JP2021001094A - Silicon nitride sintered body and abrasion resistant member using it - Google Patents

Silicon nitride sintered body and abrasion resistant member using it Download PDF

Info

Publication number
JP2021001094A
JP2021001094A JP2019115698A JP2019115698A JP2021001094A JP 2021001094 A JP2021001094 A JP 2021001094A JP 2019115698 A JP2019115698 A JP 2019115698A JP 2019115698 A JP2019115698 A JP 2019115698A JP 2021001094 A JP2021001094 A JP 2021001094A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
group
particles
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019115698A
Other languages
Japanese (ja)
Other versions
JP7353820B2 (en
Inventor
開 船木
Kai Funaki
開 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2019115698A priority Critical patent/JP7353820B2/en
Publication of JP2021001094A publication Critical patent/JP2021001094A/en
Application granted granted Critical
Publication of JP7353820B2 publication Critical patent/JP7353820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an abrasion resistant member made of silicon nitride having excellent shedding resistance.SOLUTION: A silicon nitride sintered body that includes silicon nitride crystal particles and grain boundary phases according to the present invention has the improved shedding resistance, because there are a plurality of particles of one kind of 4A elements, which is selected from Ti, Zr and Hf and is contained as much as 50 wt.% or more, and combinations of those particles having a nearest particle distance of 1 μm or more account for more than 50%, in a photograph of an arbitrary cross section of 50 μm2 or more of the silicon nitride sintered body.SELECTED DRAWING: Figure 1

Description

実施形態は、窒化珪素焼結体およびそれを用いた耐摩耗性部材に関する。 The embodiment relates to a silicon nitride sintered body and a wear resistant member using the same.

窒化珪素を主成分とするセラミックス焼結体は、優れた耐熱性を示し、かつ熱膨張係数が小さいため、耐熱衝撃性にも優れる等の諸特性を有することから、従来の耐熱合金に代わる高温構造用材料として、エンジン部品、製鋼用機械部品等への応用が進んでいる。また、耐摩耗性にも優れていることから、転動部材や切削工具としての実用化も図られている。 Ceramic sintered bodies containing silicon nitride as the main component exhibit excellent heat resistance and have various properties such as excellent thermal impact resistance due to their small coefficient of thermal expansion. Therefore, they have a high temperature that replaces conventional heat-resistant alloys. As a structural material, its application to engine parts, machine parts for steelmaking, etc. is advancing. In addition, since it has excellent wear resistance, it has been put into practical use as a rolling member and a cutting tool.

特開2017−75073号公報(特許文献1)には、焼結助剤として、Al2O3(酸化アルミニウム)、AlN(窒化アルミニウム)、TiO2(酸化チタン)、B(ホウ素)、C(炭素)、Mo(モリブデン)、W(タングステン)、Cu(銅)、Ni(ニッケル)等を原料粉末に所定量添加して焼結性を改善し、緻密で高強度な窒化珪素焼結体を得ている。一方で、近年では製品の小型化高性能化により、摺動部材に負荷がかかり表面組織に微細な脱粒が発生するという問題が起こっている。
窒化珪素摺動部材に対する耐脱粒性を改善するため、特許第5825962号公報(特許文献2)には、焼結助剤としてジルコニア(ZrO2)、イットリア(Y2O3)、セリア(CeO2)、マグネシア(MgO)、カルシア(CaO)を焼結助剤とした窒化珪素焼結体が開発されている。しかしながら、製品性能向上によりセラミックス部材に対する品質要求も上がり、ハイエンドな使用環境ではセラミックスに掛かる負荷が大きくなっているため、従来の品質特性では十分であるとは言えなくなっている。
Japanese Patent Application Laid-Open No. 2017-75073 (Patent Document 1) describes Al2O3 (aluminum oxide), AlN (aluminum nitride), TiO2 (tungsten oxide), B (boron), C (carbon), and Mo as sintering aids. (Molybdenum), W (tungsten), Cu (copper), Ni (nickel) and the like are added in a predetermined amount to the raw material powder to improve the sinterability, and a dense and high-strength aluminum nitride sintered body is obtained. On the other hand, in recent years, due to the miniaturization and high performance of products, there has been a problem that a load is applied to the sliding member and fine shedding occurs on the surface structure.
In order to improve the degranulation resistance to the silicon nitride sliding member, Japanese Patent No. 5825962 (Patent Document 2) states that zirconia (ZrO2), yttria (Y2O3), ceria (CeO2), and magnesia (MgO) are used as sintering aids. ), A silicon nitride sintered body using calcia (CaO) as a sintering aid has been developed. However, as the product performance is improved, the quality requirements for ceramic members are also increased, and the load on the ceramics is increased in a high-end usage environment, so that the conventional quality characteristics cannot be said to be sufficient.

特開2017−75073号公報JP-A-2017-75073 特許5825962号公報Japanese Patent No. 5825962


近年、窒化珪素焼結体は、エンジン部品、機械部品、ベアリングボール、切削工具など様々な耐摩耗性部材に使用されている。窒化珪素焼結体は、軸受鋼(SUJ2)などの金属部材と比べてはるかに耐久性に優れることから、各種耐摩耗性部材において長期信頼性を得ている。このため、長期間メンテナンスフリーをも実現している。

近年製品の小型化や高性能化に伴い、従来よりも厳しい品質特性が求められるようになってきている。例えば窒化珪素が使用されたベアリングは、宇宙・航空・自動車・鉄道・工作機器・家電など、より小型で高速な回転とともにメンテナンスフリーが要求されている。このため窒化珪素部品に掛かる負荷は大きくなっており、過酷な使用環境下における耐脱粒性に関しては必ずしも十分ではなかった。

In recent years, silicon nitride sintered bodies have been used for various wear-resistant members such as engine parts, mechanical parts, bearing balls, and cutting tools. Since the silicon nitride sintered body is far more durable than metal members such as bearing steel (SUJ2), long-term reliability is obtained in various wear-resistant members. For this reason, maintenance-free operation is also realized for a long period of time.

In recent years, with the miniaturization and higher performance of products, stricter quality characteristics than before have been required. For example, bearings made of silicon nitride are required to be smaller and faster to rotate and maintenance-free for space, aviation, automobiles, railways, machine tools, home appliances, etc. For this reason, the load applied to the silicon nitride component is large, and the shedding resistance under a harsh usage environment is not always sufficient.

実施形態にかかる窒化珪素焼結体は、このような問題を解決するためのものであり、窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の50μm2以上の断面を撮影したとき、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)から選ばれる1種以上の4A族元素が50wt%以上含まれる粒子が複数存在し、かつそれらの粒子同士の粒子間最近接距離が1μm以上である組み合わせが50%を超えることを特徴とする。 The silicon nitride sintered body according to the embodiment is for solving such a problem, and an arbitrary cross section of 50 μm 2 or more of the silicon nitride sintered body having the silicon nitride crystal particles and the grain boundary phase was photographed. When, there are a plurality of particles containing 50 wt% or more of one or more Group 4A elements selected from titanium (Ti), zirconium (Zr), and hafnium (Hf), and the closest contact distance between the particles is large. It is characterized in that the combination of 1 μm or more exceeds 50%.

