JP2011226004A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2011226004A
JP2011226004A JP2010094853A JP2010094853A JP2011226004A JP 2011226004 A JP2011226004 A JP 2011226004A JP 2010094853 A JP2010094853 A JP 2010094853A JP 2010094853 A JP2010094853 A JP 2010094853A JP 2011226004 A JP2011226004 A JP 2011226004A
Authority
JP
Japan
Prior art keywords
carbon fiber
sizing agent
resin
sizing
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010094853A
Other languages
Japanese (ja)
Inventor
Hidekazu Yoshikawa
秀和 吉川
Hiroshi Kimura
洋 木村
Hisahiro Kudo
久弘 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2010094853A priority Critical patent/JP2011226004A/en
Publication of JP2011226004A publication Critical patent/JP2011226004A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To propose a method for uniformly adhering a sizing agent to carbon fiber, the agent capable of improving composite property of a composite material.SOLUTION: In a method for producing carbon fiber having the steps of adhering a sizing agent to the carbon fiber by immersing the carbon fiber in a sizing bath containing the sizing agent, and then drying the carbon fiber to adhere the sizing agent thereto, the carbon fiber, after being immersed in the sizing bath, is subjected to primary drying at a temperature of 80 to 120°C for 30 to 200 seconds, and then subjected to secondary drying at a temperature of 180 to 230°C for 30 to 200 seconds.

Description

本発明は、耐衝撃性等に優れた炭素繊維強化複合材料の用途に適した、炭素繊維の製造方法に関する。 The present invention relates to a carbon fiber production method suitable for the use of a carbon fiber reinforced composite material having excellent impact resistance and the like.

近年、炭素繊維を強化繊維として用いた複合材料は、軽く、高強度等の優れた機械的特性を有するので、航空機、自動車等の部材として多く用いられるようになってきている。これらの複合材料は、例えば、強化繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧といった成形・加工工程を経て成形される。 In recent years, composite materials using carbon fibers as reinforcing fibers are light and have excellent mechanical properties such as high strength, and thus are increasingly used as members of aircraft, automobiles and the like. These composite materials are molded, for example, from a prepreg, which is an intermediate product in which a reinforcing fiber is impregnated with a matrix resin, through molding and processing steps such as heating and pressing.

炭素繊維とマトリックス樹脂との複合化において、高性能化を追求するためには、炭素繊維そのもの自体の強度や弾性率等の機械的物性の向上が必要不可欠である。炭素繊維の特性を改善することによって、より高性能のコンポジット物性(高強度、高弾性、高耐衝撃性等)を有する複合材料を得ることができると期待される。 In order to pursue high performance in the composite of carbon fiber and matrix resin, it is essential to improve the mechanical properties such as strength and elastic modulus of the carbon fiber itself. It is expected that composite materials having higher-performance composite properties (high strength, high elasticity, high impact resistance, etc.) can be obtained by improving the properties of carbon fibers.

ところで、炭素繊維のプリプレグ化及び製織などに際して、炭素繊維束の集束性、ハンドリング性及び耐擦過性などを向上させるために、炭素繊維には各種のサイズ剤(サイジング剤)が付与されている。サイズ剤は、また、複合材料のコンポジット物性の向上、品質及び性能の安定化のためにも必要であり、そのためには、複合材料を構成するマトリックス樹脂に対する相溶性と接着性が良好なものが採用される。 By the way, various sizing agents (sizing agents) are imparted to the carbon fiber in order to improve the bundling property, handling property, scratch resistance and the like of the carbon fiber bundle during prepreg and weaving of the carbon fiber. The sizing agent is also necessary for improving the composite physical properties of the composite material and stabilizing the quality and performance. For this purpose, the sizing agent must have good compatibility and adhesion to the matrix resin constituting the composite material. Adopted.

例えば、特許文献1では、従来必ずしも十分に解決されていなかった、エポキシ樹脂などの熱硬化性マトリックス樹脂を用いた複合材料のコンポジット物性において接着特性が劣る、という問題を解決するための提案がなされている。具体的には、特許文献1では、炭素繊維の収束性を上げて、織物やプリプレグへの加工性を良くすると共に、優れたコンポジット性能(引張強度や層間せん断強度)を有する炭素繊維を製造するために、エポキシ樹脂と熱可塑樹脂の質量比が15/1〜2/1の割合で、エポキシ系樹脂を初めに炭素繊維に付与し、180℃で乾燥後に続いて、熱可塑性樹脂を付与する方法が提案されている。 For example, in Patent Document 1, a proposal for solving the problem that the adhesive properties are inferior in the composite physical properties of a composite material using a thermosetting matrix resin such as an epoxy resin, which has not been sufficiently solved conventionally, is made. ing. Specifically, Patent Document 1 increases carbon fiber convergence, improves processability to fabrics and prepregs, and produces carbon fibers having excellent composite performance (tensile strength and interlaminar shear strength). Therefore, the epoxy resin is first applied to the carbon fiber at a mass ratio of the epoxy resin to the thermoplastic resin of 15/1 to 2/1, and after drying at 180 ° C., the thermoplastic resin is applied. A method has been proposed.

また、特許文献2では、繊維軸方向の引張強度に優れ、かつ繊維軸に対して垂直方向の応力に影響が大きい層間せん断強度に優れた複合材料を得るために適した炭素繊維ストランドを得るために、ダイマー酸型エポキシ樹脂を必須成分とするサイズ剤が0.3〜5.0質量%付着されてなる炭素繊維ストランドが提案されている。しかしながら、これらの特許文献では、複合材料のコンポジット性能の中でも、特に、繊維と樹脂の層間接着性の指標となるリング破壊強度の向上については何ら記載するところがない。 In Patent Document 2, in order to obtain a carbon fiber strand suitable for obtaining a composite material having excellent tensile strength in the fiber axis direction and excellent interlaminar shear strength that has a large influence on stress in the direction perpendicular to the fiber axis. In addition, a carbon fiber strand is proposed in which 0.3 to 5.0% by mass of a sizing agent containing a dimer acid type epoxy resin as an essential component is attached. However, these patent documents do not describe any improvement in the ring fracture strength, which is an index of the interlaminar adhesion between the fiber and the resin, among the composite performance of the composite material.

特許文献3では、低分子量エポキシ樹脂と高分子量エポキシ樹脂からなる2成分系エポキシ樹脂を含有するサイズ剤を使用した炭素繊維を作製し、これを用いて繊維軸方向の引張強度と繊維軸に対して垂直方向の層間破壊靭性に優れた複合材料を得たことが開示されている。この発明は、特定の樹脂成分の組み合わせに着目したものであるが、サイズ剤のムラについては何ら記載していない。 In Patent Document 3, a carbon fiber using a sizing agent containing a two-component epoxy resin composed of a low molecular weight epoxy resin and a high molecular weight epoxy resin is produced, and the tensile strength in the fiber axis direction and the fiber axis are used. It is disclosed that a composite material having excellent interlaminar fracture toughness in the vertical direction was obtained. This invention pays attention to the combination of specific resin components, but does not describe any unevenness of the sizing agent.

本発明者は、炭素繊維に対するサイズ剤の付着にムラがあると、複合材料とした際に、サイズ剤とマトリクス樹脂の接着性にムラが生じることから、その問題の解決を試みた。そして、炭素繊維の製造過程におけるサイジング工程の乾燥処理条件の変更に着目し、より簡単な工程条件の採用で、サイズ剤の付着を均一に行うことができること、そして、結果として、複合材料の、特にリング破壊強度の向上に寄与する炭素繊維を得ることができた。 The present inventor tried to solve the problem because unevenness in adhesion of the sizing agent to the carbon fibers causes unevenness in the adhesiveness between the sizing agent and the matrix resin when the composite material is used. And paying attention to the change of the drying process conditions of the sizing process in the production process of carbon fiber, the adoption of simpler process conditions can uniformly adhere the sizing agent, and as a result, the composite material, In particular, it was possible to obtain a carbon fiber that contributes to an improvement in ring breaking strength.

特開2006−188782号公報JP 2006-188782 A 特開2004−149721号公報JP 2004-149721 A 特開2005−290614号公報JP-A-2005-290614

本発明の課題は、複合材料のコンポジット物性を向上させ得る、炭素繊維にサイズ剤を均一に付着する方法を提案することにある。 An object of the present invention is to propose a method for uniformly attaching a sizing agent to carbon fibers, which can improve the composite physical properties of a composite material.

上記本発明の課題は、以下の発明によって達成される。即ち、本発明は、サイズ剤を含むサイズ浴に炭素繊維を浸漬し、その後乾燥して、炭素繊維にサイズ剤を付着するサイジング工程を含む炭素繊維の製造方法において、該サイジング工程として、サイズ浴に浸漬した後の炭素繊維を、80〜120℃の乾燥温度で30〜200秒一次乾燥させた後、さらに180〜230℃で30〜200秒二次乾燥させる2段乾燥処理を採用したことを特徴とする炭素繊維の製造方法である。サイズ剤樹脂としては、120℃での粘度が10〜200mPa・sのエポキシ樹脂を主成分とするものが好ましい。なお、本発明においてサイズ剤と言うときには、主成分であるサイズ剤樹脂に、副成分として界面活性剤、安定剤、その他添加剤を含む樹脂組成物をいう。 The object of the present invention is achieved by the following invention. That is, the present invention provides a carbon fiber production method including a sizing step in which carbon fibers are immersed in a sizing bath containing a sizing agent and then dried to attach the sizing agent to the carbon fibers. The carbon fiber after being soaked in is dried at 80 to 120 ° C. for 30 to 200 seconds, followed by secondary drying at 180 to 230 ° C. for 30 to 200 seconds. It is the manufacturing method of the carbon fiber characterized. As the sizing resin, a resin mainly composed of an epoxy resin having a viscosity at 120 ° C. of 10 to 200 mPa · s is preferable. In the present invention, the sizing agent refers to a resin composition containing a sizing resin as a main component and a surfactant, a stabilizer, and other additives as subcomponents.

そして、上記本発明の炭素繊維の製造方法によって得られる好ましい炭素繊維は、サイズ剤の付着量が炭素繊維に対して0.5〜1.7重量%であり、下記式で表される二次乾燥後のエポキシ当量変化率が1.2〜2.5であることを特徴とする炭素繊維である。
エポキシ当量変化率=B/A
(Aは一次乾燥後のサイズ剤のエポキシ当量(当量/g)を、Bは二次乾燥後のサイズ剤のエポキシ当量(当量/g)を表す。)
And the preferable carbon fiber obtained by the manufacturing method of the carbon fiber of the said invention has the adhesion amount of a sizing agent 0.5 to 1.7 weight% with respect to carbon fiber, and is represented by the following formula The carbon fiber is characterized in that the epoxy equivalent change rate after drying is 1.2 to 2.5.
Epoxy equivalent change rate = B / A
(A represents the epoxy equivalent (equivalent / g) of the sizing agent after primary drying, and B represents the epoxy equivalent (equivalent / g) of the sizing agent after secondary drying.)

本発明の製造方法によると、複合材料のコンポジット物性を向上させ得る、サイズ剤が均一に付着した炭素繊維を得ることができる。 According to the production method of the present invention, it is possible to obtain a carbon fiber having a sizing agent uniformly attached, which can improve the composite physical properties of the composite material.

本発明は、サイズ剤を含むサイズ浴に炭素繊維を浸漬し、その後乾燥して、炭素繊維にサイズ剤を付着するサイジング工程を含む炭素繊維の製造方法であって、このサイジング工程において、サイズ浴に浸漬した後の炭素繊維を、80〜120℃の乾燥温度で30〜200秒一次乾燥させた後、さらに180〜230℃で30〜200秒二次乾燥させることを特徴とするものである。 The present invention relates to a carbon fiber manufacturing method including a sizing step in which carbon fiber is immersed in a size bath containing a sizing agent and then dried to attach the sizing agent to the carbon fiber. The carbon fibers immersed in the substrate are primarily dried at a drying temperature of 80 to 120 ° C. for 30 to 200 seconds, and then further dried at 180 to 230 ° C. for 30 to 200 seconds.

本発明において用いられるサイズ剤の主成分となるサイズ剤樹脂としては、複合材料に用いるマトリックス樹脂に合わせて選択することが好ましく、例えば、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリイミド樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルスルホン樹脂等を単独であるいは2種類以上を混合して用いることができる。中でも、エポキシ樹脂を主成分とするものを用いることが好ましい。 The sizing resin that is the main component of the sizing agent used in the present invention is preferably selected according to the matrix resin used in the composite material. For example, epoxy resin, epoxy-modified polyurethane resin, polyester resin, phenol resin, polyamide A resin, a polyurethane resin, a polyimide resin, a polyvinyl alcohol resin, a polyvinyl pyrrolidone resin, a polyether sulfone resin, or the like can be used alone or in admixture of two or more. Among them, it is preferable to use an epoxy resin as a main component.

本発明で用いるサイズ剤樹脂は、120℃での粘度が10〜200mPa・sであることが好ましい。120℃での粘度が10mPaに満たない場合は、サイズ剤が炭素繊維に十分付着しない場合があり、200mPaを超える場合は、サイズ剤の付着状態にムラが生じる場合があるため好ましくない。 The sizing resin used in the present invention preferably has a viscosity at 120 ° C. of 10 to 200 mPa · s. When the viscosity at 120 ° C. is less than 10 mPa, the sizing agent may not sufficiently adhere to the carbon fiber, and when it exceeds 200 mPa, the sizing agent may be unevenly adhered, which is not preferable.

サイズ剤を炭素繊維束に付与するに際しては、主成分として上記サイズ剤樹脂を含有する樹脂組成物の水性エマルジョン、又はアセトン等による有機溶剤溶液を使用する。ローラー浸漬法等の公知の方法により、炭素繊維束にサイズ剤を付与した後、乾燥を行う。人体への安全性を考慮すると、水性エマルジョンを使用することが好ましい。 When the sizing agent is applied to the carbon fiber bundle, an aqueous emulsion of a resin composition containing the sizing resin as a main component or an organic solvent solution such as acetone is used. After applying a sizing agent to the carbon fiber bundle by a known method such as a roller dipping method, drying is performed. In consideration of safety to the human body, it is preferable to use an aqueous emulsion.

サイズ剤用の樹脂組成物を水性エマルジョンにするには、界面活性剤を使用することができる。このような界面活性剤としては、ノニオン系、カチオン系、アニオン系界面活性剤が挙げられるが、水性エマルジョン溶液とした際の溶液安定性の面から、ノニオン系界面活性剤を使用することが好ましい。この界面活性剤の配合比は、質量比(樹脂組成物/界面活性剤)で、90/10〜70/30が好ましい。 A surfactant can be used to make the resin composition for a sizing agent into an aqueous emulsion. Examples of such surfactants include nonionic, cationic, and anionic surfactants. From the viewpoint of solution stability when an aqueous emulsion solution is used, it is preferable to use a nonionic surfactant. . The compounding ratio of the surfactant is preferably a mass ratio (resin composition / surfactant) of 90/10 to 70/30.

サイズ浴のサイズ剤濃度は、1.0〜6.0重量%が適当である。6.0重量%を超えると、均一な付与・付着が難しくなるため好ましくない。また、サイズ剤の付着量は、炭素繊維に対して0.5〜1.7重量%が好ましい、0.5重量%より低い場合は、取り扱い性が損なわれ、毛羽発生の原因となる。1.7重量%より高い場合は、乾燥が十分にできず、また、操業安定性に欠けるため、好ましくない。 The sizing agent concentration in the sizing bath is suitably 1.0 to 6.0% by weight. Exceeding 6.0% by weight is not preferable because uniform application and adhesion becomes difficult. Further, the amount of the sizing agent attached is preferably 0.5 to 1.7% by weight with respect to the carbon fiber, and if it is lower than 0.5% by weight, the handleability is impaired and fluffing is caused. When it is higher than 1.7% by weight, it is not preferable because drying cannot be sufficiently performed and operational stability is lacking.

本発明のサイジング工程は、炭素繊維をサイズ浴に浸漬し、その後2段乾燥処理を行うものであるが、かかる工程は、サイズ剤の所定の付着量が得られるまで、複数回行っても良い。また、工程は連続的であっても、バッチ式であっても良い。 The sizing process of the present invention involves immersing the carbon fiber in a size bath and then performing a two-stage drying process. Such a process may be performed a plurality of times until a predetermined amount of sizing agent is obtained. . Further, the process may be continuous or batch-type.

本発明のサイジング工程において、乾燥処理は、サイズ浴に浸漬した後の炭素繊維を、80〜120℃の乾燥温度で30〜200秒一次乾燥させた後、さらに180〜230℃で30〜200秒二次乾燥を行う2段乾燥処理である。一次乾燥工程は、水性エマルジョンにより付与したサイズ剤の余分な水分を揮発除去すると共に、繊維上に付着したサイズ剤樹脂の粘度が、10〜200mPa・sの範囲で流動的に繊維ストランド内部まで均一に付着するようにしなければならない。この状態を取り得る条件としては、80〜120℃の乾燥温度で30〜200秒が適当であり、この時使用可能なサイズ剤樹脂は、120℃での粘度が10〜200mPa・sであるサイズ剤樹脂が適当である。 In the sizing process of the present invention, the drying treatment is performed by first drying the carbon fibers after being immersed in the size bath at a drying temperature of 80 to 120 ° C. for 30 to 200 seconds, and further at 180 to 230 ° C. for 30 to 200 seconds. This is a two-stage drying process in which secondary drying is performed. The primary drying process volatilizes and removes excess moisture of the sizing agent imparted by the aqueous emulsion, and the viscosity of the sizing resin adhering to the fiber is fluidly uniform within the fiber strand in the range of 10 to 200 mPa · s. Must adhere to. As a condition that can take this state, a drying temperature of 80 to 120 ° C. is suitable for 30 to 200 seconds, and the sizing resin that can be used at this time is a size whose viscosity at 120 ° C. is 10 to 200 mPa · s. An agent resin is suitable.

一次乾燥した炭素繊維ストランドは、サイズ剤がストランド内部まで均一に付着しており、さらにコンポジット物性を最大限発現させるため、さらに二次乾燥を行う。二次乾燥工程は、サイズ剤と炭素繊維表面との接着性を付与し、且つマトリックス樹脂との接着性を良好な物にするため行われる。本発明では、二次乾燥として180〜230℃で30〜200秒処理を行う。この後得られた炭素繊維は、サイズ剤のエポキシ当量変化率が1.2〜2.5である。サイズ剤のエポキシ当量変化率(B/A)は、二次乾燥後のサイズ剤のエポキシ当量B(g/当量)と一次乾燥後のサイズ剤のエポキシ当量A(g/当量)の割合より求められ、1.2〜2.5、好ましくは1.2〜2.0である。サイズ剤のエポキシ当量変化率が1.2より小さいときは炭素繊維とサイズ剤の接着性が低く、良好なコンポジット性能が得られない。2.5より大きい場合は、マトリックス樹脂との接着性が低下し、コンポジット性能が低下するので、前記範囲が好ましい。 The carbon fiber strand that has been primarily dried has a sizing agent uniformly adhered to the inside of the strand, and is further subjected to secondary drying in order to maximize the composite physical properties. The secondary drying step is performed in order to impart adhesion between the sizing agent and the carbon fiber surface and to improve the adhesion with the matrix resin. In the present invention, the secondary drying is performed at 180 to 230 ° C. for 30 to 200 seconds. The carbon fiber obtained after this has an epoxy equivalent change rate of the sizing agent of 1.2 to 2.5. The epoxy equivalent change rate (B / A) of the sizing agent is determined from the ratio of the epoxy equivalent B (g / equivalent) of the sizing agent after secondary drying to the epoxy equivalent A (g / equivalent) of the sizing agent after primary drying. 1.2 to 2.5, preferably 1.2 to 2.0. When the epoxy equivalent change rate of the sizing agent is less than 1.2, the adhesion between the carbon fiber and the sizing agent is low, and good composite performance cannot be obtained. When the ratio is larger than 2.5, the adhesiveness with the matrix resin is lowered, and the composite performance is lowered. Therefore, the above range is preferable.

本発明で用いられる炭素繊維は、特に制限はないが、好ましくは1,000〜50,000フィラメント、更に好ましくは20,000〜30,000フィラメントの炭素繊維である。炭素繊維が束状、例えば、トウの場合には、単位幅当たりのフィラメント数が5,000フィラメント/mm以下、好ましくは2,000フィラメント/mm以下が好ましい。5,000フィラメント/mmを超えると、サイズ剤付与のバラツキが大きくなることがあるので好ましくない。 The carbon fiber used in the present invention is not particularly limited, but is preferably a carbon fiber having 1,000 to 50,000 filaments, and more preferably 20,000 to 30,000 filaments. In the case where the carbon fibers are bundled, for example, tow, the number of filaments per unit width is 5,000 filaments / mm or less, preferably 2,000 filaments / mm or less. If it exceeds 5,000 filaments / mm, the variation in sizing application may increase, which is not preferable.

本発明の炭素繊維を強化繊維として用い、これとマトリックス樹脂とから種々の公知の手段・方法により複合材料が得られる。炭素繊維は、通常、シート状の強化繊維材料として用いられる。シート状の材料とは、繊維材料を一方向にシート状に引き揃えたもの、これらを、例えば、直交に積層したもの、繊維材料を織編物や不織布等の布帛に成形したもの、ストランド状のもの、多軸織物等を全て含む。繊維の形態としては、長繊維状モノフィラメントあるいはこれらを束にしたものが好ましく使用される。 The carbon fiber of the present invention is used as a reinforcing fiber, and a composite material can be obtained from this and a matrix resin by various known means and methods. Carbon fiber is usually used as a sheet-like reinforcing fiber material. The sheet-like material is a material in which fiber materials are arranged in a sheet shape in one direction, these are laminated in an orthogonal manner, the fiber material is formed into a fabric such as a woven or knitted fabric, and a non-woven fabric. All things, including multi-axis fabrics. As the fiber form, long fiber monofilaments or bundles of these are preferably used.

マトリックス樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が用いられる。熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。 As the matrix resin, a thermosetting resin or a thermoplastic resin is used. Specific examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having acetylene terminal, and polyimide resin having nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.

熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。複合材料中に占める樹脂組成物の含有率は、10〜90重量%、好ましくは20〜60重量%、更に好ましくは25〜45重量%である。 Examples of the thermoplastic resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamide , Polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, polybenzimidazole and the like. The content of the resin composition in the composite material is 10 to 90% by weight, preferably 20 to 60% by weight, and more preferably 25 to 45% by weight.

以下、実施例により本発明を詳述するが、本発明はこれに限定されるものではない。実施例における各種物性値の測定方法は下記のとおりである。 Hereinafter, although an example explains the present invention in detail, the present invention is not limited to this. The measuring method of various physical property values in the examples is as follows.

[炭素繊維の樹脂含浸ストランド強度]
炭素繊維の樹脂含浸ストランド強度は、JIS・R・7608に規定された方法により測定した。
[Resin impregnated strand strength of carbon fiber]
The resin-impregnated strand strength of the carbon fiber was measured by the method defined in JIS · R · 7608.

[サイズ剤の付着量の測定]
約2gの炭素繊維束を105℃で30分乾燥させた後、デシケーター内において30分室温に冷却し秤量(W1)した。その後、炭素繊維束をアセトン中に浸漬し、サイズ剤を洗浄除去した。洗浄したサンプルを105℃にて1時間乾燥し、デシケーター内で30分室温に冷却して秤量(W2)した。そして、次式よりサイズ剤付着量を求めた。
サイズ剤付着量(重量%)=[W1(g)−W2(g)]/[W2(g)]×100
[Measurement of sizing agent adhesion]
About 2 g of carbon fiber bundles were dried at 105 ° C. for 30 minutes, then cooled to room temperature in a desiccator for 30 minutes and weighed (W1). Thereafter, the carbon fiber bundle was immersed in acetone to wash away the sizing agent. The washed sample was dried at 105 ° C. for 1 hour, cooled to room temperature in a desiccator for 30 minutes, and weighed (W2). And the sizing agent adhesion amount was calculated | required from following Formula.
Sizing agent adhesion amount (% by weight) = [W1 (g) −W2 (g)] / [W2 (g)] × 100

[エポキシ当量の測定]
サイズ剤のエポキシ当量(当量/g)は、JIS・K-7236に記載の方法により測定して求めた。即ち、一次乾燥後の炭素繊維に付着しているサイズ剤のエポキシ当量(A)と、二次乾燥後の炭素繊維に付着しているサイズ剤のエポキシ当量(B)から、下式に従って、エポキシ当量変化率(B/A)を求めた。
エポキシ当量変化率=B/A
(Aは一次乾燥後のエポキシ当量(当量/g)、Bは二次乾燥後のエポキシ当量(当量/g)を表す。)
[Measurement of epoxy equivalent]
The epoxy equivalent (equivalent / g) of the sizing agent was determined by measurement according to the method described in JIS · K-7236. That is, from the epoxy equivalent (A) of the sizing agent adhering to the carbon fiber after primary drying and the epoxy equivalent (B) of the sizing agent adhering to the carbon fiber after secondary drying, Equivalent change rate (B / A) was determined.
Epoxy equivalent change rate = B / A
(A represents an epoxy equivalent (equivalent / g) after primary drying, and B represents an epoxy equivalent (equivalent / g) after secondary drying.)

[リング破壊強度の測定]
コンポジット物性の評価として、マトリックス樹脂として、エポキシ樹脂(ジャパンエポキシレジン社製エポキシ樹脂・EP827)、アミン系硬化剤(ハンツマンコーポレンション社製・ジェファーミンT403)を100:40の割合で配合したエポキシ樹脂組成物を用いて、JIS・K-7037に記載の方法に従ってリング破壊強度を求めた。なお、リング破壊強度は4000MPa以上であることが望ましい。
[Measurement of ring breaking strength]
For evaluation of composite physical properties, epoxy resin (epoxy resin manufactured by Japan Epoxy Resin Co., Ltd., EP827) and amine-based curing agent (manufactured by Huntsman Corporation, Jeffermin T403) were mixed at a ratio of 100: 40 as matrix resin. Using the composition, ring fracture strength was determined according to the method described in JIS · K-7037. The ring breaking strength is desirably 4000 MPa or more.

[実施例1〜3]及び[比較例1〜6]
定法によりアクリル繊維を耐炎化・炭素化し、サイズ剤を付与していない炭素繊維束(24,000フィラメント、1600Tex、引張強度5100MPa、引張弾性率242GPa)を得た。このサイズ剤を付与していない炭素繊維束を、サイズ剤溶液浴に浸漬した後、表1に記載の乾燥条件で乾燥させた。サイズ剤溶液としては、主成分としてエポキシ樹脂(ジャパンエポキシレジン社製エポキシ樹脂EP828:ジャパンエポキシレジン社製エポキシ樹脂EP1001=1:1.2、120℃での粘度:150mPa・s)を30%含む水性エマルジョンを希釈し、濃度が3.0重量%とした水性エマルジョンを用いた。得られた炭素繊維ストランドのサイズ剤付着量、ストランド強度、毛羽品位、リング破壊強度の評価を行い、結果を表1に記載した。
[Examples 1 to 3] and [Comparative Examples 1 to 6]
Acrylic fibers were made flame resistant and carbonized by a conventional method to obtain a carbon fiber bundle (24,000 filaments, 1600 Tex, tensile strength 5100 MPa, tensile modulus 242 GPa) to which no sizing agent was applied. The carbon fiber bundle not provided with the sizing agent was immersed in a sizing solution bath and then dried under the drying conditions described in Table 1. The sizing solution contains 30% of an epoxy resin (epoxy resin EP828 manufactured by Japan Epoxy Resin Co., Ltd .: epoxy resin EP1001 = 1: 1.2 manufactured by Japan Epoxy Resin Co., Ltd., viscosity at 120 ° C .: 150 mPa · s) as a main component. The aqueous emulsion was diluted to a concentration of 3.0% by weight. The sizing agent adhesion amount, strand strength, fluff quality, and ring breaking strength of the obtained carbon fiber strands were evaluated, and the results are shown in Table 1.

表1から分かるように、実施例1〜3は、良好なコンポジット物性を示した。一方、比較例1では、二次乾燥温度が150℃と低かったため、二次乾燥後のエポキシ当量が低く、エポキシ当量変化率が十分でなかったため、十分なコンポジット物性が得られなかった。比較例2では、二次乾燥温度が250℃と高すぎたため、二次乾燥後のエポキシ当量が高く、エポキシ当量変化率が大きすぎたため、十分なコンポジット物性が得られなかった。比較例3では、一次乾燥温度が50℃と低すぎたため、一次乾燥が十分に行われず、目的の炭素繊維を得ることができなかった。比較例4では、一次乾燥温度が220℃と高すぎたため、サイズ剤の付着状態にムラが生じ、十分なコンポジット物性が得られなかった。比較例5では、サイズ剤の付着量が0.3重量%と低すぎたため、繊維と樹脂の接着性が十分でなく、十分なコンポジット物性が得られなかった。比較例6では、サイズ剤の付着量を3.0重量%である炭素繊維の製造を試みた。しかしサイズ剤付着量が高すぎたため、工程が不安定となり、目的の炭素繊維を得ることができなかった。 As can be seen from Table 1, Examples 1 to 3 showed good composite physical properties. On the other hand, in Comparative Example 1, since the secondary drying temperature was as low as 150 ° C., the epoxy equivalent after the secondary drying was low and the epoxy equivalent change rate was not sufficient, so that sufficient composite physical properties could not be obtained. In Comparative Example 2, since the secondary drying temperature was too high at 250 ° C., the epoxy equivalent after the secondary drying was high and the epoxy equivalent change rate was too large, so that sufficient composite physical properties could not be obtained. In Comparative Example 3, since the primary drying temperature was too low at 50 ° C., the primary drying was not sufficiently performed, and the target carbon fiber could not be obtained. In Comparative Example 4, since the primary drying temperature was too high at 220 ° C., the sizing agent adhered unevenly, and sufficient composite physical properties could not be obtained. In Comparative Example 5, the adhesion amount of the sizing agent was too low at 0.3% by weight, so that the adhesion between the fiber and the resin was not sufficient, and sufficient composite physical properties could not be obtained. In Comparative Example 6, an attempt was made to produce carbon fibers having a sizing agent deposition amount of 3.0% by weight. However, since the amount of sizing agent attached was too high, the process became unstable and the target carbon fiber could not be obtained.

[実施例4]
サイズ剤主成分のエポキシ樹脂成分を(EP828/EP1001=1:1.3、120℃での粘度:200mPa・s)とした以外は、実施例1と同様の方法で炭素繊維を得た。得られた炭素繊維のリングは破壊強度を表2に示した。
[Example 4]
Carbon fibers were obtained in the same manner as in Example 1 except that the epoxy resin component as the main component of the sizing agent was (EP828 / EP1001 = 1: 1.3, viscosity at 120 ° C .: 200 mPa · s). The obtained carbon fiber ring has the breaking strength shown in Table 2.

[比較例7]
サイズ剤主成分のエポキシ樹脂成分を(EP828/EP1001=1:1.5、120℃での粘度:250mPa・s)とした以外は、実施例1と同様の方法で炭素繊維を得た。得られた炭素繊維のリングは破壊強度を表2に示した。実施例4では良好なコンポジット物性を得ることができたが、比較例7では用いたサイズ剤の樹脂粘度が高すぎたため、十分なコンポジット物性を得ることができなかった。
[Comparative Example 7]
Carbon fibers were obtained in the same manner as in Example 1 except that the epoxy resin component as the main component of the sizing agent was (EP828 / EP1001 = 1: 1.5, viscosity at 120 ° C .: 250 mPa · s). The obtained carbon fiber ring has the breaking strength shown in Table 2. In Example 4, good composite physical properties could be obtained, but in Comparative Example 7, the resin viscosity of the sizing agent used was too high, so that sufficient composite physical properties could not be obtained.

Figure 2011226004
Figure 2011226004

Figure 2011226004
Figure 2011226004

Claims (3)

サイズ剤を含むサイズ浴に炭素繊維を浸漬し、その後乾燥して、炭素繊維にサイズ剤を付着するサイジング工程を含む炭素繊維の製造方法において、該サイジング工程として、サイズ浴に浸漬した後の炭素繊維を、80〜120℃の乾燥温度で30〜200秒一次乾燥させた後、さらに180〜230℃で30〜200秒二次乾燥させる2段乾燥処理を採用したことを特徴とする炭素繊維の製造方法。 In the carbon fiber manufacturing method including a sizing step in which carbon fiber is immersed in a size bath containing a sizing agent and then dried to attach the sizing agent to the carbon fiber, carbon after being immersed in the size bath as the sizing step The carbon fiber is characterized by adopting a two-stage drying process in which the fiber is primarily dried at a drying temperature of 80 to 120 ° C. for 30 to 200 seconds and then secondarily dried at 180 to 230 ° C. for 30 to 200 seconds. Production method. サイズ剤が、120℃での粘度が10〜200mPa・sのエポキシ樹脂を、主成分のサイズ剤樹脂として含むものであることを特徴とする請求項1記載の炭素繊維の製造方法。 2. The method for producing carbon fiber according to claim 1, wherein the sizing agent comprises an epoxy resin having a viscosity at 120 ° C. of 10 to 200 mPa · s as a sizing resin as a main component. 請求項1又は2記載の炭素繊維の製造方法によって得られる炭素繊維であって、サイズ剤の付着量が炭素繊維に対して0.5〜1.7重量%であり、下記式で表される二次乾燥後のサイズ剤のエポキシ当量変化率が1.2〜2.5であることを特徴とする炭素繊維。
エポキシ当量変化率=B/A
(Aは一次乾燥後のサイズ剤のエポキシ当量(当量/g)を、Bは二次乾燥後のサイズ剤のエポキシ当量(当量/g)を表す。)
A carbon fiber obtained by the method for producing carbon fiber according to claim 1 or 2, wherein the adhesion amount of the sizing agent is 0.5 to 1.7% by weight with respect to the carbon fiber, and is represented by the following formula: A carbon fiber, wherein the epoxy equivalent change rate of the sizing agent after secondary drying is 1.2 to 2.5.
Epoxy equivalent change rate = B / A
(A represents the epoxy equivalent (equivalent / g) of the sizing agent after primary drying, and B represents the epoxy equivalent (equivalent / g) of the sizing agent after secondary drying.)
JP2010094853A 2010-04-16 2010-04-16 Method for producing carbon fiber Pending JP2011226004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094853A JP2011226004A (en) 2010-04-16 2010-04-16 Method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094853A JP2011226004A (en) 2010-04-16 2010-04-16 Method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2011226004A true JP2011226004A (en) 2011-11-10

Family

ID=45041692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094853A Pending JP2011226004A (en) 2010-04-16 2010-04-16 Method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2011226004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122438A (en) * 2012-12-20 2014-07-03 Teijin Ltd Method for producing reinforcing carbon fiber bundle and carbon fiber composite material using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122438A (en) * 2012-12-20 2014-07-03 Teijin Ltd Method for producing reinforcing carbon fiber bundle and carbon fiber composite material using the same

Similar Documents

Publication Publication Date Title
KR20070009570A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
KR101770661B1 (en) Sizing agent-coated carbon fiber bundle, method for manufacturing same, prepreg, and carbon fiber-reinforced composite material
JPWO2007060833A1 (en) Carbon fiber bundles, prepregs and carbon fiber reinforced composite materials
JP2012207326A (en) Poly-para-phenylene terephthalamide fiber composite and method for producing the same
KR20150102939A (en) Fiber reinforced polymer composite with a hard interphase
JP6003224B2 (en) Composite reinforcing fiber bundle, method for producing the same, and molding material
JP2017119936A (en) Sizing agent coated carbon fiber, manufacturing method of sizing agent coated carbon fiber, prepreg and carbon fiber reinforced composite material
EP1500740A1 (en) Carbon fiber strand
JP2009242964A (en) Carbon fiber and method for producing the same
JP2016176168A (en) Cord for rubber reinforcement
JP2014189935A (en) Processing method for carbon fiber yarn
Song et al. Aramid fiber coated with aramid nanofiber coating to improve its interfacial properties with polycarbonate
JP5059579B2 (en) Sizing agent and sizing treated carbon fiber bundle
JP6394085B2 (en) Carbon fiber coated with sizing agent and production method thereof, prepreg and carbon fiber reinforced composite material
JP2014163000A (en) Carbon fiber bundle and carbon-fiber-reinforced composite material using the same
JP6136639B2 (en) Carbon fiber bundle and method for producing the same
JP2011226004A (en) Method for producing carbon fiber
JP6015027B2 (en) Sizing agent, carbon fiber bundle and method for producing carbon fiber bundle
JPH03185139A (en) Carbon yarn cord and production thereof
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JP2018059258A (en) Discontinuous carbon fiber base material, and method for producing the same
JP5582268B1 (en) Carbon fiber coated with sizing agent
JP2014162999A (en) Carbon fiber bundle and carbon-fiber-reinforced composite material using the same
JP2012214925A (en) Carbon fiber bundle, method for producing the same, and fiber-reinforced composite material
JP2011241503A (en) Method to manufacturing carbon fiber composite cord for reinforcement