JP2016069759A - Fiber bundle widening method - Google Patents
Fiber bundle widening method Download PDFInfo
- Publication number
- JP2016069759A JP2016069759A JP2014201022A JP2014201022A JP2016069759A JP 2016069759 A JP2016069759 A JP 2016069759A JP 2014201022 A JP2014201022 A JP 2014201022A JP 2014201022 A JP2014201022 A JP 2014201022A JP 2016069759 A JP2016069759 A JP 2016069759A
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- widening
- fiber
- treated
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 255
- 238000000034 method Methods 0.000 title claims abstract description 72
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 47
- 239000004917 carbon fiber Substances 0.000 claims description 47
- 239000003795 chemical substances by application Substances 0.000 claims description 44
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 44
- 229920005989 resin Polymers 0.000 claims description 39
- 239000011347 resin Substances 0.000 claims description 39
- 238000011282 treatment Methods 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 13
- 238000004513 sizing Methods 0.000 description 20
- 239000011159 matrix material Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 11
- 239000012783 reinforcing fiber Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000002131 composite material Substances 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical class C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000004643 cyanate ester Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920003192 poly(bis maleimide) Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 201000006292 polyarteritis nodosa Diseases 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- NIDNOXCRFUCAKQ-UHFFFAOYSA-N bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2C(O)=O NIDNOXCRFUCAKQ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229920006241 epoxy vinyl ester resin Polymers 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
本発明は、複数の単繊維より形成される被処理繊維束を拡幅する繊維束の拡幅方法に関する。 The present invention relates to a fiber bundle widening method for widening a fiber bundle to be processed formed of a plurality of single fibers.
炭素繊維やガラス繊維などの強化繊維は、優れた比強度及び比弾性率を有し、軽量性に優れるため、熱硬化性及び熱可塑性樹脂の強化繊維として、従来のスポーツ・一般産業用途だけでなく、航空・宇宙用途、自動車用途など広く利用されている。利用用途が拡大されるにつれ、繊維強化樹脂複合材料(以下コンポジットと称する)には、さらに高い性能が求められている。 Reinforcing fibers such as carbon fiber and glass fiber have excellent specific strength and specific elastic modulus, and are excellent in lightness. Therefore, as reinforcing fibers for thermosetting and thermoplastic resins, only for conventional sports and general industrial applications. It is widely used for aerospace and automotive applications. As usage applications expand, fiber reinforced resin composite materials (hereinafter referred to as composites) are required to have higher performance.
一般的に、コンポジットを製造する際、強化繊維には、熱硬化性樹脂、熱可塑性樹脂などのマトリクス樹脂との親和性や繊維束の集束性の改善、または繊維束の機能化を目的に、改質剤やサイジング剤などの各種繊維処理剤が付与される。そして、これらの繊維処理剤が付与された繊維束にマトリクス樹脂を含浸し、または、繊維束を一定長に裁断しチョップドストランドなどとしてマトリクス樹脂中に分散し、強化繊維とマトリクス樹脂を一体化してコンポジットを製造する。 In general, when manufacturing a composite, the reinforcing fiber is used for the purpose of improving the affinity of the matrix resin such as a thermosetting resin and thermoplastic resin, the convergence of the fiber bundle, or the functionalization of the fiber bundle. Various fiber treatment agents such as modifiers and sizing agents are applied. Then, the fiber bundle to which these fiber treatment agents are applied is impregnated with the matrix resin, or the fiber bundle is cut into a certain length and dispersed in the matrix resin as chopped strands, and the reinforcing fiber and the matrix resin are integrated. Manufacture composites.
上記のように、強化繊維に繊維処理剤を付与する際、または、強化繊維とマトリクス樹脂を一体化する際に、繊維束が集束しすぎていると、繊維処理剤やマトリクス樹脂が繊維束内部に入り込みにくく、処理斑が生じ、コンポジットの欠陥要因となってしまう。そのため、これらの処理に先んじて、繊維処理剤やマトリクス樹脂が繊維束内部に浸透しやすくするため、繊維束を拡幅する処理が行われる。 As described above, when the fiber treatment agent is applied to the reinforcing fibers, or when the reinforcing fibers and the matrix resin are integrated, if the fiber bundle is too focused, the fiber treatment agent or the matrix resin may be inside the fiber bundle. It is difficult to penetrate, resulting in processing spots and a defect factor of the composite. Therefore, prior to these treatments, a treatment for widening the fiber bundle is performed so that the fiber treatment agent and the matrix resin can easily penetrate into the fiber bundle.
繊維束を拡幅する方法として、例えば特許文献1には、空気開繊により繊維束を拡幅する方法が開示されている。しかし、空気による拡幅処理では、繊維束に繊維長方向の割れが生じやすく、幅方向に均一に拡幅しにくいという問題がある。
一方、特許文献2には、繊維束を上下に振動するロールに擦過させ拡幅する方法が提案されている。しかし、このような方法では、繊維束を傷つけ毛羽や欠陥を生じさせやすい上、炭素繊維束の拡幅の程度も満足できるものではなかった。
そのため、繊維束を十分に拡幅することのできる拡幅方法が求められている。
As a method for widening the fiber bundle, for example, Patent Document 1 discloses a method for widening the fiber bundle by air opening. However, in the widening process using air, there is a problem that the fiber bundle is easily cracked in the fiber length direction and is difficult to spread uniformly in the width direction.
On the other hand, Patent Document 2 proposes a method of widening a fiber bundle by rubbing against a roll that vibrates up and down. However, in such a method, the fiber bundle is easily damaged and fluff and defects are easily generated, and the degree of widening of the carbon fiber bundle is not satisfactory.
Therefore, there is a need for a widening method that can sufficiently widen the fiber bundle.
本発明の目的は、繊維束を十分に拡幅することのできる繊維束の拡幅方法を提供することにある。 An object of the present invention is to provide a fiber bundle widening method capable of sufficiently widening a fiber bundle.
上記課題を解決する本発明の繊維束の拡幅方法は、複数の単繊維より形成される被処理繊維束を幅方向に拡幅させる繊維束の拡幅方法であって、被処理繊維束を、少なくとも1本の正逆方向に回転方向の変化を繰り返すロールに接触させる繊維束の拡幅方法である。本発明においては、被処理繊維束を、2本以上の回転方向の変化を繰り返すロールに接触させることが好ましい。また、回転方向の変化を繰り返すロールの正逆回転を変更する回数に対する、被処理繊維束の進行距離で表される正逆回転の変更頻度が、下記式(1)を満たすことが好ましく、正方向への回転速度に対する逆方向への回転速度が0.1〜10倍であることが好ましい。
正逆回転の変更頻度 (mm/回) < π×ロール直径(mm)×(ロールと被処理繊維束の接触角(°)/360(°))・・・(1)
The fiber bundle widening method of the present invention that solves the above problems is a fiber bundle widening method that widens a fiber bundle to be treated formed of a plurality of single fibers in the width direction, and includes at least one fiber bundle to be treated. This is a method of widening a fiber bundle that is brought into contact with a roll that repeats a change in the rotational direction in the forward and reverse directions of the book. In the present invention, it is preferable to bring the fiber bundle to be treated into contact with two or more rolls that repeatedly change in the rotation direction. Moreover, it is preferable that the change frequency of the forward / reverse rotation represented by the traveling distance of the fiber bundle to be treated with respect to the number of times of changing the forward / reverse rotation of the roll that repeats the change in the rotation direction satisfies the following formula (1): The rotational speed in the reverse direction relative to the rotational speed in the direction is preferably 0.1 to 10 times.
Change frequency of forward / reverse rotation (mm / time) <π × roll diameter (mm) × (contact angle between roll and treated fiber bundle (°) / 360 (°)) (1)
本発明の繊維束の拡幅方法は、炭素繊維に対して特に好ましく適応できる。本発明は、本発明の繊維束の拡幅方法により被処理繊維束を拡幅する工程を有する繊維束の製造方法、本発明の繊維束の拡幅方法により被処理繊維束を拡幅した後、拡幅された被処理繊維束に樹脂を含浸させる樹脂含浸繊維束の製造方法、本発明の繊維束の拡幅方法により被処理繊維束を拡幅した後、被処理繊維束を所定の長さに切断するチョップドストランドの製造方法を包含する。また、本発明の繊維束の拡幅方法は、複数の単繊維より形成される繊維束の集合体からなる繊維基材の製造方法において、繊維束単体または繊維束の集合体を拡幅する工程に用いることもできる。 The fiber bundle widening method of the present invention can be particularly preferably applied to carbon fibers. The present invention is a method for producing a fiber bundle having a step of widening a fiber bundle to be treated by the method for widening a fiber bundle according to the present invention, and then widening the fiber bundle after being widened by the method for widening a fiber bundle according to the present invention. A method for producing a resin-impregnated fiber bundle in which a fiber bundle to be treated is impregnated with a resin, and a fiber bundle that has been widened by the method for widening a fiber bundle according to the present invention, Includes manufacturing methods. The fiber bundle widening method of the present invention is used in the step of widening a single fiber bundle or a bundle of fiber bundles in a method for producing a fiber base material comprising a bundle of fiber bundles formed from a plurality of single fibers. You can also.
本発明の繊維束の拡幅方法を用いると、繊維束を均一にかつ、十分に拡幅することができる。 When the fiber bundle widening method of the present invention is used, the fiber bundle can be uniformly and sufficiently widened.
本発明の繊維束の拡幅方法は、複数の単繊維より形成される被処理繊維束を幅方向に拡幅させる繊維束の拡幅方法であって、被処理繊維束を、少なくとも1本の正逆方向に回転方向の変化を繰り返すロールに接触させる繊維束の拡幅方法である。正逆方向に回転方向の変化を繰り返すロールに接触させることで、繊維束を均一にかつ、十分に拡幅することができる。本発明において、被処理繊維束は連続繊維束であることが好ましく、また、ロールに接触する際、被処理繊維束が一定方向に進行していることが好ましい。 The fiber bundle widening method of the present invention is a fiber bundle widening method for widening a fiber bundle to be treated formed of a plurality of single fibers in the width direction, and the fiber bundle to be treated is at least one forward / reverse direction. This is a method for widening a fiber bundle that is brought into contact with a roll that repeatedly changes its rotation direction. By bringing the roll into contact with a roll that repeats a change in the rotational direction in the forward and reverse directions, the fiber bundle can be uniformly and sufficiently widened. In the present invention, the fiber bundle to be treated is preferably a continuous fiber bundle, and it is preferred that the fiber bundle to be treated proceeds in a certain direction when contacting the roll.
本発明において、ロールの回転が正方向であるとは、被処理繊維束の接触箇所において、ロールが当該ロールに接触する被処理繊維束の進行方向と同一の方向に回転している場合をいい、ロールの回転が逆方向であるとは、ロールが当該ロールに接触する繊維束の進行方向と逆の方向に回転している場合をいう。 In the present invention, the rotation of the roll in the positive direction refers to the case where the roll is rotating in the same direction as the traveling direction of the fiber bundle to be treated that comes into contact with the roll at the contact location of the fiber bundle to be treated. In addition, the rotation of the roll being in the reverse direction refers to a case where the roll is rotating in a direction opposite to the traveling direction of the fiber bundle contacting the roll.
本発明において、回転方向の変化を繰り返すロールの正逆回転を変更する回数に対する被処理繊維束の進行距離で表される正逆回転の変更頻度が、下記式(1)を満たすことが好ましい。この範囲にすることで、毛羽立ちを抑制しつつ、より高い拡幅効果を得ることができる。
正逆回転の変更頻度 (mm/回) < π×ロール直径(mm)×(ロールと被処理繊維束の接触角(°)/360(°))・・・(1)
In this invention, it is preferable that the change frequency of the forward / reverse rotation represented by the traveling distance of the fiber bundle to be treated with respect to the number of times of changing the forward / reverse rotation of the roll that repeats the change in the rotation direction satisfies the following formula (1). By setting it within this range, it is possible to obtain a higher widening effect while suppressing fuzz.
Change frequency of forward / reverse rotation (mm / time) <π × roll diameter (mm) × (contact angle between roll and treated fiber bundle (°) / 360 (°)) (1)
本発明においては、回転方向の変化を繰り返すロールの正逆回転の変更頻度を、回転方向を変更した後、次に回転方向を変更するまでに、被処理繊維束が進行する距離によって定義する。すなわち、正逆回転の変更頻度Xmm/回とは、正方向から逆方向、または、逆方向から正方向に回転方向を変更した後、被処理繊維束がXmm進んだ時点で、逆方向から正方向、または、正方向から逆方向への回転方向の変更を行う場合をいう。 In the present invention, the change frequency of the forward / reverse rotation of the roll that repeats the change of the rotation direction is defined by the distance traveled by the fiber bundle to be processed before the change of the rotation direction after the change of the rotation direction. In other words, the forward / reverse rotation change frequency Xmm / time means that the fiber bundle to be treated advances Xmm after changing the rotation direction from the forward direction to the reverse direction or from the reverse direction to the forward direction. The direction or the direction of rotation from the forward direction to the reverse direction is changed.
本発明において、ロールと被処理繊維束のなす接触角は、30〜270°であることが好ましく、60〜180°であることがより好ましい。本発明において、接触角とは、ロール外周のうち繊維束がロールに接触している部分を円弧とし、ロールの中心を中心点とする扇型の中心角をいう。また、ロールと被処理繊維束の接触距離は、用いるロールの数にもよるが、すべての回転方向の変化を繰り返すロールに対する被処理繊維束の接触距離の合計が20mm以上であることが好ましい。
また、本発明において、毛羽立ちを抑制しつつ、より高い拡幅効果を得るために、正方向への回転速度に対する逆方向への回転速度が0.1〜10倍であることも好ましい。
In the present invention, the contact angle between the roll and the fiber bundle to be treated is preferably 30 to 270 °, and more preferably 60 to 180 °. In the present invention, the contact angle refers to a fan-shaped central angle with the center of the roll as the center point where the fiber bundle is in contact with the roll on the outer periphery of the roll. Moreover, although the contact distance of a roll and a to-be-processed fiber bundle is based also on the number of rolls to be used, it is preferable that the sum of the contact distance of the to-be-processed fiber bundle with respect to the roll which repeats a change of all the rotation directions is 20 mm or more.
Moreover, in this invention, in order to acquire a higher widening effect, suppressing fuzz, it is also preferable that the rotational speed to the reverse direction with respect to the rotational speed to a normal direction is 0.1 to 10 times.
本発明において、被処理繊維束が、2本以上の回転方向の変化を繰り返すロールと接触することが好ましい。2本以上の回転方向の変化を繰り返すロールに接触させることで、繊維束の拡幅幅をより広くすることができる。
回転方向の変化を繰り返すロールを2本以上用いる場合、隣り合う2本の回転方向の変化を繰り返すロールは、その被処理繊維束に対する回転方向が異なっていることが好ましい。すなわち、片方のロールが被処理繊維束の進行方向と同じ方向に回転している場合、隣り合うもう一方のロールは、被処理繊維束の進行方向と逆方向に回転していることが好ましい。隣り合う2本の回転方向の変化を繰り返すロールの被処理繊維束に対する回転方向が異なっていることで、被処理繊維束中の単繊維により大きな動きを与えられ、効率的に拡幅することができる。
In this invention, it is preferable that a to-be-processed fiber bundle contacts the roll which repeats the change of 2 or more rotation directions. By bringing the roll into contact with two or more rolls that repeatedly change in the rotation direction, the width of the fiber bundle can be widened.
When two or more rolls that repeat the change in the rotation direction are used, the rolls that repeat the change in the two adjacent rotation directions preferably have different rotation directions with respect to the fiber bundle to be treated. That is, when one roll rotates in the same direction as the traveling direction of the fiber bundle to be processed, the other adjacent roll preferably rotates in the direction opposite to the traveling direction of the fiber bundle to be processed. The rotation direction with respect to the fiber bundle to be treated of the roll that repeats the change in the rotation direction of two adjacent ones is different, so that a large movement is given to the single fiber in the fiber bundle to be treated, and the width can be efficiently widened. .
また、2本以上のロールの回転方向が切り替わるタイミングは、一致していることが好ましいが、異なっていても良い。回転方向が切り替わるタイミングが異なる場合、1分間に10秒以上2本のロールの回転方向が異なっている時間があることが好ましく、30秒以上あることがより好ましい。回転方向が切り替わるタイミングがかかる範囲であると、より高い拡幅効果が得られるとともに、繊維束の拡幅後の幅のバラつきを抑えることができる。 In addition, the timing at which the rotation directions of two or more rolls are switched preferably matches, but may be different. When the timing at which the rotation direction is changed is different, it is preferable that there is a time in which the rotation directions of the two rolls are different for 10 minutes or more per minute, and more preferably 30 seconds or more. When the rotation timing is switched in such a range, a higher widening effect can be obtained, and variations in the width of the fiber bundle after widening can be suppressed.
本発明において回転方向の変化を繰り返すロールを設置するに際しては、回転方向の変化を繰り返すロールの前に搬送ロール(駆動ロール)を設置することが好ましく、かかる搬送ロールを離れてから回転方向の変化を繰り返すロールに被処理繊維束が接触するまでにかかる移動時間を10〜50秒となるよう調整することが、より高い拡幅効果を得るために好ましい。 In the present invention, when a roll that repeats a change in the rotation direction is installed, it is preferable to install a transport roll (driving roll) before the roll that repeats a change in the rotation direction. In order to obtain a higher widening effect, it is preferable to adjust the moving time required for the fiber bundle to be processed to come into contact with the roll that repeats the above to be 10 to 50 seconds.
また、本発明において回転方向の変化を繰り返すロールに接触する際の被処理繊維束の張力は、5g/tex以下であることが好ましく、さらに好ましくは0.01〜3g/texである。処理する繊維束に応じて最適な張力は異なるが、かかる範囲内で張力を調整することで毛羽立ちを抑制してより高い拡幅効果が得られる。張力が高すぎると繊維束の毛羽立ちが起こりやすくなる傾向がある。 Moreover, it is preferable that the tension | tensile_strength of the to-be-processed fiber bundle at the time of contacting the roll which repeats a change of a rotation direction in this invention is 5 g / tex or less, More preferably, it is 0.01-3 g / tex. The optimum tension differs depending on the fiber bundle to be treated, but by adjusting the tension within such a range, fuzz is suppressed and a higher widening effect is obtained. If the tension is too high, the fiber bundle tends to fluff.
本発明で用いるロールとしては、円筒状のロールであることが好ましく、その直径は100〜500mmであることが好ましい。本発明に用いられるロールの材質は特に限定しないが、ステンレス、鉄、銅等の金属や、ガラスやアルミナ、ジルコニア等のセラミックスが好ましい。金属には梨地加工や磨き加工、クロムメッキ等の表面処理、セラミックスにはフッ素樹脂等の合成樹脂をコーティングしておくこともできる。もっとも好ましくは、ステンレス鋼に梨地加工を施したものである。 As a roll used by this invention, it is preferable that it is a cylindrical roll, and it is preferable that the diameter is 100-500 mm. Although the material of the roll used for this invention is not specifically limited, Ceramics, such as metals, such as stainless steel, iron, copper, glass, an alumina, a zirconia, are preferable. The metal can be coated with a satin finish or a polishing process, a surface treatment such as chrome plating, and the ceramic can be coated with a synthetic resin such as a fluororesin. Most preferably, stainless steel is subjected to a satin finish.
本発明においては、拡幅処理に先んじて、被処理繊維束を加熱することが、拡幅効果をより向上させることができるため好ましい。被処理繊維束を加熱する場合、加熱方法は、特に限定されるものではなく、例えば、加熱ロールに接触させる方法やヒーターや熱風乾燥機などで加熱する方法等を用いることができる。加熱温度は特に限定はないが、50〜300℃の範囲が、繊維表面の官能基や付与された処理剤の分解を抑制しつつ、拡幅効果をより向上させることができるため好ましい。本発明においては、拡幅処理に先んじて被処理繊維束の水分率が0〜10%となるよう加熱処理することが好ましく、水分率が0〜5%となるよう加熱処理することがより好ましい。 In the present invention, it is preferable to heat the fiber bundle to be processed prior to the widening treatment because the widening effect can be further improved. When heating the fiber bundle to be treated, the heating method is not particularly limited, and for example, a method of contacting with a heating roll, a method of heating with a heater, a hot air dryer or the like can be used. The heating temperature is not particularly limited, but the range of 50 to 300 ° C. is preferable because the widening effect can be further improved while suppressing the decomposition of the functional group on the fiber surface and the applied treatment agent. In this invention, it is preferable to heat-process so that the moisture content of a to-be-processed fiber bundle may be 0-10% prior to a widening process, and it is more preferable to heat-process so that a moisture content may be 0-5%.
本発明の繊維束の拡幅方法は、炭素繊維、ガラス繊維、アラミド繊維、ポリエステル繊維など、公知の繊維を制限無く拡幅処理することができる。中でも、炭素繊維の拡幅処理に好ましく用いることができる。本発明では、PAN系、ピッチ系など、公知の炭素繊維を制限なく拡幅処理することができる。本発明の繊維束の拡幅方法は、PAN系の炭素繊維の拡幅処理に特に好ましく用いることができる。 The method for widening the fiber bundle of the present invention can widen a known fiber such as carbon fiber, glass fiber, aramid fiber, polyester fiber without limitation. Especially, it can use preferably for the widening process of carbon fiber. In the present invention, known carbon fibers such as PAN-based and pitch-based can be widened without limitation. The fiber bundle widening method of the present invention can be particularly preferably used for widening treatment of PAN-based carbon fibers.
本発明で拡幅処理を行う繊維束の繊度は、特に制限されるものではないが、単繊維繊度が好ましくは0.1〜50dtex、より好ましくは0.5〜2.0dtexであり、繊維束の総繊度が10〜500000texであることが好ましく、より好ましくは150〜10000texである。本発明で拡幅処理を行う繊維束のフィラメント数は、好ましくは1000〜100000本、より好ましくは3000〜50000本である。また、製造効率の面からは、12000本以上がより好ましく、24000本以上がさらに好ましい。 The fineness of the fiber bundle subjected to the widening treatment in the present invention is not particularly limited, but the single fiber fineness is preferably 0.1 to 50 dtex, more preferably 0.5 to 2.0 dtex. The total fineness is preferably 10 to 500000 tex, more preferably 150 to 10000 tex. The number of filaments of the fiber bundle subjected to the widening treatment in the present invention is preferably 1000 to 100,000, more preferably 3000 to 50000. Moreover, 12000 or more are more preferable from the surface of manufacturing efficiency, and 24000 or more are further more preferable.
上記のような本発明の繊維束の拡幅方法を用いると、繊維束を均一にかつ、十分に拡幅することができる。本発明の繊維束の拡幅方法により拡幅された繊維束は、繊維処理剤やマトリクス樹脂が繊維束内部に浸透しやすくなる。そのため本発明の繊維束の拡幅方法は、強化繊維に繊維処理剤を付与する際、または、強化繊維とマトリクス樹脂を一体化する際の前処理として、好ましく用いることができる。
本発明のもう一つの態様である繊維束の製造方法は、上記の本発明の繊維束の拡幅方法により被処理繊維束を拡幅する工程を有する製造方法である。本発明の繊維束の製造方法を用いると、均一かつ、十分な繊維幅に拡幅された繊維束を製造することができる。
When the above-described method for widening a fiber bundle of the present invention is used, the fiber bundle can be uniformly and sufficiently widened. In the fiber bundle widened by the fiber bundle widening method of the present invention, the fiber treatment agent and the matrix resin easily penetrate into the fiber bundle. Therefore, the method for widening the fiber bundle of the present invention can be preferably used as a pretreatment when a fiber treatment agent is applied to the reinforcing fibers or when the reinforcing fibers and the matrix resin are integrated.
The manufacturing method of the fiber bundle which is another aspect of this invention is a manufacturing method which has the process of widening a to-be-processed fiber bundle by the said widening method of the fiber bundle of this invention. When the method for producing a fiber bundle of the present invention is used, a fiber bundle having a uniform and sufficient fiber width can be produced.
本発明の繊維束の製造方法においては、被処理繊維束を拡幅する工程の後、拡幅された被処理繊維束に繊維処理剤を付着させる工程を有することが好ましい。本発明の繊維束の拡幅方法により拡幅された繊維束は、繊維処理剤が繊維束内部に浸透しやすいため、本発明の繊維束の拡幅方法により被処理繊維束を拡幅する工程の後、拡幅された被処理繊維束に繊維処理剤を付着させると、繊維処理剤が繊維束内部に浸透し、繊維束に均一に繊維処理剤を付着させることができる。本発明の製造方法において、付与できる繊維処理剤は、繊維束に付与される繊維処理剤であれば、表面改質剤、カップリング剤、サイジング剤など、特に制限はない。中でも、本発明の製造方法は、サイジング剤を付与した繊維束の製造方法として特に好ましく用いることができる。 In the fiber bundle manufacturing method of the present invention, it is preferable to have a step of attaching a fiber treatment agent to the widened fiber bundle to be treated after the step of widening the fiber bundle to be treated. Since the fiber bundle widened by the fiber bundle widening method of the present invention easily penetrates into the fiber bundle, the fiber bundle is widened after the step of widening the fiber bundle to be treated by the fiber bundle widening method of the present invention. When the fiber treatment agent is attached to the treated fiber bundle, the fiber treatment agent penetrates into the fiber bundle, and the fiber treatment agent can be uniformly attached to the fiber bundle. In the production method of the present invention, the fiber treatment agent that can be imparted is not particularly limited as long as it is a fiber treatment agent imparted to the fiber bundle, such as a surface modifier, a coupling agent, and a sizing agent. Especially, the manufacturing method of this invention can be used especially preferably as a manufacturing method of the fiber bundle which provided the sizing agent.
繊維処理剤がサイジング剤である場合、処理剤の主成分としては、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ウレタン変性エポキシ樹脂、ポリビニルピロリドン樹脂、ポリエーテルサルフォン樹脂等が挙げられる。これらは1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。なお、サイジング剤の主成分はマトリックス樹脂に合わせて適宜選択することができる。 When the fiber treatment agent is a sizing agent, the main components of the treatment agent are epoxy resin, epoxy-modified polyurethane resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, polyetherimide resin, polyamideimide resin, Examples include polyimide resins, bismaleimide resins, urethane-modified epoxy resins, polyvinyl pyrrolidone resins, polyether sulfone resins, and the like. These may be used alone or in combination of two or more. The main component of the sizing agent can be appropriately selected according to the matrix resin.
本発明の製造方法において、被処理繊維束への繊維処理剤の付与方法は、特に限定されないが、キスタッチロール法、ロール浸漬法、スプレー法およびその他公知の方法を用いることができる。中でも、一束あたりの単繊維数が多い繊維束についても、繊維処理剤を均一に付与しやすい、ロール浸漬法が好ましく用いられる。 In the production method of the present invention, a method for applying the fiber treatment agent to the fiber bundle to be treated is not particularly limited, and a kiss touch roll method, a roll dipping method, a spray method, and other known methods can be used. Among them, a roll dipping method that easily imparts a fiber treatment agent uniformly is also preferably used for a fiber bundle having a large number of single fibers per bundle.
