JP2016070662A - Surface roughness measuring instrument - Google Patents

Surface roughness measuring instrument Download PDF

Info

Publication number
JP2016070662A
JP2016070662A JP2014196312A JP2014196312A JP2016070662A JP 2016070662 A JP2016070662 A JP 2016070662A JP 2014196312 A JP2014196312 A JP 2014196312A JP 2014196312 A JP2014196312 A JP 2014196312A JP 2016070662 A JP2016070662 A JP 2016070662A
Authority
JP
Japan
Prior art keywords
workpiece
surface roughness
measured
work
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014196312A
Other languages
Japanese (ja)
Other versions
JP6326710B2 (en
Inventor
光 増田
Hikari Masuda
光 増田
良典 猫崎
Yoshinori Nekozaki
良典 猫崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2014196312A priority Critical patent/JP6326710B2/en
Publication of JP2016070662A publication Critical patent/JP2016070662A/en
Application granted granted Critical
Publication of JP6326710B2 publication Critical patent/JP6326710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface roughness measuring instrument that can measure and evaluate surface roughness of a peripheral surface of a measured object composed of a spherical body or rotor with accuracy and evaluation reference equal to a case where surface roughness of a flat surface of the measured object is measured, and causes no increase in size of a device or cost increase.SOLUTION: In a surface roughness measuring instrument 1, a work installation plate 48 supports a part on a lower side of a peripheral surface of a work W as a first portion, and, as coming into contact with a second portion which is a part on an upper side of the peripheral surface of the work W, a rubber part 86 moves in a direction orthogonal to a rotation axis of the work W by a drive unit, which in turn the work W is rotated. Then, a detector 30 is anchored at a position opposing to a third portion which is a part on the lower side of the peripheral surface of the work W to detect surface roughness in a circumferential direction of the peripheral surface of the work W.SELECTED DRAWING: Figure 6

Description

本発明は表面粗さ測定機に係り、特に球体、又は、円柱体や円筒体等の回転体からなる被測定物(ワーク)の表面粗さを高精度に測定する表面粗さ測定機に関する。   The present invention relates to a surface roughness measuring machine, and more particularly to a surface roughness measuring machine that measures the surface roughness of a workpiece (workpiece) made of a rotating body such as a sphere or a cylinder or a cylinder with high accuracy.

表面粗さ測定機は、被測定物(ワーク)表面に沿って、測定子(スタイラス)を有する検出器(測定子の先端部の変位量を検出する検出器(ピックアップ))を移動させ、測定子の先端部の変位量を電気信号に変換してコンピュータ等の演算処理装置(計算機)に読み取ることで、ワークの表面粗さや表面形状等を測定する装置である。   A surface roughness measuring instrument moves a detector (a detector (pickup) that detects the amount of displacement of the tip of the measuring element) having a measuring element (stylus) along the surface of the object to be measured (workpiece), and performs measurement. It is a device that measures the surface roughness, surface shape, and the like of a workpiece by converting the amount of displacement of the tip of the child into an electric signal and reading it into an arithmetic processing device (computer) such as a computer.

例えば、特許文献1、2には周知の構成の表面粗さ測定機が開示されており、その表面粗さ測定機は、ワークを載置する水平な上面(X軸及びY軸に平行な平面)を有するベースと、ベースに立設されたZ軸方向に延びるコラムと、コラムに支持されてコラムのZ駆動機構によりZ方向に昇降移動する駆動部と、駆動部に支持されて駆動部のX駆動機構によりX軸方向に移動する検出器(ピックアップ)と、検出器から出力される測定信号を取得して各種演算処理等を行うデータ処理部と、を有する。検出器は、X軸方向に延びる測定子(スタイラス)を有し、その先端部としてZ軸方向に延びる触針が設けられる。   For example, Patent Documents 1 and 2 disclose a surface roughness measuring machine having a well-known configuration. The surface roughness measuring machine is a horizontal upper surface (a plane parallel to the X axis and the Y axis) on which a workpiece is placed. ), A column extending in the Z-axis direction provided upright on the base, a drive unit supported by the column and moved up and down in the Z direction by the Z drive mechanism of the column, and a drive unit supported by the drive unit It has a detector (pickup) that moves in the X-axis direction by the X drive mechanism, and a data processing unit that acquires measurement signals output from the detector and performs various arithmetic processes. The detector has a probe (stylus) extending in the X-axis direction, and a stylus extending in the Z-axis direction is provided as a tip portion thereof.

このような表面粗さ測定機によれば、コラムのZ駆動機構により検出器のZ軸方向の位置(高さ)が調整され、ベース上に載置されたワークの表面に測定子の先端部が接触した状態に設定される。そして、駆動部のX駆動機構により検出器全体がX軸方向に一定速度で移動し、測定子の先端部がワーク表面に摺接しながらX軸方向に所定距離移動して停止する。   According to such a surface roughness measuring machine, the position (height) of the detector in the Z-axis direction is adjusted by the Z drive mechanism of the column, and the tip of the measuring element is placed on the surface of the workpiece placed on the base. Is set in a contact state. Then, the entire detector is moved at a constant speed in the X-axis direction by the X drive mechanism of the drive unit, and the tip of the measuring element is moved by a predetermined distance in the X-axis direction and stopped while sliding on the workpiece surface.

このようにして、測定子の先端部がワーク表面におけるX軸方向の走査ライン上を移動している際に、検出器からは、測定子の先端部のZ軸方向への変位量を示す測定信号が出力され、データ処理部に取得される。   In this way, when the tip of the probe is moving on the scanning line in the X-axis direction on the workpiece surface, the detector indicates the amount of displacement in the Z-axis direction of the tip of the probe. A signal is output and acquired by the data processor.

これにより、データ処理部において、測定子の先端部が測定開始時に接触していたワーク表面の位置(測定開始位置)から測定終了時に接触していたワーク表面の位置(測定終了位置)までの間のX軸方向に沿った走査ライン上の各測定点における測定子の先端部のZ方向の変位量が各測定点におけるワーク表面のZ軸方向の凹凸状態を示す値として取得される。そして、このようなワークの表面形状を示すデータに基づいて、表面粗さを示す各種評価値(算術平均粗さ、最大高さ等の規定のパラメータ)の算出や、取得又は算出したデータのモニタへの表示等が行われる。   As a result, in the data processing section, from the position of the workpiece surface (measurement start position) that the tip of the probe contacted at the start of measurement to the position of the workpiece surface (measurement end position) that was in contact at the end of measurement. The displacement amount in the Z direction of the tip of the probe at each measurement point on the scanning line along the X-axis direction is acquired as a value indicating the uneven state in the Z-axis direction of the workpiece surface at each measurement point. Based on the data indicating the surface shape of the workpiece, various evaluation values indicating the surface roughness (specified parameters such as arithmetic average roughness and maximum height) are calculated, and the acquired or calculated data is monitored. Is displayed.

このような表面粗さ測定機において、測定対象のワークが球体又は回転体の場合に、ワークの頂点(X軸方向が接線となる点)以外に対しては測定子の先端部がワーク表面に対して垂直に接触せず、ワーク表面の凹凸を垂直に検出できない。また、測定子に先端部をX軸方向に直線移動させるだけでは、ワークの周面の一部分しか測定できない。   In such a surface roughness measuring instrument, when the workpiece to be measured is a sphere or a rotating body, the tip of the measuring element is on the workpiece surface except for the vertex of the workpiece (the point where the X-axis direction is a tangent). On the other hand, the surface of the workpiece is not contacted vertically, and the surface of the workpiece cannot be detected vertically. In addition, only a part of the peripheral surface of the workpiece can be measured by simply moving the tip of the probe linearly in the X-axis direction.

そこで、ワークの周面の表面粗さを円周方向に一周に渡って測定する場合には、ワークをインデックス回転させて複数回にわたって測定する方法が提案されている(特許文献3参照)。しかしながら、この方法では、複数回の測定により得た結果を合成する必要があるため、手間がかかるという問題がある。   Therefore, when measuring the surface roughness of the peripheral surface of the work over the entire circumference in the circumferential direction, a method of measuring the work multiple times by rotating the work index is proposed (see Patent Document 3). However, this method has a problem that it takes time and effort because it is necessary to synthesize results obtained by a plurality of measurements.

この問題を解決する技術として、ワークの周面上を測定子の先端部が円周方向に沿って相対的に移動するようにワークを回転させ、ワークの周面の円周方向に関する表面粗さを測定するものが特許文献4、5に提案されている。   As a technique to solve this problem, the workpiece is rotated so that the tip of the probe moves relatively along the circumferential direction on the circumferential surface of the workpiece, and the surface roughness in the circumferential direction of the circumferential surface of the workpiece Have been proposed in Patent Documents 4 and 5.

特許文献4、5に記載のものは、球体又は回転体のワークを回転させる回転駆動装置を備えており、その回転駆動装置は、軸方向が同一水平面上において互いに平行する2つのローラと、それらのローラを回転駆動するモータ等を備える。ワークは、2つのローラの間において下側の2方向から支持された状態で載置される。一方、測定子の先端部は、ローラに載置されたワークのZ軸方向の最上点に当接される。   Patent Documents 4 and 5 include a rotation driving device that rotates a spherical or rotating workpiece, and the rotation driving device includes two rollers whose axial directions are parallel to each other on the same horizontal plane. A motor for rotationally driving the roller. The workpiece is placed in a state of being supported from the two lower directions between the two rollers. On the other hand, the tip of the measuring element is brought into contact with the uppermost point in the Z-axis direction of the work placed on the roller.

これにより、ローラの回転に連動させてワークを回転させることができ、測定子の先端部をワークの周面の円周方向に沿って相対的に移動させることができるようになっている。   Thereby, the work can be rotated in conjunction with the rotation of the roller, and the tip of the measuring element can be relatively moved along the circumferential direction of the peripheral surface of the work.

また、特許文献6、7には、円筒研削盤等の加工装置におけるワーク加工時にインプロセスで回転体のワークの表面粗さ(表円粗度)等を測定する装置が開示されている。   Patent Documents 6 and 7 disclose apparatuses that measure the surface roughness (surface roughness) of a rotating body workpiece in-process at the time of workpiece machining in a machining apparatus such as a cylindrical grinding machine.

特開2002−107144号公報JP 2002-107144 A 特開2006−300823号公報JP 2006-300823 A 特表平6−507706号公報Japanese translation of PCT publication No. 6-507706 特開平2−129509号公報JP-A-2-129509 特開平3−9209号公報Japanese Patent Laid-Open No. 3-9209 特開平10−138095号公報Japanese Patent Laid-Open No. 10-138095 特開2005−016972号公報Japanese Patent Laid-Open No. 2005-016972

球体又は回転体のワークの周面の円周方向に関する表面粗さを測定する場合には、測定子の先端部がワークの周面上を円周方向に沿って相対的に移動するようにワークを回転させる回転駆動機構が必要となる。   When measuring the surface roughness in the circumferential direction of the circumferential surface of a spherical or rotating workpiece, the workpiece is moved so that the tip of the probe moves relatively along the circumferential direction on the circumferential surface of the workpiece. A rotation drive mechanism for rotating the is required.

しかしながら、特許文献4、5に記載の回転駆動装置は、特許文献1、2に記載のような表面粗さ測定機に対してワークを回転させるための回転駆動機構を新たに追加するものであり、高精度にワークを回転させる場合には高価なベアリング機構も必要となるため、表面粗さ測定機として大型化すると共にコストの増大を招く。   However, the rotation drive devices described in Patent Documents 4 and 5 are newly added with a rotation drive mechanism for rotating a workpiece with respect to the surface roughness measuring machine as described in Patent Documents 1 and 2. When rotating the workpiece with high accuracy, an expensive bearing mechanism is also required, which increases the size of the surface roughness measuring machine and increases the cost.

特許文献6、7は、加工装置に測定機を組み込むため、ワークを回転させるための回転駆動機構は加工装置の構成要素として具備されたものを利用することができるが、加工装置に組み込むことが前提となるという制限がある。また、表面粗さ測定機としてみれば、特許文献4、5と同様にワークの回転駆動機構を新たに追加するものであり、表面粗さ測定機として大型化すると共にコストの増大を招く。   In Patent Documents 6 and 7, since a measuring machine is incorporated in the machining apparatus, a rotation drive mechanism for rotating the workpiece can be used as a component of the machining apparatus, but can be incorporated in the machining apparatus. There is a limitation of being a premise. Further, when viewed as a surface roughness measuring machine, a rotation driving mechanism for a workpiece is newly added as in Patent Documents 4 and 5, which increases the size of the surface roughness measuring machine and increases the cost.

また、特許文献1、2のような表面粗さ測定機により、ワークの平坦な面の表面粗さを測定する場合、上述のようにデータ処理部は、駆動部により検出器(測定子の先端部)がX軸方向に一定速度で移動している際の検出器からの測定信号を取得する。このとき、測定開始時からの経過時間に検出器の移動速度を乗じた値は、その経過時間までに測定子の先端部が測定開始位置(測定開始時)から走査ラインに沿って移動した移動量(移動距離)を示し、その経過時間において測定子の先端部が接触しているワーク表面上の測定点の位置を測定開始位置からの走査ラインの長さで表したものに相当する。   Moreover, when measuring the surface roughness of the flat surface of a workpiece | work with surface roughness measuring machines like patent document 1, 2, as mentioned above, a data processing part is a detector (tip of a measuring element) by a drive part. The measurement signal from the detector when the part is moving at a constant speed in the X-axis direction is acquired. At this time, the value obtained by multiplying the elapsed time from the start of measurement by the movement speed of the detector is the movement of the tip of the probe moved along the scanning line from the measurement start position (at the start of measurement) by that elapsed time. This represents the amount (movement distance) and corresponds to the position of the measurement point on the surface of the workpiece that is in contact with the tip of the measuring element at the elapsed time, expressed by the length of the scanning line from the measurement start position.

データ処理部は、このような関係から、検出器から順次取得したワーク表面上の各測定点における測定信号の信号値を、所定基準位置から各測定点までの走査ラインの長さに対応付けて取得している。なお、表面(測定面)が平坦なワークの場合には、走査ラインはX軸方向に平行しているため、所定基準位置から測定点までの走査ラインの長さは、所定基準位置から測定点までのX軸方向の長さに相当し、各測定点の位置は所定の原点位置に対するX座標値により表される。また、測定点の位置は、検出器の移動速度と経過時間とからではなく、検出器の位置(X軸方向の位置)を位置センサから取得することによっても同様に得ることができる。   From such a relationship, the data processing unit associates the signal value of the measurement signal at each measurement point on the workpiece surface sequentially obtained from the detector with the length of the scanning line from the predetermined reference position to each measurement point. Have acquired. In the case of a workpiece having a flat surface (measurement surface), since the scanning line is parallel to the X-axis direction, the length of the scanning line from the predetermined reference position to the measurement point is from the predetermined reference position to the measurement point. The position of each measurement point is represented by an X coordinate value with respect to a predetermined origin position. Further, the position of the measurement point can be similarly obtained by acquiring the position of the detector (position in the X-axis direction) from the position sensor, not from the moving speed of the detector and the elapsed time.

また、データ処理部は、例えば、検出器からのアナログ信号の測定信号を、所定時間周期でサンプリングし、A/D変換によりデジタル信号に変換して取得しており、検出器の移動速度と、サンプリング周期(時間周期)とを調整することにより、走査ライン上の所定の長さおきの測定点における測定信号の信号値を取得している。   In addition, the data processing unit, for example, samples the measurement signal of the analog signal from the detector at a predetermined time period, acquires it by converting it into a digital signal by A / D conversion, and the movement speed of the detector, By adjusting the sampling period (time period), the signal value of the measurement signal at the measurement points at predetermined intervals on the scanning line is acquired.

一方、球体又は回転体のワーク周面を円周方向に測定する場合においても、平坦なワーク表面を測定する場合と同様に、ワーク周面に円周方向に沿った走査ライン上の各測定点における測定信号の信号値を、所定基準位置から各測定点までの走査ラインの長さ(測定面の周長)に対応付けて取得すると共に、走査ラインの所望の長さおきの測定点における測定信号の信号値を取得(サンプリング)できるようにすることが望ましい。これによって、測定面が球体又は回転体のワーク周面であってもその表面粗さを、平坦なワーク表面の場合と同等の評価基準で評価することができる。   On the other hand, when measuring the work peripheral surface of a sphere or rotating body in the circumferential direction, each measurement point on the scanning line along the circumferential direction on the work peripheral surface is the same as when measuring a flat work surface. The signal value of the measurement signal is acquired in association with the length of the scanning line from the predetermined reference position to each measurement point (periphery of the measurement surface), and measurement is performed at measurement points at every desired length of the scanning line. It is desirable to be able to acquire (sample) the signal value of the signal. As a result, even if the measurement surface is a spherical or rotating work peripheral surface, the surface roughness can be evaluated by the same evaluation criteria as in the case of a flat work surface.

しかしながら、特許文献4−7のようにワークを支持する回転駆動機構におけるローラ等の回転によってワークを回転させる場合には、ワーク周面の円周方向に沿った走査ライン上の各測定点までの走査ラインの長さは、ワーク(ワーク周面)又はローラの直径と、それらの回転速度と、測定開始時からの経過時間とを乗じた値に応じたものとなるため、ワーク又はローラの直径の情報が必要となる。これらの情報は、平坦なワーク表面の場合には不要な情報であり、これらの情報をユーザの手入力等により事前に得るものとすると、その作業に手間を要し、また、測定点の位置の実際の位置に対する誤差の増大を招く。   However, when the work is rotated by rotation of a roller or the like in a rotation drive mechanism that supports the work as in Patent Document 4-7, the measurement points on the scanning line along the circumferential direction of the work peripheral surface are measured. The length of the scanning line depends on the value of the workpiece (workpiece peripheral surface) or roller diameter multiplied by their rotation speed and the elapsed time from the start of measurement. Information is required. These pieces of information are unnecessary information in the case of a flat workpiece surface. If these pieces of information are obtained in advance by manual input by the user, the work requires time and the position of the measurement point. This increases the error with respect to the actual position.

一方、従来では、測定点の位置は、回転速度と経過時間とを乗じて得られるワーク又はローラの回転角度により表され、各測定点での測定信号の信号値はワーク等の回転角度に対応付けて取得されることが一般的であり、これにより評価される表面粗さの良否判断は、平坦なワーク表面の場合と同等に行うことができないという問題がある。   On the other hand, conventionally, the position of the measurement point is represented by the rotation angle of the workpiece or roller obtained by multiplying the rotation speed and the elapsed time, and the signal value of the measurement signal at each measurement point corresponds to the rotation angle of the workpiece, etc. In general, the surface roughness is evaluated as a result of the evaluation, and there is a problem that it is not possible to make a judgment on whether or not the surface roughness is evaluated.

さらに、特許文献4−7では、測定子の先端部が接触しているワーク周面の測定点の位置に対して、円周方向に180°反対となる位置にワークを支持する支持点が存在していない。そのため、ワーク周面の測定点における直交方向に振動が生じやすく、誤差が生じやすいという問題があった。   Further, in Patent Document 4-7, there is a support point that supports the workpiece at a position that is 180 ° opposite to the circumferential direction with respect to the position of the measurement point on the workpiece circumferential surface that is in contact with the tip of the measuring element. Not done. For this reason, there is a problem that vibration is likely to occur in the orthogonal direction at the measurement point on the work peripheral surface, and an error is likely to occur.

本発明は、このような事情に鑑みてなされたもので、被測定物の平坦な表面の表面粗さを測定する場合と同等の精度及び評価基準で球体又は回転体からなる被測定物の周面の表面粗さを測定、評価することができ、かつ、装置の大型化やコストの増大が生じない表面粗さ測定機を提供することを目的とする。   The present invention has been made in view of such circumstances, and has the same accuracy and evaluation standard as those used when measuring the surface roughness of a flat surface of the object to be measured. An object of the present invention is to provide a surface roughness measuring machine that can measure and evaluate the surface roughness of a surface and that does not increase the size of the apparatus or increase the cost.

上記目的を達成するため、本発明の一態様に係る表面粗さ測定機は、球体又は回転体からなる被測定物の周面の一部である第1部位を支持する支持手段と、被測定物の周面の他の一部である第2部位に接触しながら被測定物の回転軸に対して直交する方向に移動することにより被測定物を回転させる回転手段と、被測定物の周面の更に他の一部である第3部位に対向する位置に配置固定され、被測定物の周面の円周方向の表面粗さを検出する検出手段と、を備える。   In order to achieve the above object, a surface roughness measuring instrument according to an aspect of the present invention includes a supporting unit that supports a first part that is a part of a peripheral surface of a measurement object including a sphere or a rotating body, and a measurement target. Rotating means for rotating the object to be measured by moving in a direction orthogonal to the rotation axis of the object to be measured while contacting a second part which is another part of the peripheral surface of the object, and a periphery of the object to be measured Detecting means for detecting the surface roughness in the circumferential direction of the peripheral surface of the object to be measured, which is disposed and fixed at a position facing the third part which is still another part of the surface.

本発明によれば、平坦な表面の表面粗さ測定を行う場合と同様に、非測定物の周面の円周方向に沿った走査ライン上の各測定点の位置を、非測定物の直径等に関係なく、非測定物の回転軸に対して直交する方向への回転手段の移動速度と測定開始時からの経過時間とに基づいて、所定基準位置からの走査ラインの長さ(周長)により特定し、その走査ラインの長さに対応付けて、検出手段から出力される測定信号の信号値を取得することができる。   According to the present invention, as in the case of measuring the surface roughness of a flat surface, the position of each measurement point on the scanning line along the circumferential direction of the circumferential surface of the non-measurement object is set to the diameter of the non-measurement object. Regardless of the above, based on the moving speed of the rotating means in the direction orthogonal to the rotation axis of the non-measurement object and the elapsed time from the start of measurement, the length of the scanning line from the predetermined reference position (peripheral length And the signal value of the measurement signal output from the detection means can be acquired in association with the length of the scanning line.

また、アナログ信号の測定信号を所定時間周期でサンプリングし、A/D変換によりデジタル信号に変換する場合に、平坦な表面の表面粗さ測定を行う場合と同様に、回転手段の移動速度とサンプリング周期(時間周期)とを調整することにより、走査ライン上の所定の長さおきの測定点における測定信号の信号値を取得することができる。   In addition, when the measurement signal of the analog signal is sampled at a predetermined time period and converted into a digital signal by A / D conversion, the moving speed and sampling of the rotating means are sampled as in the case of measuring the surface roughness of the flat surface. By adjusting the period (time period), the signal value of the measurement signal at the measurement points at predetermined intervals on the scanning line can be acquired.

したがって、測定面が球体又は回転体の周面であってもその表面粗さを、平坦な表面の場合と同等の評価基準で評価することができる。また、平坦な表面の表面粗さ測定においては不要な被測定物の直径などの情報も同様に不要であるため、その情報をユーザが事前に手入力する等の作業の手間もなく、測定結果に対する誤差の要因が増加することもない。   Therefore, even if the measurement surface is a sphere or a peripheral surface of a rotating body, the surface roughness can be evaluated based on the same evaluation criteria as in the case of a flat surface. In addition, information such as the diameter of an object to be measured that is not necessary for measuring the surface roughness of a flat surface is also unnecessary, so there is no need for the user to manually input the information in advance, and the measurement results can be processed. There is no increase in error factors.

また、平坦な表面の表面粗さ測定を行う場合に使用する駆動手段であって検出手段を直進移動させる駆動手段を用いて回転手段を構成することができるため表面粗さ測定機としての装置の大型化とコストの増大を招かない。   In addition, since the rotating means can be configured by using a driving means that is used when measuring the surface roughness of a flat surface and moves the detecting means straight, the apparatus of the surface roughness measuring machine Does not lead to an increase in size and cost.

本発明の一の態様に係る表面粗さ測定機において、回転手段は、回転軸に対して平行する平坦面であって被測定物に当接する当接面と、当接面を平坦面に沿った方向に直進移動させる駆動手段と、を有する態様とすることができる。   In the surface roughness measuring machine according to one aspect of the present invention, the rotating means is a flat surface parallel to the rotation axis, which is in contact with the object to be measured, and the contact surface along the flat surface. And a driving means for moving straightly in the selected direction.

本発明の一の態様に係る表面粗さ測定機において、第3部位は、第2部位に対して円周方向に180度反対側となる位置である態様とすることができる。   In the surface roughness measuring instrument according to one aspect of the present invention, the third part can be an aspect that is 180 degrees opposite to the second part in the circumferential direction.

本態様によれば、検出手段により表面粗さを測定する第3部位における振動が生じ難く、測定精度の向上に寄与する。   According to this aspect, it is difficult for vibration to occur in the third region where the surface roughness is measured by the detection means, which contributes to improvement in measurement accuracy.

本発明の一の態様に係る表面粗さ測定機において、検出手段は、第3部位に先端部が当接する測定子を有する接触式の検出手段である態様とすることができる。   In the surface roughness measuring machine according to one aspect of the present invention, the detection means may be an aspect of a contact type detection means having a measuring element whose tip is in contact with the third part.

本発明の一の態様に係る表面粗さ測定機において、回転手段は、被測定物に当接する当接面を介して被測定物を加圧する加圧手段を備えた態様とすることができる。   In the surface roughness measuring machine according to one aspect of the present invention, the rotating means may be provided with a pressurizing means that pressurizes the object to be measured via a contact surface that contacts the object to be measured.

本発明の一に態様に係る表面粗さ測定機において、支持手段は、被測定物が球体の場合に球体の周面の一部の範囲が入り込むテーパ状の孔を有する板状体を備える態様とすることができる。   In the surface roughness measuring instrument according to an aspect of the present invention, the support means includes a plate-like body having a tapered hole into which a part of the peripheral surface of the sphere enters when the object to be measured is a sphere. It can be.

本発明の他の態様に係る表面粗さ測定機において、支持手段は、被測定物が回転体の場合に回転体の周面の回転軸に沿った一部の範囲が入り込むテーパ状の溝を有する態様とすることができる。   In the surface roughness measuring machine according to another aspect of the present invention, the support means includes a tapered groove into which a part of the range along the rotation axis of the peripheral surface of the rotating body enters when the object to be measured is a rotating body. It can be set as the aspect which has.

本発明によれば、平坦なワーク表面の表面粗さを測定する場合と同等の精度及び評価基準で球体又は回転体からなる被測定物の周面の表面粗さを測定、評価することができ、かつ、装置の大型化やコストの増大を招かないものとすることができる。   According to the present invention, it is possible to measure and evaluate the surface roughness of the peripheral surface of a measured object made of a sphere or a rotating body with the same accuracy and evaluation standard as when measuring the surface roughness of a flat workpiece surface. In addition, it is possible to prevent an increase in size and cost of the apparatus.

本発明が適用された表面粗さ測定機の正面図Front view of a surface roughness measuring machine to which the present invention is applied 本発明が適用された表面粗さ測定機の右側面図Right side view of a surface roughness measuring machine to which the present invention is applied 図1の検出器支持機構を拡大して示した正面図The front view which expanded and showed the detector support mechanism of FIG. ワーク設置台の中央部付近を拡大して示した上面図Top view showing the central part of the workpiece installation table in an enlarged manner 図4における5−5矢視断面図Sectional view along arrow 5-5 in FIG. 測定時におけるワーク、検出器、及び加圧部の配置状態を示した拡大図Enlarged view showing the arrangement of the workpiece, detector, and pressure unit during measurement 円筒体のワークの周面の円周方向の表面粗さ測定を行う場合のワーク設置板を示した平面図Plan view showing workpiece installation plate when measuring circumferential surface roughness of cylindrical workpiece surface 図7における8−8矢視断面図8-8 arrow sectional view in FIG. 図1の表面粗さ測定機を簡素化して示した概念図The conceptual diagram which simplified and showed the surface roughness measuring machine of FIG. 表面粗さ測定機の他の実施の形態を簡素化して示した概念図Conceptual diagram showing another embodiment of the surface roughness measuring instrument in a simplified manner 表面粗さ測定機の他の実施の形態を簡素化して示した概念図Conceptual diagram showing another embodiment of the surface roughness measuring instrument in a simplified manner

以下、添付図面に従って本発明の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1、図2は、本発明が適用された表面粗さ測定機の正面図及び側面図である。これらの図に示す表面粗さ測定機1は、球体のワークの周面の円周方向の表面粗さを測定する装置であり、測定面の表面形状を測定する測定部2と、測定部2により得られたデータを処理するデータ処理部3とを有する。データ処理部3は、パーソナルコンピュータ等の演算処理装置がその機能の一部として備える。以下において、単に表面粗さ測定機1という場合には主に測定部2を示すものとする。また、図2ではデータ処理部3を省略している。   1 and 2 are a front view and a side view of a surface roughness measuring machine to which the present invention is applied. The surface roughness measuring machine 1 shown in these drawings is a device that measures the surface roughness in the circumferential direction of the circumferential surface of a spherical workpiece, and includes a measuring unit 2 that measures the surface shape of the measuring surface, and a measuring unit 2. And a data processing unit 3 for processing the data obtained by the above. The data processing unit 3 is provided as part of the function of an arithmetic processing device such as a personal computer. In the following, when the surface roughness measuring device 1 is simply referred to, the measuring unit 2 is mainly shown. In FIG. 2, the data processing unit 3 is omitted.

表面粗さ測定機1は、水平方向(X軸方向及びY軸方向)に沿って配置される平坦な上面を有するベース4と、ベース4に固定されて鉛直方向(Z軸方向)に沿って立設されるコラム5とを有する。ベース4の上面には、検出器30(ピックアップとも称される検出手段)を支持する検出器支持機構10と、測定対象である球体のワークW(後述の図6参照)を支持するワーク支持機構40(支持手段)とが設けられ、コラム5には、ワーク支持機構40に支持されたワークWを回転させるワーク駆動機構70(回転手段)が設けられる。   The surface roughness measuring machine 1 includes a base 4 having a flat upper surface arranged along the horizontal direction (X-axis direction and Y-axis direction), and fixed to the base 4 along the vertical direction (Z-axis direction). And a column 5 erected. On the upper surface of the base 4, a detector support mechanism 10 that supports a detector 30 (detection means that is also referred to as a pickup) and a work support mechanism that supports a spherical workpiece W (see FIG. 6 described later) as a measurement target. 40 (support means) is provided, and the column 5 is provided with a work drive mechanism 70 (rotation means) for rotating the work W supported by the work support mechanism 40.

まず、検出器支持機構10について、検出器支持機構10のみを拡大して示した図3の正面図を用いて説明すると、ベース4の上面には、平板状で矩形状の第1固定板12が固定され、第1固定板12の上面には第1固定板12よりも表面積の小さい平板状で矩形状の第2固定板14が固定される。第1固定板12は、図2に示すようにベース4にX軸方向に沿って形成された直進溝4Aに係合した状態でネジにより固定されており、そのネジを緩めることによって第1固定板12を直進溝4Aに沿ってX軸方向に動かすことができる。これによって、検出器支持機構10及びワーク支持機構40のベース4におけるX軸方向の固定位置が全体的に調整される。   First, the detector support mechanism 10 will be described with reference to the front view of FIG. 3 in which only the detector support mechanism 10 is enlarged. On the upper surface of the base 4, a flat first rectangular fixed plate 12 is formed. Is fixed, and a flat and rectangular second fixing plate 14 having a smaller surface area than the first fixing plate 12 is fixed to the upper surface of the first fixing plate 12. As shown in FIG. 2, the first fixing plate 12 is fixed to the base 4 with a screw in a state of being engaged with a rectilinear groove 4A formed along the X-axis direction, and the first fixing plate 12 is first fixed by loosening the screw. The plate 12 can be moved in the X-axis direction along the rectilinear groove 4A. As a result, the fixed positions in the X-axis direction of the base 4 of the detector support mechanism 10 and the workpiece support mechanism 40 are adjusted as a whole.

第2固定板14の上面には、XYZステージ16が固定され、XYZステージ16の上部には、検出器30が支持される。XYZステージ16としては、周知かつ任意構造のものを使用することができ、詳細な説明については省略するが、Yつまみ18A(図2も参照)を回転させると、Yステージ18Bが第2固定板14に対してY軸方向に移動して検出器30がY軸方向に移動する。Xつまみ20Aを回転させると、Xステージ20BがYステージ18Bに対してX軸方向に移動して検出器30がX軸方向に移動する。Zつまみ22Aを回転させると、Zステージ22BがXステージ20Bに対してZ軸方向に移動して検出器30がZ軸方向に移動する(昇降移動する)。なお、X軸、Y軸、Z軸は互いに直交し、X軸及びY軸は水平面(ベース4の上面)に対して平行する水平方向を示し、Z軸は水平面に対して直交する鉛直方向を示す。   An XYZ stage 16 is fixed on the upper surface of the second fixed plate 14, and a detector 30 is supported on the upper part of the XYZ stage 16. As the XYZ stage 16, a well-known and arbitrary structure can be used, and detailed description is omitted. However, when the Y knob 18A (see also FIG. 2) is rotated, the Y stage 18B becomes the second fixed plate. 14, the detector 30 moves in the Y-axis direction. When the X knob 20A is rotated, the X stage 20B moves in the X axis direction with respect to the Y stage 18B, and the detector 30 moves in the X axis direction. When the Z knob 22A is rotated, the Z stage 22B moves in the Z axis direction with respect to the X stage 20B, and the detector 30 moves (moves up and down) in the Z axis direction. The X axis, the Y axis, and the Z axis are orthogonal to each other, the X axis and the Y axis indicate a horizontal direction parallel to the horizontal plane (the upper surface of the base 4), and the Z axis indicates a vertical direction orthogonal to the horizontal plane. Show.

検出器30も、周知かつ任意構造のものを使用することができ、詳細な説明については省略するが、円筒状の検出器本体32と、検出器本体32の先端部から延出される棒状の測定子34(スタイラス)とを有する。XYZステージ16のZステージ22Bの上部には、検出器ホルダ24が固定されており、その検出器ホルダ24に検出器本体32が固定されることによって検出器30がXYZステージ16上に支持される。   The detector 30 can also be a well-known and arbitrary structure, and although detailed description is omitted, a cylindrical detector body 32 and a rod-shaped measurement extending from the tip of the detector body 32 And a child 34 (stylus). A detector holder 24 is fixed to the upper part of the Z stage 22B of the XYZ stage 16, and the detector 30 is supported on the XYZ stage 16 by fixing the detector main body 32 to the detector holder 24. .

また、検出器30の測定子34は、Y軸と直交する方向であって、X軸とほぼ平行に配置される。さらに、測定子34の先端部には、測定子34に対して直交する方向に突出してワークWの表面(周面)に接触する触針36が設けられており、その触針36がY軸と直交する方向であって、Z軸とほぼ平行に、かつ、上向きに配置される。   The measuring element 34 of the detector 30 is arranged in a direction orthogonal to the Y axis and substantially parallel to the X axis. Furthermore, a stylus 36 that protrudes in a direction orthogonal to the stylus 34 and contacts the surface (circumferential surface) of the workpiece W is provided at the tip of the stylus 34, and the stylus 36 is in the Y-axis. In a direction perpendicular to the Z axis, substantially parallel to the Z axis and upward.

次に、ワーク支持機構40について説明すると、図1及び図2に示すようにXYZステージ16が固定される第2固定板14の上面には、ワーク設置台46が設けられる。ワーク設置台46は、第2固定板14に固定されると共に鉛直方向(Z軸方向)に沿って立設され、Y軸方向に互いに対向して配置された2つの脚部42と、2つの脚部42の上端部に固定され、水平(Y軸方向)に架け渡された支持部44とを有する。   Next, the work support mechanism 40 will be described. As shown in FIGS. 1 and 2, a work setting table 46 is provided on the upper surface of the second fixing plate 14 to which the XYZ stage 16 is fixed. The workpiece mounting base 46 is fixed to the second fixing plate 14 and is erected along the vertical direction (Z-axis direction), and has two leg portions 42 disposed opposite to each other in the Y-axis direction, and two It has a support portion 44 that is fixed to the upper end portion of the leg portion 42 and spans horizontally (Y-axis direction).

また、ワーク設置台46は、検出器30における測定子34の触針36の上側に跨がって配置され、触針36の上側に支持部44が配置される。   In addition, the workpiece mounting base 46 is disposed across the stylus 36 of the probe 34 in the detector 30, and the support portion 44 is disposed above the stylus 36.

図4は、ワーク設置台46の中央部付近を拡大して示した上面図であり、図5は、図4における5−5矢視断面図である。これらの図に示すように支持部44の中央部には、X軸方向に延びるZ軸方向に貫通した貫通溝44A(破線)が形成されており、支持部44の上面において、その貫通溝44Aと重なる部分に円板状のワーク設置板48がノブ付きネジ50、50により着脱可能に固定される。また、支持部44の上面の2箇所に位置決めピン52、52が突設されており、それらの位置決めピン52、52にワーク設置板48の外周縁を当接させた状態で支持部44に固定することで、ワーク設置板48が支持部44の規定位置に位置決めされる。   4 is an enlarged top view showing the vicinity of the central portion of the workpiece mounting table 46, and FIG. 5 is a cross-sectional view taken along the arrow 5-5 in FIG. As shown in these drawings, a through groove 44A (broken line) penetrating in the Z-axis direction extending in the X-axis direction is formed at the center of the support portion 44, and the through-groove 44A is formed on the upper surface of the support portion 44. A disc-shaped workpiece installation plate 48 is detachably fixed to the overlapping portion with screws 50, 50 with knobs. In addition, positioning pins 52 and 52 protrude from two positions on the upper surface of the support portion 44, and are fixed to the support portion 44 in a state where the outer peripheral edge of the workpiece installation plate 48 is in contact with the positioning pins 52 and 52. As a result, the workpiece setting plate 48 is positioned at the specified position of the support portion 44.

ワーク設置板48の中央部には、Z軸方向に貫通し、かつ、上側ほど拡径されたテーパ形状のテーパ孔48Aが設けられる。テーパ孔48Aの下側の開口は、ワーク設置台46の支持部44の中心付近に配置され、テーパ孔48Aが貫通溝44Aに連通する。   A taper-shaped taper hole 48 </ b> A that penetrates in the Z-axis direction and has an enlarged diameter toward the upper side is provided at the center of the work installation plate 48. The lower opening of the taper hole 48A is disposed near the center of the support portion 44 of the workpiece mounting base 46, and the taper hole 48A communicates with the through groove 44A.

このテーパ孔48Aには、図5に示すように測定対象の球体のワークWが載置され、ワークWの中心位置よりも下側の部分がテーパ孔48Aに入り込む。そして、テーパ孔48Aの斜面がワークWの周面に鉛直軸周りの全周に渡って下側斜め方向から当接する。これにより、ワークWの鉛直方向(Z軸方向)の下向き、及び、水平方向(X軸方向及びY軸方向)の全ての向きの移動がテーパ孔48Aにより規制された状態でワークWがワーク設置板48に支持される。また、このとき、ワークWの周面の下側の頂点(最下点)がテーパ孔48Aの下側の開口付近に配置される。これによって、測定時におけるワークWと検出器30との配置状態が示されている図6のようにワークWの周面の下側の頂点に対して検出器30における測定子34の先端部の触針36が当接可能となる。   As shown in FIG. 5, a spherical workpiece W to be measured is placed in the tapered hole 48A, and a portion below the center position of the workpiece W enters the tapered hole 48A. The inclined surface of the taper hole 48A contacts the peripheral surface of the workpiece W from the lower oblique direction over the entire circumference around the vertical axis. As a result, the workpiece W is placed in a state in which the downward movement of the workpiece W in the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction and Y-axis direction) are restricted by the tapered hole 48A. Supported by the plate 48. At this time, the lower apex (lowermost point) of the peripheral surface of the workpiece W is disposed near the lower opening of the tapered hole 48A. As a result, the arrangement of the workpiece W and the detector 30 at the time of measurement is shown, and the tip of the probe 34 in the detector 30 is located on the lower vertex of the peripheral surface of the workpiece W as shown in FIG. The stylus 36 can come into contact.

なお、ワーク設置板48として、板厚、テーパ孔48Aの大きさや斜面の傾き等が異なる複数種類のものを用意しておき、測定対象のワークWの直径に応じて適切な種類のものをワーク設置台46の支持部44に設置することが可能である。ワークWに対して適切な種類のワーク設置板48としては、ワークWをテーパ孔48Aに載置した際に、ワークWの周面が少なくともワーク設置板48のテーパ孔48Aの上端縁又は下端縁に当接せず、望ましくは、テーパ孔48Aの斜面の上下方向の中央付近で当接し、また、ワークWの周面の下側の頂点(最下点)がテーパ孔48Aの下端付近の高さ(ワーク設置板48の下面付近の高さ)で、かつ、ワークWの周面の上側の頂点(最上点)がテーパ孔48Aの上端(ワーク設置板48の上面位置)よりも上側となる高さとなるものが該当する。   A plurality of types of workpiece installation plates 48 having different plate thicknesses, taper hole 48A sizes, slope inclinations, etc. are prepared, and those of an appropriate type are selected according to the diameter of the workpiece W to be measured. It can be installed on the support portion 44 of the installation table 46. As a work installation plate 48 suitable for the work W, when the work W is placed in the tapered hole 48A, the peripheral surface of the work W is at least the upper edge or the lower edge of the taper hole 48A of the work installation plate 48. Preferably, the taper comes into contact with the center of the inclined surface of the tapered hole 48A in the vertical direction, and the lower apex (lowermost point) of the peripheral surface of the workpiece W is a height near the lower end of the tapered hole 48A. (The height in the vicinity of the lower surface of the workpiece installation plate 48) and the upper vertex (uppermost point) of the peripheral surface of the workpiece W is above the upper end of the taper hole 48A (the upper surface position of the workpiece installation plate 48). Applicable to height.

次にワーク駆動機構70について説明すると、図1、図2に示すように、コラム5には、駆動部72(駆動手段としての送り装置)がZ軸方向に昇降移動可能に支持される。   Next, the workpiece drive mechanism 70 will be described. As shown in FIGS. 1 and 2, the column 5 supports a drive unit 72 (feed device as drive means) so as to be movable up and down in the Z-axis direction.

駆動部72には、下側にアーム74が突設されており、アーム74の下端部には、ワーク支持機構40のワーク設置板48に支持されたワークWを上側から加圧するための加圧ユニット76が固定される。   An arm 74 projects from the lower side of the drive unit 72, and pressurization is performed at the lower end of the arm 74 to press the workpiece W supported by the workpiece installation plate 48 of the workpiece support mechanism 40 from above. The unit 76 is fixed.

一方、コラム5の内部には、駆動部72を昇降移動させるモータが搭載され、駆動部72の内部には、アーム74をX軸方向に移動させるモータが搭載されており、データ処理部3を有する演算処理装置からの制御信号にしたがって、又は、ベース4に設置されたコントローラ6からのユーザ操作に基づく制御信号にしたがって、それらのモータが駆動されて駆動部72がコラム5に沿ってZ軸方向に昇降移動し、アーム74がX軸方向に直進移動する。   On the other hand, a motor that moves the drive unit 72 up and down is mounted inside the column 5, and a motor that moves the arm 74 in the X-axis direction is mounted inside the drive unit 72. These motors are driven in accordance with a control signal from the arithmetic processing device or according to a control signal based on a user operation from the controller 6 installed in the base 4, and the drive unit 72 moves along the column 5 along the Z axis. The arm 74 moves up and down in the direction and moves straight in the X-axis direction.

したがって、加圧ユニット76がコラム5及び駆動部72によりZ軸方向に移動可能に、かつ、X軸方向に移動可能に支持される。   Therefore, the pressurizing unit 76 is supported by the column 5 and the drive unit 72 so as to be movable in the Z-axis direction and movable in the X-axis direction.

なお、駆動部72として、周知のように平坦なワーク表面の表面粗さを測定する場合に、上述の検出器30を保持して検出器30をX軸方向に直進移動させる駆動部を使用することができ、本実施の形態のように球体のワークWの周面の表面粗さ測定を行うために新たに追加する構成要素としないものとすることができる。   As the drive unit 72, as is well known, when measuring the surface roughness of a flat workpiece surface, a drive unit that holds the detector 30 and moves the detector 30 straight in the X-axis direction is used. It can be used as a component that is not newly added to measure the surface roughness of the peripheral surface of the spherical workpiece W as in the present embodiment.

加圧ユニット76は、駆動部72のアーム74に固定され、X軸方向に沿って延在する棒状の支持部78を有し、その先端部に加圧部80(加圧手段)が設けられる。   The pressurizing unit 76 is fixed to the arm 74 of the driving unit 72, has a rod-like support part 78 extending along the X-axis direction, and a pressurizing part 80 (pressurizing means) is provided at the tip thereof. .

加圧部80は、測定時におけるワークW、検出器30、及び加圧部80の配置状態を示した図6の拡大図に示されているように、支持部78の先端部78Aの軸心位置からX軸方向に延在し、弾性変形可能な四角柱状(カンチレバー型)のバネ部82と、バネ部82の先端からX軸方向に延在する硬質で四角柱状の先端支持部84と、先端支持部84の下面側に固着され、X軸方向に長い長方形の平坦な当接面を下面として有するゴム部86とを有する。このゴム部86の当接面は、測定時において、ワーク支持機構40のワーク設置板48に支持されたワークWの上側の頂点(最上点)に当接し、ワークWを上側から加圧する。   As shown in the enlarged view of FIG. 6 showing the arrangement state of the workpiece W, the detector 30, and the pressurizing unit 80 at the time of measurement, the pressurizing unit 80 is the axis of the tip 78A of the support unit 78. A quadrangular columnar (cantilever type) spring portion 82 extending from the position in the X-axis direction and elastically deformable, and a hard, square-columnar tip support portion 84 extending in the X-axis direction from the tip of the spring portion 82; A rubber portion 86 fixed to the lower surface side of the tip support portion 84 and having a rectangular flat contact surface long in the X-axis direction as a lower surface. At the time of measurement, the contact surface of the rubber portion 86 contacts the upper apex (uppermost point) of the work W supported by the work setting plate 48 of the work support mechanism 40, and pressurizes the work W from the upper side.

また、先端支持部84には、バネ部82を介して支持部78の先端部78Aの近傍まで延びる指標針88が固定され、支持部78の先端部78Aには加圧位置合わせマーク90が記される。これらの指標針88の指示位置と加圧位置合わせマーク90の位置とは、ゴム部86をワークWに当接させて加圧した際に、バネ部82が弾性変形して最適な加圧状態となったときに上下方向に一致する。   In addition, an index needle 88 extending to the vicinity of the tip portion 78A of the support portion 78 is fixed to the tip support portion 84 via the spring portion 82, and a pressure alignment mark 90 is written on the tip portion 78A of the support portion 78. Is done. The indication position of the index needle 88 and the position of the pressurization position alignment mark 90 indicate that the spring portion 82 is elastically deformed when the rubber portion 86 is brought into contact with the work W to pressurize, so that an optimal pressurization state is achieved. When it becomes, it corresponds in the vertical direction.

また、加圧部80は、ストッパ部92を有し、ストッパ部92は、アーム部材94とストッパ96とを有する。アーム部材94は、支持部78の先端部78Aの上面側に固定され、L字状に屈曲してバネ部82及び先端支持部84の上側においてX軸方向に延在する。ストッパ96は、アーム部材94の先端部に取り付けられ、下向きに凸部を有して先端支持部84の上面に隙間を有して対向配置される。ワークWをゴム部86により加圧した際に、バネ部82が弾性変形して先端支持部84が支持部78に対して上側に一定量変位すると、先端支持部84の上面がストッパ96に当接してそれ以上の変位が規制される。   The pressure unit 80 includes a stopper unit 92, and the stopper unit 92 includes an arm member 94 and a stopper 96. The arm member 94 is fixed to the upper surface side of the tip portion 78A of the support portion 78, bends in an L shape, and extends in the X-axis direction above the spring portion 82 and the tip support portion 84. The stopper 96 is attached to the distal end portion of the arm member 94, has a convex portion downward, and is opposed to the upper surface of the distal end support portion 84 with a gap. When the workpiece W is pressed by the rubber portion 86, the spring portion 82 is elastically deformed and the tip support portion 84 is displaced upward by a certain amount with respect to the support portion 78, so that the upper surface of the tip support portion 84 contacts the stopper 96. Further displacement is restricted in contact.

また、支持部78の先端部78Aは、ノブ付きネジ98を緩めることによって、支持部78の基端部78Bに対してY軸方向を回転軸とした回転軸周りに略90度の範囲で回転させることができるようになっており、図6のように支持部78の軸線方向の向きに加圧部80を支持した状態から支持部78の軸線方向に対して上向きに加圧部80を支持した状態に切り替えることができる。これによって、測定開始前や測定終了後においてワークWをワーク支持機構40のワーク設置板48に載置し、又は、ワーク設置板48から取り出す作業を容易にすることができる。   Further, the distal end portion 78A of the support portion 78 is rotated within a range of about 90 degrees around the rotation axis with the Y axis direction as the rotation axis with respect to the base end portion 78B of the support portion 78 by loosening the screw 98 with the knob. As shown in FIG. 6, the pressurizing unit 80 is supported upward from the axial direction of the support unit 78 from the state in which the pressurization unit 80 is supported in the axial direction of the support unit 78 as shown in FIG. 6. You can switch to the state. Accordingly, it is possible to facilitate the work of placing the workpiece W on the workpiece setting plate 48 of the workpiece support mechanism 40 or taking it out of the workpiece setting plate 48 before the measurement is started or after the measurement is completed.

以上のごとく構成された表面粗さ測定機1により、球体のワークWの周面の円周方向の表面粗さを測定する際の動作について説明する。   The operation at the time of measuring the surface roughness in the circumferential direction of the peripheral surface of the spherical workpiece W by the surface roughness measuring machine 1 configured as described above will be described.

図6に示すように、まず、操作者は、測定対象の球体のワークWをワーク支持機構40のワーク設置板48におけるテーパ孔48Aの位置に置く。そして、XYZステージ16を操作して検出器30の位置を調整し、測定子34の触針36をワーク設置板48及びワーク設置台46の下側からワークWの下側の頂点に接触させる。   As shown in FIG. 6, first, the operator places the spherical workpiece W to be measured at the position of the tapered hole 48 </ b> A in the workpiece installation plate 48 of the workpiece support mechanism 40. Then, the position of the detector 30 is adjusted by operating the XYZ stage 16, and the stylus 36 of the probe 34 is brought into contact with the lower apex of the workpiece W from the lower side of the workpiece setting plate 48 and the workpiece setting table 46.

また、コントローラ6又はデータ処理部3を有する演算処理装置の入力装置等を操作して駆動部72のZ軸方向の位置及び駆動部72のアームのX軸方向の位置を調整し、加圧ユニット76の加圧部80におけるゴム部86の下面をワークWの上側の頂点に上側から当接させる。そして、指標針88の支持位置が加圧位置合わせマーク90の位置と一致するまで加圧ユニット76を下降させる。これにより、ゴム部86とワークWとを摩擦係合させると共に、ワークWを適度な圧力でワーク設置板48に押圧する。   Further, by operating the input device or the like of the arithmetic processing unit having the controller 6 or the data processing unit 3, the position of the drive unit 72 in the Z-axis direction and the position of the arm of the drive unit 72 in the X-axis direction are adjusted, and the pressurizing unit The lower surface of the rubber part 86 in the pressure part 80 of 76 is brought into contact with the upper vertex of the work W from above. Then, the pressure unit 76 is lowered until the support position of the index needle 88 coincides with the position of the pressure alignment mark 90. Thereby, the rubber part 86 and the workpiece W are frictionally engaged, and the workpiece W is pressed against the workpiece installation plate 48 with an appropriate pressure.

なお、ゴム部86の当接面(下面)が水平であるため、そのX軸方向及びY軸方向の範囲をワークWの上側の頂点を含む位置に設定すればワークWの上側の頂点にゴム部86の当接面を当接させることができ、高精度な調整は不要である。また、ゴム部86の当接面の範囲のうち基端側(支持部78側)の位置をワークWに当接させたものとする。   Since the contact surface (lower surface) of the rubber portion 86 is horizontal, if the range in the X-axis direction and the Y-axis direction is set to a position including the upper vertex of the workpiece W, the rubber is formed at the upper vertex of the workpiece W. The abutment surface of the portion 86 can be brought into contact, and high-precision adjustment is unnecessary. Further, it is assumed that the position on the base end side (the support portion 78 side) in the range of the contact surface of the rubber portion 86 is in contact with the workpiece W.

続いて、コントローラ6又はデータ処理部3を有する演算処理装置の入力装置等を操作して測定開始の指示を与えると、駆動部72が加圧ユニット76の一定速度でのX軸方向への直進移動を開始する。ここでは、加圧ユニット76の先端側から基端側への向き(図6において右向き)を進行方向とする。   Subsequently, when the controller 6 or the input device of the arithmetic processing unit having the data processing unit 3 is operated to give an instruction to start measurement, the drive unit 72 goes straight in the X-axis direction at a constant speed of the pressurizing unit 76. Start moving. Here, the direction from the distal end side to the proximal end side of the pressure unit 76 (rightward in FIG. 6) is defined as the traveling direction.

これによって、加圧ユニット76のゴム部86が一定速度でX軸方向に移動すると、これに伴い、ワークWがゴム部86との間での摩擦によりY軸と平行な中心軸(ワークWの中心を通り、かつ、Y軸に平行な軸)周りに回転する。そして、これによって、検出器30のワークWのXZ平面に平行な中心断面(ワークWの中心を通り、かつ、XY平面に平行な面)における周面の位置を走査ラインとしてその走査ライン上を測定子34の触針36が摺接しながら相対的に移動する。   As a result, when the rubber portion 86 of the pressurizing unit 76 moves in the X-axis direction at a constant speed, the workpiece W is caused to rub with the rubber portion 86 so that the central axis parallel to the Y-axis (of the workpiece W Rotate around an axis that passes through the center and is parallel to the Y axis. As a result, the position of the peripheral surface in a central cross section (surface passing through the center of the workpiece W and parallel to the XY plane) parallel to the XZ plane of the workpiece W of the detector 30 is used as a scanning line on the scanning line. The stylus 36 of the probe 34 moves relatively while sliding.

このとき、検出器30では、測定子34の触針36のZ軸方向の変位量が検出され、その変位量を示す測定信号が検出器30から出力される。   At this time, the detector 30 detects the amount of displacement of the stylus 36 of the probe 34 in the Z-axis direction, and a measurement signal indicating the amount of displacement is output from the detector 30.

データ処理部3は、検出器30から出力される測定信号を取得し、取得した測定信号に基づいて表面粗さを示す各種評価値(算術平均粗さ、最大高さ等の規定のパラメータ)の算出や、取得又は算出したデータのモニタへの表示等を行う。   The data processing unit 3 acquires the measurement signal output from the detector 30, and various evaluation values (specified parameters such as arithmetic average roughness and maximum height) indicating the surface roughness based on the acquired measurement signal. Calculation, display of the acquired or calculated data on a monitor, etc. are performed.

以上の表面粗さ測定機1の構成、作用によれば、平坦なワーク表面の表面粗さ測定を行う場合に使用される駆動部であってワーク表面に対して検出器を直進移動させる駆動部を駆動部72として用いて球体のワークWを回転させるため、ワークWを回転させるための回転駆動機構を一部を除いて新たに追加するものではなく、表面粗さ測定機1としての装置の大型化とコストの増大を招かないという利点がある。ただし、駆動部72は必ずしも平坦なワーク表面の表面粗さ測定を行う場合に使用される駆動部でなくてもよい。   According to the configuration and operation of the surface roughness measuring machine 1 described above, the driving unit is used when measuring the surface roughness of a flat workpiece surface, and the driving unit moves the detector straight with respect to the workpiece surface. Is used as the drive unit 72 to rotate the spherical workpiece W, and a rotation drive mechanism for rotating the workpiece W is not newly added except for a part thereof. There is an advantage that it does not increase in size and cost. However, the drive part 72 does not necessarily need to be a drive part used when measuring the surface roughness of a flat workpiece surface.

また、平坦なワーク表面を測定する場合と同様に、データ処理部3は、ワークWの周面の円周方向に沿った走査ライン上の各測定点の位置を、ワークWの直径等に関係なく、駆動部72によるゴム部86の移動速度と測定開始時からの経過時間とに基づいて、又は、位置センサより取得可能なゴム部86のX軸方向の位置に基づいて、所定基準位置からの走査ラインの長さ(周長)により特定し、その走査ラインの長さに対応付けて、検出器30から出力される測定信号の信号値を取得することができる。   Similarly to the case of measuring a flat workpiece surface, the data processing unit 3 relates the position of each measurement point on the scanning line along the circumferential direction of the circumferential surface of the workpiece W to the diameter of the workpiece W or the like. Rather, based on the moving speed of the rubber part 86 by the drive part 72 and the elapsed time from the start of measurement, or based on the position in the X-axis direction of the rubber part 86 that can be acquired from the position sensor, The signal value of the measurement signal output from the detector 30 can be acquired in correspondence with the length of the scanning line (peripheral length).

また、データ処理部3(又は検出器30)においてアナログ信号の測定信号を所定時間周期でサンプリングし、A/D変換によりデジタル信号に変換する場合に、ゴム部86の移動速度とサンプリング周期(時間周期)とを調整することにより、平坦なワーク表面を測定する場合と同様に、走査ライン上の所定の長さおきの測定点における測定信号の信号値を取得することができる。   Further, when the data processing unit 3 (or the detector 30) samples the measurement signal of the analog signal at a predetermined time period and converts it into a digital signal by A / D conversion, the moving speed of the rubber part 86 and the sampling period (time) By adjusting (cycle), the signal value of the measurement signal at the measurement points at predetermined lengths on the scanning line can be obtained in the same manner as when measuring a flat workpiece surface.

したがって、測定面が球体又は回転体のワーク周面であってもその表面粗さを、平坦なワーク表面の場合と同等の評価基準で評価することができる。また、平坦なワーク表面の測定においては不要なワークWの直径などの情報も同様に不要であるため、その情報をユーザが事前に手入力する等の作業の手間もなく、測定結果に対する誤差の要因が増加することもない。   Accordingly, even if the measurement surface is a spherical or rotating workpiece peripheral surface, the surface roughness can be evaluated by the same evaluation criteria as in the case of a flat workpiece surface. Also, unnecessary information such as the diameter of the workpiece W is not necessary in the measurement of the surface of the flat workpiece, so that there is no need for the user to manually input the information in advance and the cause of the error in the measurement result. Will not increase.

さらに、検出器30の測定子34の触針36がワークWに接触する測定点、即ち、ワークWの下側の頂点に対して、円周方向に180°反対となるワークWの上側の頂点に加圧ユニット76のゴム部86が当接して支持点としてワークWを支持するため、ワークWの周面の測定点における直交方向に振動が生じ難くなっている。また、加圧ユニット76のゴム部86及びバネ部82によってワークWに伝達されるおそれのある振動が吸収される。そのため、ワークWの振動による測定信号のノイズが少なく、高精度な測定が可能となる。   Furthermore, the measurement point at which the stylus 36 of the probe 34 of the detector 30 contacts the workpiece W, that is, the upper vertex of the workpiece W that is 180 ° opposite to the lower vertex of the workpiece W in the circumferential direction. Since the rubber part 86 of the pressurizing unit 76 contacts and supports the work W as a support point, vibrations hardly occur in the orthogonal direction at the measurement point on the peripheral surface of the work W. Further, vibration that may be transmitted to the workpiece W is absorbed by the rubber portion 86 and the spring portion 82 of the pressure unit 76. Therefore, there is little noise of the measurement signal due to the vibration of the workpiece W, and highly accurate measurement is possible.

以上、上記実施の形態では、測定対象として球体のワークWの表面粗さを測定する表面粗さ測定機1について説明したが、ワーク支持機構40におけるワーク設置台46のワーク設置板48を円筒体や円柱体のような回転体に対応したものとすることで、球体に限らず回転体の周面の円周方向の表面粗さを上記実施の形態と同様にして測定することができる。   In the above embodiment, the surface roughness measuring machine 1 that measures the surface roughness of a spherical workpiece W as a measurement target has been described. However, the workpiece setting plate 48 of the workpiece setting table 46 in the workpiece support mechanism 40 is a cylindrical body. By using a rotating body such as a cylindrical body, the surface roughness in the circumferential direction of the peripheral surface of the rotating body can be measured in the same manner as in the above embodiment.

図7は、回転体(円柱体)のワークWに対応したワーク設置板48を示した平面図であり、図8は、図7における8−8矢視断面図である。これらの図に示すようにワーク設置板48には、直線状に延びるテーパ状(V形状)のテーパ溝48Bが形成され、そのテーパ溝48Bの長手方向の中央部にZ軸方向に貫通する測定用孔48Cが形成される。   FIG. 7 is a plan view showing a work installation plate 48 corresponding to the work W of the rotating body (cylindrical body), and FIG. 8 is a cross-sectional view taken along arrow 8-8 in FIG. As shown in these drawings, a taper (V-shaped) taper groove 48B extending in a straight line is formed in the workpiece installation plate 48, and the measurement is performed in the center in the longitudinal direction of the taper groove 48B in the Z-axis direction. A working hole 48C is formed.

このワーク設置板48をワーク設置台46の支持部44に固定した際には(図6参照)、テーパ溝48Bの長手方向がY軸方向に沿って配置され、測定用孔48Cの下側の開口は、支持部44の中央付近に配置されて貫通溝44Aに連通する。   When the workpiece setting plate 48 is fixed to the support portion 44 of the workpiece setting table 46 (see FIG. 6), the longitudinal direction of the tapered groove 48B is arranged along the Y-axis direction, and is below the measurement hole 48C. The opening is disposed near the center of the support portion 44 and communicates with the through groove 44A.

これによれば、回転体のワークWをその回転軸(中心軸)がテーパ溝48Bの長手方向に沿うようにして載置すると、ワークWの回転軸位置よりも下側の部分がテーパ溝48Bに入り込む。そして、テーパ溝48Bの斜面が当接面としてワークWの周面に下側2方向から斜めに当接してワークWの回転軸がY軸方向となるようにしてワークWがワーク設置板48に支持される。   According to this, when the work W of the rotating body is placed so that its rotation axis (center axis) is along the longitudinal direction of the taper groove 48B, the portion below the rotation axis position of the work W is the taper groove 48B. Get in. The inclined surface of the taper groove 48B is contacted with the peripheral surface of the workpiece W obliquely from the lower two directions so that the rotation axis of the workpiece W is in the Y-axis direction, so that the workpiece W becomes the workpiece installation plate 48. Supported.

測定時には、測定用孔48Cの下側から検出器30の測定子34の触針36を挿入してワークWの下側の頂点に当接させ、加圧ユニット76のゴム部86の当接面をワークWの上側の頂点に当接させる。そして、加圧ユニット76のゴム部86をX軸方向に移動させることで、ワークWとゴム部86との間での摩擦係合によりワークWをY軸と平行な回転軸周りに回転させることができ、検出器30によりワークWの周面の円周方向の表面粗さの測定を行うことができる。   At the time of measurement, the stylus 36 of the probe 34 of the detector 30 is inserted from below the measurement hole 48C and brought into contact with the lower apex of the work W, and the contact surface of the rubber portion 86 of the pressure unit 76 Is brought into contact with the upper apex of the workpiece W. Then, by moving the rubber part 86 of the pressurizing unit 76 in the X-axis direction, the work W is rotated around a rotation axis parallel to the Y-axis by frictional engagement between the work W and the rubber part 86. The surface roughness in the circumferential direction of the peripheral surface of the workpiece W can be measured by the detector 30.

また、本発明に係る表面粗さ測定機は、次の構成要件(1)〜(3)を備えるものであれば良く、上記実施の形態に限定されない。   Moreover, the surface roughness measuring machine which concerns on this invention should just be provided with the following structural requirements (1)-(3), and is not limited to the said embodiment.

(1)球体又は回転体からなる被測定物の周面の一部である第1部位を支持する支持手段
(2)前記被測定物の周面の他の一部である第2部位に接触しながら前記被測定物の回転軸に対して直交する方向に移動することにより前記被測定物を回転させる回転手段
(3)前記被測定物の周面の更に他の一部である第3部位に対向する位置に配置固定され、前記被測定物の周面の円周方向の表面粗さを検出する検出手段
即ち、上記実施の形態の表面粗さ測定機1は、図9の概念図に示すように構成要件(1)の支持手段の一形態であるワーク支持機構40のワーク設置板48がワークWの周面の下側の一部を第1部位として支持する。また、構成要件(2)の回転手段の一形態であるワーク駆動機構70のゴム部86がワークWの周面の上側の一部を第2部位として第2部位に接触しながら駆動部72によりワークWの回転軸に対して直交する方向に移動することによりワークWを回転させる。また、構成要件(3)の検出手段の一形態である検出器30がワークWの周面の下側の一部である第3部位に対向する位置に検出器支持機構10により配置固定され、ワークWの周面の円周方向の表面粗さを検出する。
(1) Support means for supporting a first part that is a part of the peripheral surface of the object to be measured, which is a sphere or a rotating body. (2) Contact with a second part that is another part of the peripheral surface of the object to be measured. Rotating means for rotating the object to be measured by moving in a direction orthogonal to the rotation axis of the object to be measured. (3) Third part which is still another part of the peripheral surface of the object to be measured Is a detection means for detecting the surface roughness in the circumferential direction of the peripheral surface of the object to be measured. That is, the surface roughness measuring machine 1 of the above embodiment is shown in the conceptual diagram of FIG. As shown, the workpiece installation plate 48 of the workpiece support mechanism 40, which is a form of the support means of the configuration requirement (1), supports a part of the lower side of the peripheral surface of the workpiece W as the first portion. In addition, the rubber portion 86 of the work drive mechanism 70 which is one form of the rotating means of the configuration requirement (2) is driven by the drive portion 72 while contacting a part of the upper side of the peripheral surface of the work W as the second part. The workpiece W is rotated by moving in a direction orthogonal to the rotation axis of the workpiece W. Further, the detector 30 which is one form of the detection means of the configuration requirement (3) is arranged and fixed by the detector support mechanism 10 at a position facing the third portion which is a part of the lower side of the peripheral surface of the workpiece W, The surface roughness in the circumferential direction of the peripheral surface of the workpiece W is detected.

これに対して本発明に係る表面粗さ測定機は、ワークWに対して第1部位、第2部位、及び第3部位を任意の位置に変更したものとすることができ、例えば、図10の概念図に示すようにワーク設置板48、ゴム部86、及び検出器30の位置をワークWの回転軸の周りに180度回転させた位置に配置することによって、第1部位、第2部位、及び第3部位をワークWの回転軸の周りに180度回転させた位置とすることができる。同様に第1部位、第2部位、及び第3部位をワークWの回転軸周りに180度以外の任意の角度で回転させた配置とすることもできる。   On the other hand, the surface roughness measuring machine according to the present invention can change the first part, the second part, and the third part to arbitrary positions with respect to the workpiece W. For example, FIG. As shown in the conceptual diagram, the positions of the workpiece installation plate 48, the rubber portion 86, and the detector 30 are arranged at positions rotated by 180 degrees around the rotation axis of the workpiece W, whereby the first part and the second part , And the third part can be set to a position rotated 180 degrees around the rotation axis of the workpiece W. Similarly, the first part, the second part, and the third part may be arranged around the rotation axis of the work W at an arbitrary angle other than 180 degrees.

また、図11の概念図に示すようにゴム部86と検出器30の位置とを入れ替えて第2部位と第3部位の位置を入れ替えたものとすることもできる。この場合、ゴム部86とワーク設置板48とでワークWからの荷重を分散して支持することができる。そして、その比率は、ゴム部86のワークWへの加圧力の調整(加圧部80よる加圧の調整)により変更することができる。したがって、ワークWの重量が大きく、ワークWとワーク設置板48との間の摩擦力に抗してワークWを回転させることが難しいような場合でもゴム部86への荷重の比率を大きくすることでワークWを回転させることができる。   Moreover, as shown in the conceptual diagram of FIG. 11, the positions of the second part and the third part can be exchanged by exchanging the positions of the rubber part 86 and the detector 30. In this case, the load from the workpiece W can be dispersed and supported by the rubber portion 86 and the workpiece installation plate 48. The ratio can be changed by adjusting the pressure applied to the workpiece W by the rubber portion 86 (adjustment of pressurization by the pressurizing unit 80). Therefore, even when the weight of the workpiece W is large and it is difficult to rotate the workpiece W against the frictional force between the workpiece W and the workpiece setting plate 48, the ratio of the load on the rubber portion 86 is increased. The workpiece W can be rotated.

また、上記実施の形態のように測定点と支持点との位置関係において第2部位と第3部位とがワークWの円周方向に180度反対側となる位置であることが、上述のようにワークWの振動による測定信号のノイズが少ないため望ましいが、図9において破線で示すように、それとは異なる位置に検出器30を配置してもよい。更に、検出器30は、上記実施の形態のように測定子34の先端部をワークWに接触させる触針式のものではなく、レーザなどを用いた非接触式のものであってもよい。その場合においても検出器30により表面粗さを測定する測定位置を第3部位に配置して固定すればよい。   Further, as described above, the second part and the third part in the positional relationship between the measurement point and the support point are positions 180 degrees opposite to each other in the circumferential direction of the workpiece W as in the above embodiment. Although it is desirable because there is little noise in the measurement signal due to the vibration of the workpiece W, the detector 30 may be arranged at a position different from that as shown by a broken line in FIG. Furthermore, the detector 30 may be a non-contact type using a laser or the like instead of a stylus type that makes the tip of the measuring element 34 contact the work W as in the above embodiment. Even in such a case, the measurement position for measuring the surface roughness by the detector 30 may be arranged and fixed at the third site.

W…ワーク、1…表面粗さ測定機、2…測定部、3…データ処理部、4…ベース、4A…直進溝、5…コラム、6…コントローラ、10…検出器支持機構、12…第1固定板、14…第2固定板、16…XYZステージ、18B…Yステージ、20B…Xステージ、22B…Zステージ、24…検出器ホルダ、30…検出器、32…検出器本体、34…測定子、36…触針、40…ワーク支持機構、42…脚部、44,78…支持部、44A…貫通孔、46…ワーク設置台、48…ワーク設置板、48A…テーパ孔、50,98…ノブ付きネジ、52…位置決めピン、70…ワーク駆動機構、72…駆動部、74…アーム、76…加圧ユニット、78A…先端部、78B…基端部、80…加圧部、82…バネ部、84…先端支持部、86…ゴム部、88…指標針、90…加圧位置合わせマーク、92…ストッパ部、94…アーム部材、96…ストッパ   W: Workpiece, 1 ... Surface roughness measuring device, 2 ... Measuring unit, 3 ... Data processing unit, 4 ... Base, 4A ... Straight groove, 5 ... Column, 6 ... Controller, 10 ... Detector support mechanism, 12 ... No. 1 fixed plate, 14 ... second fixed plate, 16 ... XYZ stage, 18B ... Y stage, 20B ... X stage, 22B ... Z stage, 24 ... detector holder, 30 ... detector, 32 ... detector body, 34 ... Measuring element 36 ... Stylus 40 ... Work support mechanism 42 ... Leg part 44, 78 ... Support part 44A ... Through hole 46 ... Work installation base 48 ... Work installation plate 48A ... Taper hole 50 DESCRIPTION OF SYMBOLS 98 ... Screw with knob, 52 ... Positioning pin, 70 ... Work drive mechanism, 72 ... Drive part, 74 ... Arm, 76 ... Pressure unit, 78A ... Tip part, 78B ... Base end part, 80 ... Pressure part, 82 ... Spring part, 84 ... Tip support part, 86 ... Go Parts, 88 ... indicator needle, 90 ... pressure alignment mark, 92 ... stopper, 94 ... arm member, 96 ... stopper

Claims (7)

球体又は回転体からなる被測定物の周面の一部である第1部位を支持する支持手段と、
前記被測定物の周面の他の一部である第2部位に接触しながら前記被測定物の回転軸に対して直交する方向に移動することにより前記被測定物を回転させる回転手段と、
前記被測定物の周面の更に他の一部である第3部位に対向する位置に配置固定され、前記被測定物の周面の円周方向の表面粗さを検出する検出手段と、
を備えた表面粗さ測定機。
A support means for supporting a first part which is a part of a peripheral surface of an object to be measured including a sphere or a rotating body;
Rotating means for rotating the object to be measured by moving in a direction orthogonal to the rotation axis of the object to be measured while being in contact with a second part which is another part of the peripheral surface of the object to be measured;
A detecting means which is arranged and fixed at a position facing a third part which is still another part of the peripheral surface of the object to be measured, and detects the surface roughness in the circumferential direction of the peripheral surface of the object to be measured;
A surface roughness measuring machine.
前記回転手段は、前記回転軸に対して平行する平坦面であって前記被測定物に当接する当接面と、前記当接面を平坦面に沿った方向に直進移動させる駆動手段と、を有する請求項1に記載の表面粗さ測定機。   The rotating means is a flat surface parallel to the rotation axis and is in contact with the object to be measured, and driving means for moving the contact surface straight in a direction along the flat surface. The surface roughness measuring machine according to claim 1. 前記第3部位は、前記第2部位に対して円周方向に180度反対側となる位置である請求項1、又は2に記載の表面粗さ測定機。   The surface roughness measuring machine according to claim 1 or 2, wherein the third part is a position that is 180 degrees opposite to the second part in the circumferential direction. 前記検出手段は、前記第3部位に先端部が当接する測定子を有する接触式の検出手段である請求項1、2、又は3に記載の表面粗さ測定機。   The surface roughness measuring machine according to claim 1, 2 or 3, wherein the detecting means is a contact type detecting means having a measuring element whose tip is in contact with the third part. 前記回転手段は、前記被測定物に当接する当接面を介して前記被測定物を加圧する加圧手段を備えた請求項1から4のうちのいずれか1項に記載の表面粗さ測定機。   5. The surface roughness measurement according to claim 1, wherein the rotating unit includes a pressurizing unit that pressurizes the object to be measured through a contact surface that contacts the object to be measured. Machine. 前記支持手段は、前記被測定物が球体の場合に該球体の周面の一部の範囲が入り込むテーパ状の孔を有する板状体を備える請求項1から5のうちのいずれか1項に記載の表面粗さ測定機。   The said support means is provided with the plate-shaped body which has a taper-shaped hole into which the range of a part of peripheral surface of this spherical body enters, when the said to-be-measured object is a spherical body. The surface roughness measuring machine described. 前記支持手段は、前記被測定物が回転体の場合に該回転体の周面の前記回転軸に沿った一部の範囲が入り込むテーパ状の溝を有する板状体を備える請求項1から5のうちのいずれか1項に記載の表面粗さ測定機。   The said support means is equipped with the plate-shaped body which has a taper-shaped groove | channel where the one part range along the said rotating shaft of the surrounding surface of this rotary body enters, when the said to-be-measured object is a rotary body. The surface roughness measuring machine according to any one of the above.
JP2014196312A 2014-09-26 2014-09-26 Surface roughness measuring machine Active JP6326710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014196312A JP6326710B2 (en) 2014-09-26 2014-09-26 Surface roughness measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196312A JP6326710B2 (en) 2014-09-26 2014-09-26 Surface roughness measuring machine

Publications (2)

Publication Number Publication Date
JP2016070662A true JP2016070662A (en) 2016-05-09
JP6326710B2 JP6326710B2 (en) 2018-05-23

Family

ID=55864413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196312A Active JP6326710B2 (en) 2014-09-26 2014-09-26 Surface roughness measuring machine

Country Status (1)

Country Link
JP (1) JP6326710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955514A (en) * 2018-07-24 2018-12-07 太原科技大学 A kind of surface roughness on-line measurement device
CN111322936A (en) * 2018-12-17 2020-06-23 江苏联博精密科技有限公司 Novel rotor flatness rapid detection tool
CN116242242A (en) * 2023-05-09 2023-06-09 山东建投工程检测鉴定有限公司 Building material thickness uniformity detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129509A (en) * 1988-11-09 1990-05-17 Mitsutoyo Corp Nose piece of surface roughness gage
JPH05248803A (en) * 1992-03-06 1993-09-28 Nippon Spindle Mfg Co Ltd Measuring apparatus of distortion of spinning ring
JPH05332938A (en) * 1992-05-27 1993-12-17 Ube Ind Ltd Entire spherical surface continuous scanner
JPH0854202A (en) * 1994-08-12 1996-02-27 Nippon Seiko Kk Apparatus for measuring shape of sphere
JP2012083253A (en) * 2010-10-13 2012-04-26 Ntn Corp Outer diameter measuring device and roller bearing manufacturing method
JP2013515250A (en) * 2009-12-21 2013-05-02 テノヴァ ソシエタ ペル アチオニ Method and apparatus for measuring cylinders

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129509A (en) * 1988-11-09 1990-05-17 Mitsutoyo Corp Nose piece of surface roughness gage
JPH05248803A (en) * 1992-03-06 1993-09-28 Nippon Spindle Mfg Co Ltd Measuring apparatus of distortion of spinning ring
JPH05332938A (en) * 1992-05-27 1993-12-17 Ube Ind Ltd Entire spherical surface continuous scanner
JPH0854202A (en) * 1994-08-12 1996-02-27 Nippon Seiko Kk Apparatus for measuring shape of sphere
JP2013515250A (en) * 2009-12-21 2013-05-02 テノヴァ ソシエタ ペル アチオニ Method and apparatus for measuring cylinders
JP2012083253A (en) * 2010-10-13 2012-04-26 Ntn Corp Outer diameter measuring device and roller bearing manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955514A (en) * 2018-07-24 2018-12-07 太原科技大学 A kind of surface roughness on-line measurement device
CN108955514B (en) * 2018-07-24 2024-06-11 太原科技大学 Online measuring device for surface roughness
CN111322936A (en) * 2018-12-17 2020-06-23 江苏联博精密科技有限公司 Novel rotor flatness rapid detection tool
CN116242242A (en) * 2023-05-09 2023-06-09 山东建投工程检测鉴定有限公司 Building material thickness uniformity detection device
CN116242242B (en) * 2023-05-09 2023-08-15 山东建投工程检测鉴定有限公司 Building material thickness uniformity detection device

Also Published As

Publication number Publication date
JP6326710B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
CN108733096B (en) Method for controlling drive stage device and method for controlling shape measuring device
JP6679427B2 (en) Hardness tester
JP2010223865A (en) Corrected ball diameter calculating method and form measuring instrument
JP2011127952A (en) Apparatus for measuring surface texture
CN108007295B (en) Automatic detection device for M value and tooth surface jumping of worm
JP6326710B2 (en) Surface roughness measuring machine
CN105290880A (en) Device and method for detecting perpendicularity of axis of spindle and reference axis in movement
JP4960240B2 (en) System and method for dimensional inspection of threaded fasteners
KR100540786B1 (en) Device for detecting the true position for checking of shaft
US8316553B2 (en) Coordinate measuring machine
JP6458335B1 (en) Surface shape measuring machine
KR20150096254A (en) Contracer using rotary encoder
JP2000310527A (en) Surface-properties measuring device
KR20140114518A (en) Outer diameter measuring apparatus cylindrical machine parts
JP5267158B2 (en) Ultrasonic measuring device
JP4840878B2 (en) Wire type 3D coordinate measuring machine
JP2008155327A (en) Angle measuring tool and angle measuring method
CN112985249B (en) Dynamically tuned gyroscope assembly clearance tester
JPH07113603A (en) Inside measuring device
CN211626414U (en) Flatness detection device
RU2345884C1 (en) Six-axes plate-measuring engine and method of calibration of measuring tip for it
KR20100045816A (en) Measuring device for hole size and gap between holes
CN108020128A (en) A kind of measuring adjustable type fulcrum bearing of taper roll bearing axial error
JP3008828B2 (en) Method and apparatus for measuring distance between opposing surfaces in slit
JP2019138898A (en) Surface shape measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180401

R150 Certificate of patent or registration of utility model

Ref document number: 6326710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250