measurement A function for specifying which of the first to N-th extended sections the frequency of the signal under measurement belongs to using the measurement result of the measuring instrument, and (C) the measurement value of the second measuring instrument is: When expressing the frequency of the second appropriate section, the measured value and the frequency of the extended section specified by the function (B) among the first to Nth frequency conversions are within the second appropriate section. A frequency measurement apparatus comprising: a calculation unit having a function of calculating a frequency of the signal under measurement using a calculation for performing an inverse conversion of the frequency conversion for converting to a value of
前記第1〜第Nの拡張区間のうち少なくとも1つの拡張区間が,前記第1の適正区間に隣接して配置され,前記第1〜第Nの周波数変換のうち該拡張区間の周波数を前記第2の適正区間内の値に変換する周波数変換が,前記第1の適正区間の周波数を,前記第2の適正区間内の値に変換する役割をさらに果たす請求項1に記載の周波数計測装置。   At least one of the first to Nth extension sections is disposed adjacent to the first appropriate section, and the frequency of the extension section of the first to Nth frequency transforms 2. The frequency measurement device according to claim 1, wherein the frequency conversion for converting into a value in the second proper section further plays a role of converting the frequency in the first proper section into a value in the second proper section. 前記第1〜第Nの拡張区間のうち少なくとも1つの拡張区間が,前記第1の適正区間より低域に配置され,残りの拡張区間が,前記第1の適正区間より高域に配置された請求項1又は2に記載の周波数計測装置。   At least one of the first to Nth extended sections is arranged in a lower area than the first appropriate section, and the remaining extended sections are arranged in a higher area than the first appropriate section. The frequency measuring device according to claim 1 or 2. コンピュータを,請求項1〜3のいずれかに記載の周波数計測装置における前記演算手段として機能させるプログラム。   A program that causes a computer to function as the calculation means in the frequency measurement device according to any one of claims 1 to 3. (a)被計測信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を第1の計測器で計測し,その計測値が第1の適正区間の周波数を表す場合に,その計測値によって前記被計測信号の周波数を特定する手順と,
(b)前記手順(a)の前又は後になされる手順であって,前記第1の適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,第2の適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記第2の適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,前記被計測信号に施すことにより中間信号を形成し,その中間信号における前記第2の適正区間の周波数成分の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を第2の計測器で計測し,その第2の計測器の計測値と,前記第2の適正区間の周波数成分を形成した周波数変換として,前記第1〜第Nの周波数変換から特定した周波数変換であって,前記被計測信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を前記第1の計測器で計測した結果を用いて特定した前記周波数変換の逆変換を行う演算とを用いて,前記被計測信号の周波数を算出する手順と
を含む周波数計測方法。
(A) When the number of repetitions of the signal under measurement or the period or time width depending on the period is measured by the first measuring instrument, and the measured value represents the frequency of the first appropriate section , A procedure for identifying the frequency of the signal under measurement based on the measured value,
(B) A procedure performed before or after the procedure (a), and considering first to Nth (N ≧ 2) extended sections different from the first appropriate section, The i-th frequency conversion converts the frequency in the i-th extension section into a value in the second appropriate section, and j-th (where i and j are any natural numbers from 1 to N where i ≠ j. The frequency of the extended section of (1) is subjected to known first to Nth frequency conversions for conversion to values outside the second proper section to form an intermediate signal. , The frequency component of the second appropriate interval in the intermediate signal, the number of repetitions per known period, or the period or the time width depending on the period is measured by the second measuring instrument, and the second measuring instrument As the frequency conversion in which the measured value and the frequency component of the second appropriate section are formed, the first to Nth A frequency conversion identified from the frequency conversion, which is identified using the number of repetitions per known period of the signal under measurement, or the period or the time width depending on the period, measured by the first measuring instrument. And a procedure for calculating a frequency of the signal under measurement using an operation for performing an inverse conversion of the frequency conversion.
センシングの対象となる物理量の影響をうけて特性が変化するセンシング素子を,該特性が発振周波数を決定づける態様で含んでなることにより,前記物理量の値に応じた発振周波数をもつ発振信号を出力する発振回路と,
前記発振信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する第1の計測器と,
或る第1の適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,或る第2の適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記第2の適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,前記発振信号に施すことにより中間信号を形成する周波数変換器と,
前記中間信号が入力され,前記第2の適正区間の周波数を通過させ,前記周波数変換器で前記第2の適正区間外の値に変換された周波数を遮断する濾波器と,
前記濾波器を通過した通過信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する第2の計測器と,
(I)前記第1の計測器の計測値が,前記第1の適正区間の周波数を表す場合に,その計測値によって前記物理量の値を特定する機能,(II)前記第1の計測器の計測結果を用いて,前記発振周波数が,前記第1〜第Nの拡張区間のいずれに属するかを特定する機能,及び(III)前記第2の計測器の計測値が,前記第2の適正区間の周波数を表す場合に,その計測値と,前記第1〜第Nの周波数変換のうち,前記機能(II)により特定した拡張区間の周波数を前第2の適正区間内の値に変換する周波数変換の逆変換を行う演算とを用いて,前記物理量の値を算出する機能をもつ演算手段と
を備えた発振型センサ。
By including a sensing element whose characteristic changes under the influence of the physical quantity to be sensed in a manner in which the characteristic determines the oscillation frequency, an oscillation signal having an oscillation frequency corresponding to the value of the physical quantity is output. An oscillation circuit;
A first measuring device for measuring the number of repetitions of the oscillation signal per known period, or a period or a time width depending on the period;
Considering the first to Nth (N ≧ 2) extended sections different from a first appropriate section, the i-th frequency transform converts the frequency of the i-th extended section to a certain The frequency in the second appropriate interval is converted and the frequency of the jth (where i and j are any natural numbers from 1 to N where i ≠ j) is the second appropriate frequency. A frequency converter that forms an intermediate signal by performing known first to Nth frequency conversions such as conversion to values outside the interval on the oscillation signal;
A filter that receives the intermediate signal, passes the frequency of the second appropriate section, and cuts off the frequency converted by the frequency converter to a value outside the second appropriate section;
A second measuring device for measuring a known number of repetitions per period of the passing signal that has passed through the filter, or a period or a time width depending on the period;
(I) a function of specifying the value of the physical quantity by the measured value when the measured value of the first measuring instrument represents the frequency of the first appropriate section; (II) of the first measuring instrument; Using the measurement result, the function of specifying which of the first to Nth extended sections the oscillation frequency belongs to, and (III) the measured value of the second measuring instrument is the second appropriate When the frequency of the section is expressed, the frequency of the extended section specified by the function (II) among the measured value and the first to Nth frequency conversions is converted into the value in the previous second appropriate section. An oscillation type sensor comprising: an arithmetic unit having a function of calculating a value of the physical quantity using an arithmetic operation that performs inverse conversion of frequency conversion.
JP2014242787A 2014-09-26 2014-12-01 Frequency measuring device, frequency measuring method, and oscillation type sensor Expired - Fee Related JP5717912B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242787A JP5717912B1 (en) 2014-09-26 2014-12-01 Frequency measuring device, frequency measuring method, and oscillation type sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014195913 2014-09-26
JP2014195913 2014-09-26
JP2014242787A JP5717912B1 (en) 2014-09-26 2014-12-01 Frequency measuring device, frequency measuring method, and oscillation type sensor

Publications (2)

Publication Number Publication Date
JP5717912B1 JP5717912B1 (en) 2015-05-13
JP2016070908A true JP2016070908A (en) 2016-05-09

Family

ID=53277416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242787A Expired - Fee Related JP5717912B1 (en) 2014-09-26 2014-12-01 Frequency measuring device, frequency measuring method, and oscillation type sensor

Country Status (1)

Country Link
JP (1) JP5717912B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151065B (en) * 2019-06-28 2024-03-15 力同科技股份有限公司 Method, device, equipment and computer storage medium for detecting single-tone signal frequency

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305167A (en) * 2001-03-23 2001-10-31 Matsushita Electric Ind Co Ltd Selection level measuring instrument
JP5036201B2 (en) * 2006-03-23 2012-09-26 株式会社デンソー Oscillation type sensor gain control method, oscillation type sensor device, evaporated fuel state detection device, and internal combustion engine control unit
JP2010190836A (en) * 2009-02-20 2010-09-02 Epson Toyocom Corp Frequency measuring device and inspection system
JP6049328B2 (en) * 2012-06-28 2016-12-21 日本電波工業株式会社 Frequency measuring device

Also Published As

Publication number Publication date
JP5717912B1 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
CN104459321B (en) Power signal base wave phase measurement method and system
Wiebe et al. A heuristic method for identifying chaos from frequency content
JP5717912B1 (en) Frequency measuring device, frequency measuring method, and oscillation type sensor
US20180096088A1 (en) Method of constructing and method of simulating equivalent circuit for capacitor, and simulation device therefor
JP5712255B2 (en) Frequency measuring method and frequency measuring apparatus by Fourier analysis
RU2013143105A (en) METHOD FOR MEASURING PHYSICAL PARAMETERS OF MATERIAL
CN108332845B (en) Noise measuring method and acoustic meter
CN107063295A (en) A kind of method for analyzing stability of resonant mode gyro
CN104198810A (en) Measuring method for system frequency response
JP6570981B2 (en) Measuring apparatus and measuring method
JP7060226B2 (en) Frequency analysis method and program of heart rate variability
US11035771B2 (en) Measurement system with resonant sensors and method for the operation of a resonant sensor
CN104990666A (en) System parameter calibration method of second-order vibration measurement system based on proportion regression method
JP5717911B2 (en) Frequency measuring method, frequency measuring device, and oscillation type sensor
CN103941086A (en) Ultrahigh precision frequency measurement instrument and measuring method thereof
JP2018060516A (en) Method of constructing equivalent circuit of capacitor, and simulation method and apparatus thereof
RU2551400C1 (en) Method of harmonic analysis of periodic multifrequency signal against the noise background
CN203117287U (en) Frequency comparison device
CN107036706B (en) A kind of set tube vibration well head Monitor detection equipment
KR101059960B1 (en) Apparatus of measuring low frequence antenna and method thereof
JP2010147599A (en) Method, program and device for estimating internal mechanism of oscillator
RU153528U1 (en) MAGNETIC FIELD SENSOR
Cui et al. Flow velocity measurement by cross-correlation with tailored modulation
CN110824250A (en) Device for measuring inductance L and ESR in large frequency range
JP6158140B2 (en) Weighing device and weighing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5717912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees