JP2016063151A - Verification test device and verification test method - Google Patents

Verification test device and verification test method Download PDF

Info

Publication number
JP2016063151A
JP2016063151A JP2014191677A JP2014191677A JP2016063151A JP 2016063151 A JP2016063151 A JP 2016063151A JP 2014191677 A JP2014191677 A JP 2014191677A JP 2014191677 A JP2014191677 A JP 2014191677A JP 2016063151 A JP2016063151 A JP 2016063151A
Authority
JP
Japan
Prior art keywords
iron core
tank
simulated
local
verification test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014191677A
Other languages
Japanese (ja)
Inventor
陽介 山本
Yosuke Yamamoto
陽介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014191677A priority Critical patent/JP2016063151A/en
Publication of JP2016063151A publication Critical patent/JP2016063151A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a high-reliability verification test on a coil for exchange at any other place than a job site where a transformer is installed, and to reduce cost of the test.SOLUTION: A verification test device includes a temporary core and a core outer surface simulation part. The temporary core includes a core main leg to which the coil for exchange is fitted; a core side leg which is provided in parallel with the core main leg; a core yoke connecting end portions of the core main leg and the core side leg with each other; and a core clamp for holding a plurality of tabular cores forming the core yoke while fastening them in a direction of lamination. The core outer surface simulation part is mounted to the temporary core and forms a simulation core together with the temporary core. The core outer surface simulation part simulates an outer surface of a job-site core that is a core of the transformer, in such a manner that an insulation structure between the coil for exchange fitted to the simulation core and the simulation core becomes equivalent with an insulation structure between the coil for exchange fitted to the job-site core and the job-site core.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、検証試験装置および検証試験方法に関する。   Embodiments described herein relate generally to a verification test apparatus and a verification test method.

従来、電力系統システム等において大型の変圧器が用いられている。この種の変圧器はタンクと呼ばれる収容室に収容されており、タンクの外側には変圧器を冷却するための冷却装置が設けられる。   Conventionally, large transformers are used in power system systems and the like. This type of transformer is accommodated in a storage chamber called a tank, and a cooling device for cooling the transformer is provided outside the tank.

変圧器の寿命を決める要因の一つとして、巻線に使用される絶縁物の劣化が挙げられる。絶縁物の劣化に起因して絶縁破壊が誘発され、重大な系統事故につながる場合がある。   One of the factors that determine the life of a transformer is the deterioration of the insulator used in the winding. Dielectric breakdown can be induced due to deterioration of the insulator, which can lead to serious system failure.

このため、長期間の運転により巻線の絶縁物が経年劣化し、寿命を迎えた変圧器については適宜更新する必要がある。変圧器の更新を行う際、劣化した絶縁物を含む巻線のみを更新(交換)し、その他の構成要素(タンク、鉄心、冷却装置、外装品など。以下、「既存流用品」と呼ぶ。)については更新せずにそのまま継続使用することが考えられる。これにより、変圧器の構成要素を全て更新する場合に比べて、更新コストを大幅に抑えることが可能になる。   For this reason, the insulation of the windings deteriorates over time due to long-term operation, and it is necessary to appropriately update transformers that have reached the end of their lives. When the transformer is updated, only the winding including the deteriorated insulator is updated (replaced), and other components (tank, iron core, cooling device, exterior product, etc., hereinafter referred to as “existing commercial items”). ) Can be used as is without updating. Thereby, compared with the case where all the components of a transformer are updated, it becomes possible to restrain update cost significantly.

上記のように変圧器の巻線のみを更新する場合、製造工場で交換用の巻線を製造し、検証試験を行った後、その交換用巻線を変圧器が据え付けられた現地に出荷する。そして、現地において既存流用品と組み合わせて据付けることになる。   When only the transformer winding is updated as described above, the replacement winding is manufactured at the manufacturing plant, and after the verification test, the replacement winding is shipped to the site where the transformer is installed. . And it will be installed in combination with the existing merchandise locally.

変圧器の健全性を確保するために、交換用巻線の出荷前及び現地据付時において検証試験を実施する必要がある。製造工場では、交換用巻線の健全性を確認するために、絶縁試験および温度上昇試験が実施される。   In order to ensure the soundness of the transformer, it is necessary to conduct a verification test before the replacement winding is shipped and at the time of field installation. In the manufacturing plant, an insulation test and a temperature rise test are performed to confirm the soundness of the replacement winding.

絶縁試験では、交換用巻線自体に絶縁上の問題が無いことに加えて、巻線周囲の構造物(タンク、鉄心、クランプ等)に対する絶縁にも問題が無いことを確認する必要がある。一方、温度上昇試験では、現地の冷却装置の冷却能力で交換用巻線等の温度上昇が問題無いことを確認する必要がある。   In the insulation test, it is necessary to confirm that there is no problem in the insulation of the surrounding structure (tank, iron core, clamp, etc.) in addition to the insulation problem in the replacement winding itself. On the other hand, in the temperature rise test, it is necessary to confirm that there is no problem in raising the temperature of the replacement winding or the like with the cooling capacity of the local cooling device.

上記の絶縁試験および温度上昇試験を行うために、現地から既存流用品を製造工場に搬送しようとすると、工事費や輸送費等を含めた試験コストが莫大になってしまう。また、工場で検証試験を行うために、既存流用品と同等の物を製造することも考えられる。しかしながら、変圧器の構成や冷却装置の冷却能力は、変圧器ごとに多種多様である。よって、交換用巻線の検証試験を行うたびに既存流用品と同等の物を製造することとなり、製造費を含めた試験コストが莫大になってしまう。   In order to carry out the above-described insulation test and temperature rise test, if an existing merchandise is to be transported from the site to a manufacturing factory, the test cost including construction costs and transport costs becomes enormous. In addition, in order to conduct a verification test at the factory, it is possible to manufacture a product equivalent to the existing merchandise. However, the structure of the transformer and the cooling capacity of the cooling device are various for each transformer. Therefore, every time the verification test of the replacement winding is performed, the same product as the existing merchandise is manufactured, and the test cost including the manufacturing cost becomes enormous.

特開2003−224016号公報JP 2003-224016 A

本発明が解決しようとする課題は、変圧器が据え付けられた現地以外の場所で交換用巻線に対する信頼性の高い検証試験を行うことができ、かつ試験コストを削減することができる検証試験装置および検証試験方法を提供することである。   The problem to be solved by the present invention is a verification test apparatus capable of performing a highly reliable verification test on a replacement winding at a place other than the site where the transformer is installed and reducing the test cost. And providing a verification test method.

実施形態に係る検証試験装置は、現地に据え付けられた変圧器の巻線と交換するための交換用巻線に対する絶縁試験を行うための検証試験装置であって、仮鉄心と、鉄心外面模擬部とを備える。前記仮鉄心は、前記交換用巻線が取り付けられる鉄心主脚、前記鉄心主脚と平行に設けられた鉄心側脚、前記鉄心主脚と前記鉄心側脚の端部同士を接続する鉄心ヨーク、および前記鉄心ヨークを構成する複数枚の板状鉄心を積層方向に締め付けて保持する鉄心クランプを有する。前記鉄心外面模擬部は、前記仮鉄心に装着され、前記仮鉄心とともに模擬鉄心を構成する。前記鉄心外面模擬部は、前記模擬鉄心に取り付けられた交換用巻線と前記模擬鉄心との間の絶縁構造が、前記変圧器の鉄心である現地鉄心に取り付けられた交換用巻線と当該現地鉄心との間の絶縁構造と等価になるように前記現地鉄心の外面を模擬する。   A verification test apparatus according to an embodiment is a verification test apparatus for performing an insulation test on a replacement winding for exchanging with a winding of a transformer installed on-site, and a temporary iron core and an iron core outer surface simulation unit With. The temporary iron core includes an iron core main leg to which the replacement winding is attached, an iron core side leg provided in parallel with the iron core main leg, an iron core yoke that connects ends of the iron core main leg and the iron core side leg, And an iron core clamp that holds and holds the plurality of plate-like iron cores constituting the iron core yoke in the stacking direction. The iron core outer surface simulation portion is attached to the temporary iron core and constitutes a simulated iron core together with the temporary iron core. The iron core outer surface simulation unit is configured such that the insulation structure between the replacement winding attached to the simulated iron core and the simulated iron core has a replacement winding attached to the local iron core, which is the iron core of the transformer, and the local The outer surface of the local iron core is simulated so as to be equivalent to the insulating structure between the iron core.

第1の実施形態に係る検証試験装置1の概略的な構成を示す図である。1 is a diagram illustrating a schematic configuration of a verification test apparatus 1 according to a first embodiment. 検証試験装置1の概略的な構成を示す上面図である。1 is a top view illustrating a schematic configuration of a verification test apparatus 1. FIG. 模擬鉄心2の概略的な構成を示す全体斜視図である。1 is an overall perspective view showing a schematic configuration of a simulated iron core 2. FIG. 図3のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図3のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 図3のC−C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG. 変形例に係る検証試験装置1Aの概略的な構成を示す上面図である。It is a top view which shows schematic structure of the verification test apparatus 1A which concerns on a modification. 第2の実施形態に係る検証試験装置1Bの概略的な構成を示す図である。It is a figure which shows schematic structure of the verification test apparatus 1B which concerns on 2nd Embodiment.

以下、実施形態に係る検証試験装置および検証試験方法について図面を参照しながら説明する。なお、各図において同等の機能を有する構成要素には同一の符号を付し、同一符号の構成要素の詳しい説明は繰り返さない。   Hereinafter, a verification test apparatus and a verification test method according to an embodiment will be described with reference to the drawings. In addition, in each figure, the component which has an equivalent function is attached | subjected the same code | symbol, and detailed description of the component of the same code | symbol is not repeated.

(第1の実施形態)
まず、図1を参照して第1の実施形態に係る検証試験装置1の全体構成について説明する。図1は、本実施形態に係る検証試験装置1の概略的な構成を示している。なお、図1は、模擬鉄心2および交換用巻線50を仮タンク20内に収容する前の状態を示している。
(First embodiment)
First, the overall configuration of the verification test apparatus 1 according to the first embodiment will be described with reference to FIG. FIG. 1 shows a schematic configuration of a verification test apparatus 1 according to the present embodiment. FIG. 1 shows a state before the simulated iron core 2 and the replacement winding 50 are accommodated in the temporary tank 20.

検証試験装置1は、現地に据え付けられた変圧器(以下、単に「現地変圧器」ともいう。)の巻線と交換するための交換用巻線50に対する絶縁試験を、現地以外の場所(巻線の製造工場等)で行うための検証試験装置である。   The verification test apparatus 1 performs an insulation test on the replacement winding 50 for replacing with a winding of a transformer installed in the field (hereinafter also simply referred to as “local transformer”). This is a verification test device for use in wire manufacturing factories.

検証試験装置1は、図1に示すように、模擬鉄心2と、仮タンク20と、タンク内面模擬部材21とを備えている。   As shown in FIG. 1, the verification test apparatus 1 includes a simulated iron core 2, a temporary tank 20, and a tank inner surface simulation member 21.

模擬鉄心2は、現地変圧器の鉄心(以下、「現地鉄心」ともいう。)の構成(外面)を模擬した鉄心であり、後述のように、仮鉄心および鉄心外面模擬部を有する。新たに製造された交換用巻線50は、図1に示すように、模擬鉄心に取り付けられる。より詳しくは、模擬鉄心2の主脚を交換用巻線50の軸方向の貫通孔に挿通させた後、後述の巻線締付板8および巻線締付器具9により交換用巻線50を模擬鉄心2に固定する。模擬鉄心2の構成については、後ほど図3〜図6を参照して詳しく説明する。   The simulated iron core 2 is an iron core that simulates the configuration (outer surface) of an iron core of a local transformer (hereinafter also referred to as “local iron core”), and has a temporary iron core and an iron core outer surface simulation portion as described later. The newly manufactured replacement winding 50 is attached to the simulated iron core as shown in FIG. More specifically, after the main leg of the simulated iron core 2 is inserted through the axial through hole of the replacement winding 50, the replacement winding 50 is fixed by the winding fastening plate 8 and the winding fastening instrument 9 described later. Fix to the mock iron core 2. The configuration of the simulated iron core 2 will be described in detail later with reference to FIGS.

仮タンク20は、図1に示すように、模擬鉄心2、および当該模擬鉄心2に取り付けられた交換用巻線50を収容する。この仮タンク20は、現地変圧器を収容するタンク(以下、単に「現地タンク」ともいう。)が様々な大きさおよび形状を取りうることを考慮して大きめに作られている。   As shown in FIG. 1, the temporary tank 20 accommodates the simulated iron core 2 and the replacement winding 50 attached to the simulated iron core 2. The temporary tank 20 is made larger in consideration of the fact that a tank that accommodates a local transformer (hereinafter also simply referred to as “local tank”) can take various sizes and shapes.

タンク内面模擬部材21は、図1の例に示すように、模擬鉄心2の周りに3枚設置される。より詳しくは、タンク内面模擬部材21は、仮タンク20内に収容された交換用巻線50とタンク内面模擬部材21との間の距離が現地鉄心に取り付けられた交換用巻線50と現地タンクとの間の距離とほぼ等しくなるように、仮タンク20内に設置される。このように設置されることで、タンク内面模擬部材21は、仮タンク20とともに、現地タンクを模擬する模擬タンクを構成する。   As shown in the example of FIG. 1, three tank inner surface simulation members 21 are installed around the simulated iron core 2. More specifically, the tank inner surface simulation member 21 includes the replacement winding 50 and the local tank in which the distance between the replacement winding 50 accommodated in the temporary tank 20 and the tank inner surface simulation member 21 is attached to the local iron core. It is installed in the temporary tank 20 so as to be substantially equal to the distance between the two. By being installed in this manner, the tank inner surface simulation member 21 and the temporary tank 20 constitute a simulation tank that simulates a local tank.

タンク内面模擬部材21は、現地タンクの内面の形状を模擬するように構成されてもよい。例えば、タンク内面模擬部材21の表面形状は、現地タンクの内壁面の形状とほぼ同じであるようにしてもよい。   The tank inner surface simulation member 21 may be configured to simulate the shape of the inner surface of the local tank. For example, the surface shape of the tank inner surface simulation member 21 may be substantially the same as the shape of the inner wall surface of the local tank.

タンク内面模擬部材21は、金属またはカーボン等の導電性の材料からなり、各々のタンク内面模擬部材21は接地されている。なお、現地タンクの内面と同じ材料を用いてタンク内面模擬部材21を作成してもよい。また、各タンク内面模擬部材21は互いに接続されていてもよいし、各タンク内面模擬部材21間には、図1に示すように、ある程度の隙間が設けられていてもよい。   The tank inner surface simulation member 21 is made of a conductive material such as metal or carbon, and each tank inner surface simulation member 21 is grounded. In addition, you may create the tank inner surface simulation member 21 using the same material as the inner surface of a local tank. The tank inner surface simulation members 21 may be connected to each other, and a certain amount of gap may be provided between the tank inner surface simulation members 21 as shown in FIG.

図1に示すタンク内面模擬部材21は、現地タンクの内壁を模擬しているが、これに限らず、現地タンクの床面や天井を模擬するように、タンク内面模擬部材を仮タンク20の床面や天井に設けてもよい。   Although the tank inner surface simulation member 21 shown in FIG. 1 simulates the inner wall of the local tank, the tank inner surface simulation member is not limited to this, and the tank inner surface simulation member is used as the floor of the temporary tank 20 so as to simulate the floor surface and ceiling of the local tank. It may be provided on the surface or ceiling.

上記のように、タンク内面模擬部材21は、仮タンク20内に収容された交換用巻線50とタンク内面模擬部材21との間の絶縁構造が、現地鉄心に取り付けられた交換用巻線50と現地タンクとの間の絶縁構造と等価になるように現地タンクの内面(内壁面、床面、天井等)を模擬する。   As described above, the tank inner surface simulation member 21 includes the replacement winding 50 in which the insulation structure between the replacement winding 50 accommodated in the temporary tank 20 and the tank inner surface simulation member 21 is attached to the local iron core. The inner surface (inner wall surface, floor surface, ceiling, etc.) of the local tank is simulated so as to be equivalent to the insulation structure between the tank and the local tank.

なお、図1の例では、タンク内面模擬部材21は模擬鉄心2および交換用巻線50を三方向から囲むように設置されている。これに限らず、図1中右側にもタンク内面模擬部材21を設けて、四方向から模擬鉄心2および交換用巻線50を囲むようにしてもよい。通常、鉄心の主脚に取り付けられた巻線と鉄心の側脚との間において先に放電が発生するため、図1の例では現地タンクの右側内壁面を模擬するタンク内面模擬部材21は設けていない。   In the example of FIG. 1, the tank inner surface simulation member 21 is installed so as to surround the simulated iron core 2 and the replacement winding 50 from three directions. However, the tank inner surface simulation member 21 may be provided on the right side in FIG. 1 so as to surround the simulated iron core 2 and the replacement winding 50 from four directions. Normally, since discharge first occurs between the windings attached to the main legs of the iron core and the side legs of the iron core, the tank inner surface simulation member 21 that simulates the right inner wall surface of the local tank is provided in the example of FIG. Not.

上記のように仮タンク20およびタンク内面模擬部材21により模擬タンクを構成することで、現地タンクと同等のタンクを製造する場合に比べて格段に容易かつ低コストで絶縁試験等の検証試験を行うことができる。さらに、タンク内面模擬部材21は現地タンクの内面を模擬するため、信頼性の高い絶縁試験を行うことができる。   By configuring the simulated tank with the temporary tank 20 and the tank inner surface simulation member 21 as described above, a verification test such as an insulation test is performed much more easily and at a lower cost than when a tank equivalent to a local tank is manufactured. be able to. Furthermore, since the tank inner surface simulation member 21 simulates the inner surface of the local tank, a highly reliable insulation test can be performed.

なお、図2に示すように、引き回しルート模擬部材22を設けることで、交換用巻線50のリード線51と現地タンクとの間の絶縁構造を模擬するようにしてもよい。この引き回しルート模擬部材22は、現地タンクに収容された場合と同様のルートで試験用ブッシング25まで引き回されたリード線51の周りに設けられる。引き回しルート模擬部材22は、仮タンク20およびタンク内面模擬部材21とともに模擬タンクを構成する。   In addition, as shown in FIG. 2, you may make it simulate the insulation structure between the lead wire 51 of the coil | winding 50 for replacement | exchange, and a local tank by providing the routing route simulation member 22. As shown in FIG. The routed route simulation member 22 is provided around the lead wire 51 routed to the test bushing 25 through the same route as that accommodated in the local tank. The routing route simulation member 22 constitutes a simulation tank together with the temporary tank 20 and the tank inner surface simulation member 21.

引き回しルート模擬部材22は、模擬タンク内に収容された交換用巻線50のリード線51と、引き回しルート模擬部材22との間の絶縁構造が、現地タンク内に収容された交換用巻線50のリード線51と、現地タンク(の引き回しルート部材)との間の絶縁構造と等価になるように、現地タンクのリード線周囲絶縁構造を模擬する。例えば、引き回しルート模擬部材22は、引き回しルート模擬部材22とリード線51との距離が現地タンクとリード線51との距離にほぼ等しくなるように設けられる。   The routing route simulating member 22 has an insulating structure between the lead wire 51 of the replacement winding 50 accommodated in the simulation tank and the routing route simulating member 22, and the replacement winding 50 accommodated in the local tank. The insulation structure around the lead wire of the local tank is simulated so as to be equivalent to the insulation structure between the lead wire 51 and the local tank (the routing route member). For example, the routing route simulation member 22 is provided such that the distance between the routing route simulation member 22 and the lead wire 51 is substantially equal to the distance between the local tank and the lead wire 51.

また、引き回しルート模擬部材22は、現地タンクのリード線周囲の構造物(配線ダクト等)の形状を模擬するように構成されてもよい。   The routing route simulation member 22 may be configured to simulate the shape of a structure (such as a wiring duct) around the lead wire of the local tank.

次に、模擬鉄心2の詳細な構成について、図3〜図6を参照して説明する。 図3は、模擬鉄心2の概略的な構成を示す全体斜視図である。図4は図3のA−A線に沿う断面図であり、図5は図3のB−B線に沿う断面図であり、図6は図3のC−C線に沿う断面図である。なお、図3では、ヨーク面模擬部材12およびクランプ面模擬部材13は図示していない。   Next, a detailed configuration of the simulated iron core 2 will be described with reference to FIGS. FIG. 3 is an overall perspective view showing a schematic configuration of the simulated iron core 2. 4 is a sectional view taken along line AA in FIG. 3, FIG. 5 is a sectional view taken along line BB in FIG. 3, and FIG. 6 is a sectional view taken along line CC in FIG. . In FIG. 3, the yoke surface simulation member 12 and the clamp surface simulation member 13 are not shown.

模擬鉄心2は、仮鉄心と、この仮鉄心に装着された鉄心外面模擬部とを備えている。まず、仮鉄心について説明する。   The simulated iron core 2 includes a temporary iron core and an iron core outer surface simulation portion attached to the temporary iron core. First, the temporary iron core will be described.

仮鉄心は、図3および図5に示すように、交換用巻線50が取り付けられる鉄心主脚3、この鉄心主脚3と平行に設けられた鉄心側脚4、電磁鋼板等の板状鉄心5aを複数枚積層して形成された鉄心ヨーク5,6、および鉄心ヨーク5,6を保持する鉄心クランプ7を有している。   As shown in FIGS. 3 and 5, the temporary iron core includes a core main leg 3 to which the replacement winding 50 is attached, a core side leg 4 provided in parallel with the iron core main leg 3, and a plate-like iron core such as an electromagnetic steel plate. There are iron core yokes 5 and 6 formed by laminating a plurality of 5a, and an iron core clamp 7 for holding the iron core yokes 5 and 6.

上側の鉄心ヨーク5は、鉄心主脚3と鉄心側脚4の上端部同士を接続する。下側の鉄心ヨーク6は、鉄心主脚3と鉄心側脚4の下端部同士を接続する。鉄心クランプ7は、鉄心ヨーク5(6)を構成する複数枚の板状鉄心5aを積層方向に締め付けて保持する。   The upper iron core yoke 5 connects the upper ends of the iron core main leg 3 and the iron core side leg 4 to each other. The lower iron core yoke 6 connects the lower ends of the iron core main leg 3 and the iron core side leg 4 to each other. The iron core clamp 7 clamps and holds a plurality of plate-like iron cores 5a constituting the iron core yoke 5 (6) in the stacking direction.

鉄心主脚3は、現地鉄心が様々な大きさおよび形状を取りうることを考慮して長め且つ細めに作られている。   The iron core main leg 3 is made long and narrow considering that the local iron core can take various sizes and shapes.

次に、鉄心外面模擬部について説明する。鉄心外面模擬部は、仮鉄心とともに模擬鉄心2を構成している。鉄心外面模擬部は、導電性の材料からなり、接地されている。なお、鉄心外面模擬部は、導電性があり且つ高抵抗の材料(例えばカーボン)からなることが好ましい。   Next, the iron core outer surface simulation part will be described. The iron core outer surface simulation part constitutes the mock iron core 2 together with the temporary iron core. The iron core outer surface simulation portion is made of a conductive material and is grounded. The iron core outer surface simulation portion is preferably made of a conductive and high resistance material (for example, carbon).

鉄心外面模擬部は、主脚面模擬部材11、ヨーク面模擬部材12、およびクランプ面模擬部材13を有している。   The iron core outer surface simulation portion includes a main leg surface simulation member 11, a yoke surface simulation member 12, and a clamp surface simulation member 13.

主脚面模擬部材11は、現地鉄心の主脚面を模擬する筒状の部材である。ここで、「現地鉄心の主脚面」とは、現地鉄心の鉄心主脚の外周面のことである。図4に示すように、主脚面模擬部材11の内部に仮鉄心の鉄心主脚3が挿通されている。また、主脚面模擬部材11の外周面には、巻線シリンダ19を介して交換用巻線50が取り付けられる。   The main leg surface simulating member 11 is a cylindrical member that simulates the main leg surface of the local iron core. Here, “the main leg surface of the local iron core” means the outer peripheral surface of the core main leg of the local iron core. As shown in FIG. 4, the iron core main leg 3 of a temporary iron core is inserted into the main leg surface simulation member 11. A replacement winding 50 is attached to the outer peripheral surface of the main leg surface simulating member 11 via a winding cylinder 19.

主脚面模擬部材11は、模擬鉄心2に取り付けられた交換用巻線50と主脚面模擬部材11との間の距離(第1の距離)が現地鉄心に取り付けられた交換用巻線50と現地鉄心の主脚との間の距離(第2の距離)とほぼ等しくなるように構成される。即ち、第1の距離と第2の距離がほぼ等しくなるように、主脚面模擬部材11の形状および仮鉄心への設置位置が調整される。   The main leg surface simulating member 11 has the same distance (first distance) between the replacement winding 50 attached to the simulated iron core 2 and the main leg surface simulating member 11 as the replacement winding 50 attached to the local iron core. It is comprised so that it may become substantially equal to the distance (2nd distance) between the main legs of an iron core. That is, the shape of the main leg surface simulation member 11 and the installation position on the temporary iron core are adjusted so that the first distance and the second distance are substantially equal.

このような主脚面模擬部材11を設けた模擬鉄心2を用いることにより、現地鉄心の鉄心主脚と交換用巻線50との間で放電が発生するか否かを試験することができる。   By using the simulated iron core 2 provided with the main leg surface simulation member 11 as described above, it is possible to test whether or not a discharge occurs between the core main leg of the local iron core and the replacement winding 50.

ヨーク面模擬部材12は、現地鉄心のヨーク面を模擬する部材である。ここで、「現地鉄心のヨーク面」とは、現地鉄心の鉄心ヨークの内側面のことである。図5に示すように、上側の鉄心ヨーク5については、ヨーク面模擬部材12は、鉄心ヨーク5の内側面(下面)を覆うように設けられている。下側の鉄心ヨーク6についても同様に、鉄心ヨーク6の内側面(上面)を覆うようにヨーク面模擬部材12が設けられている。ヨーク面模擬部材12の形状は、例えば、図4に示すように、横断面がコの字形である。   The yoke surface simulation member 12 is a member that simulates the yoke surface of the local iron core. Here, “the yoke surface of the local iron core” is the inner surface of the iron core yoke of the local iron core. As shown in FIG. 5, with respect to the upper iron core yoke 5, the yoke surface simulation member 12 is provided so as to cover the inner surface (lower surface) of the iron core yoke 5. Similarly, the yoke core simulating member 12 is provided so as to cover the inner surface (upper surface) of the iron core yoke 6 for the lower iron core yoke 6. The yoke surface simulating member 12 has, for example, a U-shaped cross section as shown in FIG.

ヨーク面模擬部材12は、模擬鉄心2に取り付けられた交換用巻線50とヨーク面模擬部材12との間の距離(第1の距離)が現地鉄心に取り付けられた交換用巻線50と現地鉄心のヨークとの間の距離(第2の距離)とほぼ等しくなるように構成される。即ち、第1の距離と第2の距離がほぼ等しくなるように、ヨーク面模擬部材12の形状および仮鉄心への設置位置が調整される。   The yoke surface simulation member 12 has the same distance (first distance) between the replacement winding 50 attached to the simulated iron core 2 and the yoke surface simulation member 12 as the replacement winding 50 attached to the local iron core. It is comprised so that it may become substantially equal to the distance (2nd distance) between the yokes of an iron core. That is, the shape of the yoke surface simulation member 12 and the installation position on the temporary iron core are adjusted so that the first distance and the second distance are substantially equal.

このようなヨーク面模擬部材12を設けた模擬鉄心2を用いることにより、現地鉄心の鉄心ヨークと交換用巻線50との間で放電が発生するか否かを試験することができる。   By using the simulated iron core 2 provided with the yoke surface simulation member 12 as described above, it is possible to test whether or not a discharge occurs between the iron core yoke of the local iron core and the replacement winding 50.

クランプ面模擬部材13は、現地鉄心のクランプ面を模擬する部材である。ここで、「現地鉄心のクランプ面」とは、現地鉄心の鉄心クランプの内側面(巻線の端面と対向する面)のことである。図6に示すように、クランプ面模擬部材13は、鉄心クランプ7および巻線締付板8間に設けられている。この巻線締付板8は、巻線締付器具9からの押圧力を受けて、交換用巻線50を軸方向に締め付ける。巻線締付板8には貫通孔が設けられており、当該貫通孔に鉄心ヨーク5が挿通されている。また、図6に示すように、巻線締付板8とクランプ面模擬部材13との間にはスペーサ部材14が介装され、巻線締付板8と交換用巻線50との間にはスペーサ部材15が介装されている。   The clamp surface simulation member 13 is a member that simulates the clamp surface of the local iron core. Here, the “clamp surface of the local iron core” refers to the inner surface of the iron core clamp of the local iron core (the surface facing the end surface of the winding). As shown in FIG. 6, the clamp surface simulation member 13 is provided between the iron core clamp 7 and the winding fastening plate 8. The winding fastening plate 8 receives the pressing force from the winding fastening device 9 and fastens the replacement winding 50 in the axial direction. The winding fastening plate 8 is provided with a through hole, and the iron core yoke 5 is inserted through the through hole. Further, as shown in FIG. 6, a spacer member 14 is interposed between the winding fastening plate 8 and the clamping surface simulation member 13, and between the winding fastening plate 8 and the replacement winding 50. A spacer member 15 is interposed.

クランプ面模擬部材13は、模擬鉄心2に取り付けられた交換用巻線50とクランプ面模擬部材13との間の距離(第1の距離)が現地鉄心に取り付けられた交換用巻線50と現地鉄心のクランプとの間の距離(第2の距離)とほぼ等しくなるように構成される。即ち、第1の距離と第2の距離がほぼ等しくなるように、クランプ面模擬部材13の形状および仮鉄心への設置位置が調整される。   The clamping surface simulation member 13 includes a replacement winding 50 attached to the simulated iron core 2 and a distance (first distance) between the replacement winding 50 attached to the simulation core 13 and the replacement winding 50 attached to the local iron core. It is configured to be approximately equal to the distance (second distance) between the iron core and the clamp. That is, the shape of the clamp surface simulation member 13 and the installation position on the temporary iron core are adjusted so that the first distance and the second distance are substantially equal.

このようなクランプ面模擬部材13を設けた模擬鉄心2を用いることにより、現地鉄心の鉄心クランプと交換用巻線50との間で放電が発生するか否かを試験することができる。   By using the simulated iron core 2 provided with such a clamp surface simulation member 13, it is possible to test whether or not a discharge occurs between the core clamp of the local iron core and the replacement winding 50.

上記のように、第1の実施形態では、仮鉄心とともに模擬鉄心2を構成する鉄心外面模擬部は、交換用巻線50と模擬鉄心2との間の絶縁構造が、交換用巻線50と現地鉄心との間の絶縁構造と等価になるように現地鉄心の外面を模擬する。   As described above, in the first embodiment, the iron core outer surface simulation portion that configures the simulated iron core 2 together with the temporary iron core has an insulating structure between the replacement winding 50 and the simulated iron core 2 and the replacement winding 50. The outer surface of the local iron core is simulated to be equivalent to the insulation structure between the local iron core.

よって、第1の実施形態によれば、変圧器が据え付けられた現地以外の場所で交換用巻線に対する信頼性の高い検証試験を行うことができる。   Therefore, according to the first embodiment, a highly reliable verification test for the replacement winding can be performed at a place other than the site where the transformer is installed.

さらに、第1の実施形態によれば、現地鉄心や現地タンクを試験場所に輸送したり、現地鉄心や現地タンクと同等の物を製造する必要がないため、試験コストを大幅に削減することができる。   Furthermore, according to the first embodiment, it is not necessary to transport the local iron core or the local tank to the test place, or to manufacture the same thing as the local iron core or the local tank, so that the test cost can be greatly reduced. it can.

次に、第1の実施形態の変形例について説明する。本変形例によっても第1の実施形態と同様の効果を得ることができる。   Next, a modification of the first embodiment will be described. Also by this modification, the same effect as the first embodiment can be obtained.

(変形例)
本変形例は、現地に据え付けられた変圧器が三相変圧器である場合の検証試験装置である。三相変圧器は、所定の間隔で配列された3つの鉄心を有し、各鉄心は前述の現地鉄心と同様の構成を有する。図7は、本変形例に係る検証試験装置1Aの概略的な構成を示す上面図である。図7に示すように、前述の模擬鉄心2と同じ構成を有する3つの模擬鉄心2a,2b,2cが所定の間隔で配列され、仮タンク20内に収容されている。この間隔は、現地の三相変圧器の鉄心と同じ間隔に調整されている。また、模擬鉄心2a,2b,2cには交換用巻線50がそれぞれ取り付けられている。
(Modification)
This modification is a verification test apparatus when the transformer installed in the field is a three-phase transformer. The three-phase transformer has three iron cores arranged at a predetermined interval, and each iron core has the same configuration as the above-mentioned local iron core. FIG. 7 is a top view showing a schematic configuration of a verification test apparatus 1A according to the present modification. As shown in FIG. 7, three simulated iron cores 2 a, 2 b, 2 c having the same configuration as the above-described simulated iron core 2 are arranged at a predetermined interval and accommodated in the temporary tank 20. This interval is adjusted to be the same as the core of the local three-phase transformer. Further, the replacement windings 50 are respectively attached to the simulated iron cores 2a, 2b, 2c.

タンク内面模擬部材21は、模擬鉄心2a,2b,2cの周りに設置されており、現地の三相変圧器が収容される現地タンクの内面(内壁面等)を模擬する。より詳しくは、タンク内面模擬部材21は、模擬鉄心2a,2b,2cの各々について、模擬鉄心に取り付けられた交換用巻線50と模擬タンクとの間の絶縁構造が当該模擬鉄心に対応する現地鉄心に取り付けられた交換用巻線50と現地タンクとの間の絶縁構造と等価になるように現地タンクの内面を模擬する。これにより、変圧器が三相変圧器の場合にも、変圧器が据え付けられた現地以外の場所で交換用巻線に対する信頼性の高い検証試験を行うことができる。   The tank inner surface simulation member 21 is installed around the simulated iron cores 2a, 2b, 2c, and simulates the inner surface (inner wall surface, etc.) of the local tank in which the local three-phase transformer is accommodated. More specifically, the tank inner surface simulating member 21 has a structure in which each of the simulated iron cores 2a, 2b, and 2c has an insulating structure between the replacement winding 50 attached to the simulated core and the simulated tank corresponding to the simulated core. The inner surface of the local tank is simulated so as to be equivalent to an insulating structure between the replacement winding 50 attached to the iron core and the local tank. As a result, even when the transformer is a three-phase transformer, a highly reliable verification test can be performed on the replacement winding at a place other than the site where the transformer is installed.

(検証試験方法)
ここで、前述の検証試験装置1を用いて交換用巻線50の絶縁試験を行う方法について説明する。なお、検証試験装置1Aについても同様の方法で絶縁試験を行うことが可能である。
(Verification test method)
Here, a method of performing an insulation test of the replacement winding 50 using the above-described verification test apparatus 1 will be described. Note that the insulation test can be performed on the verification test apparatus 1A in the same manner.

まず、交換用巻線50を模擬鉄心2に取り付ける。その後、模擬鉄心2を仮タンク20内に収容する。なお、模擬鉄心2を予め仮タンク20内に設置しておき、その模擬鉄心2に交換用巻線50を取り付けてもよい。そして、仮タンク20内に絶縁油を注入して交換用巻線50および模擬鉄心2を浸漬する。   First, the replacement winding 50 is attached to the simulated iron core 2. Thereafter, the simulated iron core 2 is accommodated in the temporary tank 20. The simulated iron core 2 may be installed in the temporary tank 20 in advance, and the replacement winding 50 may be attached to the simulated iron core 2. Then, insulating oil is injected into the temporary tank 20 to immerse the replacement winding 50 and the simulated iron core 2.

次に、交換用巻線50に所定の電圧を印加する。この電圧は、試験内容に応じて交流の場合もあれば直流の場合もある。なお、使用条件よりも高い電圧を交換用巻線50に印加してもよい。   Next, a predetermined voltage is applied to the replacement winding 50. This voltage may be AC or DC depending on the test content. Note that a voltage higher than the use condition may be applied to the replacement winding 50.

そして、交換用巻線50と模擬鉄心2との間、および交換用巻線50とも模擬タンクとの間で発生する放電を測定する。   Then, the discharge generated between the replacement winding 50 and the simulated iron core 2 and between the replacement winding 50 and the simulation tank is measured.

(第2の実施形態)
次に、第2の実施形態に係る検証試験装置1Bについて図8を参照して説明する。図8は、検証試験装置1Bの概略的な構成を示している。なお、図8においては、タンク内面模擬部材21を図示していない。
(Second Embodiment)
Next, a verification test apparatus 1B according to the second embodiment will be described with reference to FIG. FIG. 8 shows a schematic configuration of the verification test apparatus 1B. In FIG. 8, the tank inner surface simulation member 21 is not shown.

検証試験装置1Bは、現地以外の場所で、交換用巻線50に対し絶縁試験に加えて温度上昇試験を行うための検証試験装置である。   The verification test apparatus 1B is a verification test apparatus for performing a temperature rise test on the replacement winding 50 in addition to the insulation test at a place other than the site.

検証試験装置1Bは、図8に示すように、検証試験装置1の構成(模擬鉄心2、仮タンク20およびタンク内面模擬部材21)に加えて、模擬冷却装置30をさらに備えている。この模擬冷却装置30は、現地タンクに取り付けられ、現地変圧器を冷却する冷却装置(以下、「現地冷却装置」ともいう。)を模擬する。   As shown in FIG. 8, the verification test apparatus 1 </ b> B further includes a simulated cooling apparatus 30 in addition to the configuration of the verification test apparatus 1 (simulated iron core 2, temporary tank 20, and tank inner surface simulation member 21). The simulated cooling device 30 is attached to a local tank and simulates a cooling device that cools the local transformer (hereinafter also referred to as “local cooling device”).

模擬冷却装置30は、図8に示すように、冷却器31と、ポンプ32と、第1の制御部33と、第2の制御部34とを有する。   As shown in FIG. 8, the simulated cooling device 30 includes a cooler 31, a pump 32, a first control unit 33, and a second control unit 34.

冷却器31は、交換用巻線50の内部を通過した冷却媒体を冷却する。この冷却器31は、複数のフィンを有するフィン部(図示せず)と、このフィン部に向けて空気を送風し冷却させる冷却ファン(図示せず)とを有する。フィン部の内部には、交換用巻線50を冷却する冷却媒体(例えば油、ガス)が流通する冷媒流路が設けられている。この冷媒流路は、導油配管26,27に接続されている。導油配管26はポンプ32と交換用巻線50を接続し、導油配管27は交換用巻線50と冷却器31を接続する。   The cooler 31 cools the cooling medium that has passed through the inside of the replacement winding 50. The cooler 31 includes a fin portion (not shown) having a plurality of fins, and a cooling fan (not shown) that blows and cools air toward the fin portion. Inside the fin portion, a refrigerant flow path is provided through which a cooling medium (for example, oil or gas) for cooling the replacement winding 50 flows. This refrigerant flow path is connected to the oil guide pipes 26 and 27. The oil guide pipe 26 connects the pump 32 and the replacement winding 50, and the oil guide pipe 27 connects the replacement winding 50 and the cooler 31.

ポンプ32は、冷却器31により冷却された冷却媒体を交換用巻線50に送出する。ポンプ32により送出された冷却媒体は、導油配管26を通って、交換用巻線50内の冷却媒体流路(油道)を通ることで交換用巻線50を冷却する。   The pump 32 sends the cooling medium cooled by the cooler 31 to the replacement winding 50. The cooling medium sent out by the pump 32 passes through the oil guide pipe 26 and passes through the cooling medium flow path (oil passage) in the replacement winding 50 to cool the replacement winding 50.

第1の制御部33は、冷却器31の冷却ファンの回転数(送風量)を制御する。この第1の制御部33は、例えば可変周波数電源であり、パルス周波数変調(PFM)制御により冷却ファンの回転数を制御する。   The first control unit 33 controls the number of rotations (air flow rate) of the cooling fan of the cooler 31. The first control unit 33 is, for example, a variable frequency power supply, and controls the rotation speed of the cooling fan by pulse frequency modulation (PFM) control.

第1の制御部33は、冷却器31の冷却量(例えば、単位時間あたりに物体から奪う熱の量[kcal/h])が現地冷却装置の冷却器の冷却量と等しくなるように、冷却ファンの回転数を制御する。第1の制御部33が可変周波数電源の場合は、冷却ファンの回転数が所定値になるように周波数を調整する。   The first control unit 33 performs cooling so that the cooling amount of the cooler 31 (for example, the amount of heat taken from the object per unit time [kcal / h]) becomes equal to the cooling amount of the cooler of the local cooling device. Controls the fan speed. When the first control unit 33 is a variable frequency power supply, the frequency is adjusted so that the number of rotations of the cooling fan becomes a predetermined value.

なお、模擬冷却装置30の冷却ファンの回転数(送風量)と、冷却器31の冷却量との関係を予め求めておき、第1の制御部33は、当該関係に基づいて冷却ファンの回転数を制御するようにしてもよい。   The relationship between the number of rotations of the cooling fan of the simulated cooling device 30 (air flow rate) and the cooling amount of the cooler 31 is obtained in advance, and the first control unit 33 rotates the cooling fan based on the relationship. The number may be controlled.

また、模擬冷却装置30の冷却器31は、現地冷却装置の冷却器の冷却量に応じた台数の冷却ファンを有してもよい。例えば、冷却器31の冷却ファンの回転数を制御することによっては、現地冷却装置の冷却器の冷却量を得られない場合には、冷却ファンの台数を2台以上にすることにより、現地冷却装置の冷却器の冷却量を模擬できるようにしてもよい。   Moreover, the cooler 31 of the simulated cooling device 30 may have a number of cooling fans according to the cooling amount of the cooler of the local cooling device. For example, if the cooling amount of the cooler of the local cooling device cannot be obtained by controlling the number of rotations of the cooling fan of the cooler 31, the number of cooling fans is increased to two or more to reduce the local cooling. The cooling amount of the cooler of the apparatus may be simulated.

第2の制御部34は、ポンプ32の送出量(送油量)を制御する。この第2の制御部34は、例えば可変周波数電源であり、パルス周波数変調(PFM)制御によりポンプ32の送出量を制御する。   The second control unit 34 controls the delivery amount (oil feed amount) of the pump 32. The second control unit 34 is, for example, a variable frequency power supply, and controls the delivery amount of the pump 32 by pulse frequency modulation (PFM) control.

第2の制御部34は、ポンプ32の送出量が現地冷却装置のポンプの送出量と等しくなるように、ポンプ32の送出量を制御する。第2の制御部34が可変周波数電源の場合は、ポンプ32の送出量が所定値になるように周波数を調整する。   The second control unit 34 controls the delivery amount of the pump 32 so that the delivery amount of the pump 32 is equal to the delivery amount of the pump of the local cooling device. When the second control unit 34 is a variable frequency power supply, the frequency is adjusted so that the delivery amount of the pump 32 becomes a predetermined value.

(検証試験方法)
ここで、前述の検証試験装置1Bを用いて交換用巻線50の温度上昇試験を行う方法について説明する。
(Verification test method)
Here, a method of performing a temperature rise test of the replacement winding 50 using the above-described verification test apparatus 1B will be described.

まず、交換用巻線50を模擬鉄心2に取り付ける。その後、模擬鉄心2を仮タンク20内に収容する。なお、模擬鉄心2を予め仮タンク20内に設置しておき、その模擬鉄心2に交換用巻線50を取り付けてもよい。そして、仮タンク20内に絶縁油を注入して交換用巻線50および模擬鉄心2を浸漬する。   First, the replacement winding 50 is attached to the simulated iron core 2. Thereafter, the simulated iron core 2 is accommodated in the temporary tank 20. The simulated iron core 2 may be installed in the temporary tank 20 in advance, and the replacement winding 50 may be attached to the simulated iron core 2. Then, insulating oil is injected into the temporary tank 20 to immerse the replacement winding 50 and the simulated iron core 2.

次に、交換用巻線50に所定の電圧を印加する。この電圧は、試験内容に応じて交流の場合もあれば直流の場合もある。なお、使用条件よりも高い電圧を交換用巻線50に印加してもよい。   Next, a predetermined voltage is applied to the replacement winding 50. This voltage may be AC or DC depending on the test content. Note that a voltage higher than the use condition may be applied to the replacement winding 50.

そして、交換用巻線50の温度(巻線温度)を測定し、当該温度の上昇幅が所定範囲内であることを確認する。なお、仮タンク20内に注入された絶縁油の温度(油温度)を測定し、当該温度の上昇幅が所定範囲内であることを確認してもよい。   Then, the temperature of the replacement winding 50 (winding temperature) is measured, and it is confirmed that the temperature rise is within a predetermined range. In addition, the temperature (oil temperature) of the insulating oil injected into the temporary tank 20 may be measured to confirm that the temperature increase range is within a predetermined range.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1,1A,1B 検証試験装置
2,2a,2b,2c 模擬鉄心
3 鉄心主脚
4 鉄心側脚
5 (上側の)鉄心ヨーク
5a 板状鉄心
6 (下側の)鉄心ヨーク
7 鉄心クランプ
8 巻線締付板
9 巻線締付器具
11 主脚面模擬部材
12 ヨーク面模擬部材
13 クランプ面模擬部材
14,15 スペーサ部材
19 巻線シリンダ
20 仮タンク
21 タンク内面模擬部材
22 引き回しルート模擬部材
25 試験用ブッシング
26,27 導油配管
30 模擬冷却装置
31 冷却器
32 ポンプ
33,34 制御部
50 交換用巻線
51 リード線
1, 1A, 1B Verification test apparatus 2, 2a, 2b, 2c Simulated iron core 3 Core main leg 4 Iron core side leg 5 (Upper) iron core yoke 5a Plate iron core 6 (Lower) iron core yoke 7 Iron core clamp 8 Winding Clamping plate 9 Winding fastening device 11 Main leg surface simulation member 12 Yoke surface simulation member 13 Clamp surface simulation member 14, 15 Spacer member 19 Winding cylinder 20 Temporary tank 21 Tank inner surface simulation member 22 Route route simulation member 25 Test bushing 26, 27 Oil guide pipe 30 Simulated cooling device 31 Cooler 32 Pump 33, 34 Controller 50 Replacement coil 51 Lead wire

Claims (12)

現地に据え付けられた変圧器の巻線と交換するための交換用巻線に対する絶縁試験を行うための検証試験装置であって、
前記交換用巻線が取り付けられる鉄心主脚、前記鉄心主脚と平行に設けられた鉄心側脚、前記鉄心主脚と前記鉄心側脚の端部同士を接続する鉄心ヨーク、および前記鉄心ヨークを構成する複数枚の板状鉄心を積層方向に締め付けて保持する鉄心クランプを有する仮鉄心と、
前記仮鉄心に装着され、前記仮鉄心とともに模擬鉄心を構成する鉄心外面模擬部と、を備え、
前記鉄心外面模擬部は、前記模擬鉄心に取り付けられた交換用巻線と前記模擬鉄心との間の絶縁構造が、前記変圧器の鉄心である現地鉄心に取り付けられた交換用巻線と当該現地鉄心との間の絶縁構造と等価になるように前記現地鉄心の外面を模擬することを特徴とする検証試験装置。
A verification test device for performing an insulation test on a replacement winding for replacing a transformer winding installed on the site,
An iron core main leg to which the replacement winding is attached; an iron core side leg provided in parallel with the iron core main leg; an iron core yoke that connects ends of the iron core main leg and the iron core side leg; and the iron core yoke; A temporary iron core having an iron core clamp that holds and holds a plurality of plate-shaped iron cores in the stacking direction;
An iron core outer surface simulation part that is mounted on the temporary iron core and constitutes a simulated iron core together with the temporary iron core,
The iron core outer surface simulation unit is configured such that the insulation structure between the replacement winding attached to the simulated iron core and the simulated iron core has a replacement winding attached to the local iron core, which is the iron core of the transformer, and the local A verification test apparatus characterized by simulating the outer surface of the local iron core so as to be equivalent to an insulating structure between the iron core.
前記鉄心外面模擬部は、前記仮鉄心の前記鉄心主脚が内部に挿通され、前記現地鉄心の主脚面を模擬する筒状の主脚面模擬部材を含むことを特徴とする請求項1に記載の検証試験装置。   The said core outer surface simulation part contains the cylindrical main leg surface simulation member by which the said core main leg of the said temporary iron core is penetrated inside, and simulates the main leg surface of the said local iron core. Verification test equipment. 前記鉄心外面模擬部は、前記仮鉄心の前記鉄心ヨークの内側面を覆うように設けられ、前記現地鉄心のヨーク面を模擬するヨーク面模擬部材を含むことを特徴とする請求項1または2に記載の検証試験装置。   The said iron core outer surface simulation part is provided so that the inner surface of the said iron core yoke of the said temporary iron core may be covered, The yoke surface simulation member which simulates the yoke surface of the said local iron core is included. The verification test apparatus described. 前記鉄心外面模擬部は、前記仮鉄心の前記鉄心クランプと、前記交換用巻線を軸方向に締め付ける巻線締付板との間に設けられ、前記現地鉄心のクランプ面を模擬するクランプ面模擬部材を含むことを特徴とする請求項1〜3のいずれかに記載の検証試験装置。   The iron core outer surface simulation part is provided between the iron core clamp of the temporary iron core and a winding fastening plate for tightening the replacement winding in the axial direction, and simulates a clamp surface that simulates the clamp surface of the local iron core. The verification test apparatus according to claim 1, further comprising a member. 前記模擬鉄心、および当該模擬鉄心に取り付けられた前記交換用巻線を収容する仮タンクと、
前記模擬鉄心の周りに設置され、前記仮タンクとともに模擬タンクを構成するタンク内面模擬部材と、を備え、
前記タンク内面模擬部材は、前記模擬鉄心に取り付けられた交換用巻線と前記タンク内面模擬部材との間の絶縁構造が、前記現地鉄心に取り付けられた交換用巻線と前記変圧器を収容するタンクである現地タンクとの間の絶縁構造と等価になるように前記現地タンクの内面を模擬することを特徴とする請求項1〜4のいずれかに記載の検証試験装置。
A temporary tank that houses the mock iron core and the replacement winding attached to the mock iron core;
A tank inner surface simulation member that is installed around the simulated iron core and constitutes the simulated tank together with the temporary tank;
In the tank inner surface simulation member, the insulating structure between the replacement winding attached to the simulated iron core and the tank inner surface simulation member accommodates the replacement winding attached to the local iron core and the transformer. The verification test apparatus according to claim 1, wherein an inner surface of the local tank is simulated so as to be equivalent to an insulating structure between the local tank and the tank.
前記現地タンクに収容された場合と同様のルートで引き回された前記交換用巻線のリード線の周りに設けられた引き回しルート模擬部材をさらに備え、
前記引き回しルート模擬部材は、前記模擬タンク内に収容された交換用巻線のリード線と前記引き回しルート模擬部材との間の絶縁構造が、前記現地タンク内に収容された交換用巻線のリード線と前記現地タンクとの間の絶縁構造と等価になるように前記現地タンクのリード線周囲絶縁構造を模擬することを特徴とする請求項5に記載の検証試験装置。
A routing route simulation member provided around a lead wire of the replacement winding routed by the same route as that housed in the local tank;
The routing route simulating member has an insulating structure between the lead wire of the replacement winding housed in the simulation tank and the routing route simulating member, and the lead of the replacement winding housed in the local tank. 6. The verification test apparatus according to claim 5, wherein the insulation structure around the lead wire of the local tank is simulated so as to be equivalent to an insulation structure between a wire and the local tank.
前記現地に据え付けられた変圧器が、所定の間隔で配列された3つの前記現地鉄心を有する三相変圧器である場合、各々が前記模擬鉄心と同じ構成を有し且つ前記所定の間隔で配列された第1〜第3の模擬鉄心が前記仮タンク内に収容され、前記第1〜第3の模擬鉄心には前記交換用巻線がそれぞれ取り付けられ、前記タンク内面模擬部材は、前記第1〜第3の模擬鉄心の各々について、前記交換用巻線と前記模擬タンクとの間の絶縁構造が前記交換用巻線と前記現地タンクとの間の絶縁構造と等価になるように前記現地タンクの内面を模擬することを特徴とする請求項5または6に記載の検証試験装置。   When the transformer installed at the site is a three-phase transformer having three local cores arranged at predetermined intervals, each has the same configuration as the simulated iron core and arranged at the predetermined intervals The first to third simulated iron cores are accommodated in the temporary tank, the replacement windings are respectively attached to the first to third simulated iron cores, and the tank inner surface simulation member is the first tank For each of the third simulated iron cores, the local tank is configured such that the insulation structure between the replacement winding and the simulated tank is equivalent to the insulation structure between the replacement winding and the local tank. The verification test apparatus according to claim 5, wherein the verification test apparatus simulates the inner surface of the test apparatus. 前記現地に据え付けられた変圧器を冷却する現地冷却装置を模擬する模擬冷却装置をさらに備え、
前記模擬冷却装置は、
前記交換用巻線を冷却する冷却媒体が流通する冷媒流路が内部に設けられ、複数のフィンを有するフィン部、および、前記フィン部に向けて空気を送風する冷却ファンを有する冷却器と、
前記冷却器により冷却された冷却媒体を前記交換用巻線に送出するポンプと、
前記冷却ファンの回転数を制御する第1の制御部と、
前記ポンプの送出量を制御する第2の制御部と、を有し、
前記第1の制御部は、前記冷却器の冷却量が前記現地冷却装置の冷却器の冷却量と等しくなるように前記冷却ファンの回転数を制御し、前記第2の制御部は、前記ポンプの送出量が前記現地冷却装置のポンプの送出量と等しくなるように前記ポンプの送出量を制御することを特徴とする請求項1〜7のいずれかに検証試験装置。
A simulation cooling device for simulating a field cooling device for cooling the transformer installed on the site;
The simulated cooling device is
A refrigerant flow path through which a cooling medium for cooling the replacement winding flows, a fin portion having a plurality of fins, and a cooler having a cooling fan for blowing air toward the fin portions;
A pump for delivering a cooling medium cooled by the cooler to the replacement winding;
A first control unit for controlling the number of rotations of the cooling fan;
A second control unit for controlling the delivery amount of the pump,
The first control unit controls the number of rotations of the cooling fan so that the cooling amount of the cooler becomes equal to the cooling amount of the cooler of the on-site cooling device, and the second control unit includes the pump The verification test apparatus according to claim 1, wherein the pump delivery amount is controlled such that the delivery amount of the pump is equal to a delivery amount of the pump of the local cooling device.
前記第1の制御部は、前記模擬冷却装置の冷却ファンの回転数と、前記模擬冷却装置の冷却器の冷却量との関係に基づいて、前記冷却ファンの回転数を制御することを特徴とする請求項8に記載の検証試験装置。   The first control unit controls the number of rotations of the cooling fan based on the relationship between the number of rotations of the cooling fan of the simulated cooling device and the cooling amount of the cooler of the simulated cooling device. The verification test apparatus according to claim 8. 前記模擬冷却装置の前記冷却器は、前記現地冷却装置の冷却器の冷却量に応じた台数の冷却ファンを有することを特徴とする請求項8または9に記載の検証試験装置。   10. The verification test apparatus according to claim 8, wherein the cooler of the simulated cooling apparatus includes a number of cooling fans corresponding to a cooling amount of the cooler of the on-site cooling apparatus. 請求項1〜10のいずれかに記載の検証試験装置を用いて交換用巻線の絶縁試験を行う検証試験方法であって、
前記模擬鉄心に取り付けられた交換用巻線に所定の電圧を印加し、前記交換用巻線と、前記模擬鉄心もしくは前記模擬タンクとの間で発生する放電を測定する検証試験方法。
A verification test method for performing an insulation test of a replacement winding using the verification test apparatus according to claim 1,
A verification test method in which a predetermined voltage is applied to a replacement winding attached to the simulated iron core to measure a discharge generated between the replacement winding and the simulated iron core or the simulated tank.
請求項1〜10のいずれかに記載の検証試験装置を用いて交換用巻線の温度上昇試験を行う検証試験方法であって、
前記模擬鉄心に取り付けられた交換用巻線に所定の電圧を印加し、前記交換用巻線の温度を測定する検証試験方法。
A verification test method for performing a temperature rise test of a replacement winding using the verification test apparatus according to claim 1,
A verification test method in which a predetermined voltage is applied to a replacement winding attached to the simulated iron core, and the temperature of the replacement winding is measured.
JP2014191677A 2014-09-19 2014-09-19 Verification test device and verification test method Pending JP2016063151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014191677A JP2016063151A (en) 2014-09-19 2014-09-19 Verification test device and verification test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191677A JP2016063151A (en) 2014-09-19 2014-09-19 Verification test device and verification test method

Publications (1)

Publication Number Publication Date
JP2016063151A true JP2016063151A (en) 2016-04-25

Family

ID=55798149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191677A Pending JP2016063151A (en) 2014-09-19 2014-09-19 Verification test device and verification test method

Country Status (1)

Country Link
JP (1) JP2016063151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165406A (en) * 2013-02-27 2014-09-08 Aichi Electric Co Ltd Quality check test method of transformer winding
KR102160142B1 (en) * 2019-03-26 2020-09-25 엘에스일렉트릭(주) test device for insulation characteristic for transformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165406A (en) * 2013-02-27 2014-09-08 Aichi Electric Co Ltd Quality check test method of transformer winding
KR102160142B1 (en) * 2019-03-26 2020-09-25 엘에스일렉트릭(주) test device for insulation characteristic for transformer
WO2020196994A1 (en) * 2019-03-26 2020-10-01 엘에스일렉트릭 주식회사 Device for testing insulation properties of transformer
CN113574399A (en) * 2019-03-26 2021-10-29 Ls电气株式会社 Transformer insulation characteristic testing device
JP2022522188A (en) * 2019-03-26 2022-04-14 エルエス、エレクトリック、カンパニー、リミテッド Transformer insulation characteristic test equipment
JP7222111B2 (en) 2019-03-26 2023-02-14 エルエス、エレクトリック、カンパニー、リミテッド Transformer insulation characteristic test equipment
US11913984B2 (en) 2019-03-26 2024-02-27 Ls Electric Co., Ltd. Device for testing insulation properties of transformer

Similar Documents

Publication Publication Date Title
US9818525B2 (en) Cooling device of power transformer
JP2015535657A (en) Apparatus and method for thermal management of magnetic apparatus
JP2016154160A (en) Stationary induction electric appliance
EP2502242A1 (en) Electrical transformer with diaphragm and method of cooling same
JP2016063151A (en) Verification test device and verification test method
JP2008108802A (en) Gas insulated transformer
JP5854550B2 (en) Stationary induction equipment, metal tube induction heating device, and involute iron core cooling structure
KR101290682B1 (en) Transformer having cooling device
US9466414B2 (en) Vibration stabilizer for enclosure cooling fins
JP2021034688A (en) Stationary induction apparatus
KR101679340B1 (en) Oil immersed transformer
JP2020141013A (en) Winding device
US6399876B1 (en) Transformer cooling method and apparatus thereof
JP6796023B2 (en) Heat radiator for rest guidance equipment and rest guidance equipment
JP2019033176A (en) Mold type stationary induction apparatus
JP2012186936A (en) Linear motor
CN110326195B (en) Cooling system and cooling method
KR20110076536A (en) Testing device of oil filled transformer
US10102958B2 (en) Methods of manufacture of inductors having enhanced cooling and use thereof
RU2770911C1 (en) Induction fluid heater
KR20170086733A (en) Mold transformer
EP3255644B1 (en) Cooling arrangement
JP5717426B2 (en) Static induction machine
KR20210045448A (en) Load resistor
JP2011258795A (en) Transformer