JP2016068153A - Welding structure manufacturing method and welding structure - Google Patents

Welding structure manufacturing method and welding structure Download PDF

Info

Publication number
JP2016068153A
JP2016068153A JP2014203829A JP2014203829A JP2016068153A JP 2016068153 A JP2016068153 A JP 2016068153A JP 2014203829 A JP2014203829 A JP 2014203829A JP 2014203829 A JP2014203829 A JP 2014203829A JP 2016068153 A JP2016068153 A JP 2016068153A
Authority
JP
Japan
Prior art keywords
welding
metal plate
laser
flange
plastic strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014203829A
Other languages
Japanese (ja)
Other versions
JP6539972B2 (en
Inventor
庄太 菊池
Shota Kikuchi
庄太 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014203829A priority Critical patent/JP6539972B2/en
Publication of JP2016068153A publication Critical patent/JP2016068153A/en
Application granted granted Critical
Publication of JP6539972B2 publication Critical patent/JP6539972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding structure manufacturing method capable of making difficult the occurence of solidification cracking even when a flange width is smaller than that of spot welding regarding the manufacturing of a welding structure in which a metal plate member, for example, the flange of a hat-shaped member is stacked on the other metal plate member to be welded by laser.SOLUTION: The welding structure manufacturing method for stacking together a plurality of metal plate members to weld the stacked parts by laser is characterized in that for at least one of the stacked metal plate members, the initial residual plastic strain of the end of one side having a short distance from a line to an end surface among the parts of one side and the other side sandwiching the line which is a welding line is increased, and laser is applied along the line to carry out welding.SELECTED DRAWING: Figure 3

Description

本発明は、溶接構造体の製造方法及び溶接構造体に関する。より具体的には、金属板部材の重ね合わせ部をレーザ溶接して得られる溶接構造体の製造方法及び溶接構造体に関する。なお、「金属板部材」とは、金属板から所定形状に成形加工及び/又は切り出しされた部材の意味で用いる。   The present invention relates to a method for manufacturing a welded structure and a welded structure. More specifically, the present invention relates to a method for manufacturing a welded structure and a welded structure obtained by laser welding an overlapping portion of metal plate members. The “metal plate member” is used to mean a member formed and / or cut into a predetermined shape from a metal plate.

自動車には、金属板(代表的には鋼板であり、以下では鋼板として説明する。)から製造される金属板部材の1態様である断面ハット型の長尺の部材(以下、単に「ハット型部材」という。)が数多く使用されている。このようなハット型部材は、通常フランジで他の金属板部材である鋼板部材(例えばクロージングプレートや他のハット型部材等)と重ね合わされて、その重ね合わせ部で接合される。この場合の接合手段として最も一般的に用いられている方法は、抵抗スポット溶接(以下、スポット溶接という。)である。
最近は、スポット溶接に代えてレーザ溶接を適用することで、ハット型部材のフランジ幅を狭くして部材を軽量化する検討がなされている。具体的には次の通りである。
In an automobile, a long member having a cross-sectional hat shape (hereinafter simply referred to as a “hat type”), which is one embodiment of a metal plate member manufactured from a metal plate (typically, a steel plate and will be described below as a steel plate). A number of "members" are used. Such a hat-shaped member is usually overlapped with a steel plate member (for example, a closing plate or another hat-shaped member) that is another metal plate member by a flange, and is joined at the overlapping portion. The most commonly used method for joining in this case is resistance spot welding (hereinafter referred to as spot welding).
Recently, studies have been made to reduce the weight of the member by narrowing the flange width of the hat-shaped member by applying laser welding instead of spot welding. Specifically, it is as follows.

スポット溶接では、溶接部を電極で狭持及び加圧する必要がある。また溶接位置がフランジの端面に寄り過ぎると、溶融した金属の飛散(チリ)が発生する。そのため、スポット溶接ではフランジの幅を15mm以上程度の大きさで確保する必要がある。これに対してレーザ溶接によれば、スポット溶接のように加圧する必要はなく、溶融幅も1mm程度に抑えることができる。そのためレーザ溶接では、フランジの幅をより狭くできる可能性がある。   In spot welding, it is necessary to sandwich and pressurize the welded portion with an electrode. Further, if the welding position is too close to the end face of the flange, the molten metal is scattered (chile). Therefore, in spot welding, it is necessary to secure the width of the flange with a size of about 15 mm or more. On the other hand, according to laser welding, it is not necessary to apply pressure unlike spot welding, and the melt width can be suppressed to about 1 mm. Therefore, in laser welding, there is a possibility that the width of the flange can be made narrower.

しかしながら一般に、フランジの端面近く(概ね端面から10mm未満の領域)にレーザ溶接をすると、溶接部の凝固割れが発生するおそれが高くなる。従って、フランジの幅を短くしても凝固割れが発生しない溶接方法が求められている。
例えば「安藤弘平ら、「回転変形による高温割れの発生進展機構と高温割れ感受性の評価方法−薄板アルミニウム合金の高温割れ現象(第2報)−」、溶接学会誌、第42巻、第9号、pp.37−47(1973)」等によれば、溶接時の凝固割れは、溶融した金属が凝固する過程において、固相と液相が共存する延性が低下した部分である凝固脆性温度領域(Brittleness Temperature Range(BTR))内において、溶融熱で鋼板端部(ハット型部材では、フランジ)が変形することにより生じるひずみの増分が、割れ発生に要するひずみ(以下、「限界ひずみ」という)を超えることで生じる、と考えられる。これを鑑みると、凝固割れの防止方法として、溶接金属の成分適正化によるBTRの縮小や限界ひずみの制御、及び鋼板端部に発生するひずみの抑制が挙げられる。ところが、溶接金属の成分適正化によるBTRの縮小や限界ひずみの制御については、鋼板の材料自体を調整する必要がある。鋼板の材料自体の調整は、他の性能に影響を与えることもあるので、対策としては限界がある。
However, generally, when laser welding is performed near the end face of the flange (generally, an area less than 10 mm from the end face), there is a high risk of solidification cracking in the weld. Accordingly, there is a need for a welding method that does not cause solidification cracks even when the flange width is shortened.
For example, “Hirohira Ando,“ Evaluation Method for Hot Cracking Progression Mechanism and Hot Cracking Susceptibility by Rotational Deformation-Hot Cracking Phenomenon of Thin Aluminum Alloy (2nd Report) ”, Journal of Welding Society, Vol. 42, No. 9 Pp. 37-47 (1973) "indicates that solidification cracking during welding is a solidification brittle temperature region (Brittens Temperature region) in which the ductility in which a solid phase and a liquid phase coexist is reduced in the process of melting a molten metal. In the Range (BTR)), the increase in strain caused by the deformation of the steel plate edge (in the case of a hat-shaped member) by the heat of fusion exceeds the strain required for cracking (hereinafter referred to as “limit strain”). It is thought that it occurs in. In view of this, methods for preventing solidification cracking include reduction of BTR and control of limit strain by optimization of the components of the weld metal, and suppression of strain generated at the end of the steel plate. However, regarding the reduction of the BTR and the control of the limit strain by optimizing the components of the weld metal, it is necessary to adjust the material of the steel plate itself. The adjustment of the material of the steel sheet itself may affect other performances, so there is a limit as a countermeasure.

そこで、鋼板端部(フランジ)に発生するひずみを抑制することについてみると、例えば次のような技術が提案されている。   Therefore, for example, the following techniques have been proposed for suppressing the distortion generated at the end (flange) of the steel plate.

特許文献1、2には溶接金属の組成が割れを発生し得る場合に、レーザ光の照射位置の近傍の鋼板端部にプレートを押し当て、鋼板端部の膨張を抑制しながら溶接することにより凝固割れを防止する発明が開示されている。すなわち、冶具による拘束である。
しかしながら、このように冶具を用いると、溶接の際に鋼板端部の膨張を抑制する装置(冶具)を配置する必要があり、小さな部材や複雑な形状の部材の溶接部には用いることができないとともに、溶接の作業工数が増加して煩雑になってしまう。
In Patent Documents 1 and 2, when the composition of the weld metal can cause cracking, the plate is pressed against the steel plate end near the irradiation position of the laser beam, and welding is performed while suppressing the expansion of the steel plate end. An invention for preventing solidification cracking is disclosed. That is, it is restrained by a jig.
However, when a jig is used in this way, it is necessary to arrange a device (a jig) that suppresses expansion of the steel plate end during welding, and cannot be used for a welded portion of a small member or a member having a complicated shape. At the same time, the number of welding man-hours increases and becomes complicated.

また、特許文献2にはフランジ端面を冷却しつつ溶接する方法が開示されている。ここでは母材側と、母材側に対し高い温度となる端面側との熱膨張の差に起因して生じるひずみによって割れが発生すると考え、フランジ端面側の到達温度を低下させ板幅方向の膨張・収縮を抑えることでひずみの発生を抑制して割れ発生を防止する。
しかしながら、フランジ端面を冷却すると溶接線との温度差が大きくなり回転変形の駆動力が大きくなることで、溶接条件によってはひずみが大きくなり割れ発生を助長するおそれもある。さらには、この方法では上記と同様に冷却装置の配置に留意しなければならず、作業工数が増加するおそれがある。
Patent Document 2 discloses a method of welding while cooling the end face of the flange. Here, it is considered that cracking occurs due to the strain caused by the difference in thermal expansion between the base metal side and the end face side that is at a higher temperature than the base metal side, and the ultimate temperature on the flange end face side is lowered to reduce the plate width direction. By suppressing expansion and contraction, the generation of cracks is suppressed by suppressing the generation of strain.
However, when the flange end surface is cooled, the temperature difference from the weld line increases, and the rotational deformation driving force increases, so that depending on the welding conditions, distortion may increase and cracking may be promoted. Furthermore, in this method, it is necessary to pay attention to the arrangement of the cooling device in the same manner as described above, and there is a possibility that the number of work steps may increase.

特許文献3では、凝固割れの発生有無は端部からの距離(L)、溶接速度(V)、及び板厚(h)に依存していると説明している。しかしフランジ幅が小さい場合、溶接速度を大きくすることができず、当該特許文献3にはその解決策も明示されていない。   Patent Document 3 describes that the presence or absence of solidification cracking depends on the distance (L) from the end, the welding speed (V), and the plate thickness (h). However, when the flange width is small, the welding speed cannot be increased, and the solution is not clearly described in Patent Document 3.

特開2008−18450号公報JP 2008-18450 A 特開2009−56483号公報JP 2009-56483 A 特開2009−285722号公報JP 2009-285722 A

前述したように、凝固割れは、BTR内で生じるひずみの増分量がある閾値を超えたときに発生すると考えられる。ハット型部材フランジのレーザ溶接において、このBTR内のひずみ増分量に影響を与える主因子として以下2つがあると考えられる。   As described above, solidification cracking is considered to occur when the incremental amount of strain generated in the BTR exceeds a certain threshold. In laser welding of hat-shaped member flanges, it is considered that there are the following two main factors that affect the strain increment in the BTR.

(1)フランジ端面からの溶接位置の距離(フランジ幅)の大きさ等で決定される部材剛性:
フランジ幅が大きく、溶接位置がフランジ端から距離が大きいほど、剛性が高く、フランジの変形(回転変形)及びそれにより受けるひずみは抑制される。しかしながら、単にフランジ幅を大きくするのでは、前述したような部材の軽量化には反する。
(1) Member rigidity determined by the size of the distance (flange width) of the welding position from the flange end face:
The greater the flange width and the greater the distance from the flange end to the welding position, the higher the rigidity, and the deformation (rotational deformation) of the flange and the strain received thereby are suppressed. However, simply increasing the flange width is contrary to the weight reduction of the member as described above.

(2)入熱による板幅方向の温度分布:
鋼板の板幅方向に温度分布の不均一があるとき、回転変形の駆動力が働くことはよく知られているが、この回転変形が割れの原因となると考えられる。すなわち、図6(a)に示すように板1のAからBへ溶接を行うと、板幅方向に不均一な温度分布を生じるため、板1は溶融池Yの前方点Pを支点として矢印Cの方向に回転変形を生じる。溶接部の脆化領域の強度はきわめて小さいため、脆化領域部分の溶接金属はこの回転変形をほとんど抑制できない。この回転変形によって脆化領域部分に加えられるひずみ量が限界ひずみ量を超えるとき割れが発生する。その後溶接が進行すると、図6(b)に示すように溶融池Yも進行し、回転変形の支点もそれに追随して点P’に移動する。このとき、温度分布が準定常状態にあると、脆化領域部に加えられるひずみ量は時間的に一定と考えられ、この場合割れは図6(b)に示すように溶接線に沿って進展する。
一方、溶接速度が遅い場合は、板幅方向の温度分布は均一化しやすくなり回転変形の駆動力は小さくなる。しかし、単に溶接速度を下げるのでは、部材の生産性が悪くなり、板幅を小さくするのでは、剛性が落ちるため発生するひずみを抑制できず凝固割れが発生する可能性が高くなる。
(2) Temperature distribution in the plate width direction due to heat input:
It is well known that when the temperature distribution is non-uniform in the sheet width direction of the steel sheet, the driving force of rotational deformation works, but this rotational deformation is considered to cause cracking. That is, when welding from A to B of the plate 1 as shown in FIG. 6A, a non-uniform temperature distribution is generated in the plate width direction. Rotational deformation occurs in the direction of C. Since the strength of the embrittled region of the weld is extremely small, the weld metal in the embrittled region can hardly suppress this rotational deformation. Cracks occur when the amount of strain applied to the embrittled region due to this rotational deformation exceeds the limit strain. When welding proceeds thereafter, the weld pool Y also advances as shown in FIG. 6B, and the fulcrum of the rotational deformation follows the same and moves to the point P ′. At this time, if the temperature distribution is in a quasi-steady state, the amount of strain applied to the embrittled region is considered to be constant over time, and in this case, cracks propagate along the weld line as shown in FIG. To do.
On the other hand, when the welding speed is low, the temperature distribution in the plate width direction is easily uniformized, and the driving force for rotational deformation becomes small. However, if the welding speed is simply lowered, the productivity of the member is deteriorated, and if the plate width is reduced, the rigidity is lowered, so that the generated strain cannot be suppressed and the possibility of occurrence of solidification cracks increases.

そこで本発明は、上記問題に鑑み、金属板部材、例えばハット型部材のフランジを他の金属板部材と重ね合わせてレーザ溶接する溶接構造体を製造するにあたり、スポット溶接に比べてフランジ幅を小さくしても凝固割れが発生し難い溶接構造体の製造方法を提供することを課題とする。また、溶接構造体を提供する。   Therefore, in view of the above problems, the present invention reduces the flange width in comparison with spot welding when manufacturing a welded structure in which a metal plate member, for example, a flange of a hat-shaped member is overlapped with another metal plate member for laser welding. It is an object of the present invention to provide a method for manufacturing a welded structure that hardly causes solidification cracks. A welded structure is also provided.

本発明は、次の通りである。 The present invention is as follows.

請求項1に記載の発明は、複数の金属板部材を重ね合わせて当該重ね合わせ部でレーザ溶接する、溶接構造体の製造方法であって、重ね合わせた金属板部材のうち少なくとも1つの金属板部材について、溶接線となるべき線を挟んで一方側と他方側の部位のうち、前記線から端面までの距離が短い一方側の部位の端部の初期残留塑性ひずみを増大させ、前記線に沿ってレーザを照射して溶接を行う、鋼板のレーザ溶接方法である。   The invention according to claim 1 is a method of manufacturing a welded structure in which a plurality of metal plate members are overlapped and laser-welded at the overlapped portion, and at least one metal plate among the overlapped metal plate members About the member, increase the initial residual plastic strain at the end of the one side part where the distance from the line to the end surface is short among the parts on one side and the other side across the line to be the welding line, This is a method of laser welding of steel plates, in which welding is performed by irradiating a laser along.

請求項2に記載の発明は、請求項1に記載の鋼板のレーザ溶接方法において、他方側の部位の初期残留塑性ひずみも増大させる。   The invention according to claim 2 increases the initial residual plastic strain of the other side part in the laser welding method of the steel sheet according to claim 1.

請求項3に記載の発明は、請求項1又は2に記載の鋼板のレーザ溶接方法において、初期残留塑性ひずみを増大させる部位は、初期残留塑性ひずみを増大させない部位に対して20%以上残留ひずみを増大させる。   According to a third aspect of the present invention, in the laser welding method for a steel sheet according to the first or second aspect, the portion that increases the initial residual plastic strain is 20% or more of the residual strain that does not increase the initial residual plastic strain. Increase.

請求項4に記載の発明は、請求項1乃至3のいずれかに記載の鋼板のレーザ溶接方法によりレーザ溶接する工程を含み、金属板部材の少なくとも一つは断面がハット型の長尺の部材であり、当該部材のフランジの端部の初期残留塑性ひずみを増大させ、フランジと他の金属板部材とを重ね合わせてレーザ溶接する、溶接構造体の製造方法である。   Invention of Claim 4 includes the process of carrying out laser welding by the laser welding method of the steel plate in any one of Claim 1 thru | or 3, At least one of the metal plate members is a long member whose section is a hat type In this method, the initial residual plastic strain at the end of the flange of the member is increased, and the flange and the other metal plate member are overlapped and laser welded.

請求項5に記載の発明は、請求項4の溶接構造体の製造方法において、初期残留塑性ひずみを増大させた範囲から10mm以下の領域に、フランジの長手方向に沿って溶接線を形成する。   According to a fifth aspect of the present invention, in the method for manufacturing a welded structure according to the fourth aspect, a weld line is formed along the longitudinal direction of the flange in a region of 10 mm or less from the range in which the initial residual plastic strain is increased.

請求項6に記載の発明は、複数の金属板部材が重ね合わされて当該重ね合わせ部でレーザ溶接された、溶接構造体であって、重ね合わされた金属板部材の少なくとも1つの金属板部材について、溶接線を挟んで一方側と他方側の部位のうち、溶接線から端面までの距離が短い一方側の部位の端部が他の平坦な部位に比べて初期残留塑性ひずみが大きい、溶接構造体である。   The invention according to claim 6 is a welded structure in which a plurality of metal plate members are overlapped and laser-welded at the overlapped portion, and at least one metal plate member of the overlapped metal plate members, A welded structure in which the initial residual plastic strain is larger at the end of one side of the one side and the other side across the weld line than the other flat part where the distance from the weld line to the end surface is short It is.

請求項7に記載の発明は、請求項6に記載の溶接構造体において、金属板部材の少なくとも一つは断面がハット型の長尺の部材であり、当該部材のフランジと他の金属板部材とが重ね合わされてレーザ溶接されている。   According to a seventh aspect of the present invention, in the welded structure according to the sixth aspect, at least one of the metal plate members is a long member having a hat-shaped cross section, and the flange of the member and another metal plate member Are superimposed and laser welded.

本発明によれば、金属板部材、例えばハット型部材のフランジを他の金属板部材と重ね合わせてレーザ溶接した溶接構造体を製造するにあたり、スポット溶接に比べてフランジ幅を小さくしても、凝固割れの発生を抑制することができる。   According to the present invention, in manufacturing a welded structure in which a metal plate member, for example, a flange of a hat-shaped member is overlapped with another metal plate member and laser-welded, even if the flange width is reduced compared to spot welding, The occurrence of solidification cracks can be suppressed.

ハット型溶接構造体10の概要を示す外観斜視図である。1 is an external perspective view showing an outline of a hat-type welded structure 10. FIG. フランジ11c及び溶接部13の一部を拡大して表した図である。It is the figure which expanded and represented a part of flange 11c and the welding part 13. FIG. 溶接方法の過程の一場面を説明する図である。It is a figure explaining one scene of the process of a welding method. 溶接の一場面を説明する図である。It is a figure explaining one scene of welding. 実施例による評価方法を説明する図である。It is a figure explaining the evaluation method by an Example. 図6(a)は凝固割れ発生のメカニズムを模式的に示す1つの説明図、図6(b)は凝固割れ発生のメカニズムを模式的に示す他の説明図である。FIG. 6A is one explanatory diagram schematically showing the mechanism of solidification cracking, and FIG. 6B is another explanatory diagram schematically showing the mechanism of solidification cracking.

図1は第一の形態を説明する図であり、本発明の溶接構造体の製造方法により得られる溶接構造体の一形態であるハット型溶接構造体10の外観を表す斜視図である。図2はフランジ11cの一部を拡大して表した図である。図1、図2には幅方向、長手方向、及び高さ方向が必要に応じて併せて示してある。   FIG. 1 is a diagram for explaining a first embodiment, and is a perspective view showing an appearance of a hat-type welded structure 10 which is one form of a welded structure obtained by the method for manufacturing a welded structure of the present invention. FIG. 2 is an enlarged view of a part of the flange 11c. In FIG. 1 and FIG. 2, the width direction, the longitudinal direction, and the height direction are shown together as necessary.

ハット型溶接構造体10は、ハット型部材11及びクロージングプレート12を有して構成されている。
ハット型部材11は、鋼板から形成されており金属板部材の1つである。ハット型部材11は、その長手方向に直交する断面においてウェブ片11a、ウェブ片11aの両端から延びる壁片11b、及び壁片11bの端部に設けられるフランジ11cを有していわゆるハット型に形成されている。そしてフランジ11cには、その幅方向端部に、初期残留塑性ひずみが他の部位(平坦部)より大きい(増大させている。)、初期残留塑性ひずみ増大部11dが配置されている(図2ではハッチングで示している部分。)。
ここで「残留塑性ひずみ」とは、材料に外力(荷重)を加えていない状態において材料中に残留している塑性ひずみを意味し、「初期残留塑性ひずみ」は、残留塑性ひずみのうち溶接前に存在する残留塑性ひずみである。
The hat-type welded structure 10 includes a hat-type member 11 and a closing plate 12.
The hat-shaped member 11 is formed of a steel plate and is one of metal plate members. The hat-shaped member 11 has a web piece 11a, a wall piece 11b extending from both ends of the web piece 11a, and a flange 11c provided at the end of the wall piece 11b in a cross section orthogonal to the longitudinal direction, and is formed into a so-called hat shape. Has been. Further, the flange 11c is provided with an initial residual plastic strain increasing portion 11d whose initial residual plastic strain is greater (increased) than other portions (flat portions) at the end in the width direction (FIG. 2). (The part shown by hatching.)
Here, “residual plastic strain” means the plastic strain remaining in the material when no external force (load) is applied to the material, and “initial residual plastic strain” is the residual plastic strain before welding. Is the residual plastic strain present in

初期残留ひずみ増大部11dは、初期残留ひずみを増大させていない他の部位に比べて初期残留ひずみの量が20%以上大きくされていることが好ましい。これにより本発明による効果をより確実なものとすることができる。また初期残留塑性ひずみ増大量は大きいほど効果が高まるのでその上限は特に限定されることはないが、高すぎると材料に破断が生じることがあるので、用いられる材料により当該破断が生じないことが初期残留塑性ひずみ増大の上限となる。
また、初期残留ひずみ増大部11dは、後述する溶接部13からフランジ11cの端部までの幅方向距離(図2のIIaの大きさ)を100%としたとき、初期残留塑性ひずみ増大部11dがそのうちの60%以上100%以下の範囲で占めることが好ましい。
ここで残留塑性ひずみは公知の方法で測定して特定することができる。これには例えば硬さ測定法、X線回折法が挙げられる。硬さ測定法の場合には予め硬さと残留塑性ひずみとの関係を得ておき、この関係に基づいて残留塑性ひずみを特定する。硬さ測定の種類は特に限定されることなく例えばビッカース硬さ測定、ブリネル硬さ測定、及びロックウェル硬さ測定等を挙げることができる。
In the initial residual strain increasing portion 11d, it is preferable that the amount of the initial residual strain is increased by 20% or more compared to other portions where the initial residual strain is not increased. Thereby, the effect by this invention can be made more reliable. In addition, since the effect increases as the initial residual plastic strain increase increases, the upper limit is not particularly limited, but if it is too high, the material may break, so the material used may not cause the break. This is the upper limit for increasing the initial residual plastic strain.
Further, the initial residual strain increasing portion 11d has an initial residual plastic strain increasing portion 11d when the distance in the width direction (the size of IIa in FIG. 2) from a welded portion 13 described later to the end of the flange 11c is 100%. It is preferable to occupy in the range of 60% or more and 100% or less.
Here, the residual plastic strain can be specified by measurement by a known method. This includes, for example, hardness measurement method and X-ray diffraction method. In the case of the hardness measurement method, a relationship between hardness and residual plastic strain is obtained in advance, and the residual plastic strain is specified based on this relationship. The kind of hardness measurement is not particularly limited, and examples thereof include Vickers hardness measurement, Brinell hardness measurement, and Rockwell hardness measurement.

ハット型部材11は、実際の用途に応じて、長手方向にまっすぐである場合もあれば、カーブしていたり、断面が拡がったり狭まったりしている等の場合もある。   Depending on the actual application, the hat-shaped member 11 may be straight in the longitudinal direction, or may be curved, or the cross-section may be widened or narrowed.

一方、クロージングプレート12は、金属板部材の1つであり、上記初期残留塑性ひずみ増大部11dに重なるような略平滑な鋼板である。またクロージングプレート12の幅方向端部もハット型部材11の例に倣って、幅方向端部の初期残留塑性ひずみが他の平坦である部位より大きくされ、初期残留塑性ひずみ増大部11dの一部として構成されていることが好ましい。   On the other hand, the closing plate 12 is one of metal plate members, and is a substantially smooth steel plate that overlaps the initial residual plastic strain increasing portion 11d. Further, the width direction end portion of the closing plate 12 is also made to have a larger initial residual plastic strain at the width direction end portion than other flat portions in accordance with the example of the hat-shaped member 11, and a part of the initial residual plastic strain increasing portion 11d. It is preferable that it is comprised as.

そして、ハット型部材11のうち2つのフランジ11c間を渡し、ハット型部材11の初期残留塑性ひずみ増大部11dと重なるようにクロージングプレート12が配置され、該クロージングプレート12とフランジ11cとが重ねられている。当該重なった部分のうち、初期残留塑性ひずみ増大部11dよりも内側(端面とは反対側)に溶接部13が設けられており、該溶接部13で両者が接合されている。本形態で溶接部13は、フランジ11c及びクロージングプレート12を板厚方向に貫通した貫通溶接による溶接部とされている。
溶接部13はレーザ溶接により形成されており、フランジ11cの長手方向に沿って延びている。本発明は溶接部13を形成するための溶接方法において、図2にIIaで示したフランジ11cの端部から溶接部13までの距離を従来のレーザ溶接に対して短くしつつ速い速度で溶接しても割れを抑制することができ、その結果、図2にIIbで示したフランジ11cの幅をスポット溶接の場合よりも小さくすることが可能となる。特に限定されることはないが、図2に示したようにフランジ11cの幅IIbを15mm以下程度に、初期残留塑性ひずみ増大部11dを除けば10mm以下程度に抑えることが可能となる。
Then, the closing plate 12 is disposed so as to pass between the two flanges 11c of the hat-shaped member 11 and overlap the initial residual plastic strain increasing portion 11d of the hat-shaped member 11, and the closing plate 12 and the flange 11c are overlapped. ing. Among the overlapped portions, a welded portion 13 is provided on the inner side (opposite to the end face) of the initial residual plastic strain increasing portion 11d, and both are joined by the welded portion 13. In this embodiment, the welded portion 13 is a welded portion by penetration welding that penetrates the flange 11c and the closing plate 12 in the plate thickness direction.
The welded portion 13 is formed by laser welding and extends along the longitudinal direction of the flange 11c. The present invention is a welding method for forming the welded portion 13 and is welded at a high speed while shortening the distance from the end of the flange 11c shown by IIa in FIG. 2 to the welded portion 13 as compared with the conventional laser welding. However, cracking can be suppressed, and as a result, the width of the flange 11c shown by IIb in FIG. 2 can be made smaller than in the case of spot welding. Although not particularly limited, as shown in FIG. 2, the width IIb of the flange 11c can be suppressed to about 15 mm or less, and can be suppressed to about 10 mm or less except for the initial residual plastic strain increasing portion 11d.

ここで、ハット型部材11に使用される鋼板は特に限定されるものではなく、重ね合わせてレーザ溶接できる程度の組成、板厚であれば特に制限はない。例えば0.5mm以上3.2mm以下の厚さであることが好ましい。また、表面に亜鉛系めっきたアルミニウム系めっきを備えていてもよい。また、鋼板ではなく、例えばアルミニウム合金板等の別の金属板を使用することもできる。
また、ハット型部材11の形状は、実際の用途に応じて、長手方向にまっすぐであるものもあればカーブしているものもあり、あるいは断面形状が長手方向に変化しているものもあるが、本発明はそのいずれにも適用してよい。また、クロージングプレート12に代えて、他のハット型部材やその他の形状の金属板部材と溶接してもよい。あるいは、3つ以上の金属板部材を重ね合わせて溶接されるような溶接構造体にも適用できる。
Here, the steel plate used for the hat-shaped member 11 is not particularly limited, and is not particularly limited as long as it has a composition and a thickness that can be overlapped and laser-welded. For example, the thickness is preferably 0.5 mm or more and 3.2 mm or less. Moreover, you may equip the surface with the aluminum type plating which carried out the zinc type plating. Further, instead of a steel plate, another metal plate such as an aluminum alloy plate can be used.
Depending on the actual application, the shape of the hat-shaped member 11 may be straight in the longitudinal direction, may be curved, or may have a cross-sectional shape changing in the longitudinal direction. The present invention may be applied to any of them. Moreover, it may replace with the closing plate 12 and may weld with another hat-type member and other shape metal plate members. Or it is applicable also to the welding structure which piles up and welds three or more metal plate members.

次に上記のようなハット型溶接構造体10は例えばつぎのように作製することができる。図3に説明のための図を示した。図3は図1と同じ視点による図で、幅方向、長手方向、及び高さ方向が併せて示してある。   Next, the hat-type welded structure 10 as described above can be manufactured, for example, as follows. FIG. 3 shows an explanatory diagram. FIG. 3 is a view from the same viewpoint as FIG. 1, and shows the width direction, the longitudinal direction, and the height direction together.

初めに溶接用ハット型部材11’を準備する。溶接用ハット型部材11’は上記したハット型部材11に対して、まだ溶接部13が形成されていない部材である。ここで溶接用ハット型部材11’には初期残留塑性ひずみ増大部11dが形成されている。初期残留塑性ひずみ増大部11dの形成方法は特に限定されることなく、上記説明した位置およびひずみ量で形成できればよいが、例えば鍛造、ピーニング、圧延等の冷間加工を行い加工硬化をさせることで残留塑性ひずみ量を増大させる方法を挙げることができる。   First, a hat-shaped member 11 'for welding is prepared. The welding hat-type member 11 ′ is a member in which the welded portion 13 is not yet formed with respect to the hat-type member 11 described above. Here, an initial residual plastic strain increasing portion 11d is formed in the welding hat-shaped member 11 '. The formation method of the initial residual plastic strain increasing portion 11d is not particularly limited as long as it can be formed at the above-described position and strain amount. For example, by cold working such as forging, peening, rolling, and the like, work hardening is performed. A method for increasing the residual plastic strain amount can be mentioned.

以上のような溶接用ハット型部材11’に対して、図3に示したように溶接用ハット型パネル11’のうち2つのフランジ11c間を渡すようにクロージングプレート12が配置され、該クロージングプレート12とフランジ11cが重ねられ、これにより初期残留塑性ひずみ増大部11dとクロージングプレート12の端部(本形態ではクロージングプレート12の端部で初期残留塑性ひずみが増大させられた部位)とが重ねられる。   As shown in FIG. 3, the closing plate 12 is disposed so as to pass between the two flanges 11c of the welding hat panel 11 ′ as shown in FIG. 12 and the flange 11c are overlapped, whereby the initial residual plastic strain increasing portion 11d and the end of the closing plate 12 (in this embodiment, the portion where the initial residual plastic strain is increased at the end of the closing plate 12) are overlapped. .

次に、図4に示したように、フランジ11c及びここに重ねられたクロージングプレート12をその板厚方向に貫通するように溶接する。すなわち、レーザを照射して、当該照射した部位を図4に矢印IVaで示したように長手方向に移動させて溶接を行う。溶接をする装置としては、公知のレーザ溶接装置を挙げることができる。レーザの種類は通常に鋼板のレーザ溶接に用いられるレーザであれば、特に限定されることはなく、これには例えばCOレーザ、YAGレーザ、ファイバーレーザなどがある。なお、レーザ溶接におけるスポット径(レーザの鋼板への照射径)も特に限定されないが、0.5mm以上1.0mm以下が好ましく、得られる溶接部幅は約1mmであることが通常である。 Next, as shown in FIG. 4, the flange 11c and the closing plate 12 stacked on the flange 11c are welded so as to penetrate in the thickness direction. That is, laser irradiation is performed, and the irradiated portion is moved in the longitudinal direction as indicated by an arrow IVa in FIG. 4 to perform welding. A known laser welding apparatus can be used as an apparatus for welding. The type of laser is not particularly limited as long as it is a laser that is usually used for laser welding of a steel plate, and examples thereof include a CO 2 laser, a YAG laser, and a fiber laser. In addition, the spot diameter (laser irradiation diameter of the steel plate) in laser welding is not particularly limited, but is preferably 0.5 mm or more and 1.0 mm or less, and the obtained weld width is usually about 1 mm.

以上のような溶接方法であれば、鋼板の回転変形を抑制することができ、鋼板を拘束したり治具を接触させたりする必要がないため容易に溶接を行える。さらには、例えば端面からの距離が小さい部位において溶接速度を大きくしても凝固割れを抑制することもできる。   With the above welding method, the rotational deformation of the steel sheet can be suppressed, and it is not necessary to restrain the steel sheet or to contact the jig, so that welding can be easily performed. Further, for example, solidification cracking can be suppressed even when the welding speed is increased at a portion where the distance from the end face is small.

なお、本形態ではハット型溶接構造体であったため、溶接線(溶接部13)を挟んでフランジ11cの端部とは反対側には壁片11bが形成されており、これが初期残留塑性ひずみ増大部と同様の機能(鋼板の回転変形を抑制)をする。従って、ハット型溶接構造体でない形態、又はハット型溶接構造体であっても、場合によっては溶接線を挟んでその両方の端部に初期残留塑性ひずみ増大部を設けてもよい。ただしこれに限らず、溶接線で区切られる一方及び他方の部位のうち、少なくとも端面までの距離が短い側の部位の端部に初期残留塑性ひずみ増大部が形成されていればよい。   In this embodiment, since it is a hat-type welded structure, a wall piece 11b is formed on the opposite side of the end of the flange 11c across the weld line (welded portion 13), which increases the initial residual plastic strain. The same function as the part (suppresses rotational deformation of the steel sheet). Therefore, even if it is a form which is not a hat-type welded structure or a hat-type welded structure, an initial residual plastic strain increasing part may be provided at both ends of the weld line depending on circumstances. However, the present invention is not limited to this, and it is only necessary that the initial residual plastic strain increasing portion is formed at the end of the portion on the side where the distance to the end face is short among the one and the other portions delimited by the weld line.

これ以外の本発明の形態としては、凝固割れが防止できる範囲で、重ね合わせ端部において全ての部材に対して初期残留塑性ひずみが増大されている必要は必ずしもない。例えば、重ね合わされる一方の金属板部材の幅が十分に広い場合や、凝固割れを生じにくい鋼成分である場合等が想定される。   As a form of the present invention other than this, it is not always necessary that the initial residual plastic strain is increased with respect to all the members at the overlapping end portion within a range in which solidification cracking can be prevented. For example, the case where the width | variety of one metal plate member overlaid is sufficiently wide, or the case where it is a steel component which hardly produces a solidification crack, etc. are assumed.

実施例では、通常の溶接方法で凝固割れが発生した条件に対して、初期残留塑性ひずみ増大部を形成して溶接を行い、凝固割れの発生の有無について評価を行った。本実施例は1枚の鋼板に対してレーザを照射して評価を行ったので厳密には溶接とは異なるが、この評価は複数の金属板部材を重ねた際の溶接に対しても展開することが可能である。実施例では図5に表したように1枚の1mm厚の鋼板30に対して後に説明するように他の平坦部に比べて20%〜30%ひずみが高い初期残留塑性ひずみ増大部31を形成した。そしてレーザ溶接を想定したレーザ光照射による加熱部が通過した部位に凝固割れが発生するか否かを評価した。   In the examples, the initial residual plastic strain increasing portion was formed and welded to the conditions under which solidification cracks were generated by a normal welding method, and the presence or absence of the occurrence of solidification cracks was evaluated. In this example, evaluation was performed by irradiating a single steel plate with a laser. Therefore, although strictly different from welding, this evaluation is also applied to welding when a plurality of metal plate members are stacked. It is possible. In the embodiment, as shown in FIG. 5, an initial residual plastic strain increasing portion 31 having a strain of 20% to 30% higher than other flat portions is formed on a single 1 mm-thick steel plate 30 as described later. did. Then, it was evaluated whether or not solidification cracking occurred at a site through which a heating part by laser light irradiation assuming laser welding passed.

加熱はレーザ溶接機から出射されるレーザにより行い、その照射部分は鋼板30の端面から6mmの位置を端面と平行に移動させた。移動速度は10mm/sである。
初期残留塑性ひずみ増大部31は、図2に示した形状とし、他の部位に比べて端部から4mmの範囲に形成した。より詳細には、端部から2mm幅の領域で初期残留ひずみが30%高く、残り2mm幅の領域で初期残留ひずみが20%高くなる初期残留塑性ひずみ増大部とした。
一方、比較例は実施例と同形状としつつ、初期残留塑性ひずみ増大部を形成しなかった。
Heating was performed by a laser emitted from a laser welding machine, and the irradiated portion was moved 6 mm from the end face of the steel plate 30 in parallel with the end face. The moving speed is 10 mm / s.
The initial residual plastic strain increasing portion 31 has the shape shown in FIG. 2 and is formed in a range of 4 mm from the end portion as compared with other portions. More specifically, an initial residual plastic strain increasing portion in which the initial residual strain is 30% higher in the region 2 mm wide from the end and the initial residual strain is 20% higher in the remaining 2 mm wide region.
On the other hand, the comparative example had the same shape as the example, but the initial residual plastic strain increasing portion was not formed.

その結果、比較例では加熱部が通過した部分に断続的な割れ(凝固割れ)が発生した。これに対して実施例では割れが発生しなかった。このように端部に初期残留塑性ひずみを増大させて(付与して)レーザ溶接をすることにより割れを抑制できることがわかった。   As a result, in the comparative example, intermittent cracks (solidification cracks) occurred in the part through which the heating unit passed. In contrast, no cracks occurred in the examples. Thus, it was found that cracking can be suppressed by increasing (applying) the initial residual plastic strain to the end portion and performing laser welding.

10 ハット型溶接構造体(溶接構造体)
11 ハット型部材(金属板部材)
11c フランジ
11d 初期残留塑性ひずみ増大部
12 クロージングプレート(金属板部材)
13 溶接部
10 Hat-type welded structure (welded structure)
11 Hat-shaped member (metal plate member)
11c Flange 11d Initial residual plastic strain increasing part 12 Closing plate (metal plate member)
13 Welded part

Claims (7)

複数の金属板部材を重ね合わせて当該重ね合わせ部でレーザ溶接する、溶接構造体の製造方法であって、
前記重ね合わせた金属板部材のうち少なくとも1つの金属板部材について、溶接線となるべき線を挟んで一方側と他方側の部位のうち、前記線から端面までの距離が短い一方側の部位の端部の初期残留塑性ひずみを増大させ、前記線に沿ってレーザを照射して溶接を行う、鋼板のレーザ溶接方法。
A method for manufacturing a welded structure in which a plurality of metal plate members are overlapped and laser welded at the overlapped portion,
Of at least one metal plate member among the stacked metal plate members, one of the portions on one side where the distance from the line to the end surface is short among the portions on one side and the other side across the line to be a welding line. A method for laser welding of steel plates, wherein welding is performed by increasing the initial residual plastic strain at an end and irradiating a laser along the line.
前記他方側の部位の初期残留塑性ひずみも増大させる、請求項1に記載の鋼板のレーザ溶接方法。   The method of laser welding a steel sheet according to claim 1, wherein the initial residual plastic strain at the other side portion is also increased. 前記初期残留塑性ひずみを増大させる部位は、初期残留塑性ひずみを増大させない部位に対して20%以上残留ひずみを増大させる請求項1又は2に記載の鋼板のレーザ溶接方法。   The method of laser welding a steel sheet according to claim 1 or 2, wherein the portion that increases the initial residual plastic strain increases the residual strain by 20% or more relative to the portion that does not increase the initial residual plastic strain. 請求項1乃至3のいずれかに記載の鋼板のレーザ溶接方法によりレーザ溶接する工程を含み、前記金属板部材の少なくとも一つは断面がハット型の長尺の部材であり、当該部材のフランジの端部の初期残留塑性ひずみを増大させ、前記フランジと他の金属板部材とを重ね合わせてレーザ溶接する、溶接構造体の製造方法。   A step of laser welding by the laser welding method for a steel sheet according to any one of claims 1 to 3, wherein at least one of the metal plate members is a long member having a hat-shaped cross section, and a flange of the member is formed. A method for manufacturing a welded structure, wherein an initial residual plastic strain at an end is increased, and the flange and another metal plate member are overlapped and laser-welded. 前記初期残留塑性ひずみを増大させた範囲から10mm以下の領域に、フランジの長手方向に沿って前記溶接線を形成する、請求項4の溶接構造体の製造方法。   The method for manufacturing a welded structure according to claim 4, wherein the weld line is formed along the longitudinal direction of the flange in a region of 10 mm or less from the range in which the initial residual plastic strain is increased. 複数の金属板部材が重ね合わされて当該重ね合わせ部でレーザ溶接された、溶接構造体であって、前記重ね合わされた金属板部材の少なくとも1つの金属板部材について、溶接線を挟んで一方側と他方側の部位のうち、前記溶接線から端面までの距離が短い一方側の部位の端部が他の平坦な部位に比べて初期残留塑性ひずみが大きい、溶接構造体。   A welded structure in which a plurality of metal plate members are overlapped and laser-welded at the overlapping portion, and at least one metal plate member of the overlapped metal plate members is sandwiched between one side and a welding line The welded structure in which the initial residual plastic strain is larger at the end of the one side portion where the distance from the weld line to the end face is shorter than the other flat portion among the other side portions. 前記金属板部材の少なくとも一つは断面がハット型の長尺の部材であり、当該部材のフランジと他の金属板部材とが重ね合わされてレーザ溶接されている、請求項6に記載の溶接構造体。   The welding structure according to claim 6, wherein at least one of the metal plate members is a long member having a hat-shaped cross section, and a flange of the member and another metal plate member are overlapped and laser-welded. body.
JP2014203829A 2014-10-02 2014-10-02 Laser welding method of steel plate and manufacturing method of welded structure Active JP6539972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203829A JP6539972B2 (en) 2014-10-02 2014-10-02 Laser welding method of steel plate and manufacturing method of welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014203829A JP6539972B2 (en) 2014-10-02 2014-10-02 Laser welding method of steel plate and manufacturing method of welded structure

Publications (2)

Publication Number Publication Date
JP2016068153A true JP2016068153A (en) 2016-05-09
JP6539972B2 JP6539972B2 (en) 2019-07-10

Family

ID=55863555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203829A Active JP6539972B2 (en) 2014-10-02 2014-10-02 Laser welding method of steel plate and manufacturing method of welded structure

Country Status (1)

Country Link
JP (1) JP6539972B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229740A (en) * 2006-02-28 2007-09-13 Nippon Steel Corp Overlap laser welding method
JP2009056483A (en) * 2007-08-31 2009-03-19 Sumitomo Metal Ind Ltd Lap laser welding method and laser welded product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229740A (en) * 2006-02-28 2007-09-13 Nippon Steel Corp Overlap laser welding method
JP2009056483A (en) * 2007-08-31 2009-03-19 Sumitomo Metal Ind Ltd Lap laser welding method and laser welded product

Also Published As

Publication number Publication date
JP6539972B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6179605B2 (en) Lap welding method, lap joint, lap joint manufacturing method, and automotive parts
JP6515299B2 (en) Fillet arc welded joint and method of manufacturing the same
JP2015171731A (en) Method for welding overlapped part, method for manufacturing lap weld member, lap weld member, and component for automobile
JP2010023047A (en) Laser beam welding method for thin plate
JP2010012504A (en) Laser beam welding structural member and its manufacturing method
WO2018061526A1 (en) Method of manufacturing laser welded joint, laser welded joint, and automotive frame component
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP4841970B2 (en) Lap laser welding method
JP6729192B2 (en) Welded joint and manufacturing method thereof
JP6260421B2 (en) Manufacturing method of welded structure
JP5730139B2 (en) Butt welding method for steel
JP4854327B2 (en) Lap laser welding method
JP6794641B2 (en) Welded structure manufacturing method
WO2018003341A1 (en) Laser welded joint and method for manufacturing laser welded joint
JP5369393B2 (en) Forming material welding method and laser welding apparatus using high-strength steel sheet, forming material, processing method and molded product obtained thereby
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP5527346B2 (en) Method of welding forming material using high-strength steel sheet, forming material and processing method and molded product obtained thereby
JP6409397B2 (en) Welded structure manufacturing method and welded structure
JP2016068153A (en) Welding structure manufacturing method and welding structure
JP2015205286A (en) Method for production of welded structure, and the welded structure
KR102407608B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint and skeletal parts for automobiles
US20210025417A1 (en) Sheet metal assembly with conditioned weld joint
JP4016911B2 (en) Laser welding method of high strength steel
JP5073526B2 (en) Laser welding method for structural members
Zhang Developments in multi-pass laser welding technology with filler wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R151 Written notification of patent or utility model registration

Ref document number: 6539972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151