また、本発明の繊維束の製造方法では、被処理繊維束として、繊維処理剤の付着した繊維束を用いることもできる。繊維処理剤の付着した繊維束を用いる場合、拡幅処理に先んじて、被処理繊維束を加熱することが、拡幅効果をより向上させることができるため好ましい。被処理繊維束を加熱する場合、加熱方法は、特に限定されるものではなく、例えば、加熱ロールに接触させる方法やヒーターや熱風乾燥機などで加熱する方法等を用いることができる。加熱温度は特に限定はないが、50〜300℃の範囲が、繊維表面の官能基や付与された処理剤の分解を抑制しつつ、拡幅効果をより向上させることができるため好ましい。
このようにして得られる繊維束は、熱可塑性樹脂、熱硬化性樹脂などの強化繊維として、スポーツ用途、レジャー用途、一般産業用途、航空・宇宙用途、自動車用途などに広く利用できる。
Moreover, in the manufacturing method of the fiber bundle of this invention, the fiber bundle to which the fiber processing agent adhered can also be used as a to-be-processed fiber bundle. When using a fiber bundle to which a fiber treating agent is attached, it is preferable to heat the fiber bundle to be treated prior to the widening treatment because the widening effect can be further improved. When heating the fiber bundle to be treated, the heating method is not particularly limited, and for example, a method of contacting with a heating roll, a method of heating with a heater, a hot air dryer or the like can be used. The heating temperature is not particularly limited, but the range of 50 to 300 ° C. is preferable because the widening effect can be further improved while suppressing the decomposition of the functional group on the fiber surface and the applied treatment agent.
The fiber bundles thus obtained can be widely used for sports applications, leisure applications, general industrial applications, aerospace applications, automobile applications and the like as reinforcing fibers such as thermoplastic resins and thermosetting resins.
本発明の繊維束の製造方法により得られた繊維束を用い、マトリックス樹脂と組み合わせ、例えば、オートクレーブ成形、プレス成形、樹脂トランスファー成形、フィラメントワインディング成形など、公知の手段・方法により複合材料が得られる。
マトリックス樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が用いられる。熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。
The fiber bundle obtained by the fiber bundle production method of the present invention is used and combined with a matrix resin, and a composite material can be obtained by a known means / method such as autoclave molding, press molding, resin transfer molding, filament winding molding, etc. .
As the matrix resin, a thermosetting resin or a thermoplastic resin is used. Specific examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having acetylene terminal, and polyimide resin having nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.
熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。
複合材料中に占める樹脂組成物の含有率は、10〜90重量%、好ましくは20〜60重量%、更に好ましくは25〜45重量%である。
Examples of the thermoplastic resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamide , Polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, polybenzimidazole and the like.
The content of the resin composition in the composite material is 10 to 90% by weight, preferably 20 to 60% by weight, and more preferably 25 to 45% by weight.
本発明の樹脂含浸繊維束の製造方法は、上記の本発明の繊維束の拡幅方法により被処理繊維束を拡幅した後、拡幅された被処理繊維束に樹脂を含浸させる樹脂含浸繊維束の製造方法である。
樹脂を含浸させる被処理繊維束としては、あらかじめサイジング剤が付着された繊維束であることが好ましい。サイジング剤の付着量としては、繊維100質量部に対し、0.1〜10質量部であることが好ましく、0.5〜5質量部であることがより好ましい。またサイジング剤としては、後に繊維が補強する対象となるマトリクス樹脂と同じ樹脂系のサイジング剤であることが好ましい。本発明の樹脂含浸繊維束の製造方法によれば、このようなサイジング剤の付着した拡幅しにくい繊維束でも、効果的に樹脂を含浸させることができる。
The method for producing a resin-impregnated fiber bundle according to the present invention is a method for producing a resin-impregnated fiber bundle in which a wide range of fiber bundles to be treated is impregnated with a resin after widening the fiber bundle to be treated by the above-described method for widening the fiber bundle of the present invention Is the method.
The treated fiber bundle impregnated with the resin is preferably a fiber bundle to which a sizing agent is previously attached. The adhesion amount of the sizing agent is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fiber. The sizing agent is preferably the same resin sizing agent as the matrix resin to be reinforced by the fiber later. According to the method for producing a resin-impregnated fiber bundle of the present invention, the resin can be effectively impregnated even in such a fiber bundle that is difficult to widen to which the sizing agent is adhered.
本発明のチョップドストランドの製造方法は、上記の本発明の繊維束の拡幅方法により被処理繊維束を拡幅した後、被処理繊維束を所定の長さに切断するチョップドストランドの製造方法である。本発明においては、被処理繊維束を拡幅した後、拡幅された被処理繊維束に繊維処理剤もしくは樹脂を含浸させ、次いで、被処理繊維束を所定の長さに切断することが好ましい。 The manufacturing method of the chopped strand of this invention is a manufacturing method of the chopped strand which cuts a to-be-processed fiber bundle to predetermined length, after expanding a to-be-processed fiber bundle by the said widening method of the fiber bundle of this invention. In the present invention, it is preferable to widen the fiber bundle to be treated, then impregnate the widened fiber bundle to be treated with a fiber treatment agent or resin, and then cut the fiber bundle to be treated to a predetermined length.
本発明の更なる様態である繊維基材の製造方法は、複数の単繊維より形成される繊維束の集合体からなる繊維基材の製造方法であって、上記本発明の繊維束の拡幅方法により、繊維束単体または繊維束の集合体を拡幅する工程を有する繊維基材の製造方法である。
繊維基材の形態としては、多数本の繊維束を一方向に引き揃えたシート状物や、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙などが例示される。本発明の繊維基材の製造方法においては、繊維束を繊維基材の形態とする前の繊維束単体の状態で拡幅処理を行っても良いし、多数本の繊維束の集合体である繊維基材の形態とした後、拡幅処理を行っても良い。
A method for producing a fiber base material according to a further aspect of the present invention is a method for producing a fiber base material comprising an aggregate of fiber bundles formed from a plurality of single fibers, and the method for widening a fiber bundle according to the present invention. Is a method of manufacturing a fiber base material having a step of widening a single fiber bundle or an aggregate of fiber bundles.
As the form of the fiber base material, a sheet-like material in which a large number of fiber bundles are aligned in one direction, bi-directional woven fabrics such as plain weave and twill weave, multiaxial woven fabric, non-woven fabric, mat, knit, braid, and reinforcing fiber are made into paper. An example of such paper is illustrated. In the method for producing a fiber base material of the present invention, the fiber bundle may be subjected to a widening process in the state of a single fiber bundle before the fiber bundle is in the form of a fiber base material, or a fiber that is an aggregate of a large number of fiber bundles After making it into the form of a base material, you may perform a widening process.
以下、本発明を実施例により具体的に説明する。各実施例及び比較例における各繊維の物性の評価方法は以下の方法によった。 Hereinafter, the present invention will be specifically described by way of examples. The evaluation method of the physical property of each fiber in each Example and Comparative Example was based on the following method.
<ストランド幅の比>
拡幅直前の被処理繊維束のストランド幅(W1)及び、拡幅後の被処理繊維束のストランド幅(W2)を、ノギスを用いて計測し、下式(1)にて拡幅前後でのストランド幅の比を求めた。
拡幅前後の被処理繊維束のストランド幅の比 = W2/W1 ・・・式(1)
<Strand width ratio>
The strand width (W1) of the fiber bundle to be treated immediately before widening and the strand width (W2) of the fiber bundle to be treated after widening are measured using calipers, and the strand width before and after widening using the following equation (1) The ratio of was calculated.
Ratio of strand width of fiber bundle to be treated before and after widening = W2 / W1 Formula (1)
<繊維束の品位>
本発明において、繊維束の品位は、拡幅処理後の繊維束に発生した毛羽立ちを目視にて観察し、以下の基準で評価した。
◎:毛羽立ちなし
○:少量の毛羽立ち
△:中程度の毛羽立ち
×:使用困難な大量の毛羽立ち
<Grade of fiber bundle>
In the present invention, the quality of the fiber bundle was evaluated based on the following criteria by visually observing fluff generated in the fiber bundle after the widening treatment.
◎: No fuzz ○: Small amount of fuzz △: Moderate fuzz ×: Large amount of fuzz difficult to use
[実施例1]
前駆体繊維であるポリアクリロニトリル系繊維(単繊維繊度0.7dtex、フィラメント数24000)を、空気中250℃で、繊維比重1.35になるまで耐炎化処理を行い、次いで窒素ガス雰囲気下、最高温度650℃で低温炭素化させた。その後、窒素雰囲気下1300℃で高温炭素化させて製造した炭素繊維束を、10.0質量%の硫酸アンモニウム水溶液を用い、電解酸化により表面処理を行った後、180℃の熱風乾燥機で5分間加熱処理を行い、水分率2%の炭素繊維束(引張強度4000MPa、引張弾性率240GPa、フィラメント数24000本、単繊維直径7μm、繊度1600Tex)を得た。
続いて、2本の搬送ロール(駆動ロール)の中間に、表面を梨地加工された正逆方向に回転方向の変化を繰り返す直径35mmのロール(拡幅ロール)2本を、2つの回転方向の変化を繰り返すロールの被処理繊維束に対する回転方向が異なるように配置して、前記炭素繊維束を接触させ、拡幅処理を行った。繊維束と回転方向の変化を繰り返すロールの接触角は90°とし、すべての回転方向の変化を繰り返すロールに対する繊維束の接触距離の合計は55mmとした。正逆回転方向変更頻度は11mm/回、逆方向への回転速度は正回転の1倍、工程張力1.0g/tex、回転方向の変化を繰り返すロールの前に設置した搬送ロールから、回転方向の変化を繰り返すロールに被処理繊維束が接触するまでにかかる移動時間は22秒となるよう調整した。
実施例1での拡幅前後の炭素繊維束の幅の比は2.5で、工程での毛羽立ちはほとんどみられなかった。
拡幅処理後の炭素繊維束に、ビスフェノールA型エポキシ樹脂を主成分とするサイズ剤でサイズ剤付着量が1.0wt%となるようサイズ剤浴の濃度を調節してサイジング処理、乾燥を行ない、炭素繊維束を得た。
[Example 1]
Polyacrylonitrile fiber (single fiber fineness 0.7 dtex, filament number 24000), which is a precursor fiber, is flame-treated at 250 ° C. in air until the fiber specific gravity becomes 1.35. Low temperature carbonization was performed at a temperature of 650 ° C. Thereafter, a carbon fiber bundle produced by high-temperature carbonization at 1300 ° C. in a nitrogen atmosphere was subjected to surface treatment by electrolytic oxidation using a 10.0% by mass ammonium sulfate aqueous solution, and then subjected to a hot air dryer at 180 ° C. for 5 minutes. Heat treatment was performed to obtain a carbon fiber bundle having a moisture content of 2% (tensile strength 4000 MPa, tensile elastic modulus 240 GPa, number of filaments 24,000, single fiber diameter 7 μm, fineness 1600 Tex).
Subsequently, two rolls (widening rolls) with a diameter of 35 mm that repeat the change in the rotation direction in the forward and reverse directions with the surface finished in the middle between the two transport rolls (drive rolls) are changed in the two rotation directions. The rolls of repeating the steps were arranged so that the rotation directions with respect to the fiber bundle to be treated were different, the carbon fiber bundles were brought into contact with each other, and the widening process was performed. The contact angle of the roll that repeats the change in the fiber bundle and the rotation direction was 90 °, and the total contact distance of the fiber bundle to the roll that repeated the change in the rotation direction was 55 mm. The forward / reverse rotation direction change frequency is 11 mm / time, the reverse rotation speed is 1 time of normal rotation, process tension 1.0 g / tex, and the rotation direction from the transport roll installed in front of the roll that repeats the rotation direction change The movement time required for the fiber bundle to be treated to come into contact with the roll that repeats the above change was adjusted to 22 seconds.
The width ratio of the carbon fiber bundles before and after widening in Example 1 was 2.5, and fuzz in the process was hardly observed.
The sizing treatment and drying are performed by adjusting the concentration of the sizing agent bath so that the sizing agent adhesion amount is 1.0 wt% with the sizing agent mainly composed of bisphenol A type epoxy resin on the carbon fiber bundle after the widening treatment. A carbon fiber bundle was obtained.
[実施例2]
正逆回転方向変更頻度は50mm/回に変更した以外は、実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は1.7で、ロール上での毛羽立ちはほとんどみられなかった。
[Example 2]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the forward / reverse rotation direction change frequency was changed to 50 mm / time. At this time, the ratio of the width of the carbon fiber bundles before and after widening was 1.7, and fuzz on the roll was hardly observed.
[実施例3]
正逆回転方向変更頻度は2mm/回に変更した以外は、実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は2.6で、ロール上での毛羽立ちは少量であった。
[Example 3]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the forward / reverse rotation direction change frequency was changed to 2 mm / turn. At this time, the ratio of the width of the carbon fiber bundle before and after widening was 2.6, and the fluff on the roll was small.
[実施例4]
正方向回転速度に対する逆方向回転速度を0.05倍に変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は1.5で、ロール上での毛羽立ちはほとんどみられなかった。
[Example 4]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the reverse rotational speed with respect to the normal rotational speed was changed to 0.05 times. At this time, the ratio of the width of the carbon fiber bundle before and after widening was 1.5, and fuzz on the roll was hardly observed.
[実施例5]
正方向回転速度に対する逆方向回転速度を10倍に変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は2.0で、ロール上での毛羽立ちは少量であった。
[Example 5]
The carbon fiber bundles were widened in the same manner as in Example 1 except that the reverse rotation speed with respect to the normal rotation speed was changed to 10 times. At this time, the ratio of the width of the carbon fiber bundle before and after widening was 2.0, and the amount of fluff on the roll was small.
[実施例6]
回転方向の変化を繰り返すロールの数を2本から1本に変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は1.5で、ロール上での毛羽立ちはほとんどみられなかった。
[Example 6]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the number of rolls that repeated the change in the rotation direction was changed from two to one. At this time, the ratio of the width of the carbon fiber bundle before and after widening was 1.5, and fuzz on the roll was hardly observed.
[実施例7]
回転方向の変化を繰り返すロールの数を2本から3本に変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は2.8で、ロール上での毛羽立ちはほとんどみられなかった。
[Example 7]
The carbon fiber bundles were widened in the same manner as in Example 1 except that the number of rolls that repeated changes in the rotation direction was changed from two to three. At this time, the ratio of the width of the carbon fiber bundle before and after widening was 2.8, and fuzz on the roll was hardly observed.
[実施例8]
2つの回転方向の変化を繰り返すロールの被処理繊維束に対する回転方向を同じ方向に変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は2.0で、ロール上での毛羽立ちはほとんどみられなかった。
[Example 8]
The carbon fiber bundles were widened in the same manner as in Example 1 except that the rotation direction with respect to the fiber bundle to be treated of the roll that repeatedly changed the two rotation directions was changed to the same direction. At this time, the width ratio of the carbon fiber bundles before and after widening was 2.0, and fuzz on the roll was hardly observed.
[実施例9]
回転方向の変化を繰り返すロールをロール表面が鏡面加工されたロールに変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。ロール上での毛羽立ち、単糸切れが多少見られたものの十分に実用に耐えるものであり、拡幅前後の炭素繊維束の幅の比は2.2と良好なものであった。
[Example 9]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the roll repeating the change in the rotation direction was changed to a roll having a mirror-finished roll surface. Although some fluffing on the roll and single yarn breakage were observed, they were sufficiently practical and the width ratio of the carbon fiber bundle before and after widening was as good as 2.2.
[実施例10]
工程張力を0.5g/texに変更したこと以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は2.5であり、ロール上での毛羽立ちはほとんどみられなかった。
[Example 10]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the process tension was changed to 0.5 g / tex. At this time, the ratio of the widths of the carbon fiber bundles before and after widening was 2.5, and almost no fuzz was observed on the roll.
[実施例11]
工程張力を6.0g/texに変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。ロール上での毛羽立ち、単糸切れが多少見られたものの十分に実用に耐えるものであり、拡幅前後の炭素繊維束の幅の比は1.8と良好なものであった。
[Example 11]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the process tension was changed to 6.0 g / tex. Although some fluffing on the roll and single yarn breakage were observed, they were sufficiently resistant to practical use, and the ratio of the width of the carbon fiber bundle before and after widening was as good as 1.8.
[実施例12]
搬送ロールと回転方向の変化を繰り返すロールの間の距離を調節し、回転方向の変化を繰り返すロールに被処理繊維束が接触するまでにかかる移動時間を54秒に変更した以外は実施例6と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は1.9であり、ロール上での毛羽立ちはほとんどみられなかった。
[Example 12]
Example 6 except that the distance between the transport roll and the roll that repeats the change in the rotation direction is adjusted, and the movement time required for the fiber bundle to be treated to contact the roll that repeats the change in the rotation direction is changed to 54 seconds. The carbon fiber bundle was widened by the same method. The ratio of the width of the carbon fiber bundle before and after widening at this time was 1.9, and fuzz on the roll was hardly observed.
[実施例13]
搬送ロールから回転方向の変化を繰り返すロールに被処理繊維束が接触するまでにかかる移動時間を5秒に変更した以外は実施例6と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は1.5であり、ロール上での毛羽立ちはほとんどみられなかった。
[Example 13]
The carbon fiber bundle was widened in the same manner as in Example 6 except that the moving time required for the fiber bundle to be treated to come into contact with the roll that repeatedly changes the rotation direction from the transport roll was changed to 5 seconds. At this time, the ratio of the widths of the carbon fiber bundles before and after widening was 1.5, and fuzz on the roll was hardly observed.
[実施例14]
実施例1と同様の方法にて表面処理まで行い、サイズ剤の付着していない拡幅処理前の炭素繊維束を得た。得られた炭素繊維束に、ビスフェノールA型エポキシ樹脂を主成分とするサイズ剤でサイズ剤付着量が1.0wt%となるようサイズ剤浴の濃度を調節してサイジング処理、乾燥を行ない、サイズ剤が付与された炭素繊維束を得た。
サイズ剤付与後、2本の搬送ロール(駆動ロール)の中間に、表面を梨地加工された正逆回転を繰り返す直径35mmのロール2本を、2つの回転方向の変化を繰り返すロールの被処理繊維束に対する回転方向が異なるように配置して、前記炭素繊維束を接触させ、拡幅処理を行った。被処理繊維束とロールの接触角は90°とし、正逆回転方向変更頻度は11mm/回、逆方向への回転速度は正回転の1倍、工程張力6.0g/tex、搬送ロールから回転方向の変化を繰り返すロールに被処理繊維束が接触するまでにかかる移動時間は22秒となるよう調整した。
ロール上での毛羽立ち、単糸切れが多少見られたものの十分に実用に耐えるものであり、拡幅前後の炭素繊維束の幅の比は1.5であった。
[Example 14]
Surface treatment was performed in the same manner as in Example 1 to obtain a carbon fiber bundle before widening treatment to which no sizing agent was attached. The obtained carbon fiber bundle is subjected to sizing treatment and drying by adjusting the concentration of the sizing agent bath so that the sizing agent adhesion amount is 1.0 wt% with a sizing agent mainly composed of bisphenol A type epoxy resin. A carbon fiber bundle to which the agent was applied was obtained.
After applying the sizing agent, two rolls with a diameter of 35 mm that repeats forward and reverse rotation with a textured surface in the middle of the two transport rolls (drive rolls) are treated fibers of the roll that repeats changes in the two rotational directions. The carbon fiber bundles were placed in contact with each other so that the rotation directions with respect to the bundles were different, and the widening process was performed. The contact angle between the fiber bundle to be treated and the roll is 90 °, the forward / reverse rotation direction change frequency is 11 mm / rotation, the reverse rotation speed is 1 times the forward rotation, the process tension is 6.0 g / tex, and rotation from the transport roll The movement time required for the fiber bundle to be treated to come into contact with a roll that repeatedly changes its direction was adjusted to 22 seconds.
Although some fluffing on the roll and single yarn breakage were observed, they were sufficiently practical, and the ratio of the width of the carbon fiber bundle before and after widening was 1.5.
[比較例1]
回転方向の変化を繰り返すロールを正方向にのみ回転するロールに変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は1.1でありほとんど拡幅されなかった。
[Comparative Example 1]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the roll repeating the change in the rotation direction was changed to a roll rotating only in the positive direction. At this time, the ratio of the widths of the carbon fiber bundles before and after widening was 1.1, which was hardly widened.
[比較例2]
回転方向の変化を繰り返すロールを回転しないバーに変更した以外は実施例1と同様の方法にて炭素繊維束の拡幅を行った。この時の拡幅前後の炭素繊維束の幅の比は2.0であったが、ロール上での毛羽立ちが非常に多く、使用困難なレベルのものであった。
[Comparative Example 2]
The carbon fiber bundle was widened in the same manner as in Example 1 except that the roll repeating the change in the rotation direction was changed to a non-rotating bar. At this time, the ratio of the width of the carbon fiber bundles before and after the widening was 2.0, but the amount of fluff on the roll was very large and it was difficult to use.
Claims (11)
被処理繊維束を、少なくとも1本の正逆方向に回転方向の変化を繰り返すロールに接触させることを特徴とする繊維束の拡幅方法。 A fiber bundle widening method for widening a fiber bundle to be treated formed of a plurality of single fibers in the width direction,
A method of widening a fiber bundle, comprising bringing the fiber bundle to be treated into contact with at least one roll that repeats a change in the rotational direction in the forward and reverse directions.
正逆回転の変更頻度 (mm/回) < π×ロール直径(mm)×(ロールと被処理繊維束の接触角(°)/360(°))・・・(1) The change frequency of the forward / reverse rotation represented by the traveling distance of the fiber bundle to be processed with respect to the number of times of changing the forward / reverse rotation of the roll that repeats the change in the rotation direction satisfies the following formula (1). To widen fiber bundles.
Change frequency of forward / reverse rotation (mm / time) <π × roll diameter (mm) × (contact angle between roll and treated fiber bundle (°) / 360 (°)) (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014201022A JP6309872B2 (en) | 2014-09-30 | 2014-09-30 | Widening method of fiber bundle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014201022A JP6309872B2 (en) | 2014-09-30 | 2014-09-30 | Widening method of fiber bundle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016069759A true JP2016069759A (en) | 2016-05-09 |
JP6309872B2 JP6309872B2 (en) | 2018-04-11 |
Family
ID=55866237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014201022A Expired - Fee Related JP6309872B2 (en) | 2014-09-30 | 2014-09-30 | Widening method of fiber bundle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6309872B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019015015A (en) * | 2017-07-06 | 2019-01-31 | カール マイアー テヒニッシェ テクスティリエン ゲー・エム・ベー・ハーKARL MAYER Technische Textilien GmbH | Apparatus and method for extending fiber bundle |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5020148Y1 (en) * | 1970-05-25 | 1975-06-18 | ||
JPS59100742A (en) * | 1982-11-30 | 1984-06-11 | ユニチカ株式会社 | Opening of long fiber tow |
JPH0512442U (en) * | 1991-07-26 | 1993-02-19 | 鐘紡株式会社 | Fabric spreading centering device |
JP2001262443A (en) * | 2000-01-12 | 2001-09-26 | Toray Ind Inc | Device for opening fiber bundle and method of opening the fiber bundle, and method of producing prepreg |
JP2007126801A (en) * | 2005-10-31 | 2007-05-24 | Morimura Kosan Kk | Method for parallel takeoff of collected filament |
JP2010111957A (en) * | 2008-11-05 | 2010-05-20 | Toho Tenax Co Ltd | Carbon fiber, composite material, and method for producing carbon fiber |
US20120102678A1 (en) * | 2010-05-11 | 2012-05-03 | Cytec Technology Corp. | Apparatus and methods for spreading fiber bundles for the continuous production of prepreg |
WO2013094742A1 (en) * | 2011-12-22 | 2013-06-27 | 帝人株式会社 | Method for manufacturing reinforcing fiber strands |
-
2014
- 2014-09-30 JP JP2014201022A patent/JP6309872B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5020148Y1 (en) * | 1970-05-25 | 1975-06-18 | ||
JPS59100742A (en) * | 1982-11-30 | 1984-06-11 | ユニチカ株式会社 | Opening of long fiber tow |
JPH0512442U (en) * | 1991-07-26 | 1993-02-19 | 鐘紡株式会社 | Fabric spreading centering device |
JP2001262443A (en) * | 2000-01-12 | 2001-09-26 | Toray Ind Inc | Device for opening fiber bundle and method of opening the fiber bundle, and method of producing prepreg |
JP2007126801A (en) * | 2005-10-31 | 2007-05-24 | Morimura Kosan Kk | Method for parallel takeoff of collected filament |
JP2010111957A (en) * | 2008-11-05 | 2010-05-20 | Toho Tenax Co Ltd | Carbon fiber, composite material, and method for producing carbon fiber |
US20120102678A1 (en) * | 2010-05-11 | 2012-05-03 | Cytec Technology Corp. | Apparatus and methods for spreading fiber bundles for the continuous production of prepreg |
JP2013528718A (en) * | 2010-05-11 | 2013-07-11 | サイテク・テクノロジー・コーポレーシヨン | Apparatus and method for widening fiber bundles for continuous production of prepregs |
WO2013094742A1 (en) * | 2011-12-22 | 2013-06-27 | 帝人株式会社 | Method for manufacturing reinforcing fiber strands |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019015015A (en) * | 2017-07-06 | 2019-01-31 | カール マイアー テヒニッシェ テクスティリエン ゲー・エム・ベー・ハーKARL MAYER Technische Textilien GmbH | Apparatus and method for extending fiber bundle |
JP7197293B2 (en) | 2017-07-06 | 2022-12-27 | カール マイアー テヒニッシェ テクスティリエン ゲー・エム・ベー・ハー | Apparatus and method for stretching fiber bundles |
Also Published As
Publication number | Publication date |
---|---|
JP6309872B2 (en) | 2018-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9528200B2 (en) | Method for manufacturing reinforcing fiber strand | |
KR101965470B1 (en) | Carbon fiber bundle and process for producing same | |
US10889070B2 (en) | Composite material including unidirectional continuous fibers and thermoplastic resin | |
TW201834837A (en) | Fiber-reinforced resin molding material | |
KR20200107933A (en) | Reinforcing fiber mat and fiber-reinforced resin molding material and manufacturing method thereof | |
JP6309872B2 (en) | Widening method of fiber bundle | |
JP2009242964A (en) | Carbon fiber and method for producing the same | |
JP5662113B2 (en) | Carbon fiber surface treatment method | |
EP3293296B1 (en) | Spun yarn comprising carbon staple fibers and method of preparing the same | |
CN110184705B (en) | High-antibacterial-property Ag @ Cu nanoparticle modified PI nanofiber long-thread yarn | |
CN116568733A (en) | Composite material, method for producing composite material, and method for producing reinforcing fiber base material | |
JP5873358B2 (en) | Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand | |
JP6846868B2 (en) | Method for manufacturing carbon fiber and carbon fiber with sizing agent attached | |
JP2020070517A (en) | Sizing agent composition, method for producing carbon fiber, and carbon fiber with sizing agent adhered thereto | |
JP7236057B2 (en) | Reinforcing fiber bundle | |
JP5935299B2 (en) | Fiber-reinforced composite material and method for producing fiber-reinforced composite material. | |
JP5455408B2 (en) | Polyacrylonitrile-based carbon fiber and method for producing the same | |
Hasselbrack et al. | Evaluation of carbon‐fiber‐reinforced thermoplastic matrices in a flat braid process | |
JP2008248423A (en) | Carbon fiber and composite material using the same | |
JPH10121371A (en) | Fiber structure for fiber-reinforced composite material and production of fiber reinforced composite material | |
JP6534836B2 (en) | Method of manufacturing fiber bundle | |
JP2014065830A (en) | Fiber-reinforced plastic and production method thereof | |
JP2011226004A (en) | Method for producing carbon fiber | |
JP2022096210A (en) | Carbon fiber manufacturing method | |
TWM316894U (en) | Composite material woven fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6309872 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |