JP2016065492A - マイクロ水力発電システム - Google Patents

マイクロ水力発電システム Download PDF

Info

Publication number
JP2016065492A
JP2016065492A JP2014194814A JP2014194814A JP2016065492A JP 2016065492 A JP2016065492 A JP 2016065492A JP 2014194814 A JP2014194814 A JP 2014194814A JP 2014194814 A JP2014194814 A JP 2014194814A JP 2016065492 A JP2016065492 A JP 2016065492A
Authority
JP
Japan
Prior art keywords
water
well
turbine
power generation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014194814A
Other languages
English (en)
Inventor
谷口 裕久
Hirohisa Taniguchi
裕久 谷口
仁昭 飯尾
Hitoaki Iio
仁昭 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANIGUCHI KINZOKU NETSUSHORI KOGYOSHO KK
Original Assignee
TANIGUCHI KINZOKU NETSUSHORI KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANIGUCHI KINZOKU NETSUSHORI KOGYOSHO KK filed Critical TANIGUCHI KINZOKU NETSUSHORI KOGYOSHO KK
Priority to JP2014194814A priority Critical patent/JP2016065492A/ja
Publication of JP2016065492A publication Critical patent/JP2016065492A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

【課題】土壌から噴出する被圧地下水を用い、法的手続きが不要又は簡素で採算性の良いマイクロ水力発電システムを実現する。【解決手段】発電機10と、発電機10を駆動する水力タービン20と、一端又は該一端の近傍が地中の被圧帯水層30,31まで届くように埋設されて取水可能な取水開口部42,43を形成するとともに、他端が水力タービン20の受水部21に接続された取水管40と、を備え、取水管40は、大気圧より高圧の被圧地下水50を大気圧から隔離して水力タービン20のみに注入する配管構造にした。取水管40は、少なくとも被圧帯水層30,31に遭遇する深さX1,X2まで掘削された井戸60の底部近傍まで挿入された井戸枠61の気密性を保持するように、管を接続又は延設して構成された。【選択図】図1

Description

本発明は、マイクロ水力発電システムに関し、より詳細には、低落差ながら通年にわたって豊富で安定した流量を確保できる自噴井戸等の利用に適するマイクロ水力発電システムに関する。
なお、マイクロ水力発電の明確な定義は存在しないが、制度上は200kW未満の発電設備で各種手続きが簡素化されるため、この規模のものをマイクロ水力発電と総称することがある。また、「マイクロ水力発電導入ガイドブック(2003,NEDO)」による分類で100kW以下の発電設備をマイクロ水力発電と称する場合もある。
また、マイクロ水力発電の部類で、さらに小規模な20kW未満のピコ水力発電の場合、電気事業法に基づく発電所の許認可は不要である。
水力発電は、天然の地形をはじめとする環境に依存するため、水力発電に適する開発可能な包蔵水力は、地域の環境に応じて差がある。一般的に、深い渓谷を有して高落差を得やすい山間部の方が有利であり、その逆に平野部では水力発電施設を商用事業化することは困難である。したがって、位置エネルギー(ポテンシャル)、すなわち、河川の落差が少ない平野部において、水力発電施設を無理に設置しても、商業的には採算が合わないと考えられていた。
また、河川から取水する水力発電の開発には、ポテンシャルとは別の問題として法的制約がある。河川法の定めにより、自治体や企業などが河川から取水する場合、取水目的を明示したうえで、河川管理者の許可を得ることが義務付けられている。その河川管理者は取水量に上限を設けたり、取水する側に定期的な報告を義務づけたりすることができる。
また、河川法に基づく法的手続きは、河川の種別、あるいは地域毎に難易度が異なる。まず、河川管理者は、1級河川ならば国、2級河川であれば都道府県である。そのため、水力発電のために河川等から取水する場合、その許認可手続きの難易度は、1級河川と2級河川との間で相当の差がある。また、農業用水路が関連した場合、取水する河川の種別のほか、既得水利権の種類によって手続きの難易度が異なる。既得水利権の一例として、許可水利権、又は慣行水利権などがある。
一般的に、水力発電の開発については、従来から採算性が重視されており、採算性の良い地点から開発するものとされていた。したがって、売電収入や電気料金削減の利益により、維持管理できることに加えて、法的手続きの容易な地点から開発することも重要である。上述した河川法に基づく許認可手続きには、多大な費用、時間、労力を要するためである。
ポテンシャル等の観点から、水力発電所としての必要条件は、第1に相当の高落差で、ある程度の流量が確保できる条件、第2に天候、季節、時間による流量変動の少ない条件を備えた立地条件において、初めて商業的な採算性を確保できる。しかしながら、日本国内において、その立地条件を満足する箇所は、既にほとんどが開発されつくしている。
そこで、行政からの補助金等の支援制度、特に、再生可能エネルギーの固定価格買取制度の適用を受けることにより、ポテンシャルの乏しい平野部であっても、採算性を好転できる場合がある。
再生可能エネルギーの固定価格買取制度は、再生可能エネルギー(太陽光、風力、水力、地熱、バイオマス)を用いて発電された電気を、一定価格で電気事業者が買い取ることを義務付けた制度である。ただし、その制度で電気を売電する場合は、その設備について、国の認定を受ける必要がある。
再生可能エネルギーの固定価格買取制度の適用を受けることを前提とすれば、平野部において、低落差ながら通年にわたって安定した流量を確保できる自噴井戸等の利用に適するマイクロ水力発電システムも採用される可能性が高くなる。
また、必ずしも自噴井戸に限らないが、帯水層に高低差のある地下水を利用した発電システムとして、例えば、特許文献1に示す技術が知られている。すなわち、高位置に帯水層を有する揚水井から得られる地下水を、低位置に帯水層を有する注入井内へ注水するまでの水流により、発電する地下水を利用した発電システムである。
具体的には、上部帯水層に流体的に連結された揚水井の地下水内に、サイホン管の一端の揚水口を挿入し、他端の注入口を、下部帯水層に流体的に連結され、地下水の水位が揚水井より下方にある注入井内の揚水井の水位より下方の位置に挿入する。揚水井からサイホンの作用により無電力で汲み上げられた地下水は、サイホン管を連続して流れる途中経路に介在するタービンを回転させて発電する。
同様に、必ずしも自噴井戸に限らないが、低い落差であっても、その落差を有効に利用して、低コスト小水力発電設備として、例えば、特許文献2に示すサイホン式水車発電装置が知られている。
具体的には、貯水池に設置したケーシングを、出口側にサイホン管を連結した吐出ケーシングと、処理水を流入させる吸込ベルと、水流を案内させるガイドケーシングと、中間ケーシングで構成すると共に、主軸に嵌着した軸流ランナをガイドケーシングに配設し、主軸の下端を吸込ベルに支架させたハブに軸支させて、軸流ランナを嵌着した主軸を発電機とともにケーシングから抜出し可能としたもので、廉価なマイクロ水力発電の実現を可能にしたものである。
一方、湧水を不利益事項として対処する例として、例えば、特許文献3に示すような、湧水の勢いが強い場合でも確実に止水を行うことが可能な湧水の止水方法が知られている。具体的には、透水層と不透水層とが混在する互層地盤の縦孔から湧き出す水を止水する湧水の止水方法である。
上記湧水の止水方法は、縦孔を必要形状になるように掘削する工程と、縦孔の不透水層の位置に配置される先端パッカとそれよりも上方に配置される複数の中間パッカとが外周に取り付けられた中空管を有する閉塞装置を、縦孔に配置する工程と、先端パッカおよび中間パッカで縦孔を閉塞させる工程と、最上段の水膨潤型パッカが縦孔の孔壁に密着している状態で、中空管と縦孔の隙間にグラウト材を充填する工程と、湧水が止まる高さまで中空管を延ばす工程とを備えている。
特開2013−47476号公報 特開2008−31855号公報 特開2013−221348号公報
しかしながら、自噴井戸に限定して完成度を高めたマイクロ水力発電システムはなかった。すなわち、自噴井戸等から得られる地下水の場合、水力タービンの前後において、どのようにして有効落差又は流量を確保するのかが課題である。また、法的手続きが不要又は簡素で採算性の良いマイクロ水力発電システムが求められていた。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、被圧地下水が地上へ噴出するエネルギーを電力に変換することを可能にするほか、平野部で落差を大きく確保し難い環境であっても、法的手続きが不要又は簡素で採算性の良いマイクロ水力発電システムを提供することにある。
本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明に係るマイクロ水力発電システム(200)は、発電機(10)と、該発電機(10)を駆動する水力タービン(20,120)と、一端又は該一端の近傍が地中の被圧帯水層(30,31)まで届くように埋設されて取水可能な取水開口部(42,43)を形成するとともに、他端が水力タービン(20,120)の受水部(21,121)に接続された取水管(40)と、を備え、前記取水管(40)は、大気圧より高圧の被圧地下水(50)を前記大気圧から隔離して前記水力タービン(20,120)のみに注入する配管構造にしたことを特徴とする。
また、請求項2に記載の発明は、請求項1に記載のマイクロ水力発電システム(100,200)において、前記取水管(40)は、少なくとも前記被圧帯水層(30,31)に遭遇する深さ(X1,X2)まで掘削された井戸(60)の底部近傍まで挿入された井戸枠(61)と連通して気密性を保持するように、管を接続又は延設して構成されたことを特徴とする。
また、請求項3に記載の発明に係るマイクロ水力発電システム(200)は、発電機(10)と、該発電機(10)を駆動する水力タービン(20,220)と、前記水力タービン(20,220)の受水部(21,221)と吐出部(22,222)との少なくとも何れかに接続された落差形成管(70)と、該落差形成管(70)を経由するか又は直接に前記水力タービン(20,220)の受水部(21,221)に接続された高所タンク(80)と、を備え、前記高所タンク(80)は自噴する井戸(60)から噴出する被圧地下水(50)を貯留し、前記高所タンク(80)に貯留された貯留水(51)を、前記落差形成管(70)および前記水力タービン(20,220)に何れかの順番で流通する配管構成であることを特徴とする。
また、請求項4に記載の発明は、請求項3に記載のマイクロ水力発電システム(200)において、前記高所タンク(80)と前記井戸(60)との間を接続する配管経路に、水量調整手段(91)と逆止弁(92)との少なくとも何れかを介挿したことを特徴とする。
本発明によれば、被圧地下水が地上へ噴出するエネルギーを電力に変換することを可能にするほか、平野部で落差を大きく確保し難い環境であっても、法的手続きが不要又は簡素で採算性の良いマイクロ水力発電システムを実現できる。
本発明の実施例1に係るマイクロ水力発電システムの全体構成を示す一部断面図である。 本発明の実施例2に係るマイクロ水力発電システムの要部を示す一部断面図である。
以下、図面を参照して本発明の実施の形態について説明する。なお、本システムは、扇状地の末端、単斜構造や盆地構造(図1は盆地構造)の地域など地下水が自然に地上へ噴出する湧水や自噴井(以下、単に「自噴井」又は「自噴井戸」という)のある地域に設けた場合を例示している。特に、四国愛媛の西条市においては、「打ち抜き水」という自噴井戸が有名であり、本発明に係るマイクロ水力発電システムの実施に好適な環境である。
なお、自噴井のある地域以外でも、例えば、土木工事現場等において、大気圧より高圧の被圧地下水を、取水管により取水できる地点であれば適用可能である。その場合、低落差であっても流量・流速の季節変動が少ないほど有益に活用できる。
図1は、実施例1に係るマイクロ水力発電システム(以下、本システムともいう)の全体構成を示す一部断面図である。図1において、地表に近く浅い地層から深い地層の順に符号1〜4で示している。それらのうち符号1,3は、粘土等で構成されて地下水の浸透を遮断する難透水層である。この難透水層1,3と交互に透水層2,4が重なり合うように地層を形成している。
透水層2,4は、地層を形成する粒子の隙間や岩石中の割れ目が、水を自由に通す程度に大きい地層や岩石で構成されている。この透水層2,4において、地下水で満たされた部分を帯水層、いわゆる水脈という。また、難透水層1,3に挟まれた透水層2は、その上下層を閉塞されているため、水圧の逃げ場がなく、地下水位7より深い地層において、被圧帯水層30を構成している。なお、難透水層3によって蓋を被せられた透水層4は、その上層を閉塞されているとともに、その下層から上向きの水圧等も加わるため、被圧帯水層30と同様に水圧の逃げ場がなく、地下水位7より深い地層において、被圧帯水層31を構成している。被圧帯水層30,31から地表地下水位7より浅い地表までの抜け道があれば、その抜け道を通った被圧地下水50が自然に地上へ噴出する。
図1に示すように、本システム100は、発電機10と、水力タービン20と、取水管40と、井戸60と、を備えて構成されている。発電機10は、商用電力の配電線5に系統連系手段6を介して系統連系する。水力タービン20はカプラン水車であり、同軸結合された発電機10を駆動する。取水管40は、水力タービン20の受水部21と井戸60とを接続する。なお、発電機10の発電電力と商用電力との系統連系については後述するが、その点に関する図1の電気配線は本発明を説明するための略図に過ぎず、三相高圧(6600V)送配電線、柱上トランス、単相三線式低圧(100−200V)配電線等の実態は省略している。
井戸60は、取水開口部42,43が被圧帯水層30,31に届くまで掘られた掘り抜き井戸であり、被圧地下水50を取水可能である。また、被圧地下水50を有する被圧帯水層30,31に掘られた井戸60の水面が地表面以上であれば、被圧地下水50は汲み上げなくても井戸60から噴き出す。このような自噴井の現象は、被圧帯水層30,31から取水している被圧井戸に現れる。
つまり、井戸60のように、地表開口部62よりも地下水位7が高い(図1参照)などの原因で、井戸60の直下の帯水層30,31に大気圧よりも大きな圧力がかかっているため、その被圧地下水50が地上に噴出する。
井戸60は打ち抜き井戸により構成することが可能である。すなわち、井戸60は、ボーリング井戸と考えられ、井戸掘り機を用いて、人が入れないほどに径の小さい穴を掘り進み、水脈に当たった所で井戸枠61を地上から穴底に向けて挿入し、その井戸枠61に連通する取水管40から揚水する打ち抜き井戸により構成されている。
この打ち抜き井戸は、飲用等に小容量で足りる場合、取水開口部42,43が必ずしも水脈に到達していなくとも、窪地の様な場所であれば、取水開口部42,43に周囲から水が集まるので、ある程度の水を得ることができる。一方、本システム100で用いる井戸60は、潤沢な給水能力を発揮する水脈としての被圧帯水層30,31を有する自噴井戸により構成されている。したがって、井戸60から潤沢に噴出する被圧地下水50を用いることにより、法的手続きが不要又は簡素で、採算性の良いマイクロ水力発電を実現することができる。
井戸60は、複数におよぶ地層の被圧帯水層30,31のうち少なくとも何れかに遭遇する深さX1又はX2まで掘削され、底部近傍まで挿入された井戸枠61を備えている。取水管40は、地中に埋設されている井戸枠61に、地上で上向きに設置される管を継ぎ足して延設することにより構成されている。取水管40は、井戸枠61に気密性を保持しながら連通する一本の管とみなせる。
つまり、取水管40は、その一端又は該一端の近傍が取水開口部42を形成し地中の被圧帯水層30,31まで届くように埋設されて取水可能であり、他端が水力タービン20の受水部21に接続されたひとつながりの管である。この取水管40は、大気圧より高圧の被圧地下水50を取水し、大気圧から隔離しながら水力タービン20のみに注入する配管構造である。
被圧地下水50は、水力タービン20のみに注入され、水力タービン20を駆動してから大気中に放出される。その結果、水力タービン20に同軸結合された発電機10も連動して駆動され、発電することが可能となる。
なお、一般的に「井戸枠」とは、第1に井戸穴の崩れを防止するため、第2に地上付近の汚水が井戸へ流入しないように、井戸壁に沿わせて井戸穴に挿入するコンクリート製又は鉄製の管をいう。この「井戸枠」は、「井戸側」、又は「ケーシングパイプ(略してCP)」とも呼ばれる。この井戸枠61は、井戸壁を境にして、井戸壁の背後の地層と、井戸穴の空間とを気密に隔離する。すなわち、井戸枠61は、地表から井戸底付近におよぶ井戸壁の背後の地層を、大気と隔離して水圧を逃がさない機能を有する。このため、逃げ場のない被圧地下水50は、井戸穴の空間から水力タービン20のみを介して大気圧の空間へと流出する。
ただし、深さX1又はX2と同等以上の長さの井戸枠61が被圧帯水層30,31に遭遇する箇所には、土砂を防いで水脈から地下水のみを井戸60へ流入させるため、土砂より細いスリット状の取水開口部42が縦長で無数に穿設されている。このスリット状の取水開口部42と、井戸底の取水開口部43において、被圧帯水層30,31の水圧の方が、大気圧に通じる井戸穴内の圧力よりも勝っている。そのため、被圧地下水50が井戸枠61の内部へ流入して地表面より高く噴出する。
また、図1の取水管41は、取水目的で地表から垂直に屈折された井戸60とは異なるが、被圧帯水層30,31まで届くように埋設されて取水可能な取水開口部42,43を形成する点で、井戸60の取水管40と共通しており、自噴井のように湧水を得られる。つまり、被圧地下水50を取水可能である。したがって、自噴井の点在する地域において、井戸60に限らず、複数の取水管40,41から漏らさず被圧地下水50を取得して合計した水量による水力発電の電力総量は少なくない。その場合も、簡素な設備で足りる上、該当する土地所有者の承諾以外の法的手続きも不要又は簡素で済ませられる。
このように、自噴井戸の湧水を利用する本システム100の場合、上述した河川からの取水を利用する場合とは異なり、河川管理者の許可が不要又は簡素であるという大きな長所がある。これにより、自噴井戸に係る土地所有者の意思だけでマイクロ水力発電システムを設置することも可能である。また、自噴井戸には、通年および終日にわたって安定し豊富な流量を確保しやすいという長所もある。
ここで、低落差・小容量という水力発電には不向きな条件の環境において、少しでも効率の改善につながる技術的検討課題として、水力タービン20の種類がある。その点に関し、カプラン水車は有効落差が小さく、使用水量の大きな発電所に適している。このカプラン水車は、プロペラ水車の一種であり、外周側から内側に向かって渦巻き状に流れる水を作用させる反動水車である。すなわち、流水の運動エネルギーが水車を回転させる圧力エネルギーへと変化する。
カプラン水車は、水車入口周囲に巻き付いている渦巻状の水管がケーシング(渦形室)である。ケーシングから渦流ランナの接線方向より流入し渦を作った水は、渦流ランナを回転させる。水力タービン20のケーシングの内部、吐出部22および吸出管23が水で満たされている限り、水力タービン20は水流の最低点にある必要はない。より高い地点にある水車では、吸出管23は水車に作用する流水量の増加に寄与する。
近年では、わずか60cmの落差でも利用可能に小型化された廉価なマイクロ水力発電用の水力タービンが製造されている。プロペラ水車のうち、カプラン水車は最も広く採用されており、羽根の角度を調整できるものをいう。カプラン水車は低コストで小規模な発電所で採用されており、1メートル程度の落差から数百Wの電力を発生させることも可能である。
また、本システム100に適用可能な不図示のタイソン水車は、プロペラ水車の一種であり、落差が無くても相当の水流が確保されている環境であれば発電可能である。このタイソン水車は、流れの速い河川の河床に沈めた状態に配設される用途に適する一方、船底に取り付けて発電することも可能である。つまり、タイソン水車は落差の少ない自噴井戸にも好適である。なお、何れの種類の水車であっても、不図示の流量センサの検出値に応じてランナを構成する水車羽根の角度を最適設定する可変ピッチプロペラ制御機能を備えて、さらなる発電効率の向上を図ることも可能である。
また、季節、天候、時刻により変動する自然エネルギーのみを単独に電力源として用いる場合、実用範囲が制限されるため、本システム100と商用電力との間で適宜電力の融通を行うことにより、補完機能を確立している。なお、系統連系せずに、適宜に蓄電池との組み合わせにより、自家消費のみに用いても良い。
一方、図1の系統連系手段6で行う商用電力への系統連系により、自家発電設備である発電機10を電力会社の送電線または配電線に接続して運用する。一般に、家庭用の太陽光発電などは低圧の配電線と連系され、風力発電やバイオマス発電は高圧の送電線に連系される。
また、不図示の交流と直流の変換手段と、位相調整手段と、低圧と高圧の変換手段との組み合わせにより、発電機10の発電出力を、電力会社の送電線または配電線の電圧、周波数および位相に合わせれば接続可能である。さらに本システム100の系統連系について、国の認定を受ければ、再生可能エネルギーの固定価格買取制度の下に売電することもできる。
つぎに、図2を用いて実施例2を説明する。なお、図1に示した実施例1と同一効果の部材等には同一符号を付して説明を省略し、主に相違点のみを説明する。
図2は、本発明の実施例2に係るマイクロ水力発電システム(本システム)の要部を示す一部断面図である。
図2に示すように、本システム200は、1つの井戸60に対して3組の発電機10と、それぞれの発電機10を駆動するための第1〜第3の水力タービン120,220,20と、高所タンク80と、を備えている。第1の水力タービン120は水中ポンプ型であり、井戸60の地表開口部62の直近に配設され、直管内プロペラランナ123の回転により、管内で水中にある第1の発電機10を駆動する。この第1の水力タービン120の受水部121は、井戸60の地表開口部62に気密保持しながら最短距離で配管接続されている。水力タービン120の吐出部122は、昇水管71を介して高所タンク80の給水部81に配管接続されている。
第2の水力タービン220も水中ポンプ型であり、高所タンク80の排水部82と落差形成管70との接続部分にあって高い位置に介挿され、直管内プロペラランナ223の回転により、第2の発電機10を駆動する。第2の水力タービン220は、その受水部221が高所タンク80の排水部82に直接に接続されている。高所タンク80は、被圧地下水50が、間欠的又は脈動的に噴出するとしても、高所タンク80の容量によって均一に安定化された水量を排水部82から排出する。
第2の水力タービン220は、その受水部221に、高所タンク80の排水部82から安定化された水量を得て、吐出部222から吐出した後、落差形成管70の落差分(10m以下)だけ強く吸い出されるので、落差分に基づいた駆動力を発揮する。なお、第1〜第3の水力タービン120,220,20は、1m以下の低落差でもエネルギー変換効率の高い、低落差マイクロ水力発電専用の機種を選定することが好ましい。
第3の水力タービン20はカプラン水車であり、落差形成管70の下側の末端部で低い位置に配設され、渦流ランナ24の回転により、渦流ケーシング外の第3の発電機10を駆動する。第3の水力タービン20は、第2の水力タービン220の吐出部222から吐出された水が、落差形成管70を介して水力タービン20の受水部21へ給水可能な配管接続である。この第3の水力タービン20も、第2の水力タービン220と同様に、落差形成管70の落差分に基づいた駆動力を得られる。そして、水力タービン20の吐出部22からの吐出水は、図示せぬ何れかの排水経路へ排水される。
なお、第2の水力タービン220と第3の水力タービン20は、落差形成管70の落差分をそれぞれが分け合うように利用するので、2組の合計出力は1組分と大差ない。ここでは、落差形成管70の上端と下端の少なくとも何れかに水力タービンを配設できることを説明するために、あえて2組を同一図面内に図示しており、2組の合計出力が1組分の2倍になることはない。
本システム200は、発電機10を駆動する第2、第3の水力タービン220,20と、それら第2、第3の水力タービン220,20の受水部221,21と吐出部222,22との少なくとも何れかに接続された落差形成管70と、その落差形成管70を経由するか又は直接に水力タービン20,220の受水部21,221に接続された高所タンク80と、を備えている。また、高所タンク80は自噴する井戸60から噴出する被圧地下水50を貯留し、高所タンク80に貯留された貯留水51を、落差形成管70および第2、第3の水力タービン220,20の何れかの順番で流通する配管構成である
さらに、本システム200は、高所タンク80と、井戸60との間を接続する昇水管(配管経路)71に、水量調整手段91と、逆止弁92との少なくとも何れかを介挿した構成である。
以下、本システム200の動作をより詳細に説明する。井戸60から噴出した被圧地下水50は、第1の水力タービン120を駆動しながら高所タンク80に貯留される。被圧地下水50は、昇水管71を介して高所タンク80に昇水し、高所タンク80に貯留水51を貯留して余りある勢いのため、逆止弁92は常時順方向に開弁状態である。貯留水51が高所タンク80からあふれることが問題であれば水量調整弁91により加減する。あるいは、高所タンク80に不図示の余水吐き経路を設けてあふれる分だけ排水する一方で、高所タンク80の容量全部を有効利用するように貯留水51を常時満水させておいても良い。
また、井戸60からの被圧地下水50が間欠的又は脈動的に噴出する場合、噴出しないタイミングで逆止弁92が閉じる弁作用により、昇水管71および第1の水力タービン120よりも水位が下がることを防止できるほか、効率良く高所タンク80に貯水できる。このようにして水位が維持されることにより、水力タービン120に空気が混入することによるキャビテーション等の害も生じない。
高所タンク80に貯留された貯留水51は、落差形成管70を介して水力タービン20に給水され、第2,3の水力タービン220,20および第2,3の発電機10を駆動する。ここで、被圧地下水50の昇水可能な範囲内において、落差形成管70をより長くし、高所タンク80を地上のより高い位置に配設すれば、より高落差となった分だけ第2,3の水力タービン220,20および第2,3の発電機10は高出力を得られる。その場合、第1の水力タービン120の流速が低下するので発電出力が低下する。
ここでも、第1の水力タービン120と第2,3の水力タービン220,20とは、被圧地下水50のエネルギーを、それぞれが分け合うように利用するので、3組の合計出力が3組分になることはない。特に、第1の水力タービン120を重負荷で駆動させた場合、被圧地下水50のエネルギーが失われるので、図2に示す地下水位の高さ7から応分に低下したレベルまでしか揚水できなくなる。その結果、高所タンク80に貯留水51が得られず、第2,3の水力タービン220,20を駆動することができなくなる。
図2では、昇り方向の噴出水流に基づいて第1の水力タービン120を駆動する以外に、高所タンク80から落差形成管70経由での落差分に基づく第2,3の水力タービン220,20も駆動することができることを説明するために、あえて3組を同一図面内に図示しているが、3組の合計出力が1組分の3倍になることはない。
したがって、実施例2に示した第1〜第3の水力タービン120,220,20については、1つか2つを無くしても構わない。特に、第2の水力タービン220と、第3の水力タービン20の何れか一方、あるいは、第1の水力タービン120は無くしても構わない。なお、実施例1,2は一例に過ぎず、各タービンの種類、数量、配置については適宜変更することが可能である。
本発明に係るマイクロ水力発電システムは、扇状地の末端、単斜構造や盆地構造の地域など、地下水が自然に地上へ噴出する自噴井のある地域で、法的手続きが不要又は簡素なこともあり、採用される可能性がある。
特に、「打ち抜き水」という自噴井戸の多い四国愛媛の西条市において、本システムを適用することにより、自産自売の地域振興が実現する。
さらに、自噴井のある地域以外でも、例えば、土木工事現場等において、大気圧より高圧の被圧地下水を取水管で取水できる地点であれば適用可能である。またその場合、水力タービンの有効落差が1m以下の低落差であっても利用可能性が見込まれる。
また、本システムによる電力供給源は、系統連系型太陽光発電システムと類似する構成により売電用途が考えられるほか、スマートグリッドにも適応可能であり、電力需要家との間を通信網で管理することにより、さらなる効果的な利用可能性が見込まれる。
1,3 難透水層
2,4 透水層
5 (商用電力の)配電線
6 系統連系手段
7 地下水位
10 発電機
20,120,220 水力タービン
21,121,221 (水力タービン20,120,220それぞれの)受水部
22,122,222 (水力タービン20,120,220それぞれの)吐出部
23 吸出管
24 渦流ランナ
30,31 被圧帯水層
40,41 取水管
42,43 取水開口部
50 被圧地下水
51 (高所タンク80に貯留された)貯留水
60 井戸
61 井戸枠
62 地表開口部
70 落差形成管
71 昇水管
80 高所タンク
81 給水部
82 排水部
91 水圧調整手段
92 逆止弁
100,200 マイクロ水力発電システム
123,223 直管内プロペラランナ
X1,X2 (被圧帯水層30,31の)深さ

Claims (4)

  1. 発電機と、
    該発電機を駆動する水力タービンと、
    一端又は該一端の近傍が地中の被圧帯水層まで届くように埋設されて取水可能な取水開口部を形成するとともに、他端が水力タービンの受水部に接続された取水管と、を備え、
    前記取水管は、大気圧より高圧の被圧地下水を前記大気圧から隔離して前記水力タービンのみに注入する配管構造にしたことを特徴とするマイクロ水力発電システム。
  2. 前記取水管は、少なくとも前記被圧帯水層に遭遇する深さまで掘削された井戸の底部近傍まで挿入された井戸枠と連通して気密性を保持するように、管を接続又は延設して構成されたことを特徴とする請求項1に記載のマイクロ水力発電システム。
  3. 発電機と、
    該発電機を駆動する水力タービンと、
    前記水力タービンの受水部と吐出部との少なくとも何れかに接続された落差形成管と、
    該落差形成管を経由するか又は直接に前記水力タービンの受水部に接続された高所タンクと、を備え、
    前記高所タンクは自噴する井戸から噴出する被圧地下水を貯留し、前記高所タンクに貯留された貯留水を、前記落差形成管および前記水力タービンに何れかの順番で流通する配管構成であることを特徴とするマイクロ水力発電システム。
  4. 前記高所タンクと前記井戸との間を接続する配管経路に、水量調整手段と逆止弁との少なくとも何れかを介挿したことを特徴とする請求項3に記載のマイクロ水力発電システム。
JP2014194814A 2014-09-25 2014-09-25 マイクロ水力発電システム Pending JP2016065492A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194814A JP2016065492A (ja) 2014-09-25 2014-09-25 マイクロ水力発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194814A JP2016065492A (ja) 2014-09-25 2014-09-25 マイクロ水力発電システム

Publications (1)

Publication Number Publication Date
JP2016065492A true JP2016065492A (ja) 2016-04-28

Family

ID=55804047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194814A Pending JP2016065492A (ja) 2014-09-25 2014-09-25 マイクロ水力発電システム

Country Status (1)

Country Link
JP (1) JP2016065492A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015624A1 (en) * 2019-07-19 2021-01-28 Hans Gude Gudesen Multi-mode subterranean energy system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015624A1 (en) * 2019-07-19 2021-01-28 Hans Gude Gudesen Multi-mode subterranean energy system

Similar Documents

Publication Publication Date Title
JP6108401B2 (ja) 揚水発電所
WO2010137031A1 (en) Method of man-made multi-level electrical generation
CN201011333Y (zh) 平原地区重力能水力发电系统
WO2010060504A2 (en) Energy accumulation system and method
KR101258892B1 (ko) 복수의 터빈과 유로를 이용한 수력 발전 장치
US11171543B2 (en) Energy generation from a double wellbore
KR101047337B1 (ko) 저수용량 증대 및 에너지 순환형 저수지 시공방법
CN110055937A (zh) 一种城市抽水蓄能电站
JP3687790B2 (ja) 水力発電設備
US10465651B2 (en) Well-bore generator
JP2016065492A (ja) マイクロ水力発電システム
US20170234289A1 (en) Energy generation from a double wellbore
US20020180215A1 (en) Method of producing electricity through injection of water into a well
JP2007024021A (ja) 循環式水力発電機並に本機の組合せ組立て方法
RU2431015C1 (ru) Деривационная скважинная гидроэлектростанция
JP2014152645A (ja) 水流発電装置
CN208456765U (zh) 一种承压水发电装置
JP5885430B2 (ja) 地下水を利用した発電システム
KR101211321B1 (ko) 조수간만의 차이를 이용한 발전장치
RU2377436C1 (ru) Скважинная гидроаккумулирующая электростанция
JP2017053320A (ja) 発電装置
KR100961733B1 (ko) 터널형 저수 설비를 갖는 다단계 수력 발전 시스템
JP5513672B1 (ja) 地下水力発電装置
CN108798967A (zh) 一种承压水发电方法
JP2004156448A (ja) 水力発電システム