実施形態にかかる窒化珪素焼結体は、Ti、Zr、Hfから選ばれる1種以上の4A族元素粒子の粒子同士の粒子中心最近接距離を制御している。これにより窒化珪素組織の耐脱粒性を向上することを可能とする。そのため、実施形態の窒化珪素焼結体を用いた耐摩耗性部材は、繰り返し疲労負荷に対する長期間信頼性を維持することができる。 The silicon nitride sintered body according to the embodiment controls the closest contact distance between the particles of one or more Group 4A element particles selected from Ti, Zr, and Hf. This makes it possible to improve the shedding resistance of the silicon nitride structure. Therefore, the wear-resistant member using the silicon nitride sintered body of the embodiment can maintain reliability for a long period of time against repeated fatigue loads.

実施形態にかかるベアリングボールの一例を示す図。The figure which shows an example of the bearing ball which concerns on embodiment. 窒化珪素焼結体のTi分布観察の一例を示す図。The figure which shows an example of the Ti distribution observation of the silicon nitride sintered body. Ti部分の元素分析の一例を示す図。The figure which shows an example of the elemental analysis of a Ti part. 剥離のない軌道面観察の一例を示す図。The figure which shows an example of the track surface observation without peeling. 剥離のある軌道面観察の一例を示す図。The figure which shows an example of the track surface observation with peeling.

実施形態にかかる窒化珪素焼結体は、窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の断面を撮影したとき、単位面積50μm2あたり、Ti、Zr、Hfから選ばれる1種以上の4A族元素が50wt%以上含まれる粒子が複数存在し、かつそれらの粒子同士の粒子中心間最近接距離が1μm以上である組み合わせが50%を超えることを特徴とするものである。
窒化珪素焼結体は、主相となる窒化珪素結晶粒子と副相である粒界相を具備している。粒界相は、焼結助剤が焼結工程において焼結同士または焼結助剤と窒化珪素(不純物酸素含む)が反応した化合物から主に形成されている。燒結助剤は焼結性を制御するために添加されており、粒界相は窒化珪素結晶粒子同士の隙間(粒界)に形成される。粒界相により窒化珪素結晶粒子同士の結合力を強化している。
The silicon nitride sintered body according to the embodiment is selected from Ti, Zr, and Hf per unit area of 50 μm2 when an arbitrary cross section of the silicon nitride sintered body having the silicon nitride crystal particles and the grain boundary phase is photographed. It is characterized in that there are a plurality of particles containing 50 wt% or more of Group 4A elements of species or more, and the number of combinations in which the closest contact distance between the particle centers of these particles is 1 μm or more exceeds 50%.
The silicon nitride sintered body includes silicon nitride crystal particles as the main phase and grain boundary phases as subphases. The grain boundary phase is mainly formed from a compound in which the sintering aid reacts with each other in the sintering step or with the sintering aid and silicon nitride (including impurity oxygen). The sinter aid is added to control the sinterability, and the grain boundary phase is formed in the gaps (grain boundaries) between the silicon nitride crystal grains. The grain boundary phase strengthens the bonding force between silicon nitride crystal particles.

窒化珪素結晶粒子と粒界相を比較したとき、粒界相は窒化珪素結晶粒子よりも脆く選択的に脱粒が起こる。特に、酸化物由来のアモルファス相からなる粒界相は強度が弱く、研磨加工時には優先的に脱粒して加工起点となることが分かっている。
窒化珪素焼結体全体の耐脱粒性を向上させるためには、粒界相を強化して窒化珪素の状態に近づけること、および脱粒の起点となる粒界相を一ヵ所に集中させないことが有効である。粒界相を強化して窒化珪素に近づけるためには、Ti、Zr、Hfの4A族を粒界相に配置することが効果的である。これは、4A族元素の窒化物や炭化物などの化合物は融点が高く耐熱性において優れていること、および硬度が高いことにより粒界相を補強して窒化珪素の状態に近づけることができるためである。
When the grain boundary phase is compared with the silicon nitride crystal particles, the grain boundary phase is more brittle than the silicon nitride crystal particles and selective degranulation occurs. In particular, it is known that the grain boundary phase composed of an oxide-derived amorphous phase has low strength and preferentially threshes during polishing to serve as a starting point for processing.
In order to improve the shedding resistance of the entire silicon nitride sintered body, it is effective to strengthen the grain boundary phase to bring it closer to the state of silicon nitride and not to concentrate the grain boundary phase, which is the starting point of shedding, in one place. Is. In order to strengthen the grain boundary phase and bring it closer to silicon nitride, it is effective to arrange Group 4A of Ti, Zr, and Hf in the grain boundary phase. This is because compounds such as nitrides and carbides of Group 4A elements have a high melting point and excellent heat resistance, and the high hardness makes it possible to reinforce the grain boundary phase and bring it closer to the state of silicon nitride. is there.

粒界相粒子に含まれるTi、Zr、Hfから選ばれる1種以上の4A族元素の割合を50wt%以上としている。これは4A族元素の割合を50wt%未満にすると、粒界相を十分に強化できない可能性があるためである。
また、単位面積50μm2といった微小領域において対象とする粒子同士の粒子間距離が1μm以上である組み合わせを50%以上の範囲にしている。粒子同士の組み合わせが50%未満では、脱粒する可能性のある組み合わせが多くなりすぎて窒化珪素焼結体の耐脱粒性が低下する。また、組み合わせは上限を定めていないが、100%であれば脱粒の可能性が少なくなり理想的に粒界相が分布しているといえる。そのため、対象とする粒子同士の粒子間距離が1μm以上である組み合わせは50%以上であり、好ましくは60%以上である。
The ratio of one or more Group 4A elements selected from Ti, Zr, and Hf contained in the grain boundary phase particles is 50 wt% or more. This is because if the proportion of Group 4A elements is less than 50 wt%, the grain boundary phase may not be sufficiently strengthened.
Further, in a minute region such as a unit area of 50 μm2, the combination in which the interparticle distance between the target particles is 1 μm or more is in the range of 50% or more. If the combination of particles is less than 50%, the number of combinations that may shed is too large, and the shedding resistance of the silicon nitride sintered body is lowered. Further, although the upper limit of the combination is not set, if it is 100%, the possibility of shedding is reduced and it can be said that the grain boundary phase is ideally distributed. Therefore, the combination in which the inter-particle distance between the target particles is 1 μm or more is 50% or more, preferably 60% or more.

なお、粒子に含まれるTi、Zr、Hfから選ばれる1種以上の4A族元素の割合の測定方法は次の通りである。まず、窒化珪素焼結体の任意の断面を得る。この断面を表面粗さRaが1μm以下の鏡面加工を施す。得られた鏡面をTEM(Transmission Electron Microscope:透過電子顕微鏡)にて1000倍以上の倍率で画像観察する。50μm2の領域の設定では、その形状を限定するものではないが、恣意的な観察を避けるため正方形に近い形を設定することが好ましい。例えば、7.1μm×7.1μm(=50.41μm2)、や7μm×8μm(=56μm2)などが挙げられる。TEM観察において、Ti、Zr、Hfから選ばれる1種以上の4A族元素が観察された場合は、wt%を確認して対象粒子が50wt%以上であることを確認する。
なお、単位面積50μm2以上にならない場合は、隣接する箇所を複数撮影し繋ぎ合わせることにより合計で単位面積50μm2以上にしてもよいものとする。
図2に窒化珪素焼結体のTi分布観察の一例を示す。撮影面積は92.8μm2(=11.25μm×8.25μm)であり、Tiが50wt%以上の粒子が6個観察される。6個の粒子同士の組み合わせは15ヵ所あり、このうち粒子同士の粒子間距離が1μm以上である組み合わせは14ヵ所(1μm以下の組み合わせは1ヵ所)なので、対象とする粒子同士の粒子間距離が1μm以上である組み合わせは93.3%である。
The method for measuring the ratio of one or more Group 4A elements selected from Ti, Zr, and Hf contained in the particles is as follows. First, an arbitrary cross section of the silicon nitride sintered body is obtained. This cross section is mirror-finished with a surface roughness Ra of 1 μm or less. The obtained mirror surface is image-observed with a TEM (Transmission Electron Microscope) at a magnification of 1000 times or more. The setting of the region of 50 μm 2 does not limit the shape, but it is preferable to set the shape close to a square in order to avoid arbitrary observation. For example, 7.1 μm × 7.1 μm (= 50.41 μm2), 7 μm × 8 μm (= 56 μm2), and the like can be mentioned. When one or more Group 4A elements selected from Ti, Zr, and Hf are observed in the TEM observation, wt% is confirmed to confirm that the target particles are 50 wt% or more.
If the unit area does not exceed 50 μm2, the total unit area may be 50 μm2 or more by photographing a plurality of adjacent locations and connecting them together.
FIG. 2 shows an example of observing the Ti distribution of the silicon nitride sintered body. The photographing area is 92.8 μm 2 (= 11.25 μm × 8.25 μm), and six particles having a Ti content of 50 wt% or more are observed. There are 15 combinations of 6 particles, of which 14 are combinations where the inter-particle distance between particles is 1 μm or more (1 location is a combination of 1 μm or less), so the inter-particle distance between target particles is The number of combinations that are 1 μm or more is 93.3%.

粒界相はTi、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子が存在することが好ましい。4A族元素を含む粒子は、4A族元素の酸化物、窒化物、水素化物、炭化物のいずれかの化合物単体であることが好ましい。化合物単体とは、Tiの場合、TiO2(酸化チタン)、TiN(窒化チタン)、TiH2(水素化チタン)、TiC(炭化チタン)のいずれか1種以上となる。Zrの場合は、ZrO2(酸化ジルコニウム)、ZrN(窒化ジルコニウム)、ZrH2(水素化ジルコニウム)、ZrC(炭化ジルコニウム)のいずれか1種以上となる。また、Hfの場合、HfO2(酸化ハフニウム)、HfN(窒化ハフニウム)、HfH2(水素化ハフニウム)、HfC(炭化ハフニウム)のいずれか1種以上となる。これらの中では4A族元素の窒化物または炭化物が好ましい。特に、TiNまたはTiCが好ましい。 As the grain boundary phase, it is preferable that particles containing one or more Group 4A elements selected from Ti, Zr, and Hf are present. The particles containing the Group 4A element are preferably a simple compound of any of the oxides, nitrides, hydrides, and carbides of the Group 4A element. In the case of Ti, the compound simple substance is any one or more of TiO2 (titanium oxide), TiN (titanium nitride), TiH2 (titanium hydride), and TiC (titanium carbide). In the case of Zr, it is one or more of ZrO2 (zirconium oxide), ZrN (zirconium nitride), ZrH2 (zirconium hydride), and ZrC (zirconium carbide). Further, in the case of Hf, it is one or more of HfO2 (hafnium oxide), HfN (hafnium nitride), HfH2 (hafnium hydrogenated), and HfC (hafnium carbide). Of these, nitrides or carbides of Group 4A elements are preferred. In particular, TiN or TiC is preferable.

Ti、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子は、焼結助剤として化合物単体として添加したものであっても良いし、焼結工程で化合物単体に変化したものであっても良い。
また、Ti、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子は化合物単体の結晶粒子となる。なお、結集粒子となっているか否かはTEM観察時に定性分析にて判断できる。
また、Ti、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子は、Si元素および他の添加物として加えられた場合に存在する2A族元素と固溶していないことが好ましい。Si元素および2A族元素と固溶すると、4A族元素の化合物単体が、4A族元素とSi元素または2A族元素の複合化合物となる。複合化合物は化合物単体と比べて耐脱粒性が低下する。また、本願発明とは直接的には関係はないが、耐薬品性についても低下する可能性がある。このため、Si元素または2A族元素と複合化合物を形成しない化合物単体が好ましい。前述のTiNやTiCは複合化合物を形成し難いため好ましい。
図3にチタン部分の元素分析の一例を示す。TEM観察によるTi、窒素(N)、炭素(C)の元素分析写真であり、窒素が検出されることから、Ti部分は窒化物であるといえる。
The particles containing one or more Group 4A elements selected from Ti, Zr, and Hf may be added as a simple substance as a sintering aid, or may be changed to a simple substance in the sintering step. You may.
Further, the particles containing one or more Group 4A elements selected from Ti, Zr, and Hf are crystal particles of the compound alone. Whether or not the particles are aggregated particles can be determined by qualitative analysis during TEM observation.
Further, it is preferable that the particles containing one or more Group 4A elements selected from Ti, Zr, and Hf are not solid-solved with the Si element and the Group 2A elements present when added as other additives. When solidly dissolved with the Si element and the 2A group element, the compound simple substance of the 4A group element becomes a composite compound of the 4A group element and the Si element or the 2A group element. The composite compound has lower shedding resistance than the compound alone. Moreover, although it is not directly related to the present invention, the chemical resistance may be lowered. Therefore, a simple compound that does not form a complex compound with a Si element or a group 2A element is preferable. The above-mentioned TiN and TiC are preferable because it is difficult to form a complex compound.
FIG. 3 shows an example of elemental analysis of the titanium portion. It is an elemental analysis photograph of Ti, nitrogen (N), and carbon (C) by TEM observation, and since nitrogen is detected, it can be said that the Ti portion is a nitride.

Ti、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子は長径が0.3μm以上であることが好ましい。長径が0.3μm未満であると結晶粒子が小さくなりすぎて外部から加えられた力により脱粒しやすくなる。また、長径は2μm以下であることが好ましい。長径が2μmを超えると、結晶粒子端部が折れやすくなり、折れた部分が脱粒しやすくなる。このため、Ti、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子の長径は0.3μm以上および2μm以下であることが好ましい。
また、窒化珪素焼結体の任意の断面組織を撮影したとき、単位面積50μm2あたり、Ti、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子が2個以上存在することが好ましい。単位面積あたりの粒子の個数が0〜1個の場合、4A族元素を含む粒子が存在しない領域が大きくなり、耐摩耗性に悪影響が出る可能性がある。
このため、Ti、Zr、Hfから選ばれる1種以上の4A族元素を含む粒子は、粒子に含まれるTi、Zr、Hfから選ばれる1種以上の4A族元素の割合を50wt%以上であること、長径が0.3μm〜2μmであること、単位面積50μm2あたり2個以上存在すること、をすべて満たすことが最も好ましい。
The particles containing one or more Group 4A elements selected from Ti, Zr, and Hf preferably have a major axis of 0.3 μm or more. If the major axis is less than 0.3 μm, the crystal particles become too small and easily shed by the force applied from the outside. Further, the major axis is preferably 2 μm or less. When the major axis exceeds 2 μm, the end portion of the crystal particle is easily broken, and the broken portion is easily shed. Therefore, the major axis of the particles containing one or more Group 4A elements selected from Ti, Zr, and Hf is preferably 0.3 μm or more and 2 μm or less.
Further, when an arbitrary cross-sectional structure of the silicon nitride sintered body is photographed, it is preferable that two or more particles containing one or more Group 4A elements selected from Ti, Zr, and Hf are present per 50 μm2 unit area. When the number of particles per unit area is 0 to 1, the region where particles containing Group 4A elements do not exist becomes large, and the wear resistance may be adversely affected.
Therefore, the particle containing one or more Group 4A elements selected from Ti, Zr, and Hf has a ratio of one or more Group 4A elements selected from Ti, Zr, and Hf contained in the particles of 50 wt% or more. It is most preferable to satisfy all of the above, that the major axis is 0.3 μm to 2 μm, and that there are two or more per unit area of 50 μm2.

また、前記窒化珪素焼結体は、上記4A族以外に、2A族元素、5A族元素、6A族元素、3B族元素、希土類元素を含むことが好ましい。2A族元素、5A族元素、6A族元素、3B族元素、希土類元素は焼結工程にて反応して粒界相を形成するための焼結助剤として使用されるものである。 Further, the silicon nitride sintered body preferably contains a group 2A element, a group 5A element, a group 6A element, a group 3B element, and a rare earth element in addition to the above group 4A. Group 2A elements, Group 5A elements, Group 6A elements, Group 3B elements, and rare earth elements are used as sintering aids for reacting in the sintering step to form a grain boundary phase.

2A族元素を添加する際は、Be(ベリリウム)、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Ra(ラジウム)のいずれか、可能ならばBe、Mg、Ca、Srのいずれか1種類以上から選択するのが望ましい。また、5A族元素を添加する際は、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、6A族元素を添加する際は、Cr(クロム)、Mo(モリブデン)、W(タングステン)から選択するのが望ましい。3B族元素は、B(ホウ素)、Al(アルミニウム)から選択するのが望ましい。焼結助剤として2A族元素成分、5A族元素成分、6A族元素成分、3B族元素成分を添加する際は、酸化物、炭化物、窒化物のいずれか1種として添加することが望ましい。 When adding a group 2A element, any of Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), Ra (radium), and if possible, Be, Mg, Ca. , Sr, it is desirable to select from one or more of them. When adding Group 5A elements, use V (vanadium), Nb (niobium), Ta (tantalum), and when adding Group 6A elements, use Cr (chromium), Mo (molybdenum), and W (tungsten). It is desirable to choose. The Group 3B element is preferably selected from B (boron) and Al (aluminum). When the group 2A element component, the group 5A element component, the group 6A element component, and the group 3B element component are added as the sintering aid, it is desirable to add them as one of oxides, carbides, and nitrides.

また、希土類元素を添加する場合はY(イットリウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジウム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)のいずれから1種類以上を選択するのが望ましい。窒化珪素の焼結において、希土類元素を添加した場合、焼結性が向上し、窒化珪素結晶粒子のアスペクト比が向上、結果として強度特性、耐摩耗性に非常に優れた焼結体を得ることができる。 When adding rare earth elements, Y (ytterbium), La (lantern), Ce (cerium), Pr (placeodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europyum), Gd It is desirable to select one or more of (gadolinium), Tb (dysprosium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium). .. When a rare earth element is added in the sintering of silicon nitride, the sinterability is improved and the aspect ratio of the silicon nitride crystal particles is improved. As a result, a sintered body having excellent strength characteristics and wear resistance is obtained. Can be done.

また、前記窒化珪素を構成するTi、Zr、Hfから選ばれる1種以上の4A族元素を50wt%以上含む粒子は、窒化物、炭化物、酸化物のいずれかであるとしている。炭化物と窒化物は化学的に安定であり、耐熱性にも優れることから、耐摩耗性部材として摺動させた際に発生する熱による影響を受けにくい。また、4A族元素の窒化物を分散含有させるときに、4A族元素の酸化物を含有させ、焼結時に窒化物へと析出させるとより焼結性を向上させることができる。また、4A族元素は、他の焼結助剤元素および酸素と反応して4A族元素−焼結助剤元素−酸素の結晶質化合物を形成しやすい。 Further, the particles containing 50 wt% or more of one or more Group 4A elements selected from Ti, Zr, and Hf constituting the silicon nitride are said to be any of nitrides, carbides, and oxides. Carbides and nitrides are chemically stable and have excellent heat resistance, so they are not easily affected by the heat generated when they are slid as wear-resistant members. Further, when the nitride of the Group 4A element is dispersed and contained, the sinterability can be further improved by containing the oxide of the Group 4A element and precipitating it on the nitride at the time of sintering. Further, the Group 4A element easily reacts with other sintering aid elements and oxygen to form a crystalline compound of Group 4A element-sintering aid element-oxygen.

また、前記窒化珪素は、窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の断面を撮影したとき、Ti、Zr、Hfから選ばれる1種の4A族元素が50wt%以上含まれる粒子を等しい楕円形状で近似したときの短軸径と長軸径の比が0.3〜1.0であるものが90%以上含まれていることが好ましい。なお、楕円形状に近似する方法としては、粒界の任意の点から最小二乗法を利用して近似するなどにより求める。このような組織構造により、強度特性を向上させ耐脱粒性に優れた窒化珪素焼結体を提供することが可能である。楕円形状で近似した短軸径と長軸径の比が0.3〜1.0であるものの割合が90%未満では粒界の強度、特に破壊靭性値が低下し脱粒の原因となる。 Further, the silicon nitride contains 50 wt% or more of one type of Group 4A element selected from Ti, Zr, and Hf when an arbitrary cross section of the silicon nitride sintered body having the silicon nitride crystal grains and the grain boundary phase is photographed. It is preferable that 90% or more of the contained particles have a ratio of the minor axis diameter to the major axis diameter of 0.3 to 1.0 when they are approximated by the same elliptical shape. As a method of approximating the elliptical shape, it is obtained by approximating from an arbitrary point of the grain boundary using the least squares method. With such a structure, it is possible to provide a silicon nitride sintered body having improved strength characteristics and excellent shedding resistance. If the ratio of the minor axis diameter to the major axis diameter approximated by the elliptical shape is 0.3 to 1.0, but the ratio is less than 90%, the strength of the grain boundaries, particularly the fracture toughness value, decreases, which causes grain removal.

次に製造方法について説明する。実施形態にかかる窒化珪素焼結体は上記構成を有すれば特に製造方法は限定されるものではないが、効率的に得るための方法として次のものが挙げられる。
まず、窒化珪素粉末を用意する。窒化珪素粉末は酸素含有量が4wt%以下で、α相型窒化珪素を85wt%以上含み、平均粒子径が0.8μm以下であることが好ましい。α相型窒化珪素粉末を焼結工程でβ相型窒化珪素結晶粒子に粒成長させることにより、耐摩耗性の優れた窒化珪素焼結体を得ることができる。本発明の窒化珪素焼結体では、粒界相の粒子中心間最近接距離を制御している。このような制御を行うには、焼結助剤の分散の制御が有効である。焼結助剤の分散の制御には、添加量の制御および窒化珪素粉末との均一分散を行うことが有効である。
焼結助剤の添加量は、4A族元素を1.0〜4.0wt%、2A族元素、5A族元素、6A族元素、3B族元素、希土類元素のいずれか1種類以上を1.0〜5.0wt%であることが好ましい。また、焼結助剤粉末の平均粒子径は1.8μm以下であることが好ましい。
Next, the manufacturing method will be described. The silicon nitride sintered body according to the embodiment is not particularly limited in terms of production method as long as it has the above configuration, but the following methods can be mentioned as methods for efficiently obtaining the sintered body.
First, silicon nitride powder is prepared. The silicon nitride powder preferably has an oxygen content of 4 wt% or less, contains 85 wt% or more of α-phase silicon nitride, and has an average particle diameter of 0.8 μm or less. By growing the α-phase silicon nitride powder into β-phase silicon nitride crystal particles in the sintering step, a silicon nitride sintered body having excellent wear resistance can be obtained. In the silicon nitride sintered body of the present invention, the closest contact distance between the particle centers of the grain boundary phase is controlled. In order to perform such control, it is effective to control the dispersion of the sintering aid. In order to control the dispersion of the sintering aid, it is effective to control the addition amount and uniformly disperse with the silicon nitride powder.
The amount of the sintering aid added is 1.0 to 4.0 wt% for Group 4A elements, 1.0 for any one or more of Group 2A elements, Group 5A elements, Group 6A elements, Group 3B elements, and rare earth elements. It is preferably ~ 5.0 wt%. The average particle size of the sintering aid powder is preferably 1.8 μm or less.

窒化珪素粉末と焼結助剤粉末の均一分散には、混合工程を長時間行うことが有効である。また、焼結助剤を予備混合することも有効である。ビーズミル、ボールミル、ポットミルなどによる解砕混合工程が有効であるが、効率的に製造を行うためにはビーズミルとボールミルが好ましい。また、解砕混合時間は50時間以上の長時間行うことが有効であるが、さらに80時間以上が好ましい。予備混合の方法は、予め焼結助剤と分割した溶媒と分割した窒化珪素粉末を加えて混合したのち、残りの溶媒と窒化珪素粉末を混合する方法が好ましい。混合工程は、大部分を占める窒化珪素粉末が混合しやすい条件に合わせて設定しているため、形状・流動性等が違う焼結助剤を同時に混合すると均一に分散が行われない可能性がある。たとえば、焼結助剤の合計が5wt%とした場合、焼結助剤と5wt%の窒化珪素粉末と投入予定の7.5wt%の溶媒とを混合しておく方法である。溶媒量の比率が全量を一度に投入した場合よりも少なく、効率的に混合が進むためである。予備混合は後に続けて行う混合とは別の設備・方法で行うことも可能であるが、製造するうえで効率が悪くなるため好ましくない。 It is effective to carry out the mixing step for a long time for uniform dispersion of the silicon nitride powder and the sintering aid powder. It is also effective to premix the sintering aid. A crushing and mixing step using a bead mill, a ball mill, a pot mill or the like is effective, but a bead mill and a ball mill are preferable for efficient production. Further, it is effective to carry out the crushing and mixing time for a long time of 50 hours or more, but more preferably 80 hours or more. As a premixing method, a method in which a sintering aid, a divided solvent and the divided silicon nitride powder are added and mixed in advance, and then the remaining solvent and the silicon nitride powder are mixed is preferable. Since the mixing process is set according to the conditions under which the silicon nitride powder, which accounts for the majority, is easily mixed, there is a possibility that uniform dispersion will not be performed if sintering aids with different shapes and fluidities are mixed at the same time. is there. For example, when the total amount of the sintering aids is 5 wt%, it is a method of mixing the sintering aid, the 5 wt% silicon nitride powder, and the 7.5 wt% solvent to be added. This is because the ratio of the amount of the solvent is smaller than that when the whole amount is added at one time, and the mixing proceeds efficiently. Premixing can be performed by a facility / method different from that of subsequent mixing, but it is not preferable because the efficiency of production is deteriorated.

また、均一分散を行うためには混合時にスラリー粘度を調整する方法も有効である。粉末の解砕・混合が進むとスラリー粘度が上がる。スラリー粘度が上がらない状態で解砕・混合を続けていても原料の一次凝集が十分に解消されず均一な分散は望めない。また、スラリー粘度が上がった状態で解砕・混合を続けていても、解砕・混合の効率が悪くなり十分な均一分散が望めない。このため、解砕・混合中にスラリー粘度を定期的に測定し、粘度の変化により溶媒および分散材を適宜追加する方法が有効である。このような調整は、設備、環境、原材料の状態によって変化するため製造ロットごとに行うことが有効である。 Further, in order to carry out uniform dispersion, a method of adjusting the slurry viscosity at the time of mixing is also effective. As the powder is crushed and mixed, the viscosity of the slurry increases. Even if crushing and mixing are continued without increasing the slurry viscosity, the primary agglutination of the raw materials is not sufficiently eliminated and uniform dispersion cannot be expected. Further, even if crushing / mixing is continued with the slurry viscosity increased, the efficiency of crushing / mixing deteriorates and sufficient uniform dispersion cannot be expected. Therefore, it is effective to measure the slurry viscosity periodically during crushing and mixing, and add a solvent and a dispersant as appropriate according to the change in viscosity. Since such adjustments vary depending on the equipment, environment, and raw material conditions, it is effective to make such adjustments for each production lot.

解砕・混合工程により、窒化珪素粉末同士、焼結助剤粉末同士、窒化珪素粉末および焼結助剤粉末が結合した二次粒子となることを防ぐことができる。窒化珪素粉末と焼結助剤粉末のほとんどが一次粒子となることにより均一分散を行うことができる。
次に、窒化珪素粉末と焼結助剤粉末を混合した原料混合物にバインダを添加する。原料混合物とバインダとの混合はボールミルなどを使用する。バインダを混合して製造されたスラリーは粒子凝集を防ぐためにホモジナイザー、せん断ミキサー、プレネタリーミキサーなどを用いて分散処理を行う。分散処理を行ったスラリーはスプレードライヤーなどを用いて造粒し、得られた造粒粉を所望の形状に成形する。成形工程は、金型プレスや冷間静水圧プレス(CIP)等により実施する。成形圧力は100MPa以上が好ましい。成形工程で得た成形体を脱脂する。脱脂工程は300〜600℃の範囲の温度で実施することが好ましい。脱脂工程は大気中や非酸化性雰囲気中で実施され、雰囲気は特に限定されるものではない。
By the crushing / mixing step, it is possible to prevent the silicon nitride powders, the sintering aid powders from each other, the silicon nitride powder and the sintering aid powder from becoming bonded secondary particles. Since most of the silicon nitride powder and the sintering aid powder are primary particles, uniform dispersion can be performed.
Next, a binder is added to the raw material mixture in which the silicon nitride powder and the sintering aid powder are mixed. A ball mill or the like is used to mix the raw material mixture and the binder. The slurry produced by mixing the binder is subjected to a dispersion treatment using a homogenizer, a shear mixer, a planetary mixer or the like in order to prevent particle aggregation. The dispersion-treated slurry is granulated using a spray dryer or the like, and the obtained granulated powder is molded into a desired shape. The molding process is carried out by a die press, a cold hydrostatic press (CIP), or the like. The molding pressure is preferably 100 MPa or more. The molded product obtained in the molding process is degreased. The degreasing step is preferably carried out at a temperature in the range of 300 to 600 ° C. The degreasing step is carried out in the air or a non-oxidizing atmosphere, and the atmosphere is not particularly limited.

次に、脱脂工程で得た脱脂体を1600〜1900℃の範囲の温度で焼結する。焼結温度が1600℃未満であると、窒化珪素結晶粒子の粒成長が不十分になる恐れがある。すなわち、α相型窒化珪素からβ相型窒化珪素への反応が不十分であり、緻密な焼結体組織が得られない可能性がある。この場合、窒化珪素焼結体の材料としての信頼性が低下する。焼結温度が1900℃を超えると窒化珪素結晶粒子が粒成長しすぎて、加工性が低下する恐れがある。焼結工程は、常圧焼結および加圧焼結のいずれで実施してもよい。焼結工程は非酸化性雰囲気中で実施することが好ましい。非酸化性雰囲気としては、窒素雰囲気やアルゴン雰囲気が挙げられる。 Next, the degreased body obtained in the degreasing step is sintered at a temperature in the range of 1600 to 1900 ° C. If the sintering temperature is less than 1600 ° C., the grain growth of silicon nitride crystal particles may be insufficient. That is, the reaction from α-phase silicon nitride to β-phase silicon nitride may be insufficient, and a dense sintered body structure may not be obtained. In this case, the reliability of the silicon nitride sintered body as a material is lowered. If the sintering temperature exceeds 1900 ° C., silicon nitride crystal particles may grow too much and the workability may be deteriorated. The sintering step may be carried out by either normal pressure sintering or pressure sintering. The sintering step is preferably carried out in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere.

焼結工程の後に、非酸化性雰囲気中にて10MPa以上の熱間静水圧プレス(HIP)処理を施すことが好ましい。非酸化性雰囲気としては、窒素雰囲気やアルゴン雰囲気が挙げられる。HIP処理温度は1500〜1900℃の範囲であることが好ましい。HIP処理を実施することによって、窒化珪素焼結体内の気孔を消滅させることができる。HIP処理圧力が10MPa未満であると、そのような効果を十分に得ることができない。 After the sintering step, it is preferable to perform a hot hydrostatic pressure press (HIP) treatment of 10 MPa or more in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere. The HIP processing temperature is preferably in the range of 1500 to 1900 ° C. By carrying out the HIP treatment, the pores in the silicon nitride sintered body can be eliminated. If the HIP processing pressure is less than 10 MPa, such an effect cannot be sufficiently obtained.

このようにして製造された窒化珪素焼結体に対して、必要な箇所に研磨加工を施して耐摩耗性部材を作製する。研磨加工は、ダイヤモンド砥粒を用いて実施することが好ましい。 The silicon nitride sintered body produced in this manner is polished at necessary points to produce a wear-resistant member. The polishing process is preferably carried out using diamond abrasive grains.

(実施例)
(実施例1〜9、比較例1〜9)
表1、表2に示した焼結助剤および解砕混合方法を用意して原料粉末を調製した。なお、焼結助剤の添加量は窒化珪素粉末と焼結助剤の合計量を100wt%としたときの比率である。
(Example)
(Examples 1 to 9, Comparative Examples 1 to 9)
Raw material powders were prepared by preparing the sintering aids and crushing and mixing methods shown in Tables 1 and 2. The amount of the sintering aid added is the ratio when the total amount of the silicon nitride powder and the sintering aid is 100 wt%.

Figure 2021001094
Figure 2021001094

Figure 2021001094
Figure 2021001094

得られた原料混合物にボールミルにて樹脂バインダを混合してスラリー作製した。得られたスラリーをスプレードライヤーにて乾燥噴霧して造粒粉末を作製した。造粒粉末を成型圧力150MPaにて成型工程を行った。得られた成形体に500℃で脱脂工程を行った。得られた脱脂体に対し、1800℃×4時間の常圧焼結、1600℃×20MPa×2時間のHIP処理を行った。この工程により実施例および比較例に係る窒化珪素焼結体を作製した。なお、実施例ではスプレードライヤーにて造粒する前のスラリーをホモジナイザーにて分散処理を行った。
各窒化珪素焼結体に対して、任意の断面を切断加工し、92.8μm2(=11.25μm×8.25μm)のTi、Zr、Hfの拡大写真(TEM写真)を撮影した。拡大写真から単位面積50.41μm2(=7.1μm×7.1μm)を使って、単位面積当たりのTi、Zr、Hfが50wt%以上含まれる粒子個数、粒子同士の粒子間最近接距離が1μm以上である組み合わせの比率、粒子の最大長が0.3μm以上2μm以下であるものの比率、含まれる粒子を等しい楕円形状で近似したときの短軸径と長軸径の比が0.3〜1.0であるものの比率を求めた。その結果を表3に示す。
A resin binder was mixed with the obtained raw material mixture by a ball mill to prepare a slurry. The obtained slurry was dried and sprayed with a spray dryer to prepare a granulated powder. The granulated powder was molded at a molding pressure of 150 MPa. The obtained molded product was subjected to a degreasing step at 500 ° C. The obtained degreased body was subjected to atmospheric pressure sintering at 1800 ° C. × 4 hours and HIP treatment at 1600 ° C. × 20 MPa × 2 hours. By this step, silicon nitride sintered bodies according to Examples and Comparative Examples were produced. In the examples, the slurry before granulation with a spray dryer was dispersed with a homogenizer.
An arbitrary cross section was cut from each silicon nitride sintered body, and an enlarged photograph (TEM photograph) of 92.8 μm 2 (= 11.25 μm × 8.25 μm) of Ti, Zr, and Hf was taken. From the enlarged photograph, using a unit area of 50.41 μm2 (= 7.1 μm × 7.1 μm), the number of particles containing 50 wt% or more of Ti, Zr, and Hf per unit area, and the closest contact distance between particles is 1 μm. The ratio of the above combinations, the ratio of particles with a maximum length of 0.3 μm or more and 2 μm or less, and the ratio of the minor axis diameter to the major axis diameter when the contained particles are approximated by the same elliptical shape are 0.3 to 1. The ratio of those with 0.0 was calculated. The results are shown in Table 3.

Figure 2021001094
Figure 2021001094

実施例1〜9に係る窒化珪素焼結体は、4A族元素粒界相の粒子同士の粒子間最近接距離が1μm以上である組み合わせが50%、粒子の最大長が0.3μm以上2μm以下であるものが90%以上、楕円形状で近似したときの短軸径と長軸径の比が0.3〜1.0であるものが90%以上であった。また、TEM観察した結果、実施例にかかる窒化珪素焼結体の4A族元素は酸化物、窒化物、水素化物、炭化物であった。
比較例1〜9に関しては4A族元素粒界相の粒子同士の粒子間最近接距離が1μm以上である組み合わせが必ずしも50%以上ではあらず、また粒子の最大長が0.3μm以上2μm以下であるものが必ずしも90%以上とはならず、さらに楕円形状で近似したときの短軸径と長軸径の比が0.3〜1.0であるものが必ずしも90%以上にならなかった。
In the silicon nitride sintered body according to Examples 1 to 9, 50% of the combinations have a closest contact distance between particles of Group 4A element grain boundary phase between particles of 1 μm or more, and the maximum particle length is 0.3 μm or more and 2 μm or less. 90% or more of the particles, and 90% or more of the particles had a ratio of the minor axis diameter to the major axis diameter of 0.3 to 1.0 when approximated by an elliptical shape. Further, as a result of TEM observation, the Group 4A elements of the silicon nitride sintered body according to the examples were oxides, nitrides, hydrides, and carbides.
Regarding Comparative Examples 1 to 9, the combination in which the closest distance between the particles of the group 4A element grain boundary phase is 1 μm or more is not necessarily 50% or more, and the maximum length of the particles is 0.3 μm or more and 2 μm or less. Some particles did not necessarily exceed 90%, and those having a ratio of the minor axis diameter to the major axis diameter of 0.3 to 1.0 when approximated by an elliptical shape did not necessarily exceed 90%.

次に各窒化珪素焼結体の相対密度、三点曲げ強度(σf)、耐脱粒性(加工による表面粗さ、転がり寿命時間、表面剥離状態)を測定した。なお、三点曲げ強度測定用の試料(窒化珪素焼結体)は3mm×4mm×50mmのサイズに加工しJIS−R−1601に準じた方法により測定した。加工による表面粗さによる耐脱粒性測定用には摺動部品であるベアリングボールを作製した。ベアリングボールの直径は9.525mm、表面粗さ(Ra)は0.01μm以下になるように研磨した。
研磨加工に関しては、試料として表面粗さ(Ra)は0.01μm以下に研磨加工する前のものを用意して、ダイヤモンド砥石(#120)を使って研磨加工を行った場合の表面粗さを比較した。研磨加工条件は、試料の加工面積を一定にして荷重を40Nとし、研削盤の回転速度を300rpmとして加工し、表面粗さ(Ra)の変化がなくなる時間まで加工を行った後の、表面粗さ(Ra)を測定した。この研磨加工により脱粒状態を測定できる。脱粒状態は表面粗さに相関性があり、数値が大きいほど脱粒が生じやすいことを意味する。
Next, the relative density, three-point bending strength (σf), and shedding resistance (surface roughness due to processing, rolling life time, surface peeling state) of each silicon nitride sintered body were measured. The sample for measuring the three-point bending strength (silicon nitride sintered body) was processed into a size of 3 mm × 4 mm × 50 mm and measured by a method according to JIS-R-1601. A bearing ball, which is a sliding component, was manufactured for measuring the shedding resistance due to the surface roughness due to processing. The bearing balls were polished so that the diameter was 9.525 mm and the surface roughness (Ra) was 0.01 μm or less.
Regarding the polishing process, prepare a sample with a surface roughness (Ra) of 0.01 μm or less before polishing, and use a diamond grindstone (# 120) to polish the surface roughness. Compared. The polishing processing conditions are that the processing area of the sample is constant, the load is 40 N, the rotation speed of the grinder is 300 rpm, and the surface roughness (Ra) is processed until the surface roughness (Ra) does not change. (Ra) was measured. The shedding state can be measured by this polishing process. The shedding state has a correlation with the surface roughness, and the larger the value, the more likely it is that shedding occurs.

また、転がり寿命による耐脱粒性の測定を行うにあたり、ベアリングボールの表面を表面粗さ(Ra)が0.01μm以下になるように研磨加工した仕上げ加工面を有するものを使用した。
各実施例および比較例に係るベアリングボールを3個用意し、軸受鋼(SUJ2)の上面に設定した直径40mmの軌道上に上記3個のベアリングボールを等間隔で配置する。これをタービン油の油浴潤滑条件下でベアリングボールに5.9GPaの最大接触応力が作用するように荷重を印加した状態で回転数1200rpmにてベアリングボールの表面に脱粒が観察されるまでの時間として耐脱粒性を測定した。なお、転がり寿命による耐脱粒性評価は連続1000時間を上限として行った。
Further, in measuring the shedding resistance due to the rolling life, a bearing ball having a finished surface obtained by polishing the surface so that the surface roughness (Ra) was 0.01 μm or less was used.
Three bearing balls according to each Example and Comparative Example are prepared, and the above three bearing balls are arranged at equal intervals on a track having a diameter of 40 mm set on the upper surface of the bearing steel (SUJ2). This is the time until degranulation is observed on the surface of the bearing ball at a rotation speed of 1200 rpm with a load applied so that a maximum contact stress of 5.9 GPa acts on the bearing ball under the oil bath lubrication condition of turbine oil. The bleeding resistance was measured as. The bleeding resistance evaluation based on the rolling life was performed up to 1000 hours continuously.

また、表面剥離状態による耐脱粒性の測定を行うにあたり、窒化珪素焼結体からなる板状の耐摩耗性部材を使用した。各実施例および比較例に係る直径60mm×厚さ5mmの円板状の上面に設定した直径40mmの軌道上に直径が9.525mmである3個の転動鋼球(SUJ2)を配置してスラスト型軸受試験機を構成した。上記転動鋼球に5.9GPaの荷重を印加した状態で回転数1200rpmの条件下で回転させ、400時間後に軌道面を観察して粒界相の脱粒があるかを確認した。
相対密度、三点曲げ強度(σf)、耐脱粒性(加工による表面粗さ、転がり寿命時間、表面剥離状態)の結果を表4に示す。
Further, in measuring the shedding resistance depending on the surface peeling state, a plate-shaped wear-resistant member made of a silicon nitride sintered body was used. Three rolling steel balls (SUJ2) having a diameter of 9.525 mm are arranged on an orbit having a diameter of 40 mm set on a disk-shaped upper surface having a diameter of 60 mm and a thickness of 5 mm according to each Example and Comparative Example. A thrust type bearing tester was constructed. The rolling steel ball was rotated under the condition of a rotation speed of 1200 rpm with a load of 5.9 GPa applied, and after 400 hours, the orbital surface was observed to confirm whether or not there was grain boundary phase shedding.
Table 4 shows the results of the relative density, the three-point bending strength (σf), and the shedding resistance (surface roughness due to processing, rolling life time, surface peeling state).

Figure 2021001094
Figure 2021001094

実施例および比較例に係る窒化珪素焼結体は、いずれも相対密度が99.5%以上であり、十分な緻密化が進んでいる。また、三点曲げ強度も900MPa以上と高い値となっている。
実施例1〜9に係る窒化珪素焼結体は、加工による表面粗さ(Ra)で、いずれも0.18μm以下となった。また、転がり寿命による耐脱粒性評価でも1000時間後でも脱粒は観察されなかった。また、表面剥離状態での耐脱粒性評価でも脱粒は観察されなかった。図4に剥離のない軌道面観察の一例を示す。
対して比較例1〜9では、加工による表面粗さ(Ra)は0.22μmと実施例に比較して大きかった。また、転がり寿命による耐脱粒性評価でも1000時間を超えるものは現れなかった。また、表面剥離状態での耐脱粒性評価では、粒界部分に脱粒があるものが見受けられた。図5に剥離のない軌道面観察の一例を示す。
これらの実験結果により、実施例は耐脱粒性において非常に優れており、厳しい環境条件での信頼性が十分に高いと言える。
The silicon nitride sintered bodies according to the examples and the comparative examples both have a relative density of 99.5% or more, and are sufficiently densified. In addition, the three-point bending strength is as high as 900 MPa or more.
The silicon nitride sintered bodies according to Examples 1 to 9 had a surface roughness (Ra) of 0.18 μm or less due to processing. In addition, no shedding was observed even after 1000 hours in the evaluation of shedding resistance based on the rolling life. In addition, no shedding was observed in the evaluation of shedding resistance in the state of surface peeling. FIG. 4 shows an example of track surface observation without peeling.
On the other hand, in Comparative Examples 1 to 9, the surface roughness (Ra) due to processing was 0.22 μm, which was larger than that of Examples. Moreover, in the evaluation of the shedding resistance based on the rolling life, no one exceeding 1000 hours appeared. In addition, in the evaluation of the shedding resistance in the state of surface peeling, it was found that there was shedding at the grain boundary. FIG. 5 shows an example of track surface observation without peeling.
From these experimental results, it can be said that the examples are very excellent in shedding resistance and are sufficiently reliable in harsh environmental conditions.

以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 Although some embodiments of the present invention have been illustrated above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, changes, etc. can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof. In addition, the above-described embodiments can be implemented in combination with each other.

1…ベアリングボール〈窒化珪素焼結体、摺動部材〉
2…摺動面
1 ... Bearing ball <Silicon nitride sintered body, sliding member>
2 ... Sliding surface

Claims (5)

窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の50μm2以上の断面を撮影したとき、Ti、Zr、Hfから選ばれる1種の4A族元素が50wt%以上含まれる粒子が複数存在し、かつそれらの粒子同士の粒子間最近接距離が1μm以上である組み合わせが50%を超えることを特徴とする窒化珪素焼結体。 When a cross section of an arbitrary silicon nitride sintered body having a silicon nitride crystal grain and a grain boundary phase of 50 μm2 or more is photographed, particles containing 50 wt% or more of one kind of Group 4A element selected from Ti, Zr, and Hf are found. A silicon nitride sintered body characterized in that a plurality of combinations of these particles having a closest contact distance between the particles of 1 μm or more exceeds 50%. Ti、Zr、Hfから選ばれる1種の4A族元素が50wt%以上含まれる粒子が酸化物、窒化物、水素化物、炭化物のいずれかからなることを特徴とする請求項1に記載の窒化珪素焼結体。 The silicon nitride according to claim 1, wherein the particles containing 50 wt% or more of one kind of Group 4A element selected from Ti, Zr, and Hf are composed of any of oxides, nitrides, hydrides, and carbides. Sintered body. 窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の50μm2以上の断面を撮影したとき、Ti、Zr、Hfから選ばれる1種の4A族元素が50wt%以上含まれる粒子の最大長が0.3μm以上2μm以下であるものが90%以上含まれていることを特徴とする請求項1ないし請求項2のいずれか1項に記載の窒化珪素焼結体。 When a cross section of any 50 μm2 or more of an arbitrary silicon nitride sintered body having a silicon nitride crystal grain and a grain boundary phase is photographed, a particle containing 50 wt% or more of one kind of Group 4A element selected from Ti, Zr, and Hf. The silicon nitride sintered body according to any one of claims 1 to 2, wherein 90% or more of the silicon nitride has a maximum length of 0.3 μm or more and 2 μm or less. 窒化珪素結晶粒子と粒界相を具備する窒化珪素焼結体の任意の50μm2以上の断面を撮影したとき、Ti、Zr、Hfから選ばれる1種の4A族元素が50wt%以上含まれる粒子を等しい楕円形状で近似したときの短軸径と長軸径の比が0.3〜1.0であるものが90%以上含まれていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化珪素焼結体。 When a cross section of an arbitrary silicon nitride sintered body having a silicon nitride crystal grain and a grain boundary phase of 50 μm2 or more is photographed, particles containing 50 wt% or more of one kind of Group 4A element selected from Ti, Zr, and Hf can be obtained. Any of claims 1 to 3, wherein 90% or more of the ratio of the minor axis diameter to the major axis diameter when approximated by the same elliptical shape is 0.3 to 1.0. The silicon nitride sintered body according to item 1. 請求項1ないし請求項4のいずれか1項に記載の窒化珪素焼結体を用いたことを特徴とする耐摩耗性部材。 A wear-resistant member comprising the silicon nitride sintered body according to any one of claims 1 to 4.
JP2019115698A 2019-06-21 2019-06-21 Silicon nitride sintered body and wear-resistant parts using the same Active JP7353820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115698A JP7353820B2 (en) 2019-06-21 2019-06-21 Silicon nitride sintered body and wear-resistant parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115698A JP7353820B2 (en) 2019-06-21 2019-06-21 Silicon nitride sintered body and wear-resistant parts using the same

Publications (2)

Publication Number Publication Date
JP2021001094A true JP2021001094A (en) 2021-01-07
JP7353820B2 JP7353820B2 (en) 2023-10-02

Family

ID=73994785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115698A Active JP7353820B2 (en) 2019-06-21 2019-06-21 Silicon nitride sintered body and wear-resistant parts using the same

Country Status (1)

Country Link
JP (1) JP7353820B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060276A (en) * 2000-08-21 2002-02-26 Toshiba Corp Sintered silicon nitride compact as well as sliding member and bearing ball using the same
JP2004002067A (en) * 2002-05-29 2004-01-08 Toshiba Corp Wear-resistant member and its production process
JP2016064971A (en) * 2014-09-25 2016-04-28 株式会社東芝 Silicon nitride sintered body and abrasion resistant member using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060276A (en) * 2000-08-21 2002-02-26 Toshiba Corp Sintered silicon nitride compact as well as sliding member and bearing ball using the same
JP2004002067A (en) * 2002-05-29 2004-01-08 Toshiba Corp Wear-resistant member and its production process
JP2016064971A (en) * 2014-09-25 2016-04-28 株式会社東芝 Silicon nitride sintered body and abrasion resistant member using the same

Also Published As

Publication number Publication date
JP7353820B2 (en) 2023-10-02

Similar Documents

Publication Publication Date Title
JP6400478B2 (en) Wear-resistant material
JP5732037B2 (en) Wear-resistant member and method for manufacturing the same
JP5886337B2 (en) Wear-resistant member and wear-resistant device using the same
JP2003034581A (en) Silicon nitride abrasion resistant member and method for producing the same
JP2001328869A (en) Abrasion-resistant member and method for producing the same
JP5944910B2 (en) Silicon nitride sintered body and method for manufacturing the same, and wear-resistant member and bearing using the same
JP6491964B2 (en) Silicon nitride sintered body and wear-resistant member using the same
JP4723127B2 (en) Alumina ceramic sintered body, method for producing the same, and cutting tool
JP5268750B2 (en) Impact resistant member and manufacturing method thereof
CN104768900B (en) Silicon nitride sinter and use the sliding component of this silicon nitride sinter
JP6416088B2 (en) Wear resistant member made of silicon nitride and method for producing sintered silicon nitride
US20230093291A1 (en) Silicon nitride sintered body, wear-resistant member using the same, and method for producing silicon nitride sintered body
JP5362758B2 (en) Wear resistant parts
JP7353820B2 (en) Silicon nitride sintered body and wear-resistant parts using the same
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP5825962B2 (en) Silicon nitride-based sintered body, member for molten metal using the same, and wear-resistant member
JP5150064B2 (en) Method for manufacturing wear-resistant member
JP2003300780A (en) Wear resistant member made of silicon nitride and production method therefor
JP2000072553A (en) Silicon nitride wear resistance member and its production
JP5349525B2 (en) Rolling element
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JP2001130966A (en) Silicon nitride-based sintered body, method for producing the same, and silicon nitride-based abrasion resistant member by using the same
JP2006036553A (en) Silicon nitride sintered compact and its manufacturing method
JPH10194838A (en) Ceramic sintered material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230920

R150 Certificate of patent or registration of utility model

Ref document number: 7353820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150