JP5717911B2 - Frequency measuring method, frequency measuring device, and oscillation type sensor - Google Patents

Frequency measuring method, frequency measuring device, and oscillation type sensor Download PDF

Info

Publication number
JP5717911B2
JP5717911B2 JP2014233616A JP2014233616A JP5717911B2 JP 5717911 B2 JP5717911 B2 JP 5717911B2 JP 2014233616 A JP2014233616 A JP 2014233616A JP 2014233616 A JP2014233616 A JP 2014233616A JP 5717911 B2 JP5717911 B2 JP 5717911B2
Authority
JP
Japan
Prior art keywords
frequency
section
signal
measuring instrument
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014233616A
Other languages
Japanese (ja)
Other versions
JP2015087398A (en
Inventor
雅紀 廣石
雅紀 廣石
Original Assignee
雅紀 廣石
雅紀 廣石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雅紀 廣石, 雅紀 廣石 filed Critical 雅紀 廣石
Priority to JP2014233616A priority Critical patent/JP5717911B2/en
Publication of JP2015087398A publication Critical patent/JP2015087398A/en
Application granted granted Critical
Publication of JP5717911B2 publication Critical patent/JP5717911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は,被計測信号に周波数変換を施す手順を含む周波数計測技術と,これを用いたセンシング技術とに関する。   The present invention relates to a frequency measurement technique including a procedure for performing frequency conversion on a signal under measurement, and a sensing technique using the same.

周波数を計測するための計測器として,例えば,レシプロカル方式の周波数カウンタ(以下,レシプロカルカウンタという。)が用いられている。   As a measuring instrument for measuring the frequency, for example, a reciprocal frequency counter (hereinafter referred to as a reciprocal counter) is used.

図13(A)に,レシプロカルカウンタの概念図を示す。レシプロカルカウンタは,被計測信号Sの周期TあたりのクロックパルスCLKの数をカウントする。カウント値が周期Tの長さを表すので,その逆数を算出することで周波数を特定できる。   FIG. 13A shows a conceptual diagram of a reciprocal counter. The reciprocal counter counts the number of clock pulses CLK per cycle T of the signal under measurement S. Since the count value represents the length of the period T, the frequency can be specified by calculating the reciprocal thereof.

レシプロカルカウンタでは,周波数が高い程,カウント数が減るため分解能が低下し,周波数が低い程,1回の計測に要する時間が長期化する。このため,兼ね合いを考慮し,周波数の計測範囲を或る有限区間に限ることが望まれる場合がある。   In the reciprocal counter, the higher the frequency, the lower the resolution because the number of counts decreases, and the lower the frequency, the longer the time required for one measurement. For this reason, it may be desired to limit the frequency measurement range to a certain finite interval in consideration of trade-offs.

ここでは,レシプロカルカウンタについて述べたが,一般に他の計測器においても同様,その計測器が所望の性能を発揮できる適正な計測を保証するために,或る有限区間(以下,適正区間という。)内での使用が推奨される場合がある。   Here, the reciprocal counter has been described. Generally, as with other measuring instruments, a certain finite interval (hereinafter referred to as an appropriate interval) is used in order to guarantee appropriate measurement in which the measuring instrument can exhibit a desired performance. May be recommended for use within.

特許文献1〜3に開示されるように,適正区間外の周波数を計測したければ,計測に先立って,被計測信号に既知の周波数変換を施せばよい。変換後の周波数が適正区間に属するような周波数変換を選ぶことで,適正区間での計測が可能となり,対応する逆変換の演算を計測値に施せば,周波数を算出できる。   As disclosed in Patent Documents 1 to 3, if a frequency outside the appropriate section is to be measured, a known frequency conversion may be performed on the signal under measurement prior to measurement. By selecting a frequency conversion so that the frequency after conversion belongs to the appropriate interval, measurement in the appropriate interval becomes possible, and the frequency can be calculated by performing the corresponding inverse conversion operation on the measured value.

特開2014-9979号公報JP 2014-9979 特開2007-10593号公報JP 2007-10593 特開2009-5259号公報JP 2009-5259 特開S57-52837号公報JP S57-52837

特許文献1〜3の技術では,適正区間より広い区間にわたって周波数の適正な計測を可能とするには,周波数変換を可変とする構成が必須である。   In the techniques of Patent Documents 1 to 3, a configuration in which the frequency conversion is variable is essential in order to enable proper measurement of the frequency over a wider section than the appropriate section.

特許文献4は,計測対象の物理量が変動しうる区間を,複数の計測器で分担して受けもつ思想を開示する。この思想にならえば,周波数変換を可変とする必要はなくなるが,例えば,適正区間を両側に拡張したい場合,適正区間を受けもつ計測器,適正区間より低域の区間を受けもつ計測器,及び適正区間より高域の区間を受けもつ計測器の3つが必要となり,構成が大型化する。   Patent Document 4 discloses a concept in which a section in which a physical quantity to be measured can vary is shared by a plurality of measuring instruments. According to this idea, it is not necessary to make the frequency conversion variable. For example, when it is desired to extend the appropriate section to both sides, a measuring instrument that handles the proper section, a measuring instrument that handles a section lower than the proper section, and Three measuring instruments that handle the higher section than the appropriate section are required, and the configuration becomes larger.

本発明の目的は,大型化しにくい構成を用いながら,周波数変換を可変とせずとも,周波数を適正に計測できる区間を広げうる技術を提供することである。   An object of the present invention is to provide a technique capable of expanding a section in which a frequency can be appropriately measured without using a variable frequency conversion while using a configuration that is difficult to increase in size.

本発明の一観点によれば,(a)或る適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,前記適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,被計測信号に施すことにより中間信号を形成すると共に,その形成した中間信号における前記適正区間の周波数成分の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する手順と,(b)前記適正区間の周波数成分を形成した周波数変換として,前記第1〜第Nの周波数変換から特定した周波数変換であって,前記被計測信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測した結果を用いて特定した前記周波数変換の逆変換の演算と,前記手順(a)で得られた計測値とを用いて,前記被計測信号の周波数を算出する手順とを含む周波数計測方法が提供される。   According to one aspect of the present invention, when considering (a) first to Nth extended sections (where N ≧ 2) different from a certain appropriate section, the i th frequency conversion is Is converted into a value within the appropriate interval, and the frequency of the j-th expansion interval (where i and j are any natural numbers from 1 to N where i ≠ j) is An intermediate signal is formed by performing known first to Nth frequency conversions such as conversion to values outside the appropriate interval on the signal under measurement, and the frequency component of the appropriate interval in the formed intermediate signal is formed. , A procedure for measuring the number of repetitions per known period, or a period or a time width depending on the period, and (b) from the first to Nth frequency conversions as frequency conversions forming the frequency components of the appropriate section A specified frequency conversion, the known signal being measured Using the calculation of inverse conversion of the frequency conversion specified using the result of measuring the number of repetitions per period, or the period or the time width depending on the period, and the measurement value obtained in the procedure (a), There is provided a frequency measurement method including a procedure for calculating the frequency of the signal under measurement.

本明細書において,或る区間と他の区間が異なるとは,それら区間の少なくともいずれか一方が,他方と重複しない区間をもつことをいう。但し,第1〜第Nの各拡張区間は,適正区間と重複をもたず,かつ拡張区間どうしも重複をもたない概念とする。   In this specification, the fact that a certain section is different from another section means that at least one of the sections has a section that does not overlap with the other section. However, the first to Nth extended sections do not overlap with the appropriate sections, and the extended sections do not overlap each other.

第1〜第Nの周波数変換のうち,被計測信号の周波数が属する拡張区間に対応した周波数変換の効果のみを計測に供するから,周波数変換を可変とせずとも,第k(但し,kは1〜Nの任意の自然数とする。)の拡張区間に属する周波数を,第kの周波数変換によって適正区間内の値に変換したうえで,計測することができる。   Of the first to Nth frequency conversions, only the effect of the frequency conversion corresponding to the extended section to which the frequency of the signal under measurement belongs is used for measurement. Therefore, even if the frequency conversion is not variable, the kth (where k is 1) It can be measured after converting the frequency belonging to the extended interval of .about.N to the value in the appropriate interval by k-th frequency conversion.

こうして,周波数を適正に計測できる区間を,第1〜第Nの拡張区間の分だけ広げることができるにも関わらず,適正区間の周波数成分を形成した周波数変換の特定がなされるため,第1〜第Nの拡張区間の周波数の計測に,共通の計測器を用いることが可能となり,構成を大型化しにくくすることができる。   Thus, although the section in which the frequency can be properly measured can be expanded by the first to Nth extended sections, the frequency conversion that forms the frequency component of the appropriate section is specified, so the first It becomes possible to use a common measuring instrument for the measurement of the frequency of the Nth expansion section, and it is difficult to increase the size of the configuration.

実施例による周波数計測装置の概念図,Conceptual diagram of the frequency measuring device according to the embodiment, バンドパスフィルタの利得を示す概念図,Conceptual diagram showing the gain of the bandpass filter, 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; プロセッサの処理手順を示すフローチャート,A flowchart showing the processing procedure of the processor; 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; 他の実施例による周波数計測装置の概念図,Conceptual diagram of a frequency measurement device according to another embodiment, 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; 第1及び第2の周波数変換を表す関数のグラフ,A graph of functions representing the first and second frequency transformations; 第1〜第4の周波数変換を表す関数のグラフ,A graph of functions representing the first to fourth frequency transformations; プロセッサの処理手順を示すフローチャート,A flowchart showing the processing procedure of the processor; プロセッサの処理手順を示すフローチャート,A flowchart showing the processing procedure of the processor; さらに他の実施例による周波数計測装置の概念図,Further, a conceptual diagram of a frequency measuring device according to another embodiment, 計測器としての周波数カウンタの概念図,Conceptual diagram of a frequency counter as a measuring instrument, 実施例による発振型圧力センサの概念図。The conceptual diagram of the oscillation type pressure sensor by an Example.

図1に,実施例による周波数計測装置の概念図を示す。   In FIG. 1, the conceptual diagram of the frequency measuring device by an Example is shown.

分配器1が,被計測周波数fsをもつ被計測信号SAを,ヘテロダイン器2とスイッチ4とに分配する。分配器1は,例えばノードで構成されうる。   The distributor 1 distributes the measured signal SA having the measured frequency fs to the heterodyne unit 2 and the switch 4. The distributor 1 can be composed of nodes, for example.

ヘテロダイン器2は,局発信号源21と,混合器22とを含む。局発信号源21が,既知の周波数frをもつ局発信号を発する。混合器22が,その局発信号と被計測信号SAとを掛け算することで,周波数fs+frの和周波成分と,周波数|fs−fr|の差周波成分とをもつ中間信号を形成する。   The heterodyne device 2 includes a local oscillation signal source 21 and a mixer 22. The local signal source 21 generates a local signal having a known frequency fr. The mixer 22 multiplies the local signal and the signal to be measured SA to form an intermediate signal having a sum frequency component of frequency fs + fr and a difference frequency component of frequency | fs−fr |.

バンドパスフィルタ(以下,BPFと記す。)3に,その中間信号が入力される。BPF3は,固定された通過バンドをもつが,fsの値に応じて,和周波成分fs+frを通過させる場合もあり,差周波成分|fs−fr|を通過させる場合もある。   The intermediate signal is input to a band-pass filter (hereinafter referred to as BPF) 3. The BPF 3 has a fixed pass band, but the sum frequency component fs + fr may be allowed to pass or the difference frequency component | fs−fr | may be allowed to pass depending on the value of fs.

スイッチ4は,BPF3を通過した通過信号SB,及び被計測信号SAのいずれを計測器5に入力させるかを,プロセッサ6からの制御に従って選択する。   The switch 4 selects which of the passing signal SB that has passed through the BPF 3 and the signal to be measured SA to be input to the measuring instrument 5 according to the control from the processor 6.

計測器5は,レシプロカルカウンタで構成され,自己に入力された信号の周期を,その周期あたりのクロックパルス数のカウントにより計測する。そのカウント値が,計測器5の計測値である。   The measuring instrument 5 is composed of a reciprocal counter, and measures the period of the signal input to itself by counting the number of clock pulses per period. The count value is a measurement value of the measuring instrument 5.

プロセッサ6が,スイッチ4の制御と,計測器5の計測値の逆数を求めること等により被計測周波数fsを特定する処理とを行う。   The processor 6 performs control of the switch 4 and processing for specifying the measured frequency fs by obtaining the reciprocal of the measured value of the measuring instrument 5 or the like.

図2に,BPF3の利得の周波数依存性を模式的に示す。   FIG. 2 schematically shows the frequency dependence of the gain of BPF3.

図2(A)に示すように,BPF3の下側カットオフ周波数をfL,上側カットオフ周波数をfHとする。fL以上fH以下の通過バンドPの幅fH−fLが,局発信号の周波数frと等しい。従って,fsが区間Pに属するとき,和周波成分fs+frと,差周波成分|fs−fr|の双方が,BPF3で遮断されうる。   As shown in FIG. 2A, the lower cutoff frequency of BPF 3 is fL, and the upper cutoff frequency is fH. The width fH-fL of the pass band P between fL and fH is equal to the frequency fr of the local oscillation signal. Therefore, when fs belongs to the section P, both the sum frequency component fs + fr and the difference frequency component | fs-fr | can be blocked by the BPF 3.

一方,通過バンドPは,計測器5にとって適正な計測を行える適正区間Mと等しい。このため,fsが区間P(=M)に属するとき,スイッチ4によって被計測信号SAが計測器5に入力されていれば,fsの適正な計測を行える。   On the other hand, the pass band P is equal to the appropriate section M in which measurement appropriate for the measuring instrument 5 can be performed. Therefore, when fs belongs to the section P (= M), if the signal to be measured SA is input to the measuring instrument 5 by the switch 4, it is possible to appropriately measure fs.

図2(B)に示すように,fsが,適正区間Mの上限値fHより高くても,fH+fr以下であれば,差周波成分|fs−fr|がBPF3を通過する。適正区間Mの上側に隣接するこの区間H(fH<fs≦fH+fr)を上側拡張区間と呼ぶことにする。   As shown in FIG. 2 (B), even if fs is higher than the upper limit value fH of the appropriate section M, if fH + fr or less, the difference frequency component | fs-fr | passes through the BPF 3. This section H (fH <fs ≦ fH + fr) adjacent to the upper side of the appropriate section M will be referred to as an upper extended section.

上側拡張区間Hにfsが属するとき,fsそれ自体は高すぎるため計測器5で適正に計測できないが,差周波成分|fs−fr|であれば適正に計測できる。そのためには,計測器5に通過信号SBが入力されていればよい。   When fs belongs to the upper extended section H, fs itself is too high and cannot be properly measured by the measuring instrument 5, but can be properly measured if the difference frequency component | fs-fr |. For this purpose, the passing signal SB only needs to be input to the measuring instrument 5.

図2(C)に示すように,fsが,適正区間Mの下限値fLより低くても,fL−fr以上であれば,和周波成分fs+frがBPF3を通過する。適正区間Mの下側に隣接するこの区間L(fL−fr≦fs<fL)を下側拡張区間と呼ぶことにする。   As shown in FIG. 2C, even if fs is lower than the lower limit value fL of the appropriate section M, the sum frequency component fs + fr passes through the BPF 3 if it is equal to or greater than fL−fr. This section L (fL−fr ≦ fs <fL) adjacent to the lower side of the appropriate section M will be referred to as a lower extended section.

下側拡張区間Lにfsが属するとき,fsそれ自体は低すぎるため計測器5で適正に計測できないが,和周波成分fs+frであれば適正に計測できる。そのためには,計測器5に通過信号SBが入力されていればよい。   When fs belongs to the lower extended section L, fs itself is too low and cannot be properly measured by the measuring instrument 5, but can be appropriately measured if the sum frequency component fs + fr. For this purpose, the passing signal SB only needs to be input to the measuring instrument 5.

図3は,y=fs+fr及びy=|fs−fr|のグラフ,即ち和周波成分及び差周波成分の,被計測周波数fsに対する依存性,並びにy=fsのグラフを示す。   FIG. 3 shows a graph of y = fs + fr and y = | fs-fr |, that is, a dependency of the sum frequency component and the difference frequency component on the measured frequency fs, and a graph of y = fs.

以下,被計測周波数fsの,和周波成分fs+frへの変換を上昇変換といい,差周波成分|fs−fr|への変換を下降変換という。y軸が変換後の周波数を示す。   Hereinafter, the conversion of the measured frequency fs into the sum frequency component fs + fr is referred to as “upward conversion”, and the conversion into the difference frequency component | fs−fr | is referred to as “downward conversion”. The y axis shows the frequency after conversion.

被計測周波数fsは,下側拡張区間Lに属するとき,上昇変換によって通過バンドP内の値に変換され,上側拡張区間Hに属するとき,下降変換によって通過バンドPM内の値に変換される。   When the measured frequency fs belongs to the lower extended section L, it is converted to a value in the pass band P by upward conversion, and when it belongs to the upper extended section H, it is converted to a value in the pass band PM by downward conversion.

なお,被計測周波数fsは,下側拡張区間Lに属するとき,下降変換も同時にうけるが,その下降変換後の周波数は,通過バンドPを外れ,BPF3で遮断される。また,被計測周波数fsは,上側拡張区間Hに属するとき,上昇変換も同時にうけるが,その上昇変換後の周波数は,通過バンドPを外れ,BPF3で遮断される。   Note that when the measured frequency fs belongs to the lower extended section L, it undergoes downward conversion at the same time, but the frequency after the downward conversion is out of the pass band P and blocked by the BPF 3. Further, when the measured frequency fs belongs to the upper extended section H, it undergoes upward conversion at the same time, but the frequency after the upward conversion is out of the pass band P and blocked by the BPF 3.

こうして,上昇変換と下降変換のうち,fsが属する拡張区間に対応した周波数変換の効果のみがBPF3で選ばれる。通過信号SBが単一周波数成分のみをもつから,計測器5でその周波数を適切に計測できる。その計測値が表す周波数をfBとする。   Thus, only the effect of the frequency conversion corresponding to the extended section to which fs belongs is selected by the BPF 3 among the up conversion and the down conversion. Since the passing signal SB has only a single frequency component, the measuring device 5 can appropriately measure the frequency. The frequency represented by the measured value is assumed to be fB.

但し,知りたいのはfsの値である。fBからfsを知るために,fBに対し,上昇変換と下降変換のいずれの変換の逆変換を施せばよいかを特定することが必要である。そのためには,fsが下側拡張区間Lと上側拡張区間Hのいずれに属するかを特定すればよい。fsが属する拡張区間を特定することは,逆変換を特定することと等価である。   However, what we want to know is the value of fs. In order to know fs from fB, it is necessary to specify which of up-conversion and down-conversion should be applied to fB. For that purpose, it suffices to specify whether fs belongs to the lower extension section L or the upper extension section H. Specifying the extended section to which fs belongs is equivalent to specifying the inverse transformation.

拡張区間の特定は,被計測信号SAの測定によって行う。拡張区間の周波数は適正に計測できないが,fsが区間LとHのいずれに属するかさえ特定できれば充分である。fsが区間Lに属するならば,その値はfBに上昇変換の逆変換を施したfA1であり,区間Hに属するならば,その値はfBに下降変換の逆変換を施したfA2である。   The extension section is specified by measuring the signal under measurement SA. Although the frequency of the extended section cannot be measured properly, it is sufficient if it can be specified whether fs belongs to section L or H. If fs belongs to the interval L, the value is fA1 obtained by performing reverse conversion of upconversion on fB, and if it belongs to the interval H, the value is fA2 obtained by applying reverse conversion of downconversion to fB.

図4に,プロセッサ6が行う処理のフローチャートを示す。   FIG. 4 shows a flowchart of processing performed by the processor 6.

まず,プロセッサ6は,被計測信号SAが計測器5に入力されるようスイッチ4を制御し(S1),計測器5の計測値が,適正区間Mの周波数を表すか判定する(S2)。   First, the processor 6 controls the switch 4 so that the signal under measurement SA is input to the measuring instrument 5 (S1), and determines whether the measured value of the measuring instrument 5 represents the frequency of the appropriate section M (S2).

計測値が適正区間Mの周波数を表す場合(S2:適正),プロセッサ6は,その周波数をもってfsを特定し(S3),特定したfsの値を外部出力する等して,S2に戻る。   When the measured value represents the frequency of the appropriate section M (S2: appropriate), the processor 6 specifies fs with the frequency (S3), outputs the specified fs value externally, and returns to S2.

一方,計測値が適正区間Mの上端点fHを超える周波数を表す場合(S2:オーバー),プロセッサ6は,通過信号SBが計測器5に入力されるようスイッチ4を制御し(S4),計測値が適正区間Mの周波数を表すか判定する(S5)。   On the other hand, when the measured value represents a frequency exceeding the upper end point fH of the appropriate section M (S2: over), the processor 6 controls the switch 4 so that the passing signal SB is input to the measuring instrument 5 (S4). It is determined whether the value represents the frequency of the appropriate section M (S5).

計測値が適正区間Mの周波数を表す場合(S5:適正),プロセッサ6は,その周波数に下降変換の逆変換(以下,逆下降変換という。),即ちfrを加算する演算を施した値でfsを特定し(S6),特定したfsの値を外部出力する等して,S5に戻る。   When the measured value represents the frequency of the appropriate section M (S5: appropriate), the processor 6 is a value obtained by performing inverse conversion of downward conversion (hereinafter referred to as reverse downward conversion), that is, an operation of adding fr to the frequency. fs is specified (S6), the value of the specified fs is externally output, and the process returns to S5.

ここで逆下降変換を行うのは,S2の測定結果を用いたことによる。即ち,S4でスイッチ制御した際に,S2で“オーバー”の結果を得ていたので,S5で“適正”の測定結果を得たことで,fsが上側拡張区間Hに属することが確定的となり,上側拡張区間Hに属するfsが下降変換をうけて計測器5で適正に計測されたと分かるからである。   Here, the reverse descending conversion is performed because the measurement result of S2 is used. That is, since the result of “over” was obtained in S2 when the switch control was performed in S4, it became definite that fs belongs to the upper extended section H by obtaining the “appropriate” measurement result in S5. This is because it can be seen that fs belonging to the upper extended section H is properly measured by the measuring instrument 5 after undergoing downward conversion.

S5で,計測値が表す周波数が,適正区間Mの下端点fLに達したとき(S5:アンダー),プロセッサ6は,再び被計測信号SAを計測器5に入力させるべく,スタートに戻る。この場合,fsが上側拡張区間Hから適正区間Mに戻る可能性がある。   In S5, when the frequency represented by the measured value reaches the lower end point fL of the appropriate section M (S5: under), the processor 6 returns to the start to input the signal to be measured SA to the measuring instrument 5 again. In this case, fs may return from the upper extended section H to the appropriate section M.

S5で,計測値が表す周波数が,適正区間Mの上端点fHに達したとき(S5:オーバー),プロセッサ6は,エラーを出力し(S7),スタートに戻る。この場合,fsが上側拡張区間Hさえ超える可能性がある。   When the frequency represented by the measured value reaches the upper end point fH of the appropriate section M in S5 (S5: over), the processor 6 outputs an error (S7) and returns to the start. In this case, fs may even exceed the upper extended section H.

他方,S2で,計測値が適正区間Mの下端点fLを下回る周波数を表す場合も(S2:アンダー),プロセッサ6は,通過信号SBを計測器5に入力させ(S8),計測値が適正区間Mの周波数を表すか判定する(S9)。   On the other hand, when the measured value represents a frequency lower than the lower end point fL of the appropriate section M in S2 (S2: under), the processor 6 inputs the passing signal SB to the measuring instrument 5 (S8), and the measured value is appropriate. It is determined whether the frequency of the section M is represented (S9).

計測値が適正区間Mの周波数を表す場合(S9:適正),プロセッサ6は,その周波数に上昇変換の逆変換(以下,逆上昇変換という。),即ちfrを減じる演算を施した値でfsを特定し(S10),特定したfsの値を外部出力する等して,S9に戻る。   When the measured value represents the frequency of the appropriate section M (S9: appropriate), the processor 6 uses the value obtained by performing the inverse conversion of the upward conversion (hereinafter referred to as the reverse upward conversion), that is, the operation of subtracting fr to the frequency. Is identified (S10), the identified value of fs is externally output, and the process returns to S9.

ここで逆上昇変換を行うのは,S2の測定結果を用いたことによる。即ち,S8でスイッチ制御した際に,S2で“アンダー”の結果を得ていたので,S9で“適正”の測定結果を得たことで,fsが下側拡張区間Lに属することが確定的となり,下側拡張区間Lに属するfsが上昇変換をうけて計測器5で計測されたと分かるからである。   Here, the reverse ascent conversion is performed because the measurement result of S2 is used. That is, when the switch control is performed in S8, the result of “under” is obtained in S2, so that the measurement result of “appropriate” is obtained in S9, so that fs belongs to the lower extended section L. This is because it can be seen that fs belonging to the lower extended section L has been subjected to the upward conversion and measured by the measuring instrument 5.

S9で,計測値が表す周波数が,適正区間Mの上端点fHに達したとき(S9:オーバー),プロセッサ6は,再び被計測信号SAを計測器5に入力させるべく,スタートに戻る。この場合,fsが下側拡張区間Lから適正区間Mに戻る可能性がある。   In S9, when the frequency represented by the measured value reaches the upper end point fH of the appropriate section M (S9: over), the processor 6 returns to the start to input the signal under measurement SA to the measuring instrument 5 again. In this case, fs may return from the lower extended section L to the appropriate section M.

S9で,計測値が表す周波数が,適正区間Mの下端点fLに達したとき(S9:アンダー),プロセッサ6は,エラーを出力し(S11),スタートに戻る。この場合,fsが下側拡張区間Lにも満たなくなる可能性がある。   In S9, when the frequency represented by the measured value reaches the lower end point fL of the appropriate section M (S9: under), the processor 6 outputs an error (S11) and returns to the start. In this case, there is a possibility that fs does not satisfy the lower extended section L.

以上の例によれば,通過信号SBを計測に供する場合,その信号SBを形成したのが上昇変換なのか下降変換なのかを特定するため,拡張区間LとHの周波数の計測に,共通の計測器5を使用できる。さらに,スイッチ4を用い,被計測信号SAを計測に供する状態と,通過信号SBを計測に供する状態とを切り替えるので,被計測信号SAの計測にも,共通の計測器5を使用でき,この結果,計測器5が1つで足りる。   According to the above example, when the passing signal SB is used for measurement, in order to specify whether the signal SB is formed by the up-conversion or the down-conversion, it is common to the measurement of the frequencies in the extended sections L and H. A measuring instrument 5 can be used. Further, since the switch 4 is used to switch between a state in which the signal under measurement SA is used for measurement and a state in which the passage signal SB is used for measurement, the common measuring instrument 5 can be used for measuring the signal under measurement SA. As a result, one measuring instrument 5 is sufficient.

以下,図4のS2の判定の変形例について述べる。   Hereinafter, a modified example of the determination of S2 in FIG. 4 will be described.

計測器5は,自己に入力された信号の周波数が,適正区間Mから外れているとき,具体的な計測値を示さなくても,その周波数が,適正区間Mを上下どちら側に外れているかを特定できる情報量をもつ計測結果を示せばよい。   When the frequency of the signal input to the measuring instrument 5 is out of the appropriate section M, the measuring instrument 5 is located on the upper or lower side of the appropriate section M without showing a specific measurement value. It is only necessary to show a measurement result having an information amount that can identify the

例えば,計測器5は,周波数が適正区間Mを上側に外れたこと示す信号,又は下側に外れたこと示す信号を出力してもよい。プロセッサ6は,その信号によってS2の“オーバー”か“アンダー”かの判断を行える。かかる信号としては,例えば,計測器5を構成するカウンタのボロー信号やオーバーフロー信号等が挙げられる。   For example, the measuring instrument 5 may output a signal indicating that the frequency has deviated from the appropriate interval M to the upper side, or a signal indicating that the frequency has deviated to the lower side. The processor 6 can determine whether S2 is “over” or “under” based on the signal. Examples of such a signal include a borrow signal and an overflow signal of a counter that constitutes the measuring instrument 5.

次に,図5を参照し,上昇変換と下降変換の変形例について述べる。   Next, with reference to FIG. 5, a modified example of ascending conversion and descending conversion will be described.

図5で,適正区間Mの低域側の端部に位置する区間MLを,下端部区間と呼び,適正区間Mの高域側の端部に位置する区間MHを,上端部区間と呼ぶことにする。   In FIG. 5, the section ML located at the lower end of the appropriate section M is referred to as the lower end section, and the section MH located at the higher end of the appropriate section M is referred to as the upper end section. To.

本例では,上昇変換が,下端部区間MLの周波数を上端部区間MHの値に変換する役割をさらに果たし,下降変換が,上端部区間MHの周波数を下端部区間MLの値に変換する役割をさらに果たす。これは,例えば,fH−fL>frとすることで実現できる。   In this example, the up conversion further plays a role of converting the frequency of the lower end section ML into the value of the upper end section MH, and the down conversion plays a role of converting the frequency of the upper end section MH into a value of the lower end section ML. Fulfill further. This can be realized by, for example, fH−fL> fr.

本例では,図4のフローを,次のように読み替えて適用する。   In this example, the flow shown in FIG. 4 is applied as follows.

S2では,計測値が表す周波数が,上端部区間MHに属したとき,即ち上端部区間MHの低域側の端点以上のとき“オーバー”と判断し,下端部区間MLに属したとき,即ち下端部区間MLの高域側の端点以下のとき“アンダー”と判断し,適正区間Mの区間ML及びMHを除く中央区間MMに属するとき“適正”と判断する。   In S2, when the frequency represented by the measurement value belongs to the upper end section MH, that is, when it is equal to or higher than the lower end point of the upper end section MH, it is judged as “over”, and when it belongs to the lower end section ML, “Under” is determined when it is equal to or lower than the end point on the high frequency side of the lower end section ML, and “appropriate” is determined when it belongs to the central section MM excluding the sections ML and MH of the appropriate section M.

これにより,fsが適正区間Mから拡張区間L又はHへ連続的に移行する場合に,fsが適正区間Mから外れて事後的にスイッチ4の切り替えを行うのではなく,fsが適正区間Mから外れる前にスイッチ4の切り替えを行えるから,適正区間Mと拡張区間L及びHとの境で,適正な計測が途切れてしまうことを防止できる。   As a result, when fs continuously shifts from the appropriate section M to the extended section L or H, fs does not deviate from the proper section M and the switch 4 is switched afterwards, but fs changes from the proper section M. Since the switch 4 can be switched before deviating, proper measurement can be prevented from being interrupted at the boundary between the appropriate section M and the extended sections L and H.

また,計測器5にレシプロカルカウンタを用いたので,上端部区間MHに属する周波数を下降変換して計測することで,区間MHでの計測値の分解能を高めることができ,下端部区間MLに属する周波数を上昇変換して計測することで,区間MLに属する周波数の1回の計測に要する時間を短縮することができる。   In addition, since a reciprocal counter is used for the measuring instrument 5, the resolution of the measurement value in the section MH can be increased by down-converting and measuring the frequency belonging to the upper end section MH, and belongs to the lower end section ML. By performing the up-conversion measurement, the time required for one measurement of the frequency belonging to the section ML can be shortened.

S5では,計測値が表す周波数が,下端部区間MLの高域側の端点を下回るとき“アンダー”と判断し,S9では,計測値が表す周波数が,上端部区間MHの低域側の端点を上回るとき“オーバー”と判断する。これにより,fsが拡張区間から適正区間に戻る際も,拡張区間と適正区間との境で適正な計測が途切れることを防止できる。   In S5, when the frequency represented by the measurement value falls below the high-frequency end point of the lower end section ML, it is determined as “under”. In S9, the frequency represented by the measurement value is determined as the low-end end point of the upper end section MH. It is judged as “over” when exceeding. Thereby, even when fs returns from the extended section to the appropriate section, it is possible to prevent proper measurement from being interrupted at the boundary between the expanded section and the appropriate section.

以上,1つの変形例を述べたが,より一般的には,S2では,計測器5の計測値が表す周波数が,適正区間Mの範囲内で,上端点fHに近づいたとき“オーバー”と判断し,下端点fLに近づいたとき“アンダー”と判断することができる。   Although one modification has been described above, more generally, in S2, when the frequency represented by the measurement value of the measuring instrument 5 approaches the upper end point fH within the appropriate section M, “over” is indicated. Judgment is made, and when the lower end point fL is approached, it can be judged as “under”.

ここで“端点に近づく”とは,例えば,図4のS2→S3→S2のループ処理が示すような,繰り返しなされる計測で,計測値が表す周波数が,前回の計測値が表す周波数よりも,端点に近いことを指し,その周波数が端点に達することも含む意味とする。   Here, “approaching the end point” is, for example, repeated measurement as shown by the loop process of S 2 → S 3 → S 2 in FIG. 4, and the frequency represented by the measured value is higher than the frequency represented by the previous measured value. , Indicates that the frequency is close to the end point, and includes that the frequency reaches the end point.

周波数が端点に近づいたか否かは,上記例のように,計測値が表す周波数が,或る境界点から端点までの端部区間に属したか否かで判断できる他,例えば,計測値が表す周波数それ自体にはよらず,その周波数の,前回の計測値が表す周波数からの変化量が,或る基準値を超えたか否かによっても判断できる。   Whether or not the frequency approaches the end point can be determined by whether or not the frequency represented by the measurement value belongs to an end section from a certain boundary point to the end point as in the above example, for example, the measurement value represents Regardless of the frequency itself, it can also be determined by whether or not the amount of change from the frequency represented by the previous measurement value exceeds a certain reference value.

即ち,計測値が表す周波数が端点に向かって大きく変化した場合は,次回の計測値が表す周波数が適正区間を超える可能性が高い。そこで,予めスイッチ4の切り替え制御を行うことで,適正な計測が途切れてしまうことを防止できる。   That is, when the frequency represented by the measurement value changes greatly toward the end point, the frequency represented by the next measurement value is likely to exceed the appropriate section. Therefore, by performing switching control of the switch 4 in advance, it is possible to prevent proper measurement from being interrupted.

同様に,S5では,計測値が表す周波数が,適正区間Mの下端点fLに近づいたとき“アンダー”と判断し,S9では,計測値が表す周波数が,適正区間Mの上端点fHに近づいたとき“オーバー”と判断することができる。   Similarly, in S5, when the frequency represented by the measured value approaches the lower end point fL of the appropriate section M, it is determined as “under”, and in S9, the frequency represented by the measured value approaches the upper end point fH of the appropriate section M. It can be determined that it is “over”.

以下,図4のS5及びS9の判定の他の変形例について述べる。   Hereinafter, another modified example of the determination of S5 and S9 in FIG. 4 will be described.

S5及びS9では,通過信号SBの振幅がゼロになったときも“オーバー”又は“アンダー”の判定を下せる。これは,fsが適正区間Mに戻ったとき,通過信号SBがゼロになり(図2(A)参照),和周波成分が適正区間を下回ったとき,及び差周波成分が適正区間を上回ったときも,通過信号SBがゼロになるからである。   In S5 and S9, the determination of “over” or “under” can be made even when the amplitude of the passing signal SB becomes zero. This is because when fs returns to the appropriate interval M, the passing signal SB becomes zero (see FIG. 2A), when the sum frequency component falls below the appropriate interval, and the difference frequency component exceeds the appropriate interval. This is because sometimes the passing signal SB becomes zero.

例えば,S5では,差周波成分がfLに近づきつつ,通過信号SBがゼロになったときも“アンダー”と判断し,S9では,和周波成分がfHに近づきつつ,通過信号SBがゼロになったときも“オーバー”と判断することができる。通過信号SBがゼロになったことは,例えば,計測器5の計測結果を通じて,プロセッサ6で検知できる。   For example, in S5, “under” is also determined when the passing signal SB becomes zero while the difference frequency component approaches fL, and in S9, the passing signal SB becomes zero while the sum frequency component approaches fH. It is possible to determine that it is “over”. The fact that the passage signal SB has become zero can be detected by the processor 6 through the measurement result of the measuring instrument 5, for example.

このように,fsが適正区間に隣る拡張区間に属する状態では,fsが,その拡張区間の適正区間側の端点に近づいた場合のみならず,その端点を適正区間側に外れた場合にも,被計測信号SAが計測器5に入力されるようスイッチ4を制御することができる。   Thus, in a state where fs belongs to the extended section adjacent to the appropriate section, not only when fs approaches the end point on the proper section side of the extended section, but also when the end point deviates to the proper section side. The switch 4 can be controlled so that the signal under measurement SA is input to the measuring instrument 5.

同様に,S5では,差周波成分がfHに近づきつつ,通過信号SBがゼロになったときも“オーバー”と判定し,S9では,和周波成分がfLに近づきつつ,通過信号SBがゼロになったときも“アンダー”と判定することができる。   Similarly, in S5, when the passing signal SB becomes zero while the difference frequency component approaches fH, it is determined as “over”. In S9, the passing signal SB approaches zero while the sum frequency component approaches fL. When it becomes, it can be determined as “under”.

次に,図6及び図7を参照し,他の実施例について述べる。   Next, another embodiment will be described with reference to FIGS.

図6は,周波数変換を分周と逓倍で実現する例を示す。分周逓倍器7に,被計測信号SAが分配される。分周逓倍器7は,分配器71,逓倍器72,分周器73,及び加算器74を含む。分配器71が,被計測信号SAを逓倍器72と分周器73に分配する。分配器71は,例えばノードで構成されうる。   FIG. 6 shows an example in which frequency conversion is realized by frequency division and multiplication. The signal under measurement SA is distributed to the frequency divider 7. The frequency divider 7 includes a distributor 71, a multiplier 72, a frequency divider 73, and an adder 74. The distributor 71 distributes the signal under measurement SA to the multiplier 72 and the frequency divider 73. The distributor 71 can be composed of nodes, for example.

逓倍器72はfsをn倍し,分周器73はfsを1/m倍する。加算器74が,それら逓倍された信号と分周された信号とを加算することで,周波数n・fsの逓倍波成分と,周波数fs/mの分周波成分とをもつ中間信号を形成する。ここでnとmは2以上の自然数であり,本例では,n=m=2とする。   The multiplier 72 multiplies fs by n, and the frequency divider 73 multiplies fs by 1 / m. The adder 74 adds the multiplied signal and the divided signal to form an intermediate signal having a frequency-multiplied wave component of n · fs and a frequency-divided component of frequency fs / m. Here, n and m are natural numbers of 2 or more, and in this example, n = m = 2.

図7に,y=2・fs及びy=fs/2のグラフ,即ち逓倍波成分と分周波成分の被計測周波数fsに対する依存性,並びにy=fsのグラフを示す。   FIG. 7 shows a graph of y = 2 · fs and y = fs / 2, that is, a dependency of the multiplied wave component and the divided frequency component on the measured frequency fs, and a graph of y = fs.

以下,被計測周波数fsの,逓倍波成分2・fsへの変換を逓倍変換,分周波成分fs/2への変換を分周変換という。y軸が変換後の周波数を示す。   Hereinafter, the conversion of the measured frequency fs into the multiplied wave component 2 · fs is referred to as multiplication conversion, and the conversion into the divided frequency component fs / 2 is referred to as frequency division conversion. The y axis shows the frequency after conversion.

逓倍変換は,下側拡張区間Lの周波数を適正区間M内の値に変換し,上側拡張区間Hの周波数は適正区間M外の値に変換する。分周変換は,上側拡張区間Hの周波数を適正区間M内の値に変換し,下側拡張区間Lの周波数は適正区間M外の値に変換する。   In the multiplication conversion, the frequency in the lower extension section L is converted into a value in the appropriate section M, and the frequency in the upper extension section H is converted into a value outside the proper section M. In the frequency division conversion, the frequency in the upper extended section H is converted into a value in the appropriate section M, and the frequency in the lower extended section L is converted into a value outside the proper section M.

本例では,下側拡張区間Lの幅は,(fH−fL)/nであり,上側拡張区間Hの幅は,m・(fH−fL)である。   In this example, the width of the lower extended section L is (fH−fL) / n, and the width of the upper expanded section H is m · (fH−fL).

本例でも,図4のフローを,図4中,“逆上昇変換”を,逓倍変換の逆変換,即ち1/n倍する演算に読み替え,“逆下降変換”を,分周変換の逆変換,即ちm倍する演算に読み替えて適用することができる。   In this example as well, the flow of FIG. 4 is read as “inverse increase conversion” in FIG. 4 as an inverse conversion of multiplication conversion, that is, an operation of multiplying by 1 / n, and “inverse decrease conversion” is converted into an inverse conversion of frequency division conversion. That is, it can be read and applied to the operation of multiplying by m.

次に,図8を参照し,拡張区間の配置位置の変形例について述べる。   Next, a modified example of the arrangement position of the extended section will be described with reference to FIG.

以下では,任意の第1及び第2の拡張区間L及びHを考えたとき,第1の拡張区間Lの周波数を適正区間M内の値に変換する周波数変換を,第1の周波数変換と呼び,第2の拡張区間Hの周波数を適正区間M内の値に変換する周波数変換を,第2の周波数変換と呼ぶことにする。   In the following, when arbitrary first and second extension sections L and H are considered, frequency conversion for converting the frequency of the first extension section L into a value in the appropriate section M is referred to as first frequency conversion. The frequency conversion for converting the frequency of the second extension section H into a value in the appropriate section M will be referred to as a second frequency conversion.

fsが属する拡張区間に対応した周波数変換の効果のみを計測に供するために,第1の周波数変換は,第2の拡張区間Hの周波数を適正区間M外の値に変換し,第2の周波数変換は,第1の拡張区間Lの周波数を適正区間M外の値に変換することが必要である。   In order to use only the effect of the frequency conversion corresponding to the extended section to which fs belongs, the first frequency conversion converts the frequency of the second extended section H to a value outside the appropriate section M, and the second frequency. For the conversion, it is necessary to convert the frequency of the first extension section L to a value outside the appropriate section M.

これまで,第1の周波数変換として,周波数を高める変換,即ち上昇変換又は逓倍変換を用い,第2の周波数変換として,周波数を低下させる変換,即ち下降変換又は分周変換を用いた。これにより,第1の拡張区間Lを適正区間Mより低域に配置し,第2の拡張区間Hを適正区間Mより高域に配置した。   Up to now, as the first frequency conversion, conversion for increasing the frequency, that is, ascending conversion or multiplication conversion is used, and as the second frequency conversion, conversion for decreasing the frequency, that is, decreasing conversion or frequency dividing conversion is used. Thereby, the 1st expansion section L was arranged in the low region from the appropriate section M, and the 2nd expansion section H was arranged in the high region from the proper section M.

図8(A)に示すように,第1及び第2の周波数変換の双方を,周波数を高める変換とすることで(図中,α,βは2以上の自然数とする),拡張区間LとHの双方を,適正区間Mより低域に配置することもできる。   As shown in FIG. 8A, both the first and second frequency conversions are conversions that increase the frequency (in the figure, α and β are natural numbers of 2 or more). Both of H can be arranged in a lower range than the appropriate section M.

図8(B)に示すように,第1及び第2の周波数変換の双方を,周波数を低下させる変換とすることで(図中,γ,δは2以上の自然数とする),拡張区間LとHの双方を,適正区間Mより高域に配置することもできる。   As shown in FIG. 8B, both the first and second frequency conversions are conversions that reduce the frequency (in the figure, γ and δ are natural numbers of 2 or more), so that the extended section L And H can be arranged higher than the appropriate section M.

次に,図9を参照し,拡張区間の配置数の変形例について述べる。   Next, a modified example of the number of extended sections will be described with reference to FIG.

図9に,一点鎖線で示すように,第3の周波数変換y=ξ・fsを追加することで,第3の拡張区間L2が追加され,第4の周波数変換y=(1/η)・fsを追加することで,第4の拡張区間H2が追加される(図中,ξ,ηは2以上の自然数とする)。   In FIG. 9, by adding the third frequency transformation y = ξ · fs, as indicated by the one-dot chain line, the third extension section L2 is added, and the fourth frequency transformation y = (1 / η) · By adding fs, the fourth extended section H2 is added (in the figure, ξ and η are natural numbers of 2 or more).

これは,図6の加算器74の後段に,ξ逓倍された周波数ξ・fsの信号を加算する加算器と,η分周された周波数(1/η)・fsの信号を加算する加算器とを追加することで実現できる。こうして,加算を繰り返し用いることで,所望数の拡張区間を構成しうることが当業者に理解できるであろう。   This is because an adder for adding a signal of frequency ξ · fs multiplied by ξ and an adder for adding a signal of frequency (1 / η) · fs divided by η are added to the subsequent stage of the adder 74 in FIG. It can be realized by adding. Thus, it will be understood by those skilled in the art that a desired number of extended intervals can be constructed by repeatedly using addition.

図10は,図9の構成を用いたフローチャートの一例である。   FIG. 10 is an example of a flowchart using the configuration of FIG.

以下,図10を参照し,fsが適正区間M内の初期値から連続的に変動しうる場合に適用できる処理を述べる。図10では,計測器5による計測の繰り返しが,fsの変動に対して充分に速いことを前提とする。   Hereinafter, with reference to FIG. 10, a process that can be applied when fs can continuously vary from the initial value in the appropriate section M will be described. In FIG. 10, it is assumed that the repetition of measurement by the measuring instrument 5 is sufficiently fast with respect to fs fluctuation.

まず,プロセッサ6は,被計測信号SAを計測器5に入力させ(S21),計測値が適正区間Mの周波数を表すか判定する(S22)。計測値が,適正区間Mの周波数を表す場合(S22:適正),その周波数をもってfsを特定し(S23),S22に戻る。   First, the processor 6 inputs the signal to be measured SA to the measuring instrument 5 (S21), and determines whether the measured value represents the frequency of the appropriate section M (S22). When the measured value represents the frequency of the appropriate section M (S22: appropriate), fs is specified with the frequency (S23), and the process returns to S22.

一方,計測器5の計測結果が,fsが適正区間Mを下側に外れたことを表す場合(S22:アンダー),プロセッサ6は,通過信号SBを計測器5に入力させ(S24),計測値が適正区間Mの周波数を表すか判定する(S25)。   On the other hand, when the measurement result of the measuring instrument 5 indicates that fs has deviated from the appropriate section M (S22: under), the processor 6 inputs the passing signal SB to the measuring instrument 5 (S24), and the measurement is performed. It is determined whether the value represents the frequency of the appropriate section M (S25).

計測値が適正区間Mの周波数を表す場合(S25:適正),プロセッサ6は,fsが拡張区間L1とL2のいずれに属するか特定し(S27),区間L1に属するとき(S27:L1),計測値が表す周波数にn逓倍変換の逆変換を施した値でfsを特定し(S28),区間L2に属するとき(S27:L2),ξ逓倍変換の逆変換を施した値でfsを特定し(S29),S25に戻る。   When the measured value represents the frequency of the appropriate section M (S25: appropriate), the processor 6 specifies whether fs belongs to the extended section L1 or L2 (S27), and when it belongs to the section L1 (S27: L1), The fs is specified by the value obtained by performing the inverse transformation of the n multiplication conversion on the frequency represented by the measurement value (S28), and when belonging to the section L2 (S27: L2), the fs is identified by the value obtained by performing the inverse transformation of the ξ multiplication transformation (S29), the process returns to S25.

S25で,計測器5の計測結果が,fsが区間L1の上限値を超えるか,又はその上限値に近づいたことを表す場合(S25:オーバー),プロセッサ6は,スタートに戻る。この場合,fsが区間L1から適正区間Mに戻る可能性がある。   In S25, if the measurement result of the measuring instrument 5 indicates that fs exceeds or approaches the upper limit value of the section L1 (S25: over), the processor 6 returns to the start. In this case, fs may return from the section L1 to the appropriate section M.

S25で,計測器5の計測結果が,fsが区間L2の下限値を下回るか,又はその下限値に近づいたことを表す場合(S25:アンダー),プロセッサ6は,エラーを出力し(S26),スタートに戻る。この場合,fsが区間L2さえ下回る可能性がある。   In S25, when the measurement result of the measuring instrument 5 indicates that fs is less than or near the lower limit value of the section L2 (S25: under), the processor 6 outputs an error (S26). Return to the start. In this case, there is a possibility that fs is even lower than the section L2.

他方,S22で,計測器5の計測結果が,fsが適正区間Mを上側に外れたことを表す場合も(S22:オーバー),S24〜29と同様の処理を行う(S30〜35)。   On the other hand, when the measurement result of the measuring instrument 5 indicates that fs has deviated from the appropriate section M in S22 (S22: over), the same processing as S24 to 29 is performed (S30 to 35).

以下,S27の判定を具体例に挙げて,拡張区間を特定する手法を述べる。   Hereinafter, a method for specifying an extended section will be described by taking the determination of S27 as a specific example.

S25→S27→S28又はS29のループ処理の1巡目のとき,即ち最初にS25で“適正”と判定したとき,S27では“L1”と判定する。これは,fsが適正区間M内の初期値から連続的に変動するから,S24でスイッチ制御した際のS22の測定結果“アンダー”を用いると,S25の測定結果が“適正”であることによって,fsの属する拡張区間がL1と特定されるからである。   At the first round of the loop processing of S25 → S27 → S28 or S29, that is, when it is first determined “appropriate” in S25, it is determined as “L1” in S27. This is because fs continuously fluctuates from the initial value in the appropriate section M. Therefore, if the measurement result “under” in S22 when the switch control is performed in S24, the measurement result in S25 is “appropriate”. , Fs to which the extended section is specified as L1.

上記ループ処理の2巡目以降では,計測器5の計測値の変化によって,fsの属する拡張区間を特定する。この点について,図9に戻って説明する。   In the second and subsequent rounds of the loop processing, the extension section to which fs belongs is specified by the change in the measurement value of the measuring instrument 5. This point will be described with reference back to FIG.

図9に示すように,fsが区間L1からL2に移行する際,L1とL2の境で,計測値が表す周波数が,fL近傍の値からfH近傍の値に不連続に変化する。この不連続な変化で区間L2への移行を検知できる。同様に,fsが区間L2からL1に戻る際,L2とL2の境で,計測値が表す周波数が,fH近傍の値からfL近傍の値に不連続に変化するから,区間L1への戻りを検知できる。   As shown in FIG. 9, when fs shifts from the section L1 to L2, the frequency represented by the measurement value changes discontinuously from a value near fL to a value near fH at the boundary between L1 and L2. The transition to the section L2 can be detected by this discontinuous change. Similarly, when fs returns from the interval L2 to L1, the frequency represented by the measurement value changes discontinuously from the value near fH to the value near fL at the boundary between L2 and L2. Can be detected.

こうして,最初の基準となる区間がL1であること,即ちS22の測定結果が“アンダー”であることを用い,そこからの相対変位によって現在のfsが属する拡張区間を特定できる。そのうえで,S25で“オーバー”か“アンダー”かの判定がなされ,S31及びS33も,同様にして行えることが当業者に理解できるであろう。   Thus, using the fact that the first reference section is L1, that is, the measurement result of S22 is “under”, the extended section to which the current fs belongs can be specified by the relative displacement therefrom. After that, in S25, it is determined whether it is “over” or “under”, and those skilled in the art will understand that S31 and S33 can be similarly performed.

図11は,図9の構成を用いたフローチャートの他の例を示す。   FIG. 11 shows another example of a flowchart using the configuration of FIG.

まず,プロセッサ6は,被計測信号SAを計測器5に入力させ(S51),計測値が,いずれの区間の周波数を表すか判定する(S52)。   First, the processor 6 inputs the signal under measurement SA to the measuring instrument 5 (S51), and determines which section of the frequency the measured value represents (S52).

計測値が適正区間Mの周波数を表すとき(S52:適正),その周波数をもってfsを特定し(S53),S52に戻る。計測値が表す周波数が,適正区間Mにも拡張区間L1,L2,H1,及びH2のいずれにも属さないとき(S52:拡張区間外),エラーを出力し(S54),S52に戻る。   When the measured value represents the frequency of the appropriate section M (S52: appropriate), fs is specified with the frequency (S53), and the process returns to S52. When the frequency represented by the measured value does not belong to the appropriate section M or any of the extended sections L1, L2, H1, and H2 (S52: outside extended section), an error is output (S54), and the process returns to S52.

一方,計測値が表す周波数が,拡張区間L1,L2,H1,及びH2のいずれかに属するとき(S52:拡張区間),プロセッサ6は,通過信号SBを計測器5に入力させる(S55)。このとき,プロセッサ6は,fsが拡張区間L1,L2,H1,及びH2のいずれに属するかを特定している。   On the other hand, when the frequency represented by the measurement value belongs to any one of the extended sections L1, L2, H1, and H2 (S52: extended section), the processor 6 inputs the passage signal SB to the measuring instrument 5 (S55). At this time, the processor 6 specifies which of the extended sections L1, L2, H1, and H2 fs belongs to.

次に,プロセッサ6は,計測値が適正区間Mの周波数を表すか判定し(S56),適正区間Mの周波数を表す場合(S56:適正),その周波数に,S52で特定した拡張区間に対応する逆変換の演算を施し,fsを算出する(S57)。   Next, the processor 6 determines whether or not the measured value represents the frequency of the appropriate section M (S56). When the measured value represents the frequency of the appropriate section M (S56: appropriate), the frequency corresponds to the extended section specified in S52. The inverse conversion is performed to calculate fs (S57).

次に,プロセッサ6は,S55でスイッチ制御を行った時から一定時間が経過した否か判定し(S58),経過していれば(S58:YES),スタートに戻り,まだ経過していなければ(S58:NO),S56に戻る。S56で,計測器5の計測結果が,周波数が適正区間M外であることを表す場合も(S56:適正区間外),スタートに戻る。   Next, the processor 6 determines whether or not a predetermined time has elapsed since the switch control was performed in S55 (S58), and if it has elapsed (S58: YES), returns to the start, and if it has not yet elapsed. (S58: NO), the process returns to S56. In S56, when the measurement result of the measuring instrument 5 indicates that the frequency is outside the proper section M (S56: outside the proper section), the process returns to the start.

以上のフローによれば,一定時間ごとにfsの属する区間を確認するから,通過信号SBを計測に供している状態で,fsが拡張区間から適正区間Mに戻ったか否かの判断を積極的に行う必要がない。   According to the above flow, since the section to which fs belongs is confirmed at regular intervals, it is positively determined whether fs has returned from the extended section to the appropriate section M in the state where the passing signal SB is being used for measurement. There is no need to do it.

ところで,S52では,拡張区間の周波数も被計測信号SAを通じて測定する。拡張区間L1又はL2の周波数は低いため,計測に長い時間を要する。しかし,S52の判定は,一定時間ごとにしかなされないから,計測器5による計測の繰り返しの時間分解能が著しく損なわれる訳ではない。   By the way, in S52, the frequency of the extended section is also measured through the signal under measurement SA. Since the frequency of the extended section L1 or L2 is low, a long time is required for measurement. However, since the determination of S52 is made only at regular intervals, the time resolution of repeated measurement by the measuring instrument 5 is not significantly impaired.

また,拡張区間H1又はH2の周波数は高いため,高い確度での計測は行えない。しかし,fsがH1とH2のいずれに属するか特定できれば充分である。その特定のため,S52では,必要に応じてクロックCLKの周波数を高めてもよい。   In addition, since the frequency of the extended section H1 or H2 is high, measurement with high accuracy cannot be performed. However, it is sufficient if it is possible to specify whether fs belongs to H1 or H2. For this purpose, in S52, the frequency of the clock CLK may be increased as necessary.

図12は,他の実施例による周波数計測装置の概念図である。周波数変換器8は,図1のヘテロダイン器2,又は図6の分周逓倍器7で構成される。   FIG. 12 is a conceptual diagram of a frequency measuring device according to another embodiment. The frequency converter 8 includes the heterodyne unit 2 in FIG. 1 or the frequency divider 7 in FIG.

事前変換器9が,入力信号S0に,可変な既知の周波数変換(以下,事前変換という。)を施す。事前変換には,ヘテロダイン法,分周,逓倍等が用いられる。事前変換が施された信号が,被計測信号SAとなる。   The pre-converter 9 performs variable known frequency conversion (hereinafter referred to as pre-conversion) on the input signal S0. For the pre-conversion, the heterodyne method, frequency division, multiplication, etc. are used. The signal subjected to the pre-conversion is the signal under measurement SA.

プロセッサ6が,図4等のフローで特定したfsの値に,事前変換の逆変換の演算を施すことで,入力信号S0の周波数を算出し,またその算出した周波数に基づいて,事前変換を制御する。   The processor 6 calculates the frequency of the input signal S0 by performing a reverse conversion operation on the value of fs specified in the flow of FIG. 4 and the like, and performs the preconversion based on the calculated frequency. Control.

例えば,fsが適正区間Mの中央値に追随するよう事前変換を制御することで,スイッチ4の切り替えの頻度を減らせる。また,周波数を適正に計測できる区間のさらなる拡大が図られる。   For example, the frequency of switching the switch 4 can be reduced by controlling the pre-conversion so that fs follows the median value of the appropriate section M. In addition, the section in which the frequency can be measured appropriately can be further expanded.

入力信号S0の周波数が急に変動した場合でも,スイッチ4の切り替えは,事前変換器9の制御より迅速に行える。fsが急に適正区間から外れても,拡張区間L又はHに属していれば,スイッチ4の切り替えにより,これを適正にリアルタイムに計測できる。   Even when the frequency of the input signal S0 changes suddenly, the switch 4 can be switched more quickly than the control of the pre-converter 9. Even if fs suddenly deviates from the appropriate section, if it belongs to the extended section L or H, it can be appropriately measured in real time by switching the switch 4.

以上,周波数計測装置の実施例を述べた。例えば,次のような変形も可能である。   The embodiment of the frequency measuring device has been described above. For example, the following modifications are possible.

上記各例では,(ア)被計測信号SAの計測→(イ)通過信号SBの計測→(ウ)逆変換の特定→(エ)fsの算出,の順の処理(図4及び図10),又は(ア)→(ウ)→(イ)→(エ)の順の処理(図11)を行ったが,例えば,(イ)→(ア)→(ウ)→(エ)の順の処理を行ってもよい。即ち,通過信号SBを測定に供して適正区間の計測値を得た直後に,被計測信号SAの計測に切り替えて,計測値に施すべき逆変換の特定を行ってもよい。   In each of the above examples, (a) measurement of the signal to be measured SA → (b) measurement of the passing signal SB → (c) identification of inverse transformation → (d) calculation of fs (FIGS. 4 and 10) Or (a) → (c) → (b) → (d) (figure 11), for example, (b) → (a) → (c) → (d) Processing may be performed. That is, immediately after obtaining the measurement value of the appropriate section by using the passing signal SB for measurement, the measurement may be switched to the measurement of the signal SA to be measured and the inverse transformation to be applied to the measurement value may be specified.

上記各例では,スイッチ4を用いたが,これを省略し,被計測信号SAを計測する第1の計測器と,通過信号SBを計測する第2の計測器とを備えてもよい。その場合も,各拡張区間の計測に,その第2の計測器を共通に使用でき,構成の大型化は抑えうる。   In each of the above examples, the switch 4 is used. However, this may be omitted, and a first measuring instrument that measures the signal under measurement SA and a second measuring instrument that measures the passing signal SB may be provided. Even in this case, the second measuring instrument can be used in common for the measurement of each extended section, and the increase in size of the configuration can be suppressed.

上記各例では,適正区間と拡張区間,及び相隣る拡張区間どうしが隣接していたが,それらの間に隙間があってもよい。本明細書で,“隣接する”とは,2つの区間が両者の境に共通の端点をもつことをいう。それら区間は重複をもたないから,その端点は一方の区間にのみ含まれる。“隣る”とは,間に隙間が存することを許容する意味とする。   In each of the above examples, the appropriate section, the extended section, and the adjacent expanded sections are adjacent to each other, but there may be a gap between them. In this specification, “adjacent” means that two sections have a common end point at the boundary between them. Since these sections have no overlap, their end points are included in only one section. “Adjacent” means to allow a gap between them.

上記各例では,適正区間がBPF3の通過バンドと一致していたが,そうである必要はない。例えば,適正区間は,BPF3の通過バンドに内包されていてもよいし,BPF3の下側ゼロクロス周波数から上側ゼロクロス周波数までに内包されていてもよい。   In each of the above examples, the appropriate section coincides with the pass band of BPF 3, but this need not be the case. For example, the appropriate section may be included in the pass band of the BPF 3, or may be included from the lower zero cross frequency to the upper zero cross frequency of the BPF 3.

上記各例では,周波数変換器を常時作動させたが,周波数変換器を休止させたまま,被計測信号SAを計測に供し,fsが適正区間の端点に近づいたときだけ,周波数変換器を起動させて,スイッチ4の切り替えに備える制御をプロセッサが行ってもよい。   In each of the above examples, the frequency converter is always operated. However, the frequency converter is activated only when fs approaches the end point of the appropriate section while the frequency converter is paused. In this case, the processor may perform control in preparation for switching of the switch 4.

上記各例では,計測器5を構成するレシプロカルカウンタが,被計測信号の周期を計測したが,周期の整数倍や半周期等,周期に依存する時間幅を計測してもよい。   In each of the above examples, the reciprocal counter constituting the measuring instrument 5 measures the period of the signal under measurement. However, a time width depending on the period, such as an integral multiple of the period or a half period, may be measured.

図13(B)は,計測器5の他の例としての,ダイレクト方式の周波数カウンタ(以下,ダイレクトカウンタという。)を示す。ダイレクトカウンタは,既知のゲート期間G,例えば1秒あたりの,被計測信号Sの繰り返し数をカウントする。そのカウント値によって被計測信号Sの周波数を特定できる。   FIG. 13B shows a direct frequency counter (hereinafter referred to as a direct counter) as another example of the measuring instrument 5. The direct counter counts the number of repetitions of the signal under measurement S per known gate period G, for example, per second. The frequency of the signal to be measured S can be specified by the count value.

ダイレクトカウンタでは,例えば,被計測周波数が低すぎると,カウント数が少ないため充分な分解能が得られず,被計測周波数が高すぎると,カウント値が飽和したりして充分な確度が得られないといった理由で,適正区間が決まる。   With a direct counter, for example, if the frequency to be measured is too low, the number of counts is small and sufficient resolution cannot be obtained. If the frequency to be measured is too high, the count value is saturated and sufficient accuracy cannot be obtained. For this reason, the appropriate section is determined.

図13(A)及び(B)には,矩形波の被計測信号Sを示したが,図1,図6,及び図12の被計測信号SA,並びに図12の入力信号S0は,正弦波であっても,矩形波等の非正弦波であってもよい。計測器5は,自己に与えられる信号を矩形波に整形するシュミットトリガ等の整形器を必要に応じて含む。計測器5は,アナログ式のものでもよい。   FIGS. 13A and 13B show the measured signal S having a rectangular wave, but the measured signal SA in FIGS. 1, 6, and 12 and the input signal S0 in FIG. Or non-sinusoidal waves, such as a rectangular wave, may be sufficient. The measuring instrument 5 includes a shaping device such as a Schmitt trigger for shaping a signal given to itself into a rectangular wave as necessary. The measuring instrument 5 may be an analog type.

図14は,実施例による発振型圧力センサの概念図である。   FIG. 14 is a conceptual diagram of an oscillation type pressure sensor according to an embodiment.

以下,便宜上,CsとRi(但し,i=1〜3)の記号を,図面参照符号の意味だけでなく,それぞれキャパシタンスを表す変数,抵抗値を表す変数の意味でも用いる。   Hereinafter, for the sake of convenience, the symbols Cs and Ri (where i = 1 to 3) are used not only for the meanings of the reference numerals of the drawings but also for the variables representing the capacitance and the resistance.

発振回路10は,オペアンプと,オペアンプの非反転入力端子とグランドとの間に置かれた抵抗R1と,オペアンプの出力端子から非反転入力端子に至る帰還路に置かれた抵抗R2と,オペアンプの出力端子から反転入力端子に至る帰還路に置かれた抵抗R3と,その反転入力端子とグランドとの間に置かれたキャパシタCsとを備えた無安定マルチバイブレータよりなり,発振周波数が,1/{2・R3・Cs・log((R1+R2)/R1)}で表される発振信号を出力する。   The oscillation circuit 10 includes an operational amplifier, a resistor R1 placed between the non-inverting input terminal of the operational amplifier and the ground, a resistor R2 placed on a feedback path from the operational amplifier output terminal to the non-inverting input terminal, and the operational amplifier. It comprises an astable multivibrator comprising a resistor R3 placed in a feedback path from the output terminal to the inverting input terminal, and a capacitor Cs placed between the inverting input terminal and the ground, and the oscillation frequency is 1 / An oscillation signal represented by {2.R3.Cs.log ((R1 + R2) / R1)} is output.

キャパシタCsは,圧力をうけると,その極板間距離が変化し,キャパシタンスCsが変化する構造をもつ。上式の如く,キャパシタンスCsは発振周波数を決定づけるため,発振回路10は,圧力の値に応じた発振周波数をもつ発振信号を出力する。   The capacitor Cs has a structure in which the distance between the electrode plates changes and the capacitance Cs changes when pressure is applied. Since the capacitance Cs determines the oscillation frequency as in the above equation, the oscillation circuit 10 outputs an oscillation signal having an oscillation frequency corresponding to the pressure value.

周波数計測装置11に,発振信号が入力される。周波数計測装置11は,図1,図6,又は図12の装置で構成され,上記プロセッサは,図4等のフローで特定した発振周波数から圧力の値を求め,その圧力を表示出力する。圧力を求めるには,発振周波数を圧力と対応付ける関係式や対応表を記憶するメモリをさらに備えればよい。   An oscillation signal is input to the frequency measuring device 11. The frequency measuring device 11 includes the device shown in FIG. 1, FIG. 6, or FIG. 12, and the processor obtains a pressure value from the oscillation frequency specified in the flow of FIG. 4 and the like, and displays the pressure. In order to obtain the pressure, a memory for storing a relational expression for associating the oscillation frequency with the pressure or a correspondence table may be further provided.

本例では,センシング素子にキャパシタを用いたが,熱の影響をうけて抵抗値が変化する抵抗,コアが変位をうけてインダクタンスが変化するインダクタ,湿度やガス濃度の影響をうけて共振周波数が変化する水晶振動子等を用いることもできる。また,発振回路は,マルチバイブレータ等の弛張発振回路の他,各種の調和発振回路でも構成できる。   In this example, a capacitor is used as the sensing element. However, the resistance whose resistance value changes due to the influence of heat, the inductor whose inductance changes due to the displacement of the core, and the resonance frequency that is affected by humidity and gas concentration. A changing crystal unit or the like can also be used. Further, the oscillation circuit can be configured by various harmonic oscillation circuits in addition to a relaxation oscillation circuit such as a multivibrator.

以上,実施例に沿って本発明を説明したが,本発明はこれらに限られない。種々の変更,改良,及び組み合わせ等が可能なことは当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

本発明の周波数計測装置は,発信型センサにおける物理量の計測に限らず,例えば,通信における送受信周波数の計測,電力供給における周波数の監視,集積回路の試験,電子機器の検査といった周波数を計測するあらゆる用途に利用することができる。   The frequency measuring device of the present invention is not limited to the measurement of a physical quantity in a transmission type sensor. For example, the frequency measuring apparatus measures all frequencies such as measurement of transmission / reception frequency in communication, monitoring of frequency in power supply, testing of integrated circuits, inspection of electronic equipment It can be used for applications.

1…分配器,
2…ヘテロダイン器(周波数変換器),
21…局発信号源,
22…混合器,
3…バンドパスフィルタ(濾波器),
4…スイッチ,
5…計測器,
6…プロセッサ(演算制御手段),
7…分周逓倍器(周波数変換器),
71…分配器,
72…逓倍器,
73…分周器,
74…加算器,
8…周波数変換器,
9…事前変換器,
10…無安定マルチバイブレータ(発振回路),
11…周波数計測装置,
SA…被計測信号,
SB…通過信号,
P…通過バンド,
M…適正区間,
ML…下端部区間,
MH…上端部区間,
L,L1…下側拡張区間(第1の拡張区間),
H,H1…上側拡張区間(第2の拡張区間),
L2…第3の拡張区間,
H2…第4の拡張区間,
R1,R2,R3…抵抗,
Cs…キャパシタ(センシング素子)。
1 ... distributor,
2 ... Heterodyne device (frequency converter),
21 ... Local signal source,
22 ... Mixer,
3 ... Band pass filter (filter),
4 ... switch,
5 ... Measuring instrument,
6 ... Processor (calculation control means),
7. Frequency divider / multiplier (frequency converter),
71 ... distributor
72 ... multiplier,
73 ... frequency divider,
74 ... adder,
8 ... Frequency converter,
9 ... pre-converter,
10: Astable multivibrator (oscillation circuit),
11 ... Frequency measuring device,
SA: Signal to be measured,
SB ... Pass signal,
P ... pass band,
M ... appropriate section,
ML ... lower end section,
MH ... upper end section,
L, L1 ... lower extended section (first extended section),
H, H1 ... upper extended section (second extended section),
L2 ... third extended section,
H2 ... Fourth extended section,
R1, R2, R3 ... resistance,
Cs: Capacitor (sensing element).

Claims (8)

(a)或る適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,前記適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,被計測信号に施すことにより中間信号を形成すると共に,その形成した中間信号における前記適正区間の周波数成分の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する手順と,
(b)前記適正区間の周波数成分を形成した周波数変換として,前記第1〜第Nの周波数変換から特定した周波数変換であって,前記被計測信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測した結果を用いて特定した前記周波数変換の逆変換の演算と,前記手順(a)で得られた計測値とを用いて,前記被計測信号の周波数を算出する手順と
を含む周波数計測方法。
(A) When considering the first to Nth (N ≧ 2) extended sections different from a certain appropriate section, the i-th frequency conversion converts the frequency of the i-th extended section to the appropriate section. The value in the interval is converted, and the frequency of the jth (where i and j are any natural numbers from 1 to N where i ≠ j) is converted to a value outside the appropriate interval. The known first to Nth frequency conversions are applied to the signal under measurement to form an intermediate signal, and the number of repetitions of the frequency component of the appropriate section in the formed intermediate signal per known period, Or a procedure for measuring a period or a time width dependent on the period;
(B) Frequency conversion specified from the first to Nth frequency conversions as frequency conversions forming the frequency components of the appropriate section, and the number of repetitions or period of the measured signal per known period Alternatively, the frequency of the signal to be measured is calculated using the inverse conversion of the frequency conversion specified using the result of measuring the time width depending on the period, and the measurement value obtained in the procedure (a). A frequency measurement method including a procedure to perform.
前記中間信号における前記適正区間の周波数成分の計測と,前記被計測信号の計測とに,共通の計測器を用いる請求項1に記載の周波数計測方法。   The frequency measuring method according to claim 1, wherein a common measuring instrument is used for measuring the frequency component of the appropriate section in the intermediate signal and measuring the signal under measurement. 或る適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,前記適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,被計測信号に施すことにより中間信号を形成する周波数変換器と,
前記中間信号が入力され,前記適正区間の周波数を通過させ,前記周波数変換器で前記適正区間外の値に変換された周波数を遮断する濾波器と,
前記濾波器を通過した通過信号,又は前記周波数変換器に入力される前記被計測信号が入力され,自己に入力された信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する計測器と,
前記計測器に対して前記通過信号及び前記被計測信号のいずれを入力させるかを,外部からの制御に従って選択するスイッチと,
前記スイッチの制御を行う演算制御手段であって,(A)前記スイッチによって前記被計測信号を前記計測器に入力させた状態の,前記計測器の計測結果を用いて,前記被計測信号の周波数が,前記第1〜第Nの拡張区間のいずれに属するかを特定する機能,及び(B)前記スイッチによって前記通過信号を前記計測器に入力させた状態で,前記計測器の計測値が前記適正区間の周波数を表す場合に,前記第1〜第Nの周波数変換のうち,前記機能(A)により特定した拡張区間の周波数を前記適正区間内の値に変換する周波数変換の逆変換の演算と,前記適正区間の周波数を表す前記計測値とを用いて,前記被計測信号の周波数を算出する機能をもつ演算制御手段と
を備えた周波数計測装置。
When considering the first to Nth (N ≧ 2) extended sections different from a certain appropriate section, the i-th frequency conversion converts the frequency of the i-th extended section within the appropriate section. The frequency of the extended section of the jth (where i and j are any natural numbers from 1 to N where i ≠ j) is converted to a value, and is known to be converted to a value outside the appropriate section. A frequency converter that forms an intermediate signal by subjecting the signal under measurement to the first to Nth frequency conversions of:
A filter that receives the intermediate signal, passes the frequency in the appropriate section, and cuts off the frequency converted to a value outside the proper section by the frequency converter;
The passing signal that has passed through the filter or the signal to be measured that is input to the frequency converter is input, and the number of repetitions of the signal input to itself per known period, or a period or period-dependent time A measuring instrument to measure the width;
A switch for selecting which of the passing signal and the signal under measurement is input to the measuring instrument according to an external control;
Computation control means for controlling the switch, wherein (A) the frequency of the signal under measurement is obtained using the measurement result of the measuring instrument in a state where the signal under measurement is input to the measuring instrument by the switch. Is the function of specifying which of the first to Nth extended sections, and (B) the measured value of the measuring instrument is in the state in which the passing signal is input to the measuring instrument by the switch. In the case of representing the frequency in the appropriate section, the inverse conversion operation of the frequency conversion for converting the frequency in the extended section specified by the function (A) into the value in the appropriate section among the first to Nth frequency conversions. And a calculation control means having a function of calculating the frequency of the signal under measurement using the measured value representing the frequency of the appropriate section.
前記演算制御手段が,さらに,(C)前記スイッチによって前記被計測信号を前記計測器に入力させた状態で,前記計測器の計測値が,前記適正区間の周波数を表す場合に,その計測値によって前記被計測信号の周波数を特定する機能,及び(D)前記スイッチによって前記被計測信号を前記計測器に入力させた状態で,前記計測器の計測結果が,前記被計測信号の周波数が前記適正区間から外れていることを表すか,又は前記計測器の計測値が表す周波数が,前記適正区間の範囲内で前記適正区間の端点に近づいた場合に,前記通過信号が前記計測器に入力されるよう前記スイッチを切り替える機能をもち,そのスイッチを切り替える際の前記計測器の計測結果を用いて,前記機能(A)による前記拡張区間の特定を行う請求項3に記載の周波数計測装置。   The arithmetic control means further (C) when the measured value of the measuring instrument represents the frequency of the appropriate section in a state where the signal to be measured is input to the measuring instrument by the switch. A function of specifying the frequency of the signal under measurement by (D), and (D) in a state where the signal under measurement is input to the measuring instrument by the switch, the measurement result of the measuring instrument is the frequency of the signal under measurement The passing signal is input to the measuring instrument when it indicates that it is out of the proper section or the frequency represented by the measurement value of the measuring instrument approaches the end point of the proper section within the range of the proper section. The function of (A) is used to specify the extended section using the measurement result of the measuring instrument at the time of switching the switch. The wave number measurement device. 前記第1〜第Nの拡張区間のうち1つが,前記適正区間より低域側に,前記適正区間と隣接して配置された下側拡張区間であり,前記第1〜第Nの周波数変換のうち,前記下側拡張区間の周波数を前記適正区間内の値に変換する周波数変換が,前記適正区間内における低域側の端部に位置する下端部区間の周波数を,前記適正区間における前記下端部区間以外の区間の値に変換し,
前記演算制御手段が,前記機能(D)として,前記スイッチによって前記被計測信号を前記計測器に入力させた状態で,前記計測器の計測値が表す周波数が,前記下端部区間に属した場合に,前記通過信号が前記計測器に入力されるよう前記スイッチを切り替える機能をもつ請求項4に記載の周波数計測装置。
One of the first to Nth extension sections is a lower extension section disposed adjacent to the appropriate section at a lower frequency side than the appropriate section, and the first to Nth frequency conversions are performed. Among them, the frequency conversion for converting the frequency of the lower extended section into the value in the appropriate section is the frequency of the lower end section located at the lower end in the appropriate section, and the lower end in the appropriate section. Converted to values in intervals other than sub-intervals,
When the calculation control means has the frequency represented by the measurement value of the measuring instrument as the function (D) in the state where the signal to be measured is input to the measuring instrument by the switch. The frequency measurement device according to claim 4, further comprising a function of switching the switch so that the passing signal is input to the measuring instrument.
前記第1〜第Nの拡張区間のうち1つが,前記適正区間より高域側に,前記適正区間と隣接して配置された上側拡張区間であり,前記第1〜第Nの周波数変換のうち,前記上側拡張区間の周波数を前記適正区間内の値に変換する周波数変換が,前記適正区間内における高域側の端部に位置する上端部区間の周波数を,前記適正区間における前記上端部区間以外の区間の値に変換し,
前記演算制御手段が,前記機能(D)として,前記スイッチによって前記被計測信号を前記計測器に入力させた状態で,前記計測器の計測値が表す周波数が,前記上端部区間に属した場合に,前記通過信号が前記計測器に入力されるよう前記スイッチを切り替える機能をもつ請求項4又は5に記載の周波数計測装置。
One of the first to Nth extended sections is an upper extended section arranged adjacent to the appropriate section on a higher frequency side than the appropriate section. Of the first to Nth frequency conversions, , The frequency conversion for converting the frequency of the upper extended section into the value in the appropriate section, the frequency of the upper end section located at the end on the high frequency side in the appropriate section is changed to the upper end section in the appropriate section. Converted to a value in the interval other than
When the calculation control means, as the function (D), inputs the signal under measurement to the measuring instrument by the switch, and the frequency represented by the measurement value of the measuring instrument belongs to the upper end section The frequency measuring device according to claim 4, further comprising a function of switching the switch so that the passing signal is input to the measuring instrument.
コンピュータを,請求項3〜6のいずれかに記載の周波数計測装置における前記演算制御手段として機能させるプログラム。   A program for causing a computer to function as the calculation control means in the frequency measuring device according to any one of claims 3 to 6. センシングの対象となる物理量の影響をうけて特性が変化するセンシング素子を,該特性が発振周波数を決定づける態様で含んで構成されることにより,前記物理量の値に応じた発振周波数をもつ発振信号を出力する発振回路と,
或る適正区間と異なる第1〜第N(但し,N≧2とする。)の拡張区間を考えたとき,第iの周波数変換が,第iの拡張区間の周波数を,前記適正区間内の値に変換し,かつ第j(但し,iとjは,i≠jなる1〜Nの任意の自然数とする。)の拡張区間の周波数は,前記適正区間外の値に変換するような既知の第1〜第Nの周波数変換を,前記発振信号に施すことにより中間信号を形成する周波数変換器と,
前記中間信号が入力され,前記適正区間の周波数を通過させ,前記周波数変換器で前記適正区間外の値に変換された周波数を遮断する濾波器と,
前記濾波器を通過した通過信号,又は前記周波数変換器に入力される前記発振信号が入力され,自己に入力された信号の,既知の期間あたりの繰り返し数,又は周期若しくは周期に依存する時間幅を計測する計測器と,
前記計測器に対して前記通過信号及び前記発振信号のいずれを入力させるかを,外部からの制御に従って選択するスイッチと,
前記スイッチの制御を行う演算制御手段であって,(I)前記スイッチによって前記発振信号を前記計測器に入力させた状態の,前記計測器の計測結果を用いて,前記発振周波数が,前記第1〜第Nの拡張区間のいずれに属するかを特定する機能,及び(II)前記スイッチによって前記通過信号を前記計測器に入力させた状態で,前記計測器の計測値が前記適正区間の周波数を表す場合に,前記第1〜第Nの周波数変換のうち,前記機能(I)により特定した拡張区間の周波数を前記適正区間内の値に変換する周波数変換の逆変換の演算と,前記適正区間の周波数を表す前記計測値とを用いて,前記物理量の値を算出する機能をもつ演算制御手段と
を備えた発振型センサ。
By including a sensing element whose characteristic changes under the influence of the physical quantity to be sensed in a manner in which the characteristic determines the oscillation frequency, an oscillation signal having an oscillation frequency corresponding to the value of the physical quantity is generated. An output oscillation circuit;
When considering the first to Nth (N ≧ 2) extended sections different from a certain appropriate section, the i-th frequency conversion converts the frequency of the i-th extended section within the appropriate section. The frequency of the extended section of the jth (where i and j are any natural numbers from 1 to N where i ≠ j) is converted to a value, and is known to be converted to a value outside the appropriate section. A frequency converter that forms an intermediate signal by subjecting the oscillation signal to first to Nth frequency conversions of:
A filter that receives the intermediate signal, passes the frequency in the appropriate section, and cuts off the frequency converted to a value outside the proper section by the frequency converter;
The passing signal that has passed through the filter or the oscillation signal that is input to the frequency converter is input, and the number of repetitions per known period of the signal that is input to itself, or the period or time width depending on the period A measuring instrument that measures
A switch for selecting which of the passing signal and the oscillation signal is input to the measuring instrument according to an external control;
Computation control means for controlling the switch, wherein (I) the oscillation frequency is calculated by using the measurement result of the measuring instrument when the oscillation signal is input to the measuring instrument by the switch. 1 to the Nth extended section, and (II) the measurement signal of the measuring instrument is the frequency of the appropriate section in a state where the passing signal is input to the measuring instrument by the switch. Of the first to Nth frequency conversions, the inverse conversion of the frequency conversion for converting the frequency of the extended section specified by the function (I) into the value in the appropriate section, and the appropriate conversion An oscillation type sensor comprising: an arithmetic control unit having a function of calculating the value of the physical quantity using the measured value representing the frequency of the section.
JP2014233616A 2014-09-26 2014-11-18 Frequency measuring method, frequency measuring device, and oscillation type sensor Expired - Fee Related JP5717911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014233616A JP5717911B2 (en) 2014-09-26 2014-11-18 Frequency measuring method, frequency measuring device, and oscillation type sensor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014195913 2014-09-26
JP2014195913 2014-09-26
JP2014227600 2014-11-08
JP2014227600 2014-11-08
JP2014233616A JP5717911B2 (en) 2014-09-26 2014-11-18 Frequency measuring method, frequency measuring device, and oscillation type sensor

Publications (2)

Publication Number Publication Date
JP2015087398A JP2015087398A (en) 2015-05-07
JP5717911B2 true JP5717911B2 (en) 2015-05-13

Family

ID=53050287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014233616A Expired - Fee Related JP5717911B2 (en) 2014-09-26 2014-11-18 Frequency measuring method, frequency measuring device, and oscillation type sensor

Country Status (1)

Country Link
JP (1) JP5717911B2 (en)

Also Published As

Publication number Publication date
JP2015087398A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5883558B2 (en) Frequency measuring device and electronic device
JP2019039882A5 (en)
RU2402783C1 (en) Method of measuring thermal impedance of semiconductor diodes
JP2017123552A5 (en)
EP2890003A3 (en) Oscillation circuit, oscillator, electronic apparatus, moving object, and frequency adjustment method of oscillator
CN101842974A (en) Temperature compensation for crystal oscillators
JP2016174210A5 (en)
JP2016134738A5 (en)
JP5717911B2 (en) Frequency measuring method, frequency measuring device, and oscillation type sensor
JP2020503896A5 (en)
KR102035143B1 (en) Film thickness control device, film thickness control method, and film formation device
JP2007281762A (en) Filter device and semiconductor device using it
JP6570981B2 (en) Measuring apparatus and measuring method
JP5717912B1 (en) Frequency measuring device, frequency measuring method, and oscillation type sensor
JP2010193603A (en) Method and circuit for controlling dc-dc converter, and dc-dc converter
JP6529128B2 (en) Reference voltage generating circuit and switching power supply
CN104539289B (en) A kind of appraisal procedure and device of atomic frequency standard frequency short-term stability
JP5925724B2 (en) Switching power supply
JP2010147599A (en) Method, program and device for estimating internal mechanism of oscillator
JP5294718B2 (en) Frequency converter
RU2481695C1 (en) Device for thermal compensation of quartz generator
KR100441398B1 (en) The method of expanding output of A/D converter using microcomputer and A/D converter using this method
RU2534929C2 (en) Method for discrete setting of phase shift between two monochromatic harmonic initially synchronous signals, and device for its implementation
JP2005318088A (en) Sampling period setting method of a/d converter and digital wattmeter
Polyakhov et al. Time series evaluation methods of system dynamics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5717911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees