JP2016066426A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016066426A
JP2016066426A JP2014193187A JP2014193187A JP2016066426A JP 2016066426 A JP2016066426 A JP 2016066426A JP 2014193187 A JP2014193187 A JP 2014193187A JP 2014193187 A JP2014193187 A JP 2014193187A JP 2016066426 A JP2016066426 A JP 2016066426A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014193187A
Other languages
Japanese (ja)
Inventor
小山 裕
Yutaka Koyama
裕 小山
哲也 早稲田
Tetsuya Waseda
哲也 早稲田
藤田 秀明
Hideaki Fujita
秀明 藤田
章浩 落合
Akihiro Ochiai
章浩 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014193187A priority Critical patent/JP2016066426A/en
Publication of JP2016066426A publication Critical patent/JP2016066426A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a wound type electrode body, in which the increase in internal resistance of the battery can be suppressed by suppressing the appearance of unevenness in salt concentration of a nonaqueous electrolyte in the electrode body during a high-rate discharge cycle test.SOLUTION: A nonaqueous electrolyte secondary battery 1 comprises: a wound type electrode body 20 in which a negative electrode plate 31 has a negative electrode active material layer 33 including flat graphite particles 35. The negative electrode active material layer 33 has a plurality of oriented parts 33a of which the X-ray diffraction intensity ratio I(110)/I(002) of the graphite particles 35 is 0.04 or more, and at least one of which is oriented part formed in an inside portion 33g; and a plurality of non-oriented parts 33b of which the X-ray diffraction intensity ratio I(110)/I(002) is 0.02 or less and which form portions other than the oriented parts 33a.SELECTED DRAWING: Figure 5

Description

本発明は、各々帯状をなす正極板及び負極板をセパレータを介して捲回した捲回型の電極体を備える非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery including a wound electrode body in which a positive electrode plate and a negative electrode plate each having a belt shape are wound through a separator.

従来より、各々帯状をなす正極板及び負極板をセパレータを介して捲回した捲回型の電極体を備える非水電解液二次電池(以下、単に電池とも言う)が知られている。この電池では、例えばハイブリッド自動車や電気自動車等の車両に搭載することを考慮して、ハイレートで短時間の放電とそれよりもローレートで時間の長い充電とを繰り返し行うハイレート放電サイクル試験を行うと、内部抵抗が大きく増加する。その理由は、ハイレート放電で膨張した電極体の内部に保持されていた非水電解液が、電極体の軸線方向の両端から電極体外部に流出する。この際、放電により一時的に塩濃度が高くなった非水電解液が電極体外部に流出するので、電極体内部の非水電解液の塩濃度が徐々に低くなるからと考えられる。   Conventionally, a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as a battery) including a wound electrode body in which a positive electrode plate and a negative electrode plate each having a belt shape are wound through a separator is known. In consideration of being mounted on a vehicle such as a hybrid vehicle or an electric vehicle, for example, in this battery, when a high rate discharge cycle test is performed in which high-rate and short-time discharge and low-rate and long-time charge are repeated, The internal resistance is greatly increased. The reason is that the non-aqueous electrolyte held inside the electrode body expanded by the high-rate discharge flows out from both ends in the axial direction of the electrode body to the outside of the electrode body. At this time, it is considered that the salt concentration of the nonaqueous electrolytic solution inside the electrode body gradually decreases because the nonaqueous electrolytic solution whose salt concentration has temporarily increased due to discharge flows out of the electrode body.

この問題に対し、特許文献1の電池では、負極活物質層の幅方向(電極体の軸線方向)の両端部を、磁場の印加により負極活物質層中の黒鉛粒子を負極活物質層の厚み方向に配向させた部位としている(引用文献1の特許請求の範囲等を参照)。この両端部に含まれる黒鉛粒子は、縦向きに近い状態で配向している。このため、負極活物質層中に保持された非水電解液は、中央部に比して両端部で、負極活物質層の幅方向に移動し難くなる。これにより、非水電解液が負極活物質層の幅方向の両端面から負極活物質層の外部に流出し難くなるので、ハイレート放電サイクル試験を行ったときの内部抵抗の増加を抑制できる。   With respect to this problem, in the battery of Patent Document 1, both the ends in the width direction of the negative electrode active material layer (the axial direction of the electrode body) are applied to the graphite particles in the negative electrode active material layer by applying a magnetic field to the thickness of the negative electrode active material layer. It is set as the site | part orientated to the direction (refer the claim etc. of the cited reference 1). The graphite particles contained at both ends are oriented in a state close to the vertical direction. For this reason, the nonaqueous electrolytic solution retained in the negative electrode active material layer is less likely to move in the width direction of the negative electrode active material layer at both ends as compared with the central portion. This makes it difficult for the non-aqueous electrolyte to flow out from the both end faces in the width direction of the negative electrode active material layer to the outside of the negative electrode active material layer, thereby suppressing an increase in internal resistance when performing a high-rate discharge cycle test.

特開2013−69579号公報JP 2013-69579 A

しかしながら、特許文献1の電池でもなお、ハイレート放電サイクル試験時の内部抵抗の増加を抑制するのが不十分な場合があることが判ってきた。その理由は、負極活物質層中に保持された非水電解液が、負極活物質層の内部を幅方向(電極体の軸線方向)に移動して、電極体内部(負極活物質層の内部)で非水電解液の塩濃度ムラが発生するからと考えられる。   However, it has been found that the battery of Patent Document 1 may still be insufficient to suppress the increase in internal resistance during the high-rate discharge cycle test. The reason is that the non-aqueous electrolyte retained in the negative electrode active material layer moves in the negative electrode active material layer in the width direction (the axial direction of the electrode body), and the inside of the electrode body (inside the negative electrode active material layer) This is thought to be due to uneven salt concentration of the non-aqueous electrolyte.

本発明は、かかる現状に鑑みてなされたものであって、捲回型の電極体を備える非水電解液二次電池において、ハイレート放電サイクル試験を行ったときに、電極体内部で非水電解液の塩濃度ムラが生じるのを抑制することで、電池の内部抵抗が増加するのを抑制できる非水電解液二次電池を提供することを目的とする。   The present invention has been made in view of the current situation, and in a non-aqueous electrolyte secondary battery including a wound electrode body, when a high rate discharge cycle test is performed, non-aqueous electrolysis is performed inside the electrode body. It aims at providing the nonaqueous electrolyte secondary battery which can suppress that the internal resistance of a battery increases by suppressing generating of salt concentration nonuniformity of a liquid.

上記課題を解決するための本発明の一態様は、帯状の正極板及び帯状の負極板を帯状のセパレータを介して捲回してなる捲回型の電極体を備える非水電解液二次電池であって、上記負極板は、上記負極板の長手方向に延びる帯状で、ベーサル面の拡がり方向に比べてベーサル面に直交する方向の寸法が小さい扁平状の黒鉛粒子を含む負極活物質層を有し、上記負極活物質層は、上記長手方向に延びる帯状で、上記黒鉛粒子のX線回折強度比I(110)/I(002)が0.04以上である複数条の配向部であって、上記配向部のうち少なくとも1条は上記負極活物質層の幅方向の両端部よりも内側の内側部に形成されてなる複数条の配向部と、上記X線回折強度比I(110)/I(002)が0.02以下であり、上記配向部以外の部位をなす複数条の未配向部と、を有する非水電解液二次電池である。   One embodiment of the present invention for solving the above problem is a non-aqueous electrolyte secondary battery including a strip-shaped positive electrode plate and a wound electrode body formed by winding a strip-shaped negative electrode plate through a strip-shaped separator. The negative electrode plate has a negative electrode active material layer including flat graphite particles having a strip shape extending in the longitudinal direction of the negative electrode plate and having a dimension smaller in the direction perpendicular to the basal surface than in the spreading direction of the basal surface. The negative electrode active material layer has a strip shape extending in the longitudinal direction and a plurality of alignment portions having an X-ray diffraction intensity ratio I (110) / I (002) of the graphite particles of 0.04 or more. In addition, at least one of the alignment portions is a plurality of alignment portions formed on the inner side of the negative electrode active material layer in the width direction, and the X-ray diffraction intensity ratio I (110) / I (002) is 0.02 or less, and has a plurality of non-oriented parts forming parts other than the oriented parts. A non-aqueous electrolyte solution is a secondary battery.

この非水電解液二次電池では、負極活物質層に、黒鉛粒子のX線回折強度比I(110)/I(002)(以下、「配向強度」とも言う)が0.04以上である配向部を設けている。この配向部では、扁平状をなす黒鉛粒子が縦向きに近い状態で配向している。このため、未配向部に比して配向部では、非水電解液は負極活物質層の幅方向に移動し難くなる。
そして本発明では、この配向部を、負極板の長手方向に延びる帯状に複数条形成し、かつ、配向部のうち少なくとも1条を負極活物質層の幅方向の内側部に形成している。これにより、負極活物質層中の非水電解液は、負極活物質層の内側部を幅方向に移動し難くなる。従って、ハイレートで短時間の放電とそれよりもローレートで時間の長い充電とを繰り返し行うハイレート放電サイクル試験を行ったときに、負極活物質層中の非水電解液が負極活物質層の内部を幅方向に移動して、電極体内部(負極活物質層の内部)で非水電解液の塩濃度ムラが生じるのを抑制できる。そして、この塩濃度ムラに起因して電池の内部抵抗が増加するのを抑制できる。
In this non-aqueous electrolyte secondary battery, the X-ray diffraction intensity ratio I (110) / I (002) (hereinafter also referred to as “orientation strength”) of the graphite particles is 0.04 or more in the negative electrode active material layer. An orientation part is provided. In this orientation portion, the flat graphite particles are oriented in a state close to the vertical direction. For this reason, it is difficult for the non-aqueous electrolyte to move in the width direction of the negative electrode active material layer in the oriented portion as compared to the unoriented portion.
In the present invention, the alignment portion is formed in a plurality of strips extending in the longitudinal direction of the negative electrode plate, and at least one of the alignment portions is formed on the inner side in the width direction of the negative electrode active material layer. Thereby, the non-aqueous electrolyte in the negative electrode active material layer is difficult to move in the width direction on the inner side of the negative electrode active material layer. Therefore, when a high rate discharge cycle test in which a high-rate short-time discharge and a low-rate and long-time charge are repeatedly performed is performed, the non-aqueous electrolyte in the negative electrode active material layer passes through the negative electrode active material layer. By moving in the width direction, it is possible to suppress the occurrence of salt concentration unevenness of the non-aqueous electrolyte inside the electrode body (inside the negative electrode active material layer). And it can suppress that the internal resistance of a battery increases resulting from this salt concentration nonuniformity.

なお、「X線回折強度比I(110)/I(002)」(配向強度)は、負極活物質層をX線回折の測定面とし、黒鉛粒子の(002)面のX線回折強度をI(002)、(110)面のX線回折強度をI(110)としたときの強度比である。   The “X-ray diffraction intensity ratio I (110) / I (002)” (orientation intensity) is defined as the X-ray diffraction intensity of the (002) plane of the graphite particles with the negative electrode active material layer as the X-ray diffraction measurement surface. This is the intensity ratio when the X-ray diffraction intensity of the I (002) and (110) planes is I (110).

更に、上記の非水電解液二次電池であって、前記負極活物質層の前記幅方向の前記両端部は、それぞれ前記配向部とされてなる非水電解液二次電池とすると良い。   Further, in the above non-aqueous electrolyte secondary battery, both end portions in the width direction of the negative electrode active material layer may be non-aqueous electrolyte secondary batteries each having the orientation portion.

この非水電解液二次電池では、負極活物質層の幅方向の両端部をそれぞれ配向部としているので、負極活物質層中に保持された非水電解液が、負極活物質層の幅方向の両端面から負極活物質層の外部に流出し難くなる。従って、ハイレート放電サイクル試験を行ったときの内部抵抗の増加を更に効果的に抑制できる。   In this non-aqueous electrolyte secondary battery, since both end portions in the width direction of the negative electrode active material layer are oriented portions, the non-aqueous electrolyte held in the negative electrode active material layer is in the width direction of the negative electrode active material layer. It becomes difficult to flow out of the negative electrode active material layer from both end surfaces of the negative electrode active material layer. Therefore, the increase in internal resistance when the high rate discharge cycle test is performed can be more effectively suppressed.

更に、上記のいずれかに記載の非水電解液二次電池であって、複数条の前記配向部同士は、一定の間隔で配置されてなる非水電解液二次電池とすると良い。   Furthermore, it is a non-aqueous electrolyte secondary battery according to any one of the above, and a plurality of the alignment portions may be non-aqueous electrolyte secondary batteries arranged at regular intervals.

このように複数条の配向部同士を一定の間隔で配置することで、配向部が負極活物質層にバランス良く配置されるので、電極体内部(負極活物質層の内部)で非水電解液の塩濃度ムラが生じるのを更に効果的に抑制できる。従って、電池の内部抵抗が増加するのを更に効果的に抑制できる。   By arranging a plurality of alignment portions at regular intervals in this way, the alignment portions are arranged in a balanced manner in the negative electrode active material layer, so that the nonaqueous electrolytic solution is inside the electrode body (inside the negative electrode active material layer). It is possible to more effectively suppress the occurrence of uneven salt concentration. Therefore, it can suppress more effectively that the internal resistance of a battery increases.

更に、上記のいずれかに記載の非水電解液二次電池であって、前記未配向部の幅Wbを、前記負極活物質層の幅Wcに対し、いずれも0.11≦Wb/Wc≦0.43を満たす大きさとしてなる非水電解液二次電池とすると良い。   Furthermore, in the non-aqueous electrolyte secondary battery according to any one of the above, the width Wb of the unoriented portion is 0.11 ≦ Wb / Wc ≦ with respect to the width Wc of the negative electrode active material layer. A non-aqueous electrolyte secondary battery having a size satisfying 0.43 is preferable.

負極活物質層の幅Wcに占める未配向部の幅Wbの割合である比Wb/Wcの値が小さすぎると、具体的には0.11よりも小さいと、充電時に負極活物質層が膨張したときに、未配向部の幅Wbが狭すぎるために、この未配向部内で非水電解液が負極活物質層の厚み方向に移動し易くなる。すると、非水電解液が、この未配向部の表面から負極活物質層とこれに対向するセパレータとの境界(隙間)に押し出され、更にこの隙間を電極体の軸線方向に移動して電極体外部に流出し易くなる。これにより、電池の内部抵抗が増加し易くなる。
一方、Wb/Wcの値が大きすぎると、具体的には0.43よりも大きいと、未配向部の幅Wbが広すぎるために、この未配向部内で非水電解液が負極活物質層の幅方向に移動し易くなる。このため、電極体内部(負極活物質層の内部)で非水電解液の塩濃度ムラが生じ、電池の内部抵抗が増加し易くなる。
If the value of the ratio Wb / Wc, which is the ratio of the width Wb of the unoriented portion to the width Wc of the negative electrode active material layer, is too small, specifically smaller than 0.11, the negative electrode active material layer expands during charging. In this case, since the width Wb of the non-oriented portion is too narrow, the non-aqueous electrolyte easily moves in the thickness direction of the negative electrode active material layer in the non-oriented portion. Then, the nonaqueous electrolytic solution is pushed out from the surface of the non-oriented portion to the boundary (gap) between the negative electrode active material layer and the separator facing the non-active portion, and further, the gap moves in the axial direction of the electrode body. Easier to flow out. Thereby, the internal resistance of the battery is likely to increase.
On the other hand, if the value of Wb / Wc is too large, specifically greater than 0.43, the width Wb of the non-oriented portion is too wide, so that the non-aqueous electrolyte in the non-oriented portion becomes the negative electrode active material layer. It becomes easy to move in the width direction. For this reason, the salt concentration unevenness of the non-aqueous electrolyte occurs inside the electrode body (inside the negative electrode active material layer), and the internal resistance of the battery tends to increase.

これに対し、この非水電解液二次電池では、未配向部の幅Wbと負極活物質層の幅Wcとの比Wb/Wcの値を0.11以上としているので、充電時に負極活物質層が膨張したときでも、未配向部の幅Wbが狭すぎないので、この未配向部内で非水電解液が負極活物質層の厚み方向に移動し、未配向部の表面から負極活物質層とセパレータとの隙間に押し出され、更にこの隙間を電極体の軸線方向に移動して電極体外部に流出するのを抑制できる。一方で、Wb/Wcの値を0.43以下としているので、未配向部の幅Wbが広すぎず、この未配向部内で非水電解液が負極活物質層の幅方向に移動するのを効果的に抑制できる。従って、この電池では、内部抵抗が増加するのを更に効果的に抑制できる。   On the other hand, in this non-aqueous electrolyte secondary battery, the value of the ratio Wb / Wc between the width Wb of the non-oriented portion and the width Wc of the negative electrode active material layer is set to 0.11 or more. Even when the layer expands, the width Wb of the non-oriented portion is not too narrow, so that the non-aqueous electrolyte moves in the thickness direction of the negative active material layer in the non-oriented portion, and the negative active material layer from the surface of the non-oriented portion. It can be suppressed that the liquid is pushed into the gap between the separator and the separator, and further, the gap moves in the axial direction of the electrode body and flows out of the electrode body. On the other hand, since the value of Wb / Wc is 0.43 or less, the width Wb of the non-oriented portion is not too wide, and the non-aqueous electrolyte moves in the width direction of the negative electrode active material layer in the non-oriented portion. It can be effectively suppressed. Therefore, in this battery, an increase in internal resistance can be more effectively suppressed.

更に、上記のいずれかに記載の非水電解液二次電池であって、前記配向部の幅Waは、いずれも5≦Wa≦10(mm)である非水電解液二次電池とすると良い。   Furthermore, the non-aqueous electrolyte secondary battery according to any one of the above, wherein the width Wa of the orientation portion is preferably 5 ≦ Wa ≦ 10 (mm). .

配向部の幅Waが小さすぎると、具体的には5mmよりも小さいと、非水電解液が負極活物質層の内部で幅方向に移動するのを抑制する効果が十分に得られ難い。このため、電極体内部で非水電解液の塩濃度ムラが生じ易く、電池の内部抵抗が増加し易くなる。
一方、配向部の幅Waが大きすぎると、具体的には10mmよりも大きいと、この配向部内で非水電解液が負極活物質層の厚み方向に移動し易くなる。すると、非水電解液が、この配向部の表面から負極活物質層とセパレータとの境界(隙間)に押し出され、更にこの隙間を電極体の軸線方向に移動して電極体外部に流出し易くなる。これにより、電池の内部抵抗が増加し易くなる。
If the width Wa of the alignment portion is too small, specifically less than 5 mm, it is difficult to sufficiently obtain the effect of suppressing the non-aqueous electrolyte from moving in the width direction inside the negative electrode active material layer. For this reason, salt concentration unevenness of the non-aqueous electrolyte is likely to occur inside the electrode body, and the internal resistance of the battery is likely to increase.
On the other hand, if the width Wa of the alignment portion is too large, specifically, greater than 10 mm, the non-aqueous electrolyte easily moves in the thickness direction of the negative electrode active material layer in the alignment portion. Then, the non-aqueous electrolyte is pushed out from the surface of the oriented portion to the boundary (gap) between the negative electrode active material layer and the separator, and further, this gap moves in the axial direction of the electrode body and easily flows out of the electrode body. Become. Thereby, the internal resistance of the battery is likely to increase.

これに対し、この非水電解液二次電池では、配向部の幅Waを5mm以上としているので、非水電解液が負極活物質層の内部で幅方向に移動するのを効果的に抑制できる。一方で、配向部の幅Waを10mm以下としているので、この配向部内で非水電解液が負極活物質層の厚み方向に移動し、配向部の表面から負極活物質層とセパレータとの隙間に押し出され、更にこの隙間を電極体の軸線方向に移動して電極体外部に流出するのを抑制できる。従って、この電池では、内部抵抗が増加するのを更に効果的に抑制できる。   On the other hand, in this non-aqueous electrolyte secondary battery, the width Wa of the alignment portion is 5 mm or more, so that the non-aqueous electrolyte can be effectively suppressed from moving in the width direction inside the negative electrode active material layer. . On the other hand, since the width Wa of the alignment portion is 10 mm or less, the non-aqueous electrolyte moves in the thickness direction of the negative electrode active material layer in the alignment portion, and enters the gap between the negative electrode active material layer and the separator from the surface of the alignment portion. It is possible to suppress the extrusion and further the movement of the gap in the axial direction of the electrode body and the outflow to the outside of the electrode body. Therefore, in this battery, an increase in internal resistance can be more effectively suppressed.

実施形態に係るリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to an embodiment. 実施形態に係るリチウムイオン二次電池を電池横方向及び電池縦方向に沿う平面で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the lithium ion secondary battery which concerns on embodiment by the plane in alignment with a battery horizontal direction and a battery vertical direction. 実施形態に係る電極体の斜視図である。It is a perspective view of the electrode body which concerns on embodiment. 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。It is an expanded view of an electrode body which concerns on embodiment and shows the state which mutually accumulated the positive electrode plate and the negative electrode plate through the separator. 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の断面図である。It is sectional drawing of an electrode body which concerns on embodiment and shows the state which mutually accumulated the positive electrode plate and the negative electrode plate through the separator. 実施形態に係る負極板の製造方法に関し、黒鉛粒子を磁場配向する工程を示す説明図である。It is explanatory drawing which shows the process of orienting a graphite particle in the magnetic field regarding the manufacturing method of the negative electrode plate which concerns on embodiment. 実施例及び比較例に係る各電池のハイレート放電サイクル試験に関し、負極活物質層のWb/Wcの値と電池の内部抵抗の抵抗増加比との関係を示すグラフである。It is a graph which shows the relationship between the value of Wb / Wc of a negative electrode active material layer, and the resistance increase ratio of the internal resistance of a battery regarding the high-rate discharge cycle test of each battery which concerns on an Example and a comparative example.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池(非水電解液二次電池)1(以下、単に「電池1」とも言う)を示す。また、図3〜図5に、この電池1を構成する捲回型の電極体20を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。また、電極体20の軸線AXに沿う軸線方向EH、電極体厚み方向FH及び電極体幅方向GHを、図3及び図5に示す方向と定めて説明する。
この電池1は、ハイブリッド自動車や電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。この電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子40及び負極端子41等から構成される。また、電池ケース10内には、非水電解液17が保持されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a lithium ion secondary battery (nonaqueous electrolyte secondary battery) 1 (hereinafter also simply referred to as “battery 1”) according to the present embodiment. 3 to 5 show a wound electrode body 20 constituting the battery 1. In the following description, the battery thickness direction BH, the battery lateral direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2. The axial direction EH, the electrode body thickness direction FH, and the electrode body width direction GH along the axis AX of the electrode body 20 will be described as the directions shown in FIGS.
The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle. The battery 1 includes a battery case 10, an electrode body 20 accommodated therein, a positive terminal 40 and a negative terminal 41 supported by the battery case 10, and the like. A non-aqueous electrolyte solution 17 is held in the battery case 10.

このうち電池ケース10は、直方体状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した直方体箱状のケース本体部材11と、このケース本体部材11の開口11hを閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、電池ケース10の内圧が所定圧力に達した際に破断開弁する安全弁14が設けられている。また、このケース蓋部材13には、電池ケース10の内外を連通する注液孔13hが形成され、封止部材15で気密に封止されている。   Among these, the battery case 10 has a rectangular parallelepiped shape and is made of metal (in this embodiment, aluminum). This battery case 10 includes a rectangular parallelepiped box-shaped case main body member 11 whose upper side is opened, and a rectangular plate-shaped case lid member 13 welded in a form to close the opening 11h of the case main body member 11. . The case lid member 13 is provided with a safety valve 14 that opens when the internal pressure of the battery case 10 reaches a predetermined pressure. The case lid member 13 is formed with a liquid injection hole 13 h that communicates the inside and outside of the battery case 10 and is hermetically sealed with a sealing member 15.

また、ケース蓋部材13には、それぞれ内部端子部材43、外部端子部材44及びボルト45により構成される正極端子40及び負極端子41が、樹脂からなる内部絶縁部材47及び外部絶縁部材48を介して固設されている。なお、正極端子40はアルミニウムからなり、負極端子41は銅からなる。電池ケース10内において、正極端子40は、後述する電極体20のうち正極板21の正極集電部21mに接続し、負極端子41は、電極体20のうち負極板31の負極集電部31mに接続している。   In addition, the case lid member 13 has a positive terminal 40 and a negative terminal 41 formed of an internal terminal member 43, an external terminal member 44, and a bolt 45, respectively, via an internal insulating member 47 and an external insulating member 48 made of resin. It is fixed. The positive terminal 40 is made of aluminum, and the negative terminal 41 is made of copper. In the battery case 10, the positive electrode terminal 40 is connected to the positive electrode current collector 21 m of the positive electrode plate 21 in the electrode body 20 described later, and the negative electrode terminal 41 is connected to the negative electrode current collector 31 m of the negative electrode plate 31 in the electrode body 20. Connected to.

次に、電極体20について説明する(図2〜図5参照)。この電極体20は、軸線AXを有する扁平状をなし、その軸線方向EHが電池横方向CHと一致し、電極体厚み方向FHが電池厚み方向BHと一致し、電極体幅方向GHが電池縦方向DHと一致する形態で、電池ケース10内に収容されている。なお、電極体20は、絶縁フィルムからなる袋状の絶縁フィルム包囲体(図示しない)に包囲された状態で、電池ケース10内に収容されている。この電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の2枚のセパレータ39を介して互いに重ねて軸線AX周りに捲回し、扁平状に圧縮したものである。   Next, the electrode body 20 will be described (see FIGS. 2 to 5). The electrode body 20 has a flat shape having an axis AX, the axial direction EH coincides with the battery lateral direction CH, the electrode body thickness direction FH coincides with the battery thickness direction BH, and the electrode body width direction GH extends in the battery vertical direction. The battery case 10 is housed in a form that matches the direction DH. The electrode body 20 is accommodated in the battery case 10 in a state of being surrounded by a bag-like insulating film enclosure (not shown) made of an insulating film. The electrode body 20 is obtained by compressing a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 around an axis line AX so as to overlap each other via two belt-like separators 39.

正極板21は、帯状のアルミニウム箔からなる正極集電箔22の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上に、正極活物質層23を帯状に設けてなる。正極活物質層23には、正極活物質、導電剤及び結着剤が含まれる。また、正極集電箔22のうち、幅方向の片方の端部は、自身の厚み方向に正極活物質層23が存在せず、正極集電箔22が露出した正極集電部21mとなっている。前述の正極端子40は、この正極集電部21mに接続している。   The positive electrode plate 21 is formed by providing a positive electrode active material layer 23 in a band shape on a region extending in a part of the width direction and extending in the longitudinal direction among both main surfaces of a positive electrode current collector foil 22 made of a band-shaped aluminum foil. The positive electrode active material layer 23 includes a positive electrode active material, a conductive agent, and a binder. Also, one end of the positive electrode current collector foil 22 in the width direction is a positive electrode current collector part 21 m where the positive electrode current collector foil 22 is exposed without the positive electrode active material layer 23 in the thickness direction of the positive electrode current collector foil 22. Yes. The positive electrode terminal 40 is connected to the positive electrode current collector 21m.

負極板31は、帯状の銅箔からなる負極集電箔32の両主面のうち、幅方向の一部でかつ長手方向JHに延びる領域上に、後に詳述する負極活物質層33を帯状に設けてなる。また、負極集電箔32のうち、幅方向の片方の端部は、自身の厚み方向に負極活物質層33が存在せず、負極集電箔32が露出した負極集電部31mとなっている。前述の負極端子41は、この負極集電部31mに接続している。
セパレータ39は、樹脂、具体的にはポリプロピレン(PP)とポリエチレン(PE)からなる多孔質膜であり、帯状をなす。
The negative electrode plate 31 has a negative electrode active material layer 33, which will be described in detail later, on a region extending in the longitudinal direction JH in a part of the width direction of both main surfaces of a negative electrode current collector foil 32 made of a strip-shaped copper foil. It is provided. Also, one end in the width direction of the negative electrode current collector foil 32 is the negative electrode current collector part 31m where the negative electrode active material layer 33 is not present in the thickness direction of the negative electrode current collector foil 32 and the negative electrode current collector foil 32 is exposed. Yes. The negative electrode terminal 41 described above is connected to the negative electrode current collector 31m.
The separator 39 is a porous film made of resin, specifically, polypropylene (PP) and polyethylene (PE), and has a strip shape.

本実施形態の負極活物質層33は、負極活物質と結着剤と増粘剤とからなる。具体的には、負極活物質層33は、負極活物質である黒鉛粒子35と、結着剤であるスチレンブタジエンゴム(SBR)と、増粘剤であるカルボシキメチルセルロース(CMC)とが、98:1:1の重量割合で配合されている。このうち黒鉛粒子35は、扁平状であり、ベーサル面の拡がり方向に比べて、ベーサル面に直交する厚み方向の寸法が小さくなっている。   The negative electrode active material layer 33 of this embodiment includes a negative electrode active material, a binder, and a thickener. Specifically, the negative electrode active material layer 33 is composed of graphite particles 35 as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener. : 1: 1 by weight. Of these, the graphite particles 35 are flat and have a smaller dimension in the thickness direction perpendicular to the basal plane than in the direction in which the basal plane expands.

また、この負極活物質層33は、負極板31の長手方向JHに延びる帯状をなす複数条(本実施形態では4条)の配向部33aと、長手方向JHに延びる帯状で、配向部33a以外の部位をなす複数条(本実施形態では3条)の未配向部33bとからなる。
配向部33aは、黒鉛粒子35のX線回折強度比I(110)/I(002)(配向強度)が0.04以上(本実施形態では0.10)とされた部位であり、図5に模式的に示すように、扁平状をなす黒鉛粒子35が、負極活物質層33の厚み方向LHに縦向きに近い状態で配向している。
一方、未配向部33bは、X線回折強度比I(110)/I(002)(配向強度)が0.02以下(本実施形態では0.01)の部位であり、図5に模式的に示すように、扁平状をなす黒鉛粒子35が、負極集電箔32の主面の拡がり方向(図5中、左右方向)に横向きに近い状態で配置されている。なお、図5の負極活物質層33において、結着剤(SBR)及び増粘剤(CMC)の図示は省略してある。
The negative electrode active material layer 33 includes a plurality of strips (four strips in the present embodiment) extending in the longitudinal direction JH of the negative electrode plate 31 and strips extending in the longitudinal direction JH, except for the alignment portion 33a. And a plurality of non-oriented portions 33b (three in the present embodiment).
The orientation portion 33a is a portion where the X-ray diffraction intensity ratio I (110) / I (002) (orientation strength) of the graphite particles 35 is 0.04 or more (in this embodiment, 0.10). As shown schematically, the graphite particles 35 having a flat shape are oriented in a state close to the vertical direction in the thickness direction LH of the negative electrode active material layer 33.
On the other hand, the unoriented portion 33b is a portion having an X-ray diffraction intensity ratio I (110) / I (002) (orientation strength) of 0.02 or less (0.01 in this embodiment), which is schematically shown in FIG. As shown in FIG. 5, the graphite particles 35 having a flat shape are arranged in a state in which the main surface of the negative electrode current collector foil 32 is close to the lateral direction in the spreading direction (left and right direction in FIG. 5). In the negative electrode active material layer 33 in FIG. 5, the binder (SBR) and the thickener (CMC) are not shown.

各々の配向部33aは、その幅Waが5≦Wa≦10(mm)の範囲内であり、本実施形態ではいずれも幅Wa=5mmである。これらの配向部33a同士は、等間隔で形成されており、4条の配向部33aのうち、2条の配向部33aは、負極活物質層33の幅方向KHの両端部33tにそれぞれ形成されている。また、残り2条の配向部33aは、負極活物質層33の両端部33tよりも幅方向KHの内側の内側部33gに形成されている。
一方、各々の未配向部33bは、いずれもその幅WbがWb=28mmである。負極活物質層33の全体の幅WcはWc=105mmであるので、Wb/Wc=0.27であり、0.11≦Wb/Wc≦0.43を満たしている。これらの未配向部33bは、いずれも負極活物質層33の内側部33gに形成されている。
Each orientation portion 33a has a width Wa within a range of 5 ≦ Wa ≦ 10 (mm), and in this embodiment, the width Wa = 5 mm. These alignment portions 33a are formed at equal intervals. Of the four alignment portions 33a, the two alignment portions 33a are respectively formed at both end portions 33t in the width direction KH of the negative electrode active material layer 33. ing. The remaining two alignment portions 33 a are formed in the inner portion 33 g on the inner side in the width direction KH than both end portions 33 t of the negative electrode active material layer 33.
On the other hand, each unoriented portion 33b has a width Wb of Wb = 28 mm. Since the entire width Wc of the negative electrode active material layer 33 is Wc = 105 mm, Wb / Wc = 0.27, which satisfies 0.11 ≦ Wb / Wc ≦ 0.43. These unoriented portions 33 b are all formed in the inner portion 33 g of the negative electrode active material layer 33.

ここで、この負極板31の製造方法について説明する。予め、負極活物質(黒鉛粒子35)と結着剤(SBR)と増粘剤(CMC)とを重量比で98:1:1となるように秤量し、これらを分散媒(水)に加えて混合して、負極ペーストを調整しておく。次に、負極集電箔32を用意し、その両主面に上記負極ペーストを塗布して、負極集電箔32上に未乾燥の負極活物質層33’を有する負極板31’を形成する(図6参照)。   Here, the manufacturing method of this negative electrode plate 31 is demonstrated. In advance, the negative electrode active material (graphite particles 35), the binder (SBR), and the thickener (CMC) are weighed so that the weight ratio is 98: 1: 1, and these are added to the dispersion medium (water). And mix to prepare the negative electrode paste. Next, a negative electrode current collector foil 32 is prepared, and the negative electrode paste is applied to both main surfaces thereof to form a negative electrode plate 31 ′ having an undried negative electrode active material layer 33 ′ on the negative electrode current collector foil 32. (See FIG. 6).

次に、未乾燥の負極活物質層33’のうち、乾燥後に配向部33aとなる部位に、負極集電箔32の主面と直交する方向(図6中、上下方向,厚み方向LH)に磁力線が発生する磁場を印加して、負極活物質層33’中に含まれる黒鉛粒子35を縦向きに近い状態に配向する。具体的には、図6に示すように、対向して配置された一対の磁石MG1,MG2の間に、未乾燥の負極活物質層33’が形成された負極板31’を搬送し、負極活物質層33’のうち、乾燥後に配向部33aとなる部位に、厚み方向LHに磁力線が発生する磁場を印加する。   Next, in the undried negative electrode active material layer 33 ′, in a direction (vertical direction, thickness direction LH in FIG. 6) orthogonal to the main surface of the negative electrode current collector foil 32, the portion that becomes the orientation portion 33 a after drying. A magnetic field generated by magnetic lines of force is applied to orient the graphite particles 35 contained in the negative electrode active material layer 33 ′ in a state close to the vertical direction. Specifically, as shown in FIG. 6, a negative electrode plate 31 ′ on which an undried negative electrode active material layer 33 ′ is formed is conveyed between a pair of magnets MG <b> 1 and MG <b> 2 that are arranged to face each other. A magnetic field that generates magnetic lines of force in the thickness direction LH is applied to a portion of the active material layer 33 ′ that becomes the orientation portion 33a after drying.

これにより、未乾燥の負極活物質層33’のうち、配向部33aに対応する部位に含まれる黒鉛粒子35は、ベーサル面の拡がり方向が厚み方向LHと平行の縦向きに近い状態に配向する。そして、製造後の負極板31において、配向部33aの配向強度は、前述のように0.10となる。一方、未乾燥の負極活物質層33’のうち、未配向部33bに対応する部位に含まれる黒鉛粒子35は、磁場が殆ど印加されない。このため、ベーサル面の拡がり方向が負極集電箔32の主面と平行に近い、横向きに近い状態のままである。従って、製造後の負極板31において、未配向部33bの配向強度は、前述のように0.01となる。   Thereby, in the undried negative electrode active material layer 33 ′, the graphite particles 35 included in the portion corresponding to the orientation portion 33a are oriented in a state in which the spreading direction of the basal surface is close to the vertical direction parallel to the thickness direction LH. . And in the negative electrode plate 31 after manufacture, the orientation intensity | strength of the orientation part 33a will be 0.10 as mentioned above. On the other hand, in the undried negative electrode active material layer 33 ′, the magnetic field is hardly applied to the graphite particles 35 included in the portion corresponding to the unoriented portion 33 b. For this reason, the spreading direction of the basal surface is almost parallel to the main surface of the negative electrode current collector foil 32 and remains in a lateral direction. Therefore, in the negative electrode plate 31 after manufacture, the orientation strength of the unoriented portion 33b is 0.01 as described above.

次に、この負極板31’の負極活物質層33’を乾燥させる。その後、この負極板31’をロールプレスによって所定の厚みに圧縮する。かくして、負極活物質層33が配向部33aと未配向部33bを有する負極板31が形成される。   Next, the negative electrode active material layer 33 ′ of the negative electrode plate 31 ′ is dried. Thereafter, the negative electrode plate 31 'is compressed to a predetermined thickness by a roll press. Thus, the negative electrode plate 31 in which the negative electrode active material layer 33 has the oriented portion 33a and the non-oriented portion 33b is formed.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。まず、実施例1〜6として、負極活物質層の配向部の幅Wa(=5mm)及び配向強度(=約0.1)を一定の値としつつ、配向部の条数を8条〜3条に変更した6種類の電池を用意した。
また、実施例7〜10として、負極活物質層の配向部の幅Wa(=10mm)及び配向強度(=約0.1)を一定の値としつつ、配向部の条数を6条〜3条に変更した4種類の電池を用意した。
また、実施例11〜15として、負極活物質層の配向部の幅Wa(=5mm)及び配向強度(=0.05)を一定の値としつつ、配向部の条数を7条〜3条に変更した5種類の電池を用意した。
なお、これら実施例1〜15の各電池では、上述のように配向部の条数を変更したことに伴い、未配向部の幅Wb及び条数も変更している。
(Examples and Comparative Examples)
Subsequently, the result of the test conducted in order to verify the effect of this invention is demonstrated. First, as Examples 1 to 6, while the width Wa (= 5 mm) and the orientation strength (= about 0.1) of the orientation part of the negative electrode active material layer are set to constant values, the number of orientation parts is 8 to 3 Six types of batteries changed to strips were prepared.
Moreover, as Examples 7-10, the width | variety Wa (= 10mm) and orientation intensity | strength (= about 0.1) of the orientation part of a negative electrode active material layer are made into a constant value, and the number of orientation parts is 6-3. Four types of batteries that were changed to strips were prepared.
Further, as Examples 11 to 15, the width of the alignment portion Wa (= 5 mm) and the alignment strength (= 0.05) of the negative electrode active material layer were set to constant values, and the number of alignment portions was 7 to 3 Five types of batteries were prepared.
In each of the batteries of Examples 1 to 15, the width Wb and the number of strips of the non-oriented portion are changed in accordance with the change of the number of oriented portions as described above.

一方、比較例1として、負極活物質層に配向部を設けない(負極活物質層の全体が未配向部である)電池を用意した。
また、比較例2,3として、配向強度=0.10で、配向部を負極活物質層の幅方向KHの両端部にのみ設けた(負極活物質層の幅方向KHの内側部に配向部を設けなかった)電池を用意した。比較例2では、配向部の幅Wa=5mm、比較例3では、配向部の幅Wa=10mmとした。
なお、実施例1〜15及び比較例1〜3の各電池について、上記以外の部分は、実施形態1の電池1と同様とした。
On the other hand, as Comparative Example 1, a battery in which no orientation part was provided in the negative electrode active material layer (the whole negative electrode active material layer was an unoriented part) was prepared.
Further, as Comparative Examples 2 and 3, the alignment strength was 0.10, and the alignment portions were provided only at both end portions in the width direction KH of the negative electrode active material layer (the alignment portions on the inner side of the negative electrode active material layer in the width direction KH). A battery was prepared. In Comparative Example 2, the width Wa of the orientation part was 5 mm, and in Comparative Example 3, the width Wa of the orientation part was 10 mm.
In addition, about each battery of Examples 1-15 and Comparative Examples 1-3, the part other than the above was made the same as the battery 1 of Embodiment 1.

次に、実施例1〜15及び比較例1〜3の各電池について、「入力特性試験」を行って、電池の10秒入力電力(W)を求めた。具体的には、25℃の温度環境下において、各電池をSOC60%に調整した後、電力A(W),電力B(W),電力C(W)で電池電圧が4.1Vとなるまで入力したときの充電時間X(秒),充電時間Y(秒),充電時間Z(秒)をそれぞれ測定した。その後、これらのデータから、横軸を電力(W)、縦軸を充電時間(秒)としたグラフを描いて、このグラフから充電時間が10秒をなるときの電力を求め、これを10秒入力電力(W)とした。なお、表1では、比較例1の電池の10秒入力電力を基準(100%)としたときの、各電池の10秒入力電力比(%)で示す。その結果を表1に示す。   Next, for each of the batteries of Examples 1 to 15 and Comparative Examples 1 to 3, an “input characteristic test” was performed to determine the 10-second input power (W) of the battery. Specifically, in a temperature environment of 25 ° C., after each battery is adjusted to SOC 60%, until the battery voltage becomes 4.1 V with power A (W), power B (W), and power C (W) Charging time X (second), charging time Y (second), and charging time Z (second) when input were measured. Then, from these data, a graph with power (W) on the horizontal axis and charging time (seconds) on the vertical axis is drawn, and the power when the charging time is 10 seconds is obtained from this graph, and this is calculated for 10 seconds. Input power (W) was used. Table 1 shows the 10-second input power ratio (%) of each battery when the 10-second input power of the battery of Comparative Example 1 is used as a reference (100%). The results are shown in Table 1.

Figure 2016066426
Figure 2016066426

表1から明らかなように、負極活物質層に配向部を設けた実施例1〜15及び比較例2,3の各電池(比較例1の電池以外の電池)は、いずれも10秒入力電力比が100%を上回っており、比較例1の電池よりも入力特性に優れることが判る。また、配向部の合計幅(=幅Wa×条数)が大きいほど、10秒入力電力比が高く、入力特性に優れることが判る。また、配向部の合計幅が同じ場合で比較すると(例えば実施例2と実施例11、実施例3と実施例10と実施例12など)、配向強度が高いほど、10秒入力電力比が高く、入力特性に優れることが判る。   As is apparent from Table 1, each of the batteries of Examples 1 to 15 and Comparative Examples 2 and 3 (batteries other than the battery of Comparative Example 1) provided with an orientation portion in the negative electrode active material layer has an input power of 10 seconds. The ratio exceeds 100%, which indicates that the input characteristics are superior to the battery of Comparative Example 1. Further, it can be seen that the larger the total width of the alignment portion (= width Wa × number of stripes), the higher the input power ratio for 10 seconds and the better the input characteristics. In addition, when the total width of the alignment portions is the same (for example, Example 2 and Example 11, Example 3, Example 10, and Example 12), the higher the alignment strength, the higher the input power ratio for 10 seconds. It can be seen that the input characteristics are excellent.

その理由は、以下であると考えられる。即ち、負極活物質層の配向部では、扁平状の黒鉛粒子が縦向きに近い状態に配置され、配向強度が高いほど黒鉛粒子がより縦向きに近い状態に配置されている。このため、未配向部に比して配向部の方が、更には配向強度の高い配向部の方が、充電時にリチウムがエッジ面から黒鉛粒子に挿入され易い。従って、負極活物質層に配向部を設けることで入力特性が向上し、更に配向部の合計幅を大きくしたり、配向部の配向強度を高くすることで、より一層入力特性が向上すると考えられる。   The reason is considered as follows. That is, in the orientation part of the negative electrode active material layer, the flat graphite particles are arranged in a state close to the vertical direction, and the higher the orientation strength, the more the graphite particles are arranged in a state close to the vertical direction. Therefore, lithium is more easily inserted into the graphite particles from the edge surface during charging in the oriented portion than in the unoriented portion, and in the oriented portion having higher orientation strength. Therefore, it is considered that the input characteristics are improved by providing the alignment portion in the negative electrode active material layer, and the input characteristics are further improved by further increasing the total width of the alignment portions or increasing the alignment strength of the alignment portions. .

次に、実施例1〜15及び比較例1〜3の各電池について、ハイレートで短時間の放電とそれよりもローレートで時間の長い充電とを繰り返し行う「ハイレート放電サイクル試験」を行って、内部抵抗の抵抗増加率(%)を求めた。具体的には、25℃の温度環境下において、各電池をSOC100%に調整した後、20Cの定電流で30秒間放電した後、30分間休止した。その後、2Cの定電流で300秒間充電した後、30分間休止した。この充放電を1サイクルとして、これを2000サイクル行った。   Next, for each of the batteries of Examples 1 to 15 and Comparative Examples 1 to 3, a “high rate discharge cycle test” in which high-rate and short-time discharge and low-rate and long-time charge are repeatedly performed is performed. The resistance increase rate (%) of the resistance was determined. Specifically, in a temperature environment of 25 ° C., each battery was adjusted to 100% SOC, discharged at a constant current of 20 C for 30 seconds, and then rested for 30 minutes. Thereafter, the battery was charged with a constant current of 2C for 300 seconds and then rested for 30 minutes. This charging / discharging was made into 1 cycle, and this was performed 2000 cycles.

そして、25℃の温度環境下において、各電池をSOC60%に調整した後、20Cの定電流で10秒間放電して、放電前の電池電圧と、10秒間の放電後の電池電圧と、20Cに相当する電流値とから、各電池の内部抵抗(IV抵抗)を求めた。また、各電池について、試験前の内部抵抗に対する試験後の内部抵抗の割合を求めて、各電池の抵抗増加率とした。更に、比較例1の電池の抵抗増加率を基準(100%)としたときの、各電池の抵抗増加比(%)を求めた。その結果を表1及び図7に示す。
なお、図7では、実施例1〜6及び比較例2に係る各電池の結果を「◆」印で示し、実線でグラフを描いた。また、実施例7〜10及び比較例3に係る各電池の結果を「▲」印で示し、一点鎖線でグラフを描いた。また、実施例11〜15に係る各電池の結果を「▲」印で示し、二点鎖線でグラフを描いた。なお、基準(100%)である比較例1は、配向部を有しないため、図7のグラフには記載していない。
Then, in a temperature environment of 25 ° C., each battery was adjusted to 60% SOC, and then discharged for 10 seconds at a constant current of 20 C. The battery voltage before discharge, the battery voltage after discharge for 10 seconds, and 20 C The internal resistance (IV resistance) of each battery was determined from the corresponding current value. Moreover, about each battery, the ratio of the internal resistance after the test with respect to the internal resistance before the test was calculated | required, and it was set as the resistance increase rate of each battery. Furthermore, the resistance increase ratio (%) of each battery when the resistance increase rate of the battery of Comparative Example 1 was used as a reference (100%) was determined. The results are shown in Table 1 and FIG.
In addition, in FIG. 7, the result of each battery which concerns on Examples 1-6 and the comparative example 2 was shown by the "♦" mark, and the graph was drawn with the continuous line. Moreover, the result of each battery according to Examples 7 to 10 and Comparative Example 3 is indicated by “「 ”, and a graph is drawn with a one-dot chain line. Moreover, the result of each battery according to Examples 11 to 15 is indicated by “▲”, and a graph is drawn with a two-dot chain line. In addition, since the comparative example 1 which is a reference | standard (100%) does not have an orientation part, it is not described in the graph of FIG.

表1及び図7から明らかなように、負極活物質層の幅方向KHの両端部のみに配向部を設けた比較例2,3の各電池では、抵抗増加比が99%または101%であり、内部抵抗の増加が、負極活物質層に配向部を設けなかった比較例1の電池と同程度であることが判る。一方、負極活物質層に複数条の配向部を設け、かつ、配向部のうち少なくとも1条を負極活物質層の幅方向KHの内側部に設けた実施例1〜15の各電池では、抵抗増加比が69〜91%であり、比較例1〜3の各電池に比べて、内部抵抗の増加が抑制されていることが判る。   As is clear from Table 1 and FIG. 7, in each battery of Comparative Examples 2 and 3 in which the orientation portions are provided only at both ends in the width direction KH of the negative electrode active material layer, the resistance increase ratio is 99% or 101%. It can be seen that the increase in internal resistance is comparable to that of the battery of Comparative Example 1 in which the orientation portion was not provided in the negative electrode active material layer. On the other hand, in each battery of Examples 1-15 in which a plurality of alignment portions were provided in the negative electrode active material layer, and at least one of the alignment portions was provided on the inner side in the width direction KH of the negative electrode active material layer, The increase ratio is 69 to 91%, which indicates that the increase in internal resistance is suppressed as compared with the batteries of Comparative Examples 1 to 3.

その理由は、以下であると考えられる。即ち、配向部では、扁平状をなす黒鉛粒子35が縦向きに近い状態で配向している。このため、未配向部に比して配向部では、非水電解液17は負極活物質層の幅方向KHに移動し難い。この配向部を、複数条形成し、かつ、少なくとも1条を負極活物質層の幅方向KHの内側部することで、負極活物質層中の非水電解液17は、負極活物質層の内側部を幅方向KHに移動し難くなる。従って、電極体内部(負極活物質層の内部)で非水電解液17の塩濃度ムラが生じるのを抑制でき、この塩濃度ムラに起因して電池の内部抵抗が増加するのを抑制できると考えられる。   The reason is considered as follows. That is, in the orientation portion, the flat graphite particles 35 are oriented in a state close to the vertical direction. For this reason, the non-aqueous electrolyte solution 17 is less likely to move in the width direction KH of the negative electrode active material layer in the oriented portion than in the non-oriented portion. The non-aqueous electrolyte solution 17 in the negative electrode active material layer is formed on the inner side of the negative electrode active material layer by forming a plurality of the alignment portions and forming at least one stripe on the inner side in the width direction KH of the negative electrode active material layer. It becomes difficult to move the part in the width direction KH. Accordingly, it is possible to suppress the occurrence of non-uniform salt concentration of the non-aqueous electrolyte 17 inside the electrode body (inside the negative electrode active material layer), and to suppress the increase in the internal resistance of the battery due to the non-uniform salt concentration. Conceivable.

また、表1及び図7から明らかなように、未配向部の幅Wbと負極活物質層の幅Wcとの比Wb/Wcの値が0.11よりも小さいと、抵抗増加比が約80%を越えて高くなる。一方、Wb/Wc≧0.11であると、抵抗増加比が約80%よりも低くなり、内部抵抗の増加を効果的に抑制できることが判る。これは、配向部の幅Wa=5mmとした実施例1〜6に係る各電池(◆印及び実線で示したグラフ)についても、また、配向部の幅Wa=10mmとした実施例7〜10に係る各電池(▲印及び一点鎖線で示したグラフ)についても同様である。   Further, as apparent from Table 1 and FIG. 7, when the ratio Wb / Wc ratio between the width Wb of the unoriented portion and the width Wc of the negative electrode active material layer is smaller than 0.11, the resistance increase ratio is about 80. Higher than%. On the other hand, when Wb / Wc ≧ 0.11, the resistance increase ratio becomes lower than about 80%, and it can be seen that the increase in internal resistance can be effectively suppressed. This is also true for each of the batteries according to Examples 1 to 6 in which the width Wa of the orientation portion was 5 mm (graphs indicated by ♦ and solid lines), and Examples 7 to 10 in which the width Wa of the orientation portion was 10 mm. The same applies to each battery according to the above (graphs indicated by ▲ and one-dot chain lines).

その理由は、以下であると考えられる。即ち、Wb/Wc<0.11とすると、充電時に負極活物質層が膨張したときに、未配向部の幅Wbが狭すぎるために、この未配向部内で非水電解液17が負極活物質層の厚み方向LHに移動し易くなる。すると、非水電解液17が、この未配向部の表面から負極活物質層とセパレータ39との境界(隙間)に押し出され、更にこの隙間を電極体の軸線方向EHに移動して電極体外部に流出し易くなる。これにより、電池の内部抵抗が増加し易くなると考えられる。従って、Wb/Wc≧0.11とするのが好ましい。   The reason is considered as follows. That is, when Wb / Wc <0.11, when the negative electrode active material layer expands during charging, the width Wb of the non-oriented portion is too narrow. It becomes easy to move in the thickness direction LH of the layer. Then, the non-aqueous electrolyte solution 17 is pushed out from the surface of the non-oriented portion to the boundary (gap) between the negative electrode active material layer and the separator 39, and further moves in the gap in the axial direction EH of the electrode body. It becomes easy to flow out. Thereby, it is considered that the internal resistance of the battery is likely to increase. Therefore, it is preferable that Wb / Wc ≧ 0.11.

一方、Wb/Wcの値が0.43より大きくても、抵抗増加比が高くなる(約80%を上回る)。逆に、Wb/Wc≦0.43であると、抵抗増加比を効果的に低くでき(抵抗増加比を約80%以下に低くでき)、内部抵抗の増加を効果的に抑制できることが判る。これは、配向部の幅Wa=5mmとした実施例1〜6及び比較例2に係る各電池(◆印及び実線で示したグラフ)についても、配向部の幅Wa=10mmとした実施例7〜10及び比較例3係る各電池(▲印及び一点鎖線で示したグラフ)についても同様である。
その理由は、Wb/Wc>0.43とすると、未配向部の幅Wbが広すぎるために、この未配向部内で非水電解液17が負極活物質層の幅方向KHに移動し易くなる。このため、電極体内部(負極活物質層の内部)で非水電解液17の塩濃度ムラが生じ、電池の内部抵抗が増加し易くなると考えられる。従って、Wb/Wc≦0.43とするのが好ましい。
On the other hand, even if the value of Wb / Wc is larger than 0.43, the resistance increase ratio becomes high (greater than about 80%). Conversely, it can be seen that when Wb / Wc ≦ 0.43, the resistance increase ratio can be effectively reduced (the resistance increase ratio can be reduced to about 80% or less), and the increase in internal resistance can be effectively suppressed. This is also true for each of the batteries according to Examples 1 to 6 and Comparative Example 2 in which the width Wa of the oriented portion was 5 mm (graphs indicated by the ♦ and solid lines), and the width Wa of the oriented portion was 10 mm. The same applies to each of the batteries 10 to 10 and Comparative Example 3 (graphs indicated by ▲ and one-dot chain lines).
The reason is that if Wb / Wc> 0.43, the width Wb of the non-oriented portion is too wide, so that the non-aqueous electrolyte 17 easily moves in the width direction KH of the negative electrode active material layer in the non-oriented portion. . For this reason, it is considered that the salt concentration unevenness of the non-aqueous electrolyte solution 17 occurs inside the electrode body (inside the negative electrode active material layer), and the internal resistance of the battery tends to increase. Therefore, it is preferable that Wb / Wc ≦ 0.43.

また、表1及び図7から明らかなように、配向強度=0.05とした実施例11〜15の各電池(■印及び二点鎖線で示したグラフ)と、配向強度=約0.1とし、実施例11〜15に対応する実施例2〜6に係る各電池(◆印及び実線で示したグラフ)とをそれぞれ比較すると、配向強度を高くした実施例2〜6に係る各電池の方が、抵抗増加比を低くできる。従って、内部抵抗の増加を効果的に抑制できることが判る。
その理由は、配向強度を高くした方が、即ち、配向部内の黒鉛粒子35がより縦向きに近い状態に配向している方が、配向部内で非水電解液17が負極活物質層の幅方向KHに移動するのを効果的に抑制できる。このため、電池の内部抵抗が増加し難くなると考えられる。従って、配向強度の値は、高くするのが好ましい。
Further, as is clear from Table 1 and FIG. 7, each battery of Examples 11 to 15 (orientation strength = about 0.1) with the orientation strength = 0.05 When comparing each of the batteries according to Examples 2 to 6 corresponding to Examples 11 to 15 (graphs indicated by ◆ and solid lines), each of the batteries according to Examples 2 to 6 having higher orientation strength was obtained. However, the resistance increase ratio can be lowered. Therefore, it can be seen that an increase in internal resistance can be effectively suppressed.
The reason is that when the orientation strength is increased, that is, when the graphite particles 35 in the orientation portion are oriented in a state closer to the longitudinal direction, the non-aqueous electrolyte solution 17 has a width of the negative electrode active material layer in the orientation portion. It is possible to effectively suppress movement in the direction KH. For this reason, it is considered that the internal resistance of the battery is difficult to increase. Therefore, it is preferable to increase the value of the orientation strength.

以上で説明したように、本実施形態のリチウムイオン二次電池1では、負極活物質層33に、黒鉛粒子35のX線回折強度比I(110)/I(002)が0.04以上である配向部33aを設けている。この配向部33aでは、扁平状をなす黒鉛粒子35が縦向きに近い状態で配向している。このため、未配向部33bに比して配向部33aでは、非水電解液17は負極活物質層33の幅方向KHに移動し難い。   As described above, in the lithium ion secondary battery 1 of the present embodiment, the negative electrode active material layer 33 has the X-ray diffraction intensity ratio I (110) / I (002) of the graphite particles 35 of 0.04 or more. A certain orientation portion 33a is provided. In this orientation part 33a, the graphite particle 35 which makes flat shape is orientated in the state close | similar to the vertical direction. For this reason, the non-aqueous electrolyte solution 17 is less likely to move in the width direction KH of the negative electrode active material layer 33 in the oriented portion 33a than in the unoriented portion 33b.

そして、この配向部33aを、負極板31の長手方向JHに延びる帯状に複数条(本実施形態(実施例5)では4条)形成し、かつ、配向部33aのうち少なくとも1条(本実施形態(実施例5)では2条)を負極活物質層33の幅方向KHの内側部33gに形成している。これにより、負極活物質層33中の非水電解液17は、負極活物質層33の内側部33gを幅方向KHに移動し難くなる。従って、前述のハイレート放電サイクル試験を行ったときに、負極活物質層33中の非水電解液17が負極活物質層33の内部を幅方向KHに移動して、電極体20の内部(負極活物質層33の内部)で非水電解液17の塩濃度ムラが生じるのを抑制できる。そして、この塩濃度ムラに起因して電池1の内部抵抗が増加するのを抑制できる。   The alignment portion 33a is formed in a plurality of strips (four strips in the present embodiment (Example 5)) in a strip shape extending in the longitudinal direction JH of the negative electrode plate 31, and at least one strip of the alignment portions 33a (this implementation). In the embodiment (Example 5), 2) is formed on the inner side 33g of the negative electrode active material layer 33 in the width direction KH. This makes it difficult for the nonaqueous electrolytic solution 17 in the negative electrode active material layer 33 to move in the width direction KH through the inner portion 33g of the negative electrode active material layer 33. Therefore, when the above-described high-rate discharge cycle test is performed, the non-aqueous electrolyte solution 17 in the negative electrode active material layer 33 moves in the negative electrode active material layer 33 in the width direction KH, and the inside of the electrode body 20 (negative electrode It is possible to suppress the occurrence of non-uniform salt concentration of the nonaqueous electrolytic solution 17 in the active material layer 33). And it can suppress that the internal resistance of the battery 1 increases due to this salt concentration nonuniformity.

更に、本実施形態では、負極活物質層33の幅方向KHの両端部33tをそれぞれ配向部33aとしているので、負極活物質層33中に保持された非水電解液17が、負極活物質層33の幅方向KHの両端面から負極活物質層33の外部に流出し難い。従って、ハイレート放電サイクル試験を行ったときの内部抵抗の増加をより効果的に抑制できる。
また、本実施形態では、複数条の配向部33a同士を一定の間隔で配置しているので、配向部33aが負極活物質層33にバランス良く配置されている。このため、電極体20の内部(負極活物質層33の内部)で非水電解液17の塩濃度ムラが生じるのを更に効果的に抑制でき、電池1の内部抵抗が増加するのを更に効果的に抑制できる。
Furthermore, in the present embodiment, since both end portions 33t in the width direction KH of the negative electrode active material layer 33 are the alignment portions 33a, the nonaqueous electrolytic solution 17 held in the negative electrode active material layer 33 is converted into the negative electrode active material layer. 33 hardly flows out of the negative electrode active material layer 33 from both end faces in the width direction KH. Therefore, an increase in internal resistance when a high rate discharge cycle test is performed can be more effectively suppressed.
Further, in the present embodiment, since the plurality of alignment portions 33 a are arranged at regular intervals, the alignment portions 33 a are arranged on the negative electrode active material layer 33 in a well-balanced manner. For this reason, it can suppress more effectively that the salt concentration nonuniformity of the non-aqueous electrolyte 17 arises inside the electrode body 20 (inside of the negative electrode active material layer 33), and it is further effective that the internal resistance of the battery 1 increases. Can be suppressed.

また、本実施形態では、未配向部33bの幅Wbと負極活物質層の幅Wcとの比Wb/Wcの値を0.11以上としているので、充電時に負極活物質層33が膨張したときでも、未配向部33bの幅Wbが狭すぎないので、この未配向部33b内で非水電解液17が負極活物質層33の厚み方向LHに移動し、未配向部33bの表面から負極活物質層33とセパレータ39との境界(隙間)に押し出され、更にこの隙間を電極体20の軸線方向EHに移動して電極体20の外部に流出するのを抑制できる。一方で、Wb/Wcの値を0.43以下としているので、未配向部33bの幅Wbが広すぎず、この未配向部33b内で非水電解液17が負極活物質層33の幅方向KHに移動するのを効果的に抑制できる。従って、この電池1では、内部抵抗が増加するのを更に効果的に抑制できる。   In the present embodiment, since the value of the ratio Wb / Wc between the width Wb of the unoriented portion 33b and the width Wc of the negative electrode active material layer is 0.11 or more, the negative electrode active material layer 33 expands during charging. However, since the width Wb of the non-oriented portion 33b is not too narrow, the non-aqueous electrolyte solution 17 moves in the thickness direction LH of the negative electrode active material layer 33 in the non-oriented portion 33b, and the negative electrode active material 33 is moved from the surface of the non-oriented portion 33b. It is possible to prevent the material layer 33 and the separator 39 from being pushed out to the boundary (gap), and further moving through the gap in the axial direction EH of the electrode body 20 and flowing out of the electrode body 20. On the other hand, since the value of Wb / Wc is 0.43 or less, the width Wb of the non-oriented portion 33b is not too wide, and the non-aqueous electrolyte 17 is in the width direction of the negative electrode active material layer 33 in the non-oriented portion 33b. The movement to KH can be effectively suppressed. Therefore, in this battery 1, it is possible to more effectively suppress the increase in internal resistance.

また、本実施形態では、配向部33aの幅Waを5mm以上としているので、非水電解液17が負極活物質層33の内部で幅方向KHに移動するのを効果的に抑制できる。一方で、配向部33aの幅Waを10mm以下としているので、この配向部33a内で非水電解液17が負極活物質層33の厚み方向LHに移動し、配向部33aの表面から負極活物質層33とセパレータ39との境界(隙間)に押し出され、更にこの隙間を電極体20の軸線方向EHに移動して電極体20の外部に流出するのを抑制できる。従って、この電池1では、内部抵抗が増加するのを更に効果的に抑制できる。   Moreover, in this embodiment, since the width Wa of the orientation part 33a is 5 mm or more, it can suppress effectively that the non-aqueous electrolyte 17 moves to the width direction KH inside the negative electrode active material layer 33. FIG. On the other hand, since the width Wa of the alignment portion 33a is 10 mm or less, the nonaqueous electrolytic solution 17 moves in the thickness direction LH of the negative electrode active material layer 33 in the alignment portion 33a, and the negative electrode active material from the surface of the alignment portion 33a. It is possible to suppress the extrusion to the boundary (gap) between the layer 33 and the separator 39, and further the movement of the gap in the axial direction EH of the electrode body 20 to flow out of the electrode body 20. Therefore, in this battery 1, it is possible to more effectively suppress the increase in internal resistance.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。   In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

1 リチウムイオン二次電池(非水電解液二次電池)
10 電池ケース
17 非水電解液
20 電極体
21 正極板
31 負極板
32 負極集電箔
33 負極活物質層
33a 配向部
33b 未配向部
33t 端部
33g 内側部
35 黒鉛粒子
39 セパレータ
40 正極端子
41 負極端子
EH 軸線方向
JH (負極板の)長手方向
KH (負極活物質層の)幅方向
LH (負極活物質層の)厚み方向
1 Lithium ion secondary battery (non-aqueous electrolyte secondary battery)
DESCRIPTION OF SYMBOLS 10 Battery case 17 Non-aqueous electrolyte 20 Electrode body 21 Positive electrode plate 31 Negative electrode plate 32 Negative electrode current collection foil 33 Negative electrode active material layer 33a Orientation part 33b Unorientation part 33t End part 33g Inner part 35 Graphite particle 39 Separator 40 Positive electrode terminal 41 Negative electrode Terminal EH Axis direction JH (Negative electrode plate) Longitudinal direction KH (Negative electrode active material layer) Width direction LH (Negative electrode active material layer) Thickness direction

Claims (1)

帯状の正極板及び帯状の負極板を帯状のセパレータを介して捲回してなる捲回型の電極体を備える非水電解液二次電池であって、
上記負極板は、
上記負極板の長手方向に延びる帯状で、ベーサル面の拡がり方向に比べてベーサル面に直交する方向の寸法が小さい扁平状の黒鉛粒子を含む負極活物質層を有し、
上記負極活物質層は、
上記長手方向に延びる帯状で、上記黒鉛粒子のX線回折強度比I(110)/I(002)が0.04以上である複数条の配向部であって、上記配向部のうち少なくとも1条は上記負極活物質層の幅方向の両端部よりも内側の内側部に形成されてなる複数条の配向部と、
上記X線回折強度比I(110)/I(002)が0.02以下であり、上記配向部以外の部位をなす複数条の未配向部と、を有する
非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a wound electrode body formed by winding a strip-shaped positive electrode plate and a strip-shaped negative electrode plate through a strip-shaped separator,
The negative electrode plate is
A strip-like shape extending in the longitudinal direction of the negative electrode plate, and having a negative electrode active material layer containing flat graphite particles whose dimensions in the direction perpendicular to the basal surface are smaller than the spreading direction of the basal surface,
The negative electrode active material layer is
A strip extending in the longitudinal direction, and a plurality of alignment portions having an X-ray diffraction intensity ratio I (110) / I (002) of the graphite particles of 0.04 or more, wherein at least one of the alignment portions Is a plurality of alignment portions formed on the inner side of the inner side of the both ends of the negative electrode active material layer in the width direction;
A non-aqueous electrolyte secondary battery having the X-ray diffraction intensity ratio I (110) / I (002) of 0.02 or less and a plurality of unoriented portions forming portions other than the oriented portions.
JP2014193187A 2014-09-23 2014-09-23 Nonaqueous electrolyte secondary battery Pending JP2016066426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193187A JP2016066426A (en) 2014-09-23 2014-09-23 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193187A JP2016066426A (en) 2014-09-23 2014-09-23 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2016066426A true JP2016066426A (en) 2016-04-28

Family

ID=55805730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193187A Pending JP2016066426A (en) 2014-09-23 2014-09-23 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2016066426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115523A (en) * 2014-12-15 2016-06-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of electrode for lithium ion secondary battery
US10818928B2 (en) 2014-12-15 2020-10-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery, rechargeable lithium battery, and method of fabricating electrode for rechargeable lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115523A (en) * 2014-12-15 2016-06-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of electrode for lithium ion secondary battery
US10818928B2 (en) 2014-12-15 2020-10-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery, rechargeable lithium battery, and method of fabricating electrode for rechargeable lithium battery

Similar Documents

Publication Publication Date Title
JP6498792B2 (en) Battery charge limit prediction method, battery quick charge method and apparatus using the same
US20150194664A1 (en) Non-aqueous electrolyte secondary battery
US20170054139A1 (en) Galvanic element and method for the production thereof
KR101980974B1 (en) Method for producing negative electrode and secondary battery, and secondary battery
DE112015004696T5 (en) Non-aqueous electrolyte secondary battery and process for its preparation
KR20170100526A (en) Charging method for lithium ion secondary cell and charging control system therefor, and electronic apparatus and cell pack having charging control system
JP2014032923A (en) Negative electrode of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing them
JP2020057597A (en) Battery pack
JP2016066426A (en) Nonaqueous electrolyte secondary battery
JPWO2020054708A1 (en) Power storage element and manufacturing method of power storage element
JP2016081605A (en) Lithium ion secondary battery
JP2014154446A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6658744B2 (en) Negative electrode for non-aqueous electrolyte storage element
US9865878B2 (en) Energy storage device
JP6478112B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP7230798B2 (en) NONAQUEOUS ELECTROLYTE ELECTRIC STORAGE ELEMENT AND MANUFACTURING METHOD THEREOF
JP2017228429A (en) Method for manufacturing electrode plate of wound type secondary battery
CN105024033A (en) Tab of lithium-ion battery with two conductors
JP6955660B2 (en) Power storage element
CN108475751A (en) Separator powder and separator slurry and lithium ion battery and its manufacturing method
JP5835181B2 (en) Method for producing lithium ion secondary battery
JP6774632B2 (en) Non-aqueous electrolyte secondary battery
US20150357618A1 (en) Lithium-ion cell
JP5895538B2 (en) Lithium ion secondary battery
EP3761439A1 (en) Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery