JP2016063670A - Solar cell panel - Google Patents

Solar cell panel Download PDF

Info

Publication number
JP2016063670A
JP2016063670A JP2014190743A JP2014190743A JP2016063670A JP 2016063670 A JP2016063670 A JP 2016063670A JP 2014190743 A JP2014190743 A JP 2014190743A JP 2014190743 A JP2014190743 A JP 2014190743A JP 2016063670 A JP2016063670 A JP 2016063670A
Authority
JP
Japan
Prior art keywords
solar cell
cell panel
rod
rods
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014190743A
Other languages
Japanese (ja)
Other versions
JP6323277B2 (en
Inventor
裕之 鎌田
Hiroyuki Kamata
裕之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014190743A priority Critical patent/JP6323277B2/en
Publication of JP2016063670A publication Critical patent/JP2016063670A/en
Application granted granted Critical
Publication of JP6323277B2 publication Critical patent/JP6323277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell panel which enables the suppression of the damage owing to ions resulting from the operation of an electrostatic propulsion unit.SOLUTION: A solar cell panel according to the present invention comprises: pairs of rods set toward a direction perpendicular to a light-receiving surface of a solar cell panel installed in a satellite; a closed circuit which includes conducting wires stretched along the rods, and conducting wires connecting to the conducting wires stretched along the rods and connecting between upper ends of the two rods and between lower ends thereof; and a power source causing a current to flow through the closed circuit. The damage owing to ions is suppressed by correcting a track of the positively charged ions included in a plasma beam shot from a propulsion unit installed in the satellite and having an ion accelerator by use of a magnetic field generated by a current flowing through the closed circuit.SELECTED DRAWING: Figure 5

Description

この発明は、太陽電池パネルに関する。特に、推進装置から発射されるプラズマビームに含まれる正電荷イオンによる衝突を防止する磁界シールド装置を備えた太陽電池パネルに関するものである。   The present invention relates to a solar cell panel. In particular, the present invention relates to a solar cell panel provided with a magnetic field shield device that prevents collision due to positively charged ions contained in a plasma beam emitted from a propulsion device.

人工衛星に設けられたイオン加速装置を備えた推進装置の腐食を低減するために、該面部分に対して主に平行な磁界を形成するための中間電位面を形成することが提案されている(例えば、特許文献1参照)。   In order to reduce the corrosion of a propulsion device provided with an ion accelerator provided in an artificial satellite, it has been proposed to form an intermediate potential surface for forming a magnetic field mainly parallel to the surface portion. (For example, refer to Patent Document 1).

特表2010−539375号公報Special table 2010-539375

人工衛星に設けられる駆動装置の1つに静電推進装置がある。静電推進装置は、高電圧を使用してイオン化室内でイオン化された作動ガスの正電荷イオンを高電圧静電界内で加速し、プラズマビームとして同装置のイオン化チャンバの開口から発射する。その反動原理により、人工衛星はプラズマビームの発射の方向と逆の方向に、加速される。   An electrostatic propulsion device is one of driving devices provided in an artificial satellite. The electrostatic propulsion device accelerates positively charged ions of the working gas ionized in the ionization chamber using a high voltage in a high-voltage electrostatic field and launches it as a plasma beam from the ionization chamber opening of the device. Due to the reaction principle, the satellite is accelerated in the direction opposite to the direction of the plasma beam emission.

静電推進装置の作動時は、プラズマビームの発射方向に向いている人工衛星の表面が腐食していくことが観測される。例えば、太陽電池セルをパネル上に搭載した太陽電池パネルの表面も、このプラズマビームに含まれる正電荷イオンの衝突によって腐食されることが観測されている。
イオンによる損傷は太陽電池パネルの発電能力に支障をきたす要因であるため、太陽電池パネルに搭載される個々の部品に対して、イオン損傷に対する対策が施されている。
例えば、太陽電池パネルの受光面側に搭載される太陽電池と、太陽電池パネル上に配線された被覆電線とは、電気的に接続するために薄い板状の金属部品を介して接続されている。この金属部品がイオンによって損傷することを防ぐため、金属部品の曝露面に樹脂性のコーティングを施すことが行われる。
During the operation of the electrostatic propulsion device, it is observed that the surface of the satellite facing the direction of the plasma beam is corroded. For example, it has been observed that the surface of a solar battery panel on which solar cells are mounted on the panel is also corroded by the collision of positively charged ions contained in this plasma beam.
Since damage due to ions is a factor that impedes the power generation capability of the solar cell panel, measures against ion damage are taken for individual components mounted on the solar cell panel.
For example, the solar cell mounted on the light-receiving surface side of the solar cell panel and the covered electric wire wired on the solar cell panel are connected via a thin plate-like metal component for electrical connection. . In order to prevent the metal part from being damaged by ions, a resinous coating is applied to the exposed surface of the metal part.

金属部品と、金属部品上に施された樹脂性のコーティングは、衛星軌道上の熱環境によって、昇温による熱膨張と、冷温による熱収縮を周期的に繰り返す。
このとき、樹脂性のコーティングの熱膨張率と金属部品の熱膨張率の間に差異があるため、その差異に応じた熱応力が樹脂性のコーティングおよび金属部品に印加される。一般に樹脂製のコーティングおよび金属部品それぞれが持つ熱膨張率の間に大きな差異があるため、熱応力による金属部品の変形よって、金属部品が破損する。
従来、金属部品の破損によって太陽電池パネル上に形成される電気回路の冗長性が喪失し、太陽電池パネルの信頼性が低下するという課題があった。
熱応力による金属部品の破損を回避するためには、樹脂製のコーティングの厚さを厳密に制御する必要があるが、要求精度でコーティングの厚さを制御することは実際状困難であり、実現は難しいという課題があった。
The metal part and the resinous coating applied on the metal part periodically repeat thermal expansion due to temperature rise and thermal contraction due to cold temperature depending on the thermal environment on the satellite orbit.
At this time, since there is a difference between the thermal expansion coefficient of the resinous coating and the thermal expansion coefficient of the metal part, thermal stress corresponding to the difference is applied to the resinous coating and the metal part. In general, since there is a large difference between the thermal expansion coefficients of the resin coating and the metal part, the metal part is damaged by the deformation of the metal part due to thermal stress.
Conventionally, there has been a problem that the redundancy of the electric circuit formed on the solar cell panel is lost due to breakage of metal parts, and the reliability of the solar cell panel is lowered.
In order to avoid damage to metal parts due to thermal stress, it is necessary to strictly control the thickness of the resin coating, but it is difficult to actually control the coating thickness with the required accuracy. There was a problem that was difficult.

この発明は係る課題を解決するためになされたものであり、静電推進装置の作動によるイオン損傷を抑え、動作の信頼性を維持できる太陽電池パネルを提供することを目的とする。   This invention was made in order to solve the subject which concerns, and it aims at providing the solar cell panel which can suppress the ion damage by the action | operation of an electrostatic propulsion apparatus, and can maintain the reliability of operation | movement.

この発明に係る太陽電池パネルは、衛星に搭載される太陽電池パネルの受光面に対し垂直となる方向に設置された2本で一対をなすロッドと、各々の前記ロッドに沿って張られた導線と、前記ロッドに沿って張られた導線と接続し、前記2本のロッドの上端の間および下端の間をそれぞれ接続する導線とからなる閉回路と、前記閉回路に電流を流す電源とを備える。   A solar cell panel according to the present invention includes a pair of rods installed in a direction perpendicular to the light receiving surface of a solar cell panel mounted on a satellite, and a conductive wire stretched along each of the rods. A closed circuit composed of conductive wires connected to the conductive wires stretched along the rods and connected between the upper ends and the lower ends of the two rods, and a power source for supplying current to the closed circuit Prepare.

この発明に係る太陽電池パネルによれば、推進装置から発射されるプラズマビームに含まれる正電荷イオン衝突によって生じる太陽電池パネルの損傷を低減できる。   According to the solar cell panel of the present invention, damage to the solar cell panel caused by positive charge ion collision included in the plasma beam emitted from the propulsion device can be reduced.

この発明の実施の形態1に係る磁界シールド装置を備える太陽電池パネル100の外観(収納状態)を説明する図である。It is a figure explaining the external appearance (housing state) of the solar cell panel 100 provided with the magnetic field shield apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る磁界シールド装置のロッド(収納状態)の外観を表す図である。It is a figure showing the external appearance of the rod (housed state) of the magnetic field shield apparatus concerning Embodiment 1 of this invention. この発明の実施の形態1に係るロッド立上げ機構6の外観を表す図である。It is a figure showing the external appearance of the rod starting mechanism 6 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る磁界シールド装置のロッド(展開状態)の外観を表す図である。It is a figure showing the external appearance of the rod (deployment | deployment state) of the magnetic field shield apparatus concerning Embodiment 1 of this invention. この発明の実施の形態1に係る磁界シールド装置を備える太陽電池パネルの外観(展開状態)を説明する図である。It is a figure explaining the external appearance (expanded state) of a solar cell panel provided with the magnetic field shield apparatus concerning Embodiment 1 of this invention. この発明の実施の形態1に係る磁界シールド装置を展開した状態で、正電荷イオンが飛来した場合の正電荷イオンの軌道を説明する図である。It is a figure explaining the track | orbit of a positive charge ion when a positive charge ion comes in the state which expand | deployed the magnetic field shield apparatus which concerns on Embodiment 1 of this invention. 人工衛星における太陽電池パネルの配置を表す図である。It is a figure showing arrangement | positioning of the solar cell panel in an artificial satellite. 太陽電池パネルの断面図である。It is sectional drawing of a solar cell panel.

実施の形態1.
以下、本発明に係る太陽電池パネル100について、図を用いて説明する。
Embodiment 1 FIG.
Hereinafter, the solar cell panel 100 according to the present invention will be described with reference to the drawings.

図7は一般的な人工衛星の外観図である。図において人工衛星は衛星本体101、衛星本体101と機械的に接続され、衛星本体101に搭載された電子機器に電力を供給する太陽電池パネル1、地上局との間で電波の送受信を行うアンテナリフレクタ102等の構造体から構成される。
本実施の形態に係る磁界シールド装置を備えた太陽電池パネル100は、図7の太陽電池パネル1の位置に、太陽電池パネル1に代わって設置される。
FIG. 7 is an external view of a general artificial satellite. In the figure, an artificial satellite is mechanically connected to a satellite body 101, the satellite body 101, and an antenna that transmits and receives radio waves to and from a solar cell panel 1 that supplies power to an electronic device mounted on the satellite body 101 and a ground station. It is comprised from structures, such as the reflector 102. FIG.
Solar cell panel 100 provided with the magnetic field shield device according to the present embodiment is installed in place of solar cell panel 1 at the position of solar cell panel 1 in FIG.

図8は太陽電池パネル1の断面図であり、40はサンドイッチパネル、41はサンドイッチパネル1の表皮材(表面)、42はサンドイッチパネル1の表皮材(裏面)、43はサンドイッチパネル40のコア部、8は太陽電池セル、11は絶縁体フィルム層である。
太陽電池セル8を保持するために通常、平板状のサンドイッチパネル40が使用され、サンドイッチパネル40の表面に太陽電池セル8を配列させている。サンドイッチパネル40の表皮材としては、比弾性率、比強度を高めるために炭素繊維強化複合材料やアルミニウムが多用されている。
FIG. 8 is a cross-sectional view of the solar cell panel 1, 40 is a sandwich panel, 41 is a skin material (front surface) of the sandwich panel 1, 42 is a skin material (back surface) of the sandwich panel 1, and 43 is a core portion of the sandwich panel 40. , 8 are solar cells, and 11 is an insulator film layer.
In order to hold the solar cells 8, a flat sandwich panel 40 is usually used, and the solar cells 8 are arranged on the surface of the sandwich panel 40. As the skin material of the sandwich panel 40, carbon fiber reinforced composite materials and aluminum are frequently used in order to increase the specific elastic modulus and the specific strength.

絶縁体層11はサンドイッチパネル40の表皮材(表面)41上に取り付けられる。
太陽電池セル8は接着剤等により絶縁体層11上に搭載され、太陽電池セル8の間は接続金具により電気的に接続される。太陽電池パネルに取り付けられた被覆電線(図示せず)とは、電気的に接続するために薄い板状の金属部品を介して接続される。
The insulator layer 11 is attached on the skin material (surface) 41 of the sandwich panel 40.
The solar battery cells 8 are mounted on the insulator layer 11 by an adhesive or the like, and the solar battery cells 8 are electrically connected by connection fittings. A covered electric wire (not shown) attached to the solar cell panel is connected via a thin plate-like metal component for electrical connection.

図1は、本実施の形態に係る磁界シールド装置50を備えた太陽電池パネル100(以下、単に「太陽電池パネル100」ともいう)の構成を説明する図であり、磁界シールド装置50が展開する前の収納された状態を表している。
磁気シールド装置50は、太陽電池パネル1の受光面側に設けられた4本のロッド2a、2b、2c、2dと、ロッド2aとロッド2bの間を接続する被覆導線3abと、ロッド2cとロッド2dの間を接続する被覆導線3cdと、太陽電池パネル1上に配線され、被覆導線3abと接続される被覆導線4a、4bと、同じく太陽電池パネル1上に配線され、被覆導線3cdと接続される被覆導線4c、4dと、被覆導線4a、4b、4c、4dを束ねて接続する電気コネクタ5とからなる。
FIG. 1 is a diagram illustrating the configuration of a solar cell panel 100 (hereinafter also simply referred to as “solar cell panel 100”) provided with a magnetic field shield device 50 according to the present embodiment, and the magnetic field shield device 50 is developed. It represents the previous stowed state.
The magnetic shield device 50 includes four rods 2a, 2b, 2c, and 2d provided on the light receiving surface side of the solar cell panel 1, a covered conductive wire 3ab that connects the rod 2a and the rod 2b, and the rod 2c and the rod. 2d, the coated conductor 3cd connecting between the two, and the coated conductors 4a and 4b wired on the solar cell panel 1 and connected to the coated conductor 3ab, and also wired on the solar cell panel 1 and connected to the coated conductor 3cd. Covered conductors 4c and 4d, and an electrical connector 5 for connecting and connecting the covered conductors 4a, 4b, 4c and 4d.

被覆導線3abは、後述する筒状のロッド本体2a、2bの筒内を通り、被覆導線4a、4bと接続されている。また、被覆導線3cdは、後述する筒状のロッド本体2c、2dの筒内を通り、被覆導線4c、4dと接続されている。   The covered conducting wire 3ab passes through the cylinders of cylindrical rod bodies 2a and 2b described later and is connected to the covered conducting wires 4a and 4b. The covered conducting wire 3cd passes through the cylinders of cylindrical rod bodies 2c and 2d, which will be described later, and is connected to the covered conducting wires 4c and 4d.

電気コネクタ5は電源(図示せず)と接続され、閉回路をなす被覆電線3ab、4a、4bと、被覆電線3cd、4c、4dの各々の回路に電流を流すことができる。   The electrical connector 5 is connected to a power source (not shown), and can pass a current through each circuit of the covered wires 3ab, 4a, 4b and the covered wires 3cd, 4c, 4d forming a closed circuit.

図2は、ロッド2b、あるいはロッド2dの外観図である。ロッド2a、2cはロッド2b、2dと左右対称の形状を有する。ここではロッド2a、2b、2c、2dを代表してロッド2bについて構造を説明する。
図2において、ロッド2bは、筒状のロッド本体8bと、横置きされたロッド本体8bを立上げることで磁界シールド装置50を展開するロッド立上げ機構6bと、ロッド本体8bの先端に取り付けられたコネクタ7bから構成される。筒状のロッド本体8bは、アルミニウムを加工して作られ、筒の内側には、先述の通り被覆導線3abが通される。コネクタ7bは断面が半円形状をなし、磁界シールド装置50の展開時に被覆導線3abに加わる応力を緩和する。
FIG. 2 is an external view of the rod 2b or the rod 2d. The rods 2a and 2c are symmetrical to the rods 2b and 2d. Here, the structure of the rod 2b will be described on behalf of the rods 2a, 2b, 2c, and 2d.
In FIG. 2, a rod 2b is attached to a cylindrical rod body 8b, a rod raising mechanism 6b that deploys the magnetic field shield device 50 by raising the horizontally placed rod body 8b, and the tip of the rod body 8b. Connector 7b. The cylindrical rod body 8b is made by processing aluminum, and the covered conductor 3ab is passed through the inside of the cylinder as described above. The connector 7b has a semicircular cross section, and relieves stress applied to the coated conductor 3ab when the magnetic field shield device 50 is deployed.

図3は、ロッド立上げ機構6bの外観を表す図である。ロッド立上げ機構6bの内部でロッド本体8bの下方にはロッド立上げ用ばね62が設置されている。ロッド立上げ用ばね62は、ロッド回転軸61を軸としてロッド本体8bを立ち上げる方向の力を働かせる。押さえ機構63は、当初、ロッド本体8bが立ち上がることを押さえており、磁界シールド装置50を展開する際には、押さえ機構63を破断する。   FIG. 3 is a diagram illustrating the appearance of the rod raising mechanism 6b. A rod raising spring 62 is installed inside the rod raising mechanism 6b and below the rod body 8b. The rod raising spring 62 exerts a force in the direction in which the rod main body 8b is raised with the rod rotating shaft 61 as an axis. The pressing mechanism 63 initially suppresses the rod body 8b from rising, and breaks the pressing mechanism 63 when the magnetic field shield device 50 is deployed.

図4は、ロッド本体8bを立ち上げたときの外観図である。このように、ロッド立上げ機構6b内部の押さえ機構63を破断することで、ロッド本体8bを立ち上げさせることができる。   FIG. 4 is an external view when the rod body 8b is raised. Thus, the rod body 8b can be raised by breaking the holding mechanism 63 inside the rod raising mechanism 6b.

図5は、図1に示した太陽電池パネル1上に設けたロッド2a、2b、2c、2dの4本のロッドを立上げ、磁界シールド装置50を展開したときの外観図である。
図5のように、ロッド2a、2b、2c、2dは太陽電池パネル1の受光面側の4隅に設置されており、ロッド2aと2b、2cと2dがそれぞれペアのロッドとなる。
FIG. 5 is an external view of the four rods 2a, 2b, 2c, and 2d provided on the solar cell panel 1 shown in FIG.
As shown in FIG. 5, the rods 2a, 2b, 2c, and 2d are installed at the four corners on the light receiving surface side of the solar cell panel 1, and the rods 2a and 2b, 2c and 2d form a pair of rods.

ロッド2aの先端部では、被覆導線3abおよび4aが電気的に接続される構造で固定されている。被覆導線3abはロッド2bの先端部に接続されており、4aはロッド2aの内部から太陽電池パネル1の受光面に配線され、さらに太陽電池パネル1の受光面から裏面への貫通穴を通って裏面側に配線され、電気コネクタ5に接続されている。   At the tip of the rod 2a, the covered conductors 3ab and 4a are fixed in a structure that is electrically connected. The coated conductor 3ab is connected to the tip of the rod 2b, 4a is wired from the inside of the rod 2a to the light receiving surface of the solar cell panel 1, and further passes through a through hole from the light receiving surface of the solar cell panel 1 to the back surface. It is wired on the back side and connected to the electrical connector 5.

ロッド2bの先端部で被覆導線3abおよび4bが電気的に接続される構造で固定されており、被覆導線4bは被覆導線4aと同様にロッド2bの内部を通って太陽電池パネル1の受光面から裏面へと配線され、電気コネクタ5に接続されている。   The covered conductors 3ab and 4b are fixed to each other at the tip end of the rod 2b, and the covered conductor 4b passes through the inside of the rod 2b in the same manner as the covered conductor 4a from the light receiving surface of the solar cell panel 1. Wired to the back surface and connected to the electrical connector 5.

ロッド2aと同様に、ロッド2cの先端部で被覆導線3cdおよび4cが接続されており、被覆導線3cdはロッド2dの先端部に接続され、被覆導線4cはロッド2cの内部を通って太陽電池パネル1の受光面から裏面へと配線され、電気コネクタ5に接続されている。   Similarly to the rod 2a, the covered conductors 3cd and 4c are connected at the tip of the rod 2c, the covered conductor 3cd is connected to the tip of the rod 2d, and the covered conductor 4c passes through the inside of the rod 2c and is a solar cell panel. 1 is connected from the light receiving surface to the back surface and connected to the electrical connector 5.

またロッド2bと同様に、ロッド2dの先端部で被覆導線3bcおよび4dが電気的に接続される構造で固定されており、被覆導線4dはロッド2dの内部を通って太陽電池パネル1の受光面から裏面へと配線され、電気コネクタ5に接続されている。   Similarly to the rod 2b, the covered conductors 3bc and 4d are fixed to each other at the tip of the rod 2d, and the covered conductor 4d passes through the inside of the rod 2d and receives the light receiving surface of the solar cell panel 1. Is wired to the back surface and connected to the electrical connector 5.

ロッド2aおよびロッド2b、被覆導線3ab、4aおよび4bならびに電気コネクタ5によって、太陽電池パネルの受光面に対して垂直となる閉回路が形成される。同様に、ロッド2cおよびロッド2d、被覆導線3cd、4cおよび4dならびに電気コネクタ5によって、閉回路abと並行となる閉回路が形成される。   The rod 2a and rod 2b, the covered conductors 3ab, 4a and 4b, and the electrical connector 5 form a closed circuit perpendicular to the light receiving surface of the solar cell panel. Similarly, a closed circuit parallel to the closed circuit ab is formed by the rod 2c and the rod 2d, the covered conductors 3cd, 4c and 4d, and the electrical connector 5.

このようにして形成された閉回路の電流経路において、電気コネクタ5→被覆導線4a→ロッド2a→被覆導線3ab→ロッド2b→被覆導線4b→電気コネクタ5の方向に定電流を流すことで、太陽電池パネル1の手前から奥へと向かう方向に閉回路を鎖交する磁界が発生する。
同様に、閉回路の電流経路において、電気コネクタ5→被覆導線4c→ロッド2c→被覆導線3cd→ロッド2d→被覆導線4d→電気コネクタ5の方向に定電流を流すことで、太陽電池パネル1の手前から奥に向かう方向に閉回路を鎖交する磁界が発生する。
In the current path of the closed circuit thus formed, a constant current is passed in the direction of the electrical connector 5 → the coated conductor 4a → the rod 2a → the coated conductor 3ab → the rod 2b → the coated conductor 4b → the electrical connector 5, A magnetic field that links the closed circuit is generated in a direction from the front side to the back side of the battery panel 1.
Similarly, in a closed circuit current path, by passing a constant current in the direction of the electrical connector 5 → the coated conductor 4c → the rod 2c → the coated conductor 3cd → the rod 2d → the coated conductor 4d → the electrical connector 5, the solar panel 1 A magnetic field is generated that links the closed circuit in the direction from the front toward the back.

このふたつの閉回路を鎖交する磁界によって、太陽電池パネルの受光面と平行な方向の磁界を太陽電池パネル1の受光面上方に形成することができる。 A magnetic field in a direction parallel to the light receiving surface of the solar cell panel can be formed above the light receiving surface of the solar cell panel 1 by a magnetic field interlinking the two closed circuits.

このように、太陽電池パネル1の受光面上方に太陽電池パネルの受光面と平行な方向の磁界を形成した状態で、例えば、図5の太陽電池パネル1の左側から受光面へ向かう方向に正電荷イオンが飛来した場合、図6に示すように、正電荷イオンの軌跡110は、磁界シールド装置50により形成された磁界によって、太陽電池パネル1から離れる方向へローレンツ力が正電荷イオンに働く。   Thus, in a state where a magnetic field in a direction parallel to the light receiving surface of the solar cell panel is formed above the light receiving surface of the solar cell panel 1, for example, in the direction from the left side of the solar cell panel 1 to the light receiving surface in FIG. When the charged ions fly, the Lorentz force acts on the positively charged ions in the direction away from the solar cell panel 1 by the magnetic field formed by the magnetic field shield device 50 as shown in FIG.

このようにして、本実施の形態に係る磁界シールド装置を備えた太陽電池パネルでは、太陽電池パネル1の方向に飛来した正電荷イオンが、太陽電池パネル1に衝突することを回避することできる。   Thus, in the solar cell panel provided with the magnetic field shield device according to the present embodiment, it is possible to avoid positively charged ions that have come in the direction of the solar cell panel 1 from colliding with the solar cell panel 1.

1、1a、1b、1c、1d 太陽電池パネル、2、2a、2b、2c、2d ロッド、3ab、3cd ロッド先端のコネクタ間に接続される被覆導線、4、4a、4b、4c、4d 太陽電池パネルに取り付けられた被覆導線、5 電気コネクタ、6 ロッド立上げ機構、7 ロッド先端のコネクタ、8 ロッド本体、50 磁気シールド装置、61 ロッド回転軸、62 ロッド立上げ用ばね、63 押さえ機構、100 磁界シールド装置付き太陽電池パネル、101 衛星本体、102 アンテナリフレクタ、110 正電荷イオンの軌跡。 1, 1a, 1b, 1c, 1d solar cell panel, 2, 2a, 2b, 2c, 2d rod, 3ab, 3cd covered conductor wire connected between connectors at the rod end, 4, 4a, 4b, 4c, 4d Covered conductors attached to the panel, 5 Electrical connector, 6 Rod riser mechanism, 7 Rod end connector, 8 Rod body, 50 Magnetic shield device, 61 Rod rotating shaft, 62 Rod riser spring, 63 Holding mechanism, 100 Solar cell panel with magnetic field shield device, 101 satellite body, 102 antenna reflector, 110 locus of positively charged ions.

Claims (3)

衛星に搭載される太陽電池パネルの受光面に対し垂直となる方向に設置された2本で一対をなすロッドと、
各々の前記ロッドに沿って張られた導線と、
前記ロッドに沿って張られた導線と接続し、前記2本のロッドの上端の間、および下端の間を接続する導線とからなる閉回路と、
前記閉回路に電流を流す電源とを備えることを特徴とする太陽電池パネル。
A pair of rods installed in a direction perpendicular to the light receiving surface of the solar panel mounted on the satellite;
A conductor stretched along each said rod;
A closed circuit which is connected to a conductive wire stretched along the rod, and which is connected between the upper ends of the two rods and between the lower ends thereof;
A solar cell panel, comprising: a power source for supplying current to the closed circuit.
前記衛星の打ち上げ前には、前記ロッドを、前記太陽電池パネルの受光面と平行なる向きに収納し、前記衛星の打ち上げ後に、前記ロッドを、前記太陽電池パネルの受光面に対し垂直となる方向に立上げる展開機構を備えることを特徴とする請求項1記載の太陽電池パネル。 Before launching the satellite, the rod is housed in a direction parallel to the light receiving surface of the solar cell panel, and after launching the satellite, the rod is perpendicular to the light receiving surface of the solar cell panel. The solar cell panel according to claim 1, further comprising a deployment mechanism that rises to a height. 前記衛星は、イオン加速装置を備えた推進装置を備え、
前記推進装置から発射されるプラズマビームに含まれる正電荷イオンの軌跡を、前記閉回路に流れる電流により発生する磁界により変えることを特徴とする請求項1、2記載の太陽電池パネル。
The satellite includes a propulsion device including an ion accelerator,
The solar cell panel according to claim 1, wherein a locus of positively charged ions contained in a plasma beam emitted from the propulsion device is changed by a magnetic field generated by a current flowing in the closed circuit.
JP2014190743A 2014-09-19 2014-09-19 Solar panel Active JP6323277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190743A JP6323277B2 (en) 2014-09-19 2014-09-19 Solar panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190743A JP6323277B2 (en) 2014-09-19 2014-09-19 Solar panel

Publications (2)

Publication Number Publication Date
JP2016063670A true JP2016063670A (en) 2016-04-25
JP6323277B2 JP6323277B2 (en) 2018-05-16

Family

ID=55798393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190743A Active JP6323277B2 (en) 2014-09-19 2014-09-19 Solar panel

Country Status (1)

Country Link
JP (1) JP6323277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022805A (en) * 2021-04-19 2021-06-25 光之能(厦门)科技有限公司 Assembled surface of water photovoltaic power generation floats mounting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331100A (en) * 1989-06-23 1991-02-08 Aerospat Soc Natl Ind Satellite posture stabilizing device using superconducting magnetic loop
JPH06275857A (en) * 1993-03-17 1994-09-30 Nec Corp Solar battery power supply
US5678783A (en) * 1994-05-05 1997-10-21 Wong; Alfred Y. System and method for remediation of selected atmospheric conditions and system for high altitude telecommunications
JP2010539375A (en) * 2007-09-14 2010-12-16 ターレス エレクトロン デバイス ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus for reducing the application of positively charged ions to a surface portion, and ion accelerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331100A (en) * 1989-06-23 1991-02-08 Aerospat Soc Natl Ind Satellite posture stabilizing device using superconducting magnetic loop
JPH06275857A (en) * 1993-03-17 1994-09-30 Nec Corp Solar battery power supply
US5678783A (en) * 1994-05-05 1997-10-21 Wong; Alfred Y. System and method for remediation of selected atmospheric conditions and system for high altitude telecommunications
JP2010539375A (en) * 2007-09-14 2010-12-16 ターレス エレクトロン デバイス ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus for reducing the application of positively charged ions to a surface portion, and ion accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022805A (en) * 2021-04-19 2021-06-25 光之能(厦门)科技有限公司 Assembled surface of water photovoltaic power generation floats mounting system
CN113022805B (en) * 2021-04-19 2022-04-26 光之能(厦门)科技有限公司 Assembled surface of water photovoltaic power generation floats mounting system

Also Published As

Publication number Publication date
JP6323277B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP4815548B2 (en) Discharge countermeasure device
JP6063272B2 (en) X-ray irradiation source and X-ray tube
US9166391B1 (en) Early streamer emission terminal
TWI463920B (en) Corona discharge type ion generator
US20170093326A1 (en) Flexible solar generator provided with electrical protection against the impact of celestial objects, spacecraft and satellite comprising at least one such solar generator
JP6323277B2 (en) Solar panel
RU2544838C2 (en) Radiant tube and particle accelerator having radiant tube
US11476075B2 (en) Electron source and electron source unit
Cho et al. Plasma response to arcing in ionospheric plasma environment: Laboratory experiment
CN110012584A (en) Pulse Vacuum arc plasma propeller with segmentation microporous insulation anode
Toyoda et al. Power reduction of solar arrays by arcing under simulated geosychronous orbit environment
JP5659970B2 (en) Solar panel
JP6632114B2 (en) Vacuum arc thruster
Ranjan et al. Arc mitigation via solar panel grouting and curing under simulated LEO-like plasma environment
US10278276B2 (en) Short pulse neutron generator
JP4325445B2 (en) Satellite structure and antenna with discharge device
TW200809903A (en) Electron gun, energy beam generating device, electron beam generating device, and X-ray generating device
Fujii et al. Surface flashover on printed circuit boards in vacuum under electron beam irradiation
CN104145532A (en) X-ray radiation source
CN116148605B (en) Verification method for high-voltage insulation of electric thruster
KR101389694B1 (en) X-ray generating device and ionizer having high voltage generator and x-ray generator being detachable each other and the independently separated voltage generator and x-ray generator constituant the ionizer
JP7432187B2 (en) Space debris removal device
Fujii et al. Insulation Design of Printed Circuit Boards under Electron Irradiation
Volker et al. Critical technologies for Q-band EPCs
JP2005036717A (en) Ion engine having thrust direction control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R151 Written notification of patent or utility model registration

Ref document number: 6323277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250