JP2016064971A - Silicon nitride sintered body and abrasion resistant member using the same - Google Patents

Silicon nitride sintered body and abrasion resistant member using the same Download PDF

Info

Publication number
JP2016064971A
JP2016064971A JP2015124900A JP2015124900A JP2016064971A JP 2016064971 A JP2016064971 A JP 2016064971A JP 2015124900 A JP2015124900 A JP 2015124900A JP 2015124900 A JP2015124900 A JP 2015124900A JP 2016064971 A JP2016064971 A JP 2016064971A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
grain boundary
boundary phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015124900A
Other languages
Japanese (ja)
Other versions
JP6491964B2 (en
Inventor
開 船木
Kai Funaki
開 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Publication of JP2016064971A publication Critical patent/JP2016064971A/en
Application granted granted Critical
Publication of JP6491964B2 publication Critical patent/JP6491964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Rolling Contact Bearings (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride sintered body high in chemical resistance to acid, alkali or the like.SOLUTION: There is provided silicon nitride sintered body having silicon nitride crystal particles 1 and a grain boundary phase 2, where the grain boundary phase 2 contains no rare earth element and has area ratio of the grain boundary phase 2 per unit area of 20 μm×20 μm of 10 to 20% when taking a picture of any cross section of the silicon nitride sintered body. There is particle containing one kind of 4A group element selected from Ti, Zr and Hf in the grain boundary phase 2 and the particle exists as a single body of a compound of oxide, nitride, hydride or carbide of 4A group element, a major axis is preferably 2 μm or less, there is preferably 1 to 5 particles containing the elements per unit area of 20 μm×20 μm, and Si and 2A group element form preferably no solid solution in the particle.SELECTED DRAWING: Figure 1

Description

実施形態は、窒化珪素焼結体およびそれを用いた耐摩耗性部材に関する。 Embodiments relate to a silicon nitride sintered body and a wear-resistant member using the same.

窒化珪素を主成分とするセラミックス焼結体は、優れた耐熱性を示し、かつ熱膨張係数
が小さいため、耐熱衝撃性にも優れる等の諸特性を有することから、従来の耐熱合金に代
わる高温構造用材料として、エンジン部品、製鋼用機械部品等への応用が試みられている
。また、耐摩耗性にも優れていることから、転動部材や切削工具としての実用化も図られ
ている。
Ceramic sintered bodies based on silicon nitride have excellent heat resistance and low thermal expansion coefficient, so they have various characteristics such as excellent thermal shock resistance. As structural materials, application to engine parts, machine parts for steel making, etc. has been attempted. Moreover, since it is excellent also in abrasion resistance, the practical use as a rolling member or a cutting tool is also achieved.

特許第5362758号公報(特許文献1)には、焼結助剤として希土類酸化物、酸化
アルミニウム、酸化チタン等を原料粉末に所定量添加して焼結性を改善し、緻密で高強度
な窒化珪素焼結体を得ている。一方で、特許文献1に示されたような窒化珪素焼結体は希
土類酸化物を含有しているため酸やアルカリ等の薬品に対する耐腐食性が不十分と言った
問題があった。
薬品に対する耐食性を改善するために特許第2829229号公報には、希土類酸化物
を含まない窒化珪素焼結体が開発されている。特許文献2では、焼結助剤としてMgO・
Alスピネル、SiC、SiO、TiOを用いていた。このような焼結助剤の
組合せにより、薬品に対する耐腐食性は改善されていた。
In Japanese Patent No. 5362758 (Patent Document 1), a predetermined amount of rare earth oxide, aluminum oxide, titanium oxide or the like as a sintering aid is added to the raw material powder to improve the sinterability, and dense and high-strength nitriding. A silicon sintered body is obtained. On the other hand, since the silicon nitride sintered body as shown in Patent Document 1 contains a rare earth oxide, there is a problem that the corrosion resistance against chemicals such as acid and alkali is insufficient.
In order to improve the corrosion resistance against chemicals, Japanese Patent No. 2829229 has developed a silicon nitride sintered body containing no rare earth oxide. In Patent Document 2, MgO.
Al 2 O 3 spinel, SiC, SiO 2 and TiO 2 were used. Corrosion resistance to chemicals has been improved by such a combination of sintering aids.

特許第5362758号公報Japanese Patent No. 5362758 特許第2829229号公報Japanese Patent No. 2829229

近年、窒化珪素焼結体は、エンジン部品、機械部品、ベアリングボール、切削工具など様
々な耐摩耗性部材に使用されている。窒化珪素焼結体は、軸受鋼(SUJ2)などの金属
部材と比べてはるかに耐久性に優れることから、各種耐摩耗性部材において長期信頼性を
得ている。このため、長期間メンテナンスフリーをも実現している。
しかしながら、従来の窒化珪素焼結体では、酸やアルカリ等の化学薬品に対する耐腐食性
の長期信頼性に関しては必ずしも十分ではなかった。
In recent years, sintered silicon nitride has been used for various wear-resistant members such as engine parts, machine parts, bearing balls, and cutting tools. Since the silicon nitride sintered body is far more durable than metal members such as bearing steel (SUJ2), long-term reliability is obtained in various wear-resistant members. For this reason, maintenance-free for a long time is also realized.
However, conventional silicon nitride sintered bodies have not always been sufficient in terms of long-term reliability of corrosion resistance against chemicals such as acids and alkalis.

実施形態にかかる窒化珪素焼結体は、このような問題を解決するためのものであり、窒化
珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の断面を撮影したとき、粒界相は
希土類元素を含まず、単位面積20μm×20μmあたり粒界相の面積比が10〜20%
であることを特徴とする。
The silicon nitride sintered body according to the embodiment is for solving such a problem. When an arbitrary cross section of the silicon nitride sintered body including the silicon nitride crystal particles and the grain boundary phase is photographed, The boundary phase does not contain rare earth elements, and the area ratio of the grain boundary phase per unit area 20 μm × 20 μm is 10 to 20%.
It is characterized by being.

実施形態にかかる窒化珪素焼結体は、希土類元素を含まず、単位面積当たりの粒界相の面
積比を制御している。これにより、窒化珪素焼結体の耐久性を維持した上で、薬品に対す
る耐腐食性を長時間維持することを可能とする。そのため、実施形態の窒化珪素焼結体を
用いた耐摩耗性部材は、酸やアルカリといった薬品のある環境下でも長期間信頼性を維持
することができる。
The silicon nitride sintered body according to the embodiment does not contain a rare earth element and controls the area ratio of the grain boundary phase per unit area. This makes it possible to maintain the corrosion resistance against chemicals for a long time while maintaining the durability of the silicon nitride sintered body. Therefore, the wear-resistant member using the silicon nitride sintered body of the embodiment can maintain reliability for a long time even in an environment where there is a chemical such as acid or alkali.

実施形態にかかる窒化珪素焼結体の断面組織写真の一例を示す図。The figure which shows an example of the cross-sectional structure | tissue photograph of the silicon nitride sintered compact concerning embodiment.

実施形態にかかる窒化珪素焼結体は、窒化珪素結晶粒子と粒界相を具備する窒化珪素焼
結体の任意の断面を撮影したとき、粒界相は希土類元素を含まず、単位面積20μm×2
0μmあたり粒界相の面積比が10〜20%であることを特徴とするものである。
窒化珪素焼結体は、主相となる窒化珪素結晶粒子と副相である粒界相を具備している。粒
界相は、焼結助剤が焼結工程において焼結助剤同士または焼結助剤と窒化珪素(不純物酸
素含む)が反応した化合物から主に形成されている。燒結助剤は焼結性を制御するために
添加されており、粒界相は窒化珪素結晶粒子同士の隙間(粒界)に形成される。粒界相に
より窒化珪素結晶粒子同士の結合力を強化している。
窒化珪素結晶粒子と粒界相を比較したとき、粒界相は窒化珪素結晶粒子よりも耐薬品特
性に劣る。特に、酸化物由来のアモルファス相からなる粒界相は、酸・アルカリへの耐性
が窒化珪素結晶粒子より大きく劣ることが分かっている。粒界相の中でも、希土類元素を
含む粒界相は酸やアルカリへの耐性が低い。このため、実施形態にかかる窒化珪素焼結体
は粒界相に希土類元素を含まないことを特徴としている。なお、酸やアルカリへの耐腐食
性のことを耐薬品性と呼ぶものとする。
また、単位面積20μm×20μmといった微小領域において粒界相の面積比を10〜
20%の範囲にしている。粒界相が10%未満では粒界相が少なすぎて窒化珪素焼結体の
耐摩耗性が低下する。また、粒界相の面積比が20%を超えると粒界相が多すぎて耐薬品
特性が劣化する。そのため、粒界相の割合は10〜20%、好ましくは10〜15%であ
る。本発明の窒化珪素焼結体は任意の断面において単位面積20μm×20μmの微小領
域で粒界相の面積比が10〜20%の範囲になっているものである。
In the silicon nitride sintered body according to the embodiment, when an arbitrary cross section of a silicon nitride sintered body having silicon nitride crystal grains and a grain boundary phase is photographed, the grain boundary phase does not contain a rare earth element, and the unit area is 20 μm × 2
The area ratio of the grain boundary phase per 0 μm is 10 to 20%.
The silicon nitride sintered body includes silicon nitride crystal grains as a main phase and a grain boundary phase as a sub phase. The grain boundary phase is mainly formed from a compound obtained by reacting the sintering aids with each other or with the sintering aid and silicon nitride (including impurity oxygen) in the sintering step. The sintering aid is added to control the sinterability, and the grain boundary phase is formed in the gaps (grain boundaries) between the silicon nitride crystal grains. The bonding force between the silicon nitride crystal grains is strengthened by the grain boundary phase.
When the silicon nitride crystal particles and the grain boundary phase are compared, the grain boundary phase is inferior in chemical resistance characteristics to the silicon nitride crystal particles. In particular, it has been found that a grain boundary phase composed of an oxide-derived amorphous phase is significantly inferior to silicon nitride crystal particles in resistance to acids and alkalis. Among the grain boundary phases, the grain boundary phase containing rare earth elements has low resistance to acids and alkalis. For this reason, the silicon nitride sintered body according to the embodiment is characterized in that the grain boundary phase does not contain a rare earth element. In addition, the corrosion resistance to an acid or an alkali shall be called chemical resistance.
Further, the area ratio of the grain boundary phase is set to 10 to 10 in a minute region such as a unit area of 20 μm × 20 μm.
The range is 20%. If the grain boundary phase is less than 10%, the grain boundary phase is too small and the wear resistance of the silicon nitride sintered body is lowered. Moreover, when the area ratio of a grain boundary phase exceeds 20%, there are too many grain boundary phases and chemical-resistant characteristics deteriorate. Therefore, the ratio of the grain boundary phase is 10 to 20%, preferably 10 to 15%. In the silicon nitride sintered body of the present invention, the area ratio of the grain boundary phase is in the range of 10 to 20% in a minute region having a unit area of 20 μm × 20 μm in an arbitrary cross section.

なお、粒界相の面積比の測定方法は次の通りである。まず、窒化珪素焼結体の任意の断
面を得る。この断面を表面粗さRaが1μm以下の鏡面加工を施す。窒化珪素結晶粒子と
粒界相の領域を明確にするために、得られた鏡面にプラズマエッチング処理を行う。プラ
ズマエッチング処理を行うと、窒化珪素結晶粒子と粒界相のエッチングレートが異なるた
め、どちらか一方が多く削除される。例えばCF4を用いたプラズマエッチングでは、窒
化珪素結晶粒子の方がエッチングレートが高い(エッチングされ易い)ので、窒化珪素結
晶粒子が凹部、粒界相が凸部となる。なお、エッチング処理は酸およびアルカリを用いる
ケミカルエッチングでも可能である。エッチング処理後の鏡面をSEM画像撮影(100
0倍以上の倍率)する。SEM写真では、窒化珪素粒子と粒界相がコントラストの差で区
別できる。通常は、粒界相が白色に見える。エッチング処理を行うことにより、コントラ
ストの差をよりはっきりさせることができる。SEM写真を画像解析することにより、単
位面積当たりの粒界相の面積比を測定できる。なお、画像解析は、粒界相部分をカラーマ
ッピングして画像解析する方法が有効である。図1にSEM写真(5000倍)の一例を
示した。図1では、2が窒化珪素粒子部分、3が粒界相部分である。また、図1では粒界
相部分が凸部、窒化珪素粒子部分が凹部になった例である。画像解析すると粒界相の面積
比は15%となる。なお、単位面積20μm×20μmにならない場合は、複数回撮影し
、合計で単位面積20μm×20μmにしてもよいものとする。
The method for measuring the area ratio of the grain boundary phase is as follows. First, an arbitrary cross section of the silicon nitride sintered body is obtained. This cross section is mirror-finished with a surface roughness Ra of 1 μm or less. In order to clarify the region between the silicon nitride crystal grains and the grain boundary phase, plasma etching is performed on the obtained mirror surface. When the plasma etching process is performed, the etching rate of the silicon nitride crystal grains and the grain boundary phase are different, and either one of them is largely deleted. For example, in plasma etching using CF 4, silicon nitride crystal particles have a higher etching rate (easily etched), so that the silicon nitride crystal particles are concave and the grain boundary phase is convex. The etching process can also be chemical etching using acid and alkali. SEM image of mirror surface after etching process (100
0x or higher magnification). In the SEM photograph, the silicon nitride particles and the grain boundary phase can be distinguished by the difference in contrast. Usually, the grain boundary phase appears white. By performing the etching process, the difference in contrast can be made clearer. By analyzing the image of the SEM photograph, the area ratio of the grain boundary phase per unit area can be measured. For image analysis, it is effective to perform image analysis by color mapping the grain boundary phase portion. FIG. 1 shows an example of an SEM photograph (5000 times). In FIG. 1, 2 is a silicon nitride particle part and 3 is a grain boundary phase part. FIG. 1 shows an example in which the grain boundary phase portion is a convex portion and the silicon nitride particle portion is a concave portion. When the image analysis is performed, the area ratio of the grain boundary phase is 15%. If the unit area does not become 20 μm × 20 μm, the image may be taken a plurality of times and the unit area may be 20 μm × 20 μm in total.

また、粒界相に、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)から選
ばれる1種の4A族元素を含む粒子が存在することが好ましい。4A族元素を含む粒子は
、4A族元素の酸化物、窒化物、水素化物、炭化物のいずれかの化合物単体であることが
好ましい。化合物単体とは、Tiの場合、TiO(酸化チタン)、TiN(窒化チタン
)、TiH(水素化チタン)、TiC(炭化チタン)のいずれか1種以上となる。Zr
の場合は、ZrO(酸化ジルコニウム)、ZrN(窒化ジルコニウム)、ZrH(水
素化ジルコニウム)、ZrC(炭化ジルコニウム)のいずれか1種以上となる。また、H
fの場合、HfO(酸化ハフニウム)、HfN(窒化ハフニウム)、HfH(水素化
ハフニウム)、HfC(炭化ハフニウム)のいずれか1種以上となる。これらの中では4
A族元素の窒化物または炭化物が好ましい。特に、TiNまたはTiCが好ましい。
また、4A族元素を含む粒子は、焼結助剤として化合物単体として添加したものであっ
ても良いし、焼結工程で化合物単体に変化したものであっても良い。
また、4A族元素を含む粒子が化合物単体は結晶粒子となる。粒界相に結晶粒子が存在
することにより、粒界相中のアモルファス相の割合を減らすことができる。なお、結集粒
子となっているか否かはTEMなどによって定性分析できる。
また、4A族元素を含む粒子は、Si元素および2A族元素と固溶していないことが好
ましい。Si元素および2A族元素と固溶すると、4A族元素の化合物単体が、4A族元
素とSi元素または2A族元素の複合化合物となる。複合化合物は化合物単体と比べて耐
薬品性が低下する。このため、Si元素または2A族元素と複合化合物を形成しない化合
物単体が好ましい。前述のTiNやTiCは複合化合物を形成し難いため好ましい。
また、4A族元素を含む粒子は長径2μm以下であることが好ましい。長径が2μmを超
えると、窒化珪素結晶粒子間の三重点に粒子(4A族元素を含む粒子)が留まった場合、
そこが局所的に強度特性の弱い部位となり、耐摩耗性に悪影響が出る可能性がある。この
ため、4A族元素を含む粒子の長径は1.5μm以下であることが好ましい。なお、4A
族元素を含む粒子があまり小さいと粒界相の耐薬品性を向上させる効果が十分得られない
おそれがある。そのため、4A族元素を含む粒子の長径は0.5μm以上であることが好
ましい。
また、窒化珪素焼結体の任意の断面組織を撮影したとき、単位面積20μm×20μm
あたり、4A族元素を含む粒子が1〜5個の範囲で存在することが好ましい。単位面積あ
たりの個数がゼロの場合、4A族元素を含む粒子が存在しない領域の耐薬品性が低下する
おそれがある。また、5個を超えて多いと、焼結時の緻密化を阻害し、内部欠陥を生成し
て耐摩耗性、対薬品特性に悪影響が出る可能性がある。
4A族元素を含む粒子は、化合物単体であること、長径2μm以下であること、単位面
積20μm×20μmあたり1〜5個であること、をすべて満たすことが最も好ましい。
Further, it is preferable that particles containing one kind of group 4A element selected from Ti (titanium), Zr (zirconium), and Hf (hafnium) exist in the grain boundary phase. The particles containing a 4A group element are preferably a single compound of any of oxides, nitrides, hydrides, and carbides of the 4A group element. In the case of Ti, the compound simple substance is at least one of TiO 2 (titanium oxide), TiN (titanium nitride), TiH 2 (titanium hydride), and TiC (titanium carbide). Zr
In this case, one or more of ZrO 2 (zirconium oxide), ZrN (zirconium nitride), ZrH 2 (zirconium hydride), and ZrC (zirconium carbide) are used. H
In the case of f, one or more of HfO 2 (hafnium oxide), HfN (hafnium nitride), HfH 2 (hafnium hydride), and HfC (hafnium carbide) are used. 4 of these
A nitride or carbide of group A element is preferred. In particular, TiN or TiC is preferable.
The particles containing a 4A group element may be added as a single compound as a sintering aid, or may be changed into a single compound during the sintering process.
Moreover, the compound containing the 4A group element alone is a crystal particle. The presence of crystal grains in the grain boundary phase can reduce the proportion of the amorphous phase in the grain boundary phase. In addition, it can be qualitatively analyzed by TEM etc. whether it is a collection particle.
Moreover, it is preferable that the particle | grains containing a 4A group element are not dissolved with Si element and 2A group element. When dissolved with the Si element and the 2A group element, the single compound of the 4A group element becomes a composite compound of the 4A group element and the Si element or the 2A group element. The compound compound has lower chemical resistance than the compound alone. For this reason, the compound simple substance which does not form a complex compound with Si element or 2A group element is preferable. The above-mentioned TiN and TiC are preferable because it is difficult to form a composite compound.
Moreover, it is preferable that the particle | grains containing a 4A group element are 2 micrometers or less in long diameter. When the long diameter exceeds 2 μm, when particles (particles containing a 4A group element) remain at the triple point between the silicon nitride crystal particles,
This is a region where strength characteristics are locally weak, which may adversely affect wear resistance. For this reason, it is preferable that the long diameter of the particle | grains containing a 4A group element is 1.5 micrometers or less. 4A
If the particle containing a group element is too small, the effect of improving the chemical resistance of the grain boundary phase may not be sufficiently obtained. Therefore, it is preferable that the long diameter of the particle | grains containing a 4A group element is 0.5 micrometer or more.
Further, when an arbitrary cross-sectional structure of the silicon nitride sintered body is photographed, the unit area is 20 μm × 20 μm.
It is preferable that 1 to 5 particles containing a group 4A element exist. When the number per unit area is zero, there is a risk that the chemical resistance of the region where the particles containing the group 4A element are not present is lowered. On the other hand, if the number exceeds 5, the densification during sintering is inhibited, and internal defects may be generated to adversely affect the wear resistance and chemical resistance.
Most preferably, the particles containing a group 4A element are all a single compound, a major axis of 2 μm or less, and 1 to 5 particles per unit area of 20 μm × 20 μm.

また、さらに粒界相の耐薬品性を向上させるため、粒界相の結晶性を向上させることが
望ましい。結晶性の高い粒界相は、アモルファス相からなる粒界相に比べ耐薬品性が高い
ことが分かっている。実施形態にかかる窒化珪素焼結体では、XRD分析したとき、41
.5〜42.5°の範囲に粒界相のピークが検出されることが好ましい。XRDにてピー
クが観察されるということは、粒界相に結晶性を持つ化合物が存在していることを意味し
ている。このとき、XRD分析は窒化珪素焼結体の任意の断面を表面粗さRaが1μm以
下となるまで研磨した研磨面を測定面とした。測定条件は、Cuターゲット(Cu−Kα
)、管電圧40kV、管電流40mA、スキャンスピート2.0°/min、スリット(
RS)0.15mm、走査範囲(2θ)20〜70°にて行うものとする。
また、41.5〜42.5°の範囲にピークが検出される成分は、前述の4A族元素を
含む粒子であってもよいし、それ以外の結晶質成分であってもよい。
Further, in order to further improve the chemical resistance of the grain boundary phase, it is desirable to improve the crystallinity of the grain boundary phase. It has been found that a highly crystalline grain boundary phase has higher chemical resistance than a grain boundary phase composed of an amorphous phase. In the silicon nitride sintered body according to the embodiment, when XRD analysis was performed, 41
. It is preferable that the peak of the grain boundary phase is detected in the range of 5 to 42.5 °. The fact that a peak is observed by XRD means that a compound having crystallinity exists in the grain boundary phase. At this time, in the XRD analysis, a polished surface obtained by polishing an arbitrary cross section of the silicon nitride sintered body until the surface roughness Ra was 1 μm or less was used as a measurement surface. Measurement conditions are Cu target (Cu-Kα
), Tube voltage 40 kV, tube current 40 mA, scan speed 2.0 ° / min, slit (
RS) 0.15 mm, scanning range (2θ) 20-70 °.
In addition, the component in which the peak is detected in the range of 41.5 to 42.5 ° may be particles containing the aforementioned 4A group element, or may be a crystalline component other than that.

また、実施形態にかかる窒化珪素焼結体をXRD分析したとき、41.5〜42.5°
の範囲の最大ピークをI41.5〜42.5°、β−窒化珪素の最大ピーク強度をIβ-S
i3N4としたとき、I41.5〜42.5°/Iβ−Si3N4=0.005〜0.020であ
ることが好ましい。
β−窒化珪素結晶粒子の最大ピークは36°付近に検出される。I41.5〜42.5°
/Iβ−Si3N4=0.005〜0.020となる範囲に存在することにより、粒界相を結
晶質にすることができる。ピーク比が大きい場合、結晶質が高い粒界相が過剰となり難焼
結性となる。また、ピーク比が低い場合、粒界相の耐薬品性が十分に向上しない。
Further, when the silicon nitride sintered body according to the embodiment was subjected to XRD analysis, 41.5 to 42.5 °.
The maximum peak in the range of I 41.5-42.5 ° , the maximum peak intensity of β- silicon nitride is I β-S
When i3N4 , it is preferable that I41.5-42.5 ° / -Si3N4 = 0.005-0.020 .
The maximum peak of β-silicon nitride crystal particles is detected around 36 °. I 41.5-42.5 °
/ I by the presence in the range to be the β-Si3N4 = 0.005~0.020, can be crystalline grain boundary phase. When the peak ratio is large, the grain boundary phase having a high crystallinity becomes excessive and becomes difficult to sinter. Moreover, when the peak ratio is low, the chemical resistance of the grain boundary phase is not sufficiently improved.

また、前記窒化珪素焼結体は、Alを0.1〜2.5質量%、2A族元素を0.1〜1.
5質量%、4A族元素、5A族元素、6A族元素のいずれか1種類以上を0.1〜3.8
質量%含むことが好ましい。Al、4A族元素、5A族元素、6A族元素は粒界相を形成
するための焼結助剤として使用されるものである。焼結工程にて反応して粒界相成分とな
る際に、上記範囲であると粒界相の割合を制御し易い。
Al成分の添加方法としては、Alを含有していれば特に限定されるものではないが、
AlN、Al,MgAlスピネルのいずれか1種以上であることが好ましい
。Alは粒界相を形成し、焼結性を向上させる働きを持つ。含有量が0.1質量%より低
い場合は焼結性が悪く、十分な緻密体が得られない。また含有量が2.5質量%より多い
場合はアモルファス相の粒界相が過剰となり、耐薬品性が劣化する。
Moreover, the silicon nitride sintered body contains 0.1 to 2.5% by mass of Al and 0.1 to 1.2.
0.1% to 3.8% by mass of any one or more of 5% by mass, Group 4A element, Group 5A element and Group 6A element
It is preferable to contain the mass%. Al, 4A group elements, 5A group elements, and 6A group elements are used as sintering aids for forming grain boundary phases. When reacting in the sintering process to become a grain boundary phase component, the ratio of the grain boundary phase is easily controlled to be within the above range.
The method of adding the Al component is not particularly limited as long as it contains Al,
One or more of AlN, Al 2 O 3 , and MgAl 2 O 4 spinel are preferable. Al forms a grain boundary phase and has a function of improving sinterability. When the content is lower than 0.1% by mass, the sinterability is poor and a sufficiently dense body cannot be obtained. On the other hand, when the content is more than 2.5% by mass, the grain boundary phase of the amorphous phase becomes excessive and the chemical resistance deteriorates.

また、2A族元素を添加する際は、Be(ベリリウム)、Mg(マグネシウム)、Ca(
カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Ra(ラジウム)のいずれ
か、可能ならばBe、Mg、Ca、Srのいずれか1種類から選択するのが望ましい。
焼結助剤として2族元素成分を添加する際は、酸化物、炭化物、窒化物のいずれか1種と
して添加することが望ましい。これらの元素は、Alと共存した場合、焼結を促進させる
効果だけでなく、対薬品性の高い結晶質の粒界相を形成する。含有量が0.1質量%より
少ない場合は焼結性、耐薬品性の向上が不十分となり、含有量が1.5質量%より多い場
合は逆に粒界の結晶性を低下させ、耐薬品性に悪影響を及ぼす。
In addition, when adding a group 2A element, Be (beryllium), Mg (magnesium), Ca (
It is desirable to select any one of calcium, Sr (strontium), Ba (barium), and Ra (radium), and if possible, any one of Be, Mg, Ca, and Sr.
When adding a Group 2 element component as a sintering aid, it is desirable to add any one of oxide, carbide, and nitride. When these elements coexist with Al, they form not only the effect of promoting sintering but also a crystalline grain boundary phase with high chemical resistance. When the content is less than 0.1% by mass, the improvement of sinterability and chemical resistance is insufficient, and when the content is more than 1.5% by mass, the crystallinity of the grain boundary is lowered, It adversely affects chemical properties.

また、4A族元素、5A族元素、6A族元素のいずれかを添加する際は、4A族元素は
、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)、5A族元素は、V(バ
ナジウム)、Nb(ニオブ)、Ta(タンタル)、6A族元素は、Cr(クロム)、Mo
(モリブデン)、W(タングステン)から選択するのが望ましい。焼結助剤として4A族
元素成分、5A族元素成分、6A族元素成分を添加する際は、酸化物、炭化物、窒化物の
いずれか1種として添加することが望ましい。含有量が0.1質量%より低いと粒界相中
の結晶成分が不足し、耐薬品性が劣化する。また、含有量が3.8質量%より多い場合、
焼結性に悪影響し、焼結体の緻密化を阻害して耐摩耗性が劣化する。
When adding any of the 4A group element, 5A group element, and 6A group element, the 4A group element is Ti (titanium), Zr (zirconium), Hf (hafnium), and the 5A group element is V (vanadium). ), Nb (niobium), Ta (tantalum), Group 6A elements are Cr (chromium), Mo
It is desirable to select from (molybdenum) and W (tungsten). When adding a 4A group element component, a 5A group element component, or a 6A group element component as a sintering aid, it is desirable to add any one of oxide, carbide, and nitride. When the content is lower than 0.1% by mass, the crystal component in the grain boundary phase is insufficient, and the chemical resistance is deteriorated. If the content is more than 3.8% by mass,
This adversely affects the sinterability, impairs densification of the sintered body, and deteriorates the wear resistance.

また、前記窒化珪素焼結体は希土類元素を含有しないことを特徴とする。希土類元素は
Y(イットリウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)、N
d(ネオジウム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユーロピウム)
、Gd(ガドリウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウ
ム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチ
ウム)である。
窒化珪素の焼結において、希土類元素を添加した場合、焼結性が向上し、窒化珪素結晶
粒子のアスペクト比が向上、結果として強度特性、耐摩耗性に非常に優れた焼結体を得る
ことが出来る。しかし、希土類元素の添加は、粒界相の結晶性を低下させ、耐薬品性を劣
化させるという問題点を持つ。そこで、本発明では希土類元素の添加を行わず、粒界相の
耐薬品性を向上させることとしている。
The silicon nitride sintered body does not contain a rare earth element. The rare earth elements are Y (yttrium), La (lanthanum), Ce (cerium), Pr (praseodymium), N
d (neodymium), Pm (promethium), Sm (samarium), Eu (europium)
Gd (gadlium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium).
When rare earth elements are added in the sintering of silicon nitride, the sinterability is improved and the aspect ratio of the silicon nitride crystal particles is improved. As a result, a sintered body having excellent strength characteristics and wear resistance can be obtained. I can do it. However, the addition of rare earth elements has a problem that the crystallinity of the grain boundary phase is lowered and the chemical resistance is deteriorated. Therefore, in the present invention, the chemical resistance of the grain boundary phase is improved without adding rare earth elements.

また、前記窒化珪素は、窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の
断面を撮影したとき、単位面積20μm×20μmあたりにおいて、長径が2.0μm以
上の窒化珪素結晶粒子を観察したとき、アスペクト比2以上の窒化珪素粒子が90%以上
であることが好ましい。なお、アスペクト比2以上の窒化珪素粒子の割合は面積比で求め
るものとする。このような組織構造とすることにより、強度特性と耐薬品性を兼ね備えた
窒化珪素焼結体を提供することが可能である。アスペクト比2以上の割合が90%未満で
は強度、特に破壊靭性値が低下する。
また、長径と短径の平均値を粒径と定義したとき、粒径が2.0μm以下の窒化珪素粒
子が、窒化珪素粒子全体の合計面積に対して面積比で70%以上であることが望ましい。
微細かつアスペクト比が大きい粒子を主構成とすることで、材料強度と耐摩耗性の向上が
可能である。粒径が2.0μm以下の窒化珪素粒子が、窒化珪素粒子全体の合計面積に対
して面積比で70%以下であるとき、応力集中時に粒子の脱粒が起こりやすくなり、結果
として耐摩耗性が不十分となる。
The silicon nitride is a silicon nitride crystal having a major axis of 2.0 μm or more per unit area of 20 μm × 20 μm when an arbitrary cross section of a silicon nitride sintered body having silicon nitride crystal grains and a grain boundary phase is photographed. When the particles are observed, silicon nitride particles having an aspect ratio of 2 or more are preferably 90% or more. Note that the ratio of silicon nitride particles having an aspect ratio of 2 or more is obtained as an area ratio. By adopting such a structure, it is possible to provide a silicon nitride sintered body having both strength characteristics and chemical resistance. If the ratio of the aspect ratio of 2 or more is less than 90%, the strength, particularly the fracture toughness value, decreases.
Further, when the average value of the major axis and the minor axis is defined as the particle size, the silicon nitride particles having a particle size of 2.0 μm or less may be 70% or more in area ratio with respect to the total area of the entire silicon nitride particles. desirable.
By using fine particles having a large aspect ratio as a main component, it is possible to improve material strength and wear resistance. When the silicon nitride particles having a particle size of 2.0 μm or less are 70% or less in terms of the area ratio with respect to the total area of the entire silicon nitride particles, the particles are likely to fall out during stress concentration, resulting in high wear resistance. It becomes insufficient.

次に製造方法について説明する。実施形態にかかる窒化珪素焼結体は上記構成を有すれ
ば特に製造方法は限定されるものではないが効率的に得るための方法として次のものが挙
げられる。
まず、窒化珪素粉末を用意する。窒化珪素粉末は酸素含有量が4質量%以下で、α相型
窒化珪素を85質量%以上含み、平均粒子径が0.8μm以下であることが好ましい。
α−Si粉末を焼結工程でβ−Si結晶粒子に粒成長させることにより、耐
摩耗性の優れた窒化珪素焼結体を得ることができる。
本発明の窒化珪素焼結体では、粒界相の面積比を制御している。このような制御を行うに
は、焼結助剤の量の制御が有効である。焼結助剤の量の制御には、添加量の制御および窒
化珪素粉末との均一分散を行うことが有効である。
焼結助剤の添加量は、Alを0.1〜2.5質量%、2A族元素を0.1〜1.5質量%
、4A族元素、5A族元素、6A族元素のいずれか1種類以上を0.1〜3.8質量%で
あることが好ましい。焼結助剤粉末の平均粒子径は1.8μm以下であることが好ましい
Next, a manufacturing method will be described. As long as the silicon nitride sintered body according to the embodiment has the above-described configuration, the manufacturing method is not particularly limited.
First, silicon nitride powder is prepared. The silicon nitride powder preferably has an oxygen content of 4% by mass or less, contains α-phase silicon nitride of 85% by mass or more, and has an average particle size of 0.8 μm or less.
A silicon nitride sintered body having excellent wear resistance can be obtained by growing α-Si 3 N 4 powder into β-Si 3 N 4 crystal particles in the sintering step.
In the silicon nitride sintered body of the present invention, the area ratio of the grain boundary phase is controlled. In order to perform such control, it is effective to control the amount of the sintering aid. In order to control the amount of the sintering aid, it is effective to control the addition amount and to uniformly disperse the silicon nitride powder.
The additive amount of the sintering aid is 0.1 to 2.5% by mass of Al and 0.1 to 1.5% by mass of 2A group element.
It is preferable that at least one of the 4A group element, 5A group element, and 6A group element is 0.1 to 3.8% by mass. The average particle size of the sintering aid powder is preferably 1.8 μm or less.

また、窒化珪素粉末と焼結助剤粉末の均一分散には、混合工程を長時間行うことが有効で
ある。ボールミルなどによる解砕混合工程が有効であり、50時間以上の長時間行うこと
が好ましい。解砕混合時間はさらに80時間以上が好ましい。解砕混合工程により、窒化
珪素粉末同士、焼結助剤粉末同士、窒化珪素粉末および焼結助剤粉末が結合した二次粒子
となることを防ぐことができる。窒化珪素粉末と焼結助剤粉末のほとんどが一次粒子とな
ることにより均一分散を行うことができる。
また、粒界相の面積比を制御するには、少ない焼結助剤量であっても十分に焼結できるよ
うにすることが有効である。このためには、窒化珪素粉末の表面を予め酸化しておくこと
が有効である。酸化膜付き窒化珪素粉末を使うことにより、窒化珪素粉末を活性化させ焼
結助剤との反応を促進することができる。窒化珪素粉末への酸化処理は、大気中での熱処
理、水処理などが挙げられる。熱処理にて酸化を行う場合、大気中にて600〜900℃
4時間という条件であることが望ましい。600℃以下の温度では窒化珪素粉末表面に酸
化皮膜が十分に生成されず、焼結性向上効果が無い。また、900℃以上の温度では窒化
珪素粉末同士の焼結が進行し、固い凝集粒子が多数生成されるため、解砕混合工程で1次
粒子とすることが困難となる。なお、窒化珪素粉末への酸化処理はやり過ぎると窒化珪素
焼結体の耐摩耗性を低下するので、膜厚としては0.5μm以下の酸化膜であることが好
ましい。
次に、窒化珪素粉末と焼結助剤粉末を混合した原料混合物にバインダを添加する。原料
混合物とバインダとの混合はボールミル等を使用し、必要に応じて粉砕や造粒を行いなが
ら実施する。原料混合物を所望の形状に成形する。成形工程は、金型プレスや冷間静水圧
プレス(CIP)等により実施する。成形圧力は100MPa以上が好ましい。成形工程
で得た成形体を脱脂する。脱脂工程は300〜600℃の範囲の温度で実施することが好
ましい。脱脂工程は大気中や非酸化性雰囲気中で実施され、雰囲気は特に限定されるもの
ではない。
In order to uniformly disperse the silicon nitride powder and the sintering aid powder, it is effective to perform the mixing process for a long time. A crushing and mixing process using a ball mill or the like is effective, and it is preferably performed for a long time of 50 hours or more. The crushing and mixing time is preferably 80 hours or longer. The crushing and mixing step can prevent secondary particles in which silicon nitride powders, sintering aid powders, silicon nitride powder and sintering aid powder are combined. Uniform dispersion can be achieved by most of the silicon nitride powder and the sintering aid powder becoming primary particles.
In order to control the area ratio of the grain boundary phase, it is effective to allow sufficient sintering even with a small amount of sintering aid. For this purpose, it is effective to oxidize the surface of the silicon nitride powder in advance. By using the silicon nitride powder with an oxide film, the silicon nitride powder can be activated and the reaction with the sintering aid can be promoted. Examples of the oxidation treatment to the silicon nitride powder include heat treatment in the air and water treatment. When oxidation is performed by heat treatment, 600 to 900 ° C in the air
The condition of 4 hours is desirable. When the temperature is 600 ° C. or lower, an oxide film is not sufficiently formed on the surface of the silicon nitride powder, and there is no effect of improving sinterability. Moreover, since sintering of silicon nitride powder proceeds at a temperature of 900 ° C. or higher and a large number of hard aggregated particles are generated, it is difficult to obtain primary particles in the crushing and mixing step. In addition, since the abrasion resistance of a silicon nitride sintered compact will fall if the oxidation process to a silicon nitride powder is performed too much, it is preferable that it is an oxide film of 0.5 micrometer or less as a film thickness.
Next, a binder is added to the raw material mixture obtained by mixing the silicon nitride powder and the sintering aid powder. The mixing of the raw material mixture and the binder is performed using a ball mill or the like while performing pulverization and granulation as necessary. The raw material mixture is formed into a desired shape. The molding process is performed by a die press, a cold isostatic press (CIP), or the like. The molding pressure is preferably 100 MPa or more. The molded body obtained in the molding process is degreased. The degreasing step is preferably performed at a temperature in the range of 300 to 600 ° C. The degreasing step is performed in the air or in a non-oxidizing atmosphere, and the atmosphere is not particularly limited.

次に、脱脂工程で得た脱脂体を1600〜1900℃の範囲の温度で焼結する。焼結温度
が1600℃未満であると、窒化珪素結晶粒子の粒成長が不十分になるおそれがある。す
なわち、α相型窒化珪素からβ相型窒化珪素への反応が不十分であり、緻密な焼結体組織
が得られないおそれがある。この場合、窒化珪素焼結体の材料としての信頼性が低下する
。焼結温度が1900℃を超えると窒化珪素結晶粒子が粒成長しすぎて、加工性が低下す
るおそれがある。焼結工程は、常圧焼結および加圧焼結のいずれで実施してもよい。焼結
工程は非酸化性雰囲気中で実施することが好ましい。非酸化性雰囲気としては、窒素雰囲
気やアルゴン雰囲気が挙げられる。
Next, the degreased body obtained in the degreasing step is sintered at a temperature in the range of 1600 to 1900 ° C. If the sintering temperature is less than 1600 ° C., the crystal growth of silicon nitride crystal particles may be insufficient. That is, the reaction from α-phase type silicon nitride to β-phase type silicon nitride is insufficient, and a dense sintered body structure may not be obtained. In this case, the reliability as a material of the silicon nitride sintered body is lowered. When the sintering temperature exceeds 1900 ° C., silicon nitride crystal particles grow too much, and the workability may be reduced. The sintering step may be performed by either normal pressure sintering or pressure sintering. The sintering step is preferably performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere.

焼結工程の後に、非酸化性雰囲気中にて10MPa以上の熱間静水圧プレス(HIP)処
理を施すことが好ましい。非酸化性雰囲気としては、窒素雰囲気やアルゴン雰囲気が挙げ
られる。HIP処理温度は1500〜1900℃の範囲であることが好ましい。HIP処
理を実施することによって、窒化珪素焼結体内の気孔を消滅させることができる。HIP
処理圧力が10MPa未満であると、そのような効果を十分に得ることができない。
After the sintering process, it is preferable to perform a hot isostatic pressing (HIP) treatment of 10 MPa or more in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere. The HIP treatment temperature is preferably in the range of 1500-1900 ° C. By performing the HIP process, the pores in the silicon nitride sintered body can be eliminated. HIP
If the treatment pressure is less than 10 MPa, such an effect cannot be sufficiently obtained.

このようにして製造された窒化珪素焼結体に対して、必要な箇所に研磨加工を施して耐摩
耗性部材を作製する。研磨加工は、ダイヤモンド砥粒を用いて実施することが好ましい。
The silicon nitride sintered body thus manufactured is subjected to a polishing process at a necessary location to produce an abrasion resistant member. The polishing process is preferably performed using diamond abrasive grains.

(実施例)
(実施例1〜8、比較例1〜7)
表1、表2に示した窒化珪素粉末、焼結助剤を用意して原料粉末を調製した。なお、焼結
助剤の添加量は窒化珪素粉末と焼結助剤の合計量を100wt%としたときの比率である
。解砕混合工程はボールミルにより行った。また、窒化珪素粉末は、表1、表2に示した
ように一部のものには酸化処理を行ったものを用いた。
(Example)
(Examples 1-8, Comparative Examples 1-7)
The silicon nitride powder and the sintering aid shown in Table 1 and Table 2 were prepared to prepare raw material powder. The amount of the sintering aid added is a ratio when the total amount of the silicon nitride powder and the sintering aid is 100 wt%. The crushing and mixing step was performed by a ball mill. Further, as shown in Tables 1 and 2, the silicon nitride powder used was a part of which was oxidized.

Figure 2016064971
Figure 2016064971

Figure 2016064971
Figure 2016064971

得られた原料混合物に樹脂バインダを混合して成型圧力150MPaにて成型工程を行っ
た。得られた成形体に500℃で脱脂工程を行った。得られた脱脂体に対し、1800℃
×4時間の常圧焼結、1600℃×20MPa×2時間のHIP処理を行った。この工程
により実施例および比較例に係る窒化珪素焼結体を作製した。
各窒化珪素焼結体に対して、任意の断面を切断加工し、単位面積20μm×20μmの
拡大写真(SEM写真)を撮影した。拡大写真を使って、単位面積当たりの粒界相の面積
比、長径2μm以上の窒化珪素結晶粒子の面積比、粒径2.0μm以下の窒化珪素粒子の
面積比、4A族元素を含む化合物結晶の個数を求めた。その結果を表3に示す。
A resin binder was mixed with the obtained raw material mixture, and a molding step was performed at a molding pressure of 150 MPa. The obtained molded body was subjected to a degreasing process at 500 ° C. 1800 ° C. for the obtained defatted body
The normal pressure sintering for 4 hours and the HIP treatment for 1600 ° C. × 20 MPa × 2 hours were performed. Through this step, silicon nitride sintered bodies according to Examples and Comparative Examples were produced.
For each silicon nitride sintered body, an arbitrary cross section was cut and an enlarged photograph (SEM photograph) having a unit area of 20 μm × 20 μm was taken. Using an enlarged photograph, the area ratio of the grain boundary phase per unit area, the area ratio of silicon nitride crystal particles having a major axis of 2 μm or more, the area ratio of silicon nitride particles having a grain diameter of 2.0 μm or less, and a compound crystal containing a group 4A element The number of was determined. The results are shown in Table 3.

Figure 2016064971
Figure 2016064971

実施例1〜8に係る窒化珪素焼結体は、粒界相の面積比は10〜20%、長径2μm以上
の窒化珪素結晶粒子のアスペクト比が2以上の粒子の割合は90%以上、4A族元素化合
物の結晶の個数は1〜3個であった。各焼結体に関しては実質的に気孔(ポア)は確認さ
れなかった。また、TEM観察した結果、実施例にかかる窒化珪素焼結体の4A族元素化
合物結晶は化合物単体であった。
比較例1〜7に関しては粒界相の面積比が必ずしも10〜20%の範囲に入らず、また
長径2μm以上の窒化珪素結晶粒子のアスペクト比が2以上の粒子の割合が必ずしも90
%以上とはならず、さらに4A族元素化合物の結晶の個数は必ずしも1〜5個の範囲に入
らなかった。また、比較例1、2、4、6では実質的に気孔は観察されなかったが、比較
例3、5、7では内部に気孔が観察された。
次に各窒化珪素焼結体の断面をXRD分析した。その結果を表4に示す。
In the silicon nitride sintered bodies according to Examples 1 to 8, the area ratio of the grain boundary phase is 10 to 20%, and the ratio of the silicon nitride crystal particles having a major axis of 2 μm or more having an aspect ratio of 2 or more is 90% or more. The number of crystals of the group element compound was 1 to 3. For each sintered body, substantially no pores were confirmed. As a result of TEM observation, the group 4A element compound crystal of the silicon nitride sintered body according to the example was a single compound.
Regarding Comparative Examples 1 to 7, the area ratio of the grain boundary phase does not necessarily fall within the range of 10 to 20%, and the ratio of particles having an aspect ratio of 2 or more of silicon nitride crystal grains having a major axis of 2 μm or more is not necessarily 90%.
%, And the number of 4A group element compound crystals was not necessarily in the range of 1 to 5. In Comparative Examples 1, 2, 4, and 6, substantially no pores were observed, but in Comparative Examples 3, 5, and 7, pores were observed inside.
Next, XRD analysis was performed on the cross section of each silicon nitride sintered body. The results are shown in Table 4.

Figure 2016064971
Figure 2016064971

実施例1〜8に係る窒化珪素焼結体は、XRD分析したとき、41.5〜42.5°の
囲に現れる粒界相のピークの高さI41.5〜42.5と36°近辺に現れるβ窒化珪素
のピークの高さIβ−Si3N4の比I41.5〜42.5°/Iβ−Si3N4が0.
005〜0.020の範囲に収まった。比較例1、3、4、6、7においても同様の範囲
に収まったが、比較例2では該当ピークが検出されず、比較例5ではピーク比が0.02
0より大きい値となった。比較例ではAl成分が多すぎたために粒界相の結晶性が無くな
り、ピークが消滅したと考えられる。比較例5では、結晶成分のTiが過剰であるために
ピーク比が大きくなったと考えられる。
次に、各窒化珪素焼結体の相対密度、三点曲げ強度σf、ビッカース硬度Hv、破壊靭
性値K1Cを測定した結果を表4に示す。なお、三点曲げ強度はJIS−R−1632に
記載の規格に則って測定し、ビッカース硬度と破壊靭性値はJIS−R−1607に記載
のIF法を用いて測定し、破壊靭性値の算出には新原の式を使用した。また、耐薬品性の
評価を評価するため、各焼結体をそれぞれ30%濃度のHCl溶液に浸漬し、90℃で1
00時間加熱処理し、処理後における重量減および曲げ強度、ビッカース硬度、破壊靭性
値を測定した。その結果も合わせて表5に示す。
When the silicon nitride sintered bodies according to Examples 1 to 8 were subjected to XRD analysis, the peak heights I 41.5 to 42.5 and 36 ° of the grain boundary phase appearing in the range of 41.5 to 42.5 °. The ratio of the peak height -Si3N4 of β silicon nitride appearing in the vicinity I 41.5-42.5 ° / I β-Si3N4 is 0.1 .
It was within the range of 005 to 0.020. In Comparative Examples 1, 3, 4, 6, and 7, it was within the same range, but in Comparative Example 2, the corresponding peak was not detected, and in Comparative Example 5, the peak ratio was 0.02.
The value was greater than zero. In the comparative example, since the Al component is too much, the crystallinity of the grain boundary phase is lost, and the peak is considered to disappear. In Comparative Example 5, it is considered that the peak ratio was increased due to the excessive Ti of the crystal component.
Next, Table 4 shows the results of measuring the relative density, three-point bending strength σf, Vickers hardness Hv, and fracture toughness value K1C of each silicon nitride sintered body. The three-point bending strength is measured according to the standard described in JIS-R-1632, the Vickers hardness and fracture toughness value are measured using the IF method described in JIS-R-1607, and the fracture toughness value is calculated. The Niihara formula was used for. Further, in order to evaluate the evaluation of chemical resistance, each sintered body was immersed in a 30% strength HCl solution, and 1 ° C. at 90 ° C.
After heat treatment for 00 hours, the weight loss and bending strength, Vickers hardness and fracture toughness values after the treatment were measured. The results are also shown in Table 5.

Figure 2016064971
Figure 2016064971

実施例1〜8に係る窒化珪素焼結体は、いずれも相対密度が99.5%以上であり、十分
な緻密化が進んでいる。また、三点曲げ強度も990MPa以上と高い値であり、ビッカ
ース硬度、破壊靭性値も十分に高い値となっている。これらを所定の条件で酸浸漬を実施
した結果、重量減少はいずれも0.01%となった。また、浸漬後の三点曲げ強度も90
0MPa以上の値となり、ビッカース硬度、靭性値の劣化もほぼ見られない。このように
実施例にかかる窒化珪素焼結体は酸浸漬時間100時間後であっても優れた耐薬品性を示
した。
対して比較例1〜7では、浸漬前の三点曲げ強度が低いものが多く、また緻密化が十分に
進んでいないものが多い。浸漬後の重量減少も0.02〜0.11%と実施例に比較して
多く、それによって浸漬後の三点曲げ強度の値も900MPaを超えるものは現れなかっ
た。
これらのサンプルに対し、浸漬前後にて耐摩耗性信頼性試験を実施した結果を表6に示す
。試験内容は以下の通りである。試験片は直径60mm以上、厚み3mm以上の円板試験
片を該当焼結体にて作製し、表面粗さRa0.01μmとなるまでダイヤモンド砥石を使
って研磨加工を施して作製した。その表面上に、材質がSUS420Jである10mm前
後のボールを5.5〜6.5GPaの圧力で押し当て、潤滑油の環境下で1.5m/s以
上の速度で回転.動負荷を与える。この試験にて、セラミックスベアリングボールの耐摩
耗性、信頼性の評価を実施できる。基準の時間を超えて試験片表面に剥離が発生しなかっ
た場合、セラミックスベアリングボールとしての信頼性が十分であると言える。表6では
、基準の時間を超えて剥離しなかったものは剥離無し、剥離したものは基準時間を100
%と置いたときの剥離時間の割合で表記を行っている。
The silicon nitride sintered bodies according to Examples 1 to 8 all have a relative density of 99.5% or more, and are sufficiently densified. The three-point bending strength is also a high value of 990 MPa or more, and the Vickers hardness and the fracture toughness value are also sufficiently high. As a result of carrying out acid immersion on these under predetermined conditions, the weight loss was 0.01% in all cases. The three-point bending strength after immersion is also 90
The value is 0 MPa or more, and the Vickers hardness and toughness value are hardly deteriorated. Thus, the silicon nitride sintered body according to the example showed excellent chemical resistance even after an acid immersion time of 100 hours.
On the other hand, in Comparative Examples 1-7, there are many things with low three-point bending strength before immersion, and many things which densification has not fully advanced. The weight loss after immersion was 0.02 to 0.11%, which was larger than that of the examples, and the three-point bending strength value after immersion did not exceed 900 MPa.
Table 6 shows the results of a wear resistance reliability test performed on these samples before and after immersion. The contents of the test are as follows. The test piece was prepared by producing a disc test piece having a diameter of 60 mm or more and a thickness of 3 mm or more with a corresponding sintered body and polishing with a diamond grindstone until the surface roughness Ra was 0.01 μm. On the surface, a ball of around 10 mm made of SUS420J is pressed with a pressure of 5.5 to 6.5 GPa, and a rotational and dynamic load is applied at a speed of 1.5 m / s or more in a lubricating oil environment. This test can evaluate the wear resistance and reliability of ceramic bearing balls. When peeling does not occur on the surface of the test piece beyond the reference time, it can be said that the reliability as a ceramic bearing ball is sufficient. In Table 6, those that did not peel over the reference time were not peeled off, and those that were peeled off were the reference time 100
It is indicated by the ratio of the peeling time when it is set as%.

Figure 2016064971
Figure 2016064971

実施例に係る窒化珪素焼結体は、浸漬の有無に関わらず、いずれも基準となる試験時間を
越えて剥離が発生しなかった。対して比較例1、2、6では、浸漬前で剥離が発生しなか
ったが、浸漬後では基準の時間の前に剥離が発生している。比較例3、4、5、7では、
浸漬前から剥離が発生しているが、浸漬後ではより剥離が発生する時間が短くなっていた
。特に、浸漬後の重量減が大きい比較例2、5にて、浸漬前後の信頼性が大きく劣化して
いた。
表5、6に示したように、実施例にかかる窒化珪素焼結体は、酸浸漬後の強度特性の劣化
が小さく、耐摩耗信頼性も劣化しないことが分かった。これにより、本実施例に係る窒化
珪素焼結体は、耐薬品性および耐摩耗性に非常に優れることが分かった。
In the silicon nitride sintered bodies according to the examples, no peeling occurred over the standard test time regardless of the presence or absence of immersion. On the other hand, in Comparative Examples 1, 2, and 6, peeling did not occur before immersion, but peeling occurred before the reference time after immersion. In Comparative Examples 3, 4, 5, and 7,
Although peeling has occurred before immersion, the time for peeling has become shorter after immersion. In particular, in Comparative Examples 2 and 5 where the weight loss after immersion was large, the reliability before and after immersion was greatly deteriorated.
As shown in Tables 5 and 6, it was found that the silicon nitride sintered bodies according to the examples showed little deterioration in strength characteristics after acid immersion and no deterioration in wear reliability. Thereby, it turned out that the silicon nitride sintered compact concerning a present Example is very excellent in chemical resistance and abrasion resistance.

以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示し
たものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、
その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種
々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発
明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲
に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
As mentioned above, although several embodiment of this invention was illustrated, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments are:
The present invention can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and equivalents thereof. Further, the above-described embodiments can be implemented in combination with each other.

1…窒化珪素結晶粒子
2…粒界相
DESCRIPTION OF SYMBOLS 1 ... Silicon nitride crystal grain 2 ... Grain boundary phase

Claims (11)

窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の断面を撮影したとき、粒界
相は希土類元素を含まず、単位面積20μm×20μmあたり粒界相の面積比が10〜2
0%であることを特徴とする窒化珪素焼結体。
When an arbitrary cross-section of a silicon nitride sintered body having silicon nitride crystal grains and a grain boundary phase is photographed, the grain boundary phase does not contain a rare earth element, and the area ratio of the grain boundary phase per unit area 20 μm × 20 μm is 10 to 10 μm. 2
A silicon nitride sintered body characterized by being 0%.
粒界相に、Ti、Zr、Hfから選ばれる1種の4A族元素を含む粒子が存在し、当該粒
子の長径が2μm以下であることを特徴とする請求項1に記載の窒化珪素焼結体。
2. The silicon nitride sintered product according to claim 1, wherein the grain boundary phase includes particles containing one kind of group 4A element selected from Ti, Zr, and Hf, and the major axis of the particles is 2 μm or less. body.
粒界相に、Ti、Zr、Hfから選ばれる1種の4A族元素を含む粒子が存在し、当該粒
子にはSi元素および2A族元素が固溶していないことを特徴とする請求項1ないし請求
項2のいずれか1項に記載の窒化珪素焼結体。
The grain boundary phase includes particles containing one kind of Group 4A element selected from Ti, Zr, and Hf, and the Si element and Group 2A element are not dissolved in the particles. The silicon nitride sintered body according to any one of claims 2 to 3.
粒界相に、Ti、Zr、Hfから選ばれる1種の4A族元素を含む粒子が存在し、当該粒
子は4A族元素の酸化物、窒化物、水素化物、炭化物のいずれかの化合物単体で存在する
ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化珪素焼結体。
In the grain boundary phase, there is a particle containing one kind of group 4A element selected from Ti, Zr, and Hf, and the particle is a single compound of any of oxide, nitride, hydride, and carbide of group 4A element. The silicon nitride sintered body according to any one of claims 1 to 3, wherein the silicon nitride sintered body is present.
窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の断面を撮影したとき、単位
面積20μm×20μmあたりに、Ti、Zr、Hfから選ばれる1種の4A族元素を含
む粒子が1〜5個存在することを特徴とする請求項1ないし請求項4のいずれか1項に記
載の窒化珪素焼結体。
When an arbitrary cross section of a silicon nitride sintered body having silicon nitride crystal grains and a grain boundary phase is photographed, particles containing one kind of group 4A element selected from Ti, Zr, and Hf per unit area of 20 μm × 20 μm The silicon nitride sintered body according to any one of claims 1 to 4, wherein 1 to 5 are present.
前記窒化珪素焼結体をXRD分析したとき、41.5〜42.5°の範囲にピークが検出
されることを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化珪素焼結体
The silicon nitride according to any one of claims 1 to 5, wherein when the silicon nitride sintered body is subjected to XRD analysis, a peak is detected in a range of 41.5 to 42.5 °. Sintered body.
前記窒化珪素焼結体をXRD分析したとき、41.5〜42.5°の範囲の最大ピークを
41.5〜42.5°、β−窒化珪素の最大ピーク強度をIβ−Si3N4としたとき、I
41.5〜42.5°/Iβ−Si3N4=0.005〜0.020であることを特徴とする
請求項1ないし請求項6のいずれか1項に記載の窒化珪素焼結体。
When the silicon nitride sintered body was subjected to XRD analysis, the maximum peak in the range of 41.5 to 42.5 ° was I 41.5 to 42.5 ° , and the maximum peak intensity of β- silicon nitride was I β-Si3N4 . When I
The silicon nitride sintered body according to any one of claims 1 to 6, wherein 41.5 to 42.5 ° / -Si3N4 = 0.005 to 0.020 .
Alを0.1〜2.5質量%、2A族元素を0.1〜1.5質量%、4A族元素、5A族
元素、6A族元素のいずれか1種類以上を0.1〜3.8質量%含有することを特徴とす
る請求項1ないし請求項7のいずれか1項に記載の窒化珪素焼結体。
0.1 to 2.5% by mass of Al, 0.1 to 1.5% by mass of 2A group element, 0.1A to 1.5% by mass of 4A group element, 5A group element, and 6A group element of 0.1 to 3%. The silicon nitride sintered body according to any one of claims 1 to 7, characterized by containing 8% by mass.
前記窒化珪素焼結体の任意の断面を撮影したとき、単位面積20μm×20μmあたりに
おいて、長径が2.0μm以上の窒化珪素粒子はアスペクト比2以上の割合が90%以上
であることを特徴とする請求項1ないし請求項8のいずれか1項に記載の窒化珪素焼結体
When an arbitrary cross section of the silicon nitride sintered body is photographed, the ratio of the aspect ratio of 2 or more is 90% or more for silicon nitride particles having a major axis of 2.0 μm or more per unit area of 20 μm × 20 μm. The silicon nitride sintered body according to any one of claims 1 to 8.
前記窒化珪素焼結体の任意の断面を撮影したとき、単位面積20μm×20μmあたりに
おいて、長径と短径の平均を粒径と定義したとき、粒径が2.0μm以下の窒化珪素粒子
は窒化珪素粒子全体の合計面積に対し面積比70%以上を占めることを特徴とする請求項
1ないし請求項9のいずれか1項に記載の窒化珪素焼結体。
When an arbitrary cross section of the silicon nitride sintered body is photographed, when the average of the major axis and the minor axis is defined as the particle diameter per unit area of 20 μm × 20 μm, silicon nitride particles having a particle diameter of 2.0 μm or less are nitrided 10. The silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body occupies an area ratio of 70% or more with respect to a total area of the entire silicon particles.
請求項1ないし請求項10のいずれか1項に記載の窒化珪素焼結体を用いたことを特徴と
する耐摩耗性部材。
A wear-resistant member using the silicon nitride sintered body according to any one of claims 1 to 10.
JP2015124900A 2014-09-25 2015-06-22 Silicon nitride sintered body and wear-resistant member using the same Active JP6491964B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014195604 2014-09-25
JP2014195604 2014-09-25

Publications (2)

Publication Number Publication Date
JP2016064971A true JP2016064971A (en) 2016-04-28
JP6491964B2 JP6491964B2 (en) 2019-03-27

Family

ID=55803920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124900A Active JP6491964B2 (en) 2014-09-25 2015-06-22 Silicon nitride sintered body and wear-resistant member using the same

Country Status (1)

Country Link
JP (1) JP6491964B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121752A1 (en) * 2018-12-11 2020-06-18 株式会社 東芝 Sliding member, and bearing, motor and driving device using same
JP2021001094A (en) * 2019-06-21 2021-01-07 株式会社東芝 Silicon nitride sintered body and abrasion resistant member using it
CN112292912A (en) * 2018-08-29 2021-01-29 株式会社东芝 Silicon nitride substrate and silicon nitride circuit board
WO2024019143A1 (en) * 2022-07-22 2024-01-25 Agc株式会社 Silicon nitride sintered body and method for producing silicon nitride sintered body
US11905219B2 (en) 2020-09-28 2024-02-20 Coorstek Kk Alumina ceramic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174143A (en) * 1993-11-02 1995-07-11 Koyo Seiko Co Ltd Rolling bearing
JP2015086116A (en) * 2013-10-31 2015-05-07 京セラ株式会社 Silicon nitride sintered body and abrasion resistant member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174143A (en) * 1993-11-02 1995-07-11 Koyo Seiko Co Ltd Rolling bearing
JP2015086116A (en) * 2013-10-31 2015-05-07 京セラ株式会社 Silicon nitride sintered body and abrasion resistant member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292912A (en) * 2018-08-29 2021-01-29 株式会社东芝 Silicon nitride substrate and silicon nitride circuit board
CN112292912B (en) * 2018-08-29 2024-03-08 株式会社东芝 Silicon nitride substrate and silicon nitride circuit substrate
WO2020121752A1 (en) * 2018-12-11 2020-06-18 株式会社 東芝 Sliding member, and bearing, motor and driving device using same
CN112997017A (en) * 2018-12-11 2021-06-18 株式会社东芝 Sliding member, and bearing, engine, and drive device using same
JP2021001094A (en) * 2019-06-21 2021-01-07 株式会社東芝 Silicon nitride sintered body and abrasion resistant member using it
JP7353820B2 (en) 2019-06-21 2023-10-02 株式会社東芝 Silicon nitride sintered body and wear-resistant parts using the same
US11905219B2 (en) 2020-09-28 2024-02-20 Coorstek Kk Alumina ceramic
WO2024019143A1 (en) * 2022-07-22 2024-01-25 Agc株式会社 Silicon nitride sintered body and method for producing silicon nitride sintered body

Also Published As

Publication number Publication date
JP6491964B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6400478B2 (en) Wear-resistant material
JP6491964B2 (en) Silicon nitride sintered body and wear-resistant member using the same
JP5886337B2 (en) Wear-resistant member and wear-resistant device using the same
JP7351492B2 (en) Friction stir welding tool member made of silicon nitride sintered body, friction stir welding device, and friction stir welding method using the same
JP5944910B2 (en) Silicon nitride sintered body and method for manufacturing the same, and wear-resistant member and bearing using the same
EP1669335B1 (en) Bearing rolling ball and method for manufacturing the same
JP4723127B2 (en) Alumina ceramic sintered body, method for producing the same, and cutting tool
JP6334413B2 (en) Silicon nitride sintered body and sliding member using the same
JP6416088B2 (en) Wear resistant member made of silicon nitride and method for producing sintered silicon nitride
JP5031602B2 (en) Silicon nitride sintered body, cutting tool, cutting apparatus, and cutting method
JP4693374B2 (en) Manufacturing method of sintered silicon nitride
WO2021241583A1 (en) Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body
JP6321608B2 (en) Silicon nitride sintered body, method for producing the same, and rolling element for bearing
JP2014231460A (en) Silicon nitride sintered compact and manufacturing method thereof and rolling element for bearing
JP5150064B2 (en) Method for manufacturing wear-resistant member
JP7353820B2 (en) Silicon nitride sintered body and wear-resistant parts using the same
JP5349525B2 (en) Rolling element
JP4939736B2 (en) Manufacturing method of sintered silicon nitride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6491964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150