JP2012186936A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2012186936A
JP2012186936A JP2011048875A JP2011048875A JP2012186936A JP 2012186936 A JP2012186936 A JP 2012186936A JP 2011048875 A JP2011048875 A JP 2011048875A JP 2011048875 A JP2011048875 A JP 2011048875A JP 2012186936 A JP2012186936 A JP 2012186936A
Authority
JP
Japan
Prior art keywords
pipe
linear motor
stator
permanent magnet
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011048875A
Other languages
Japanese (ja)
Other versions
JP5832763B2 (en
Inventor
Nobuhiro Kaneko
宜弘 金子
Yasuhiro Yamaguchi
泰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GMC HILSTON KK
Original Assignee
GMC HILSTON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GMC HILSTON KK filed Critical GMC HILSTON KK
Priority to JP2011048875A priority Critical patent/JP5832763B2/en
Publication of JP2012186936A publication Critical patent/JP2012186936A/en
Application granted granted Critical
Publication of JP5832763B2 publication Critical patent/JP5832763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a linear motor that can cool both a mover and a stator without using cooling means on a mover side.SOLUTION: The linear motor includes: a stator 10 comprising a series connection of a plurality of permanent magnets 11, and a mover 20 having cylindrical coils 21U, 21V, 21W combined around the stator for sliding motion along the stator. The plurality of permanent magnets 11 are housed in a pipe 16 having an inside diameter larger than an outside diameter of the permanent magnets and having an outside diameter smaller than an inside diameter of the coils. Refrigerant supply means can be connected to at least one end of the pipe 16 to introduce a refrigerant into a space between an outer circumference of the permanent magnets 11 and an inner circumference of the pipe 16, and the refrigerant can be jetted out of the pipe 16, that is, onto an inner surface of the coils being slid, via a plurality of holes 16a formed in predetermined positions in the pipe 16.

Description

本発明は、コイルと永久磁石で構成されるコアレスタイプのリニアモーターに関する。   The present invention relates to a coreless type linear motor composed of a coil and a permanent magnet.

複数の円筒状の永久磁石から発生される磁界と、円筒状のコイルに流される電流との作用により推力を得るコアレス型の円筒型リニアモーターが知られている(特許文献1)。このリニアモーターは「シャフトモーター」と呼ばれることもある。   A coreless cylindrical linear motor that obtains thrust by the action of a magnetic field generated from a plurality of cylindrical permanent magnets and an electric current that flows through a cylindrical coil is known (Patent Document 1). This linear motor is sometimes called a “shaft motor”.

この種のリニアモーターは、図5に示すように、中心軸方向に着磁した複数の円筒状の永久磁石51を繋ぎ合わせて棒状に構成し、その周囲に微小ギャップをおいて円筒状のコイル52をスライド可能に組み合わせて成る。永久磁石51は、N極、S極が交互になるように同じ磁極同士を対向させて組み合わせされ、固定子となる。コイル52は、ここでは三相リニアモーターを構成するために、少なくとも3個のコイルからなり、それぞれのコイルには電気的に120°の位相差を持つ電流が流され、可動子となる。すなわち、コイル52への通電を切り替えることで可動子を固定子に沿って直線移動させる。   As shown in FIG. 5, this type of linear motor has a cylindrical shape in which a plurality of cylindrical permanent magnets 51 magnetized in the central axis direction are connected to each other, and a minute gap is formed around the cylindrical permanent magnet 51. 52 is slidably combined. The permanent magnet 51 is combined with the same magnetic poles facing each other so that N poles and S poles alternate, and becomes a stator. The coil 52 is composed of at least three coils in order to form a three-phase linear motor here, and a current having a phase difference of 120 ° is flowed through each of the coils to form a mover. That is, by switching energization to the coil 52, the mover is linearly moved along the stator.

特開平10−313566号公報Japanese Patent Laid-Open No. 10-313566 特開2003−209962号公報Japanese Patent Laid-Open No. 2003-209962

ところで、この種のリニアモーターにおいては、コイル52への通電による発熱作用があり、この熱は永久磁石51に対して減磁作用を与えるので、コイル52からの放熱を抑制する手段が必要とされる。   By the way, in this type of linear motor, there is a heat generating action by energizing the coil 52, and this heat gives a demagnetizing action to the permanent magnet 51. Therefore, means for suppressing heat radiation from the coil 52 is required. The

リニアモーターにおいて、可動子側のコイルからの放熱を抑制するために、可動子側を冷却する例は、特許文献2に示されている。   An example of cooling the mover side in order to suppress heat radiation from the coil on the mover side in the linear motor is shown in Patent Document 2.

しかしながら、特許文献2のリニアモーターは、可動子側を冷却するために、可動子に冷却媒体の通路を設け、可動子とは別の冷却媒体供給(あるいは循環)手段に接続して冷却媒体を供給(あるいは循環)する構成となるため、可動子側のサイズ、重量が大きくなってしまうという問題や、その分だけ推力が小さくなるという問題がある。   However, in the linear motor of Patent Document 2, a cooling medium passage is provided in the movable element to cool the movable element side, and the cooling medium is connected to a cooling medium supply (or circulation) means different from the movable element. Since it is configured to supply (or circulate), there is a problem that the size and weight on the side of the mover increase, and a problem that the thrust is reduced correspondingly.

なお、特許文献2のリニアモーターでは、固定子側の永久磁石を中空の円筒状にしてこの中空部に冷却媒体を通すことで固定子側を冷却することや、更に永久磁石をパイプに収容してパイプと永久磁石の外周との間の隙間にも冷却媒体を通すことで固定子側を冷却することも行なわれている。   In the linear motor of Patent Document 2, the stator side permanent magnet is formed in a hollow cylindrical shape to cool the stator side by passing a cooling medium through the hollow portion, and the permanent magnet is accommodated in a pipe. The stator side is also cooled by passing a cooling medium through a gap between the pipe and the outer periphery of the permanent magnet.

しかし、特許文献2のリニアモーターは、可動子側の冷却のために可動子側専用の冷却回路が不可欠であり、可動子側に加えて固定子側も冷却しようとする場合には固定子側専用の冷却回路を必要とする。   However, in the linear motor of Patent Document 2, a cooling circuit dedicated to the mover side is indispensable for cooling the mover side. When the stator side is to be cooled in addition to the mover side, the stator side is required. Requires a dedicated cooling circuit.

そこで、本発明は、可動子側に冷却手段を設けることなく、可動子、固定子の双方を冷却することのできるリニアモーターを提供しようとするものである。   Therefore, the present invention intends to provide a linear motor capable of cooling both the mover and the stator without providing a cooling means on the mover side.

本発明の態様によれば、複数の永久磁石を直列に繋ぎ合わせてなる固定子と、この固定子の外周側に該固定子に沿ってスライド可能に組み合わされた筒状のコイルを持つ可動子とを備えたリニアモーターにおいて、前記複数の永久磁石を、その外径より大きな内径を有するとともに前記コイルの内径より小さな外径を有するパイプに収容し、前記パイプの少なくとも一端側に冷媒供給手段を接続して前記永久磁石の外周と前記パイプの内周との間の空間に冷媒を導入可能にし、しかも前記パイプの所定箇所に設けられた穴を通して前記冷媒を前記パイプ外に噴出させるようにしたことを特徴とするリニアモーターが提供される。   According to the aspect of the present invention, a mover having a stator in which a plurality of permanent magnets are connected in series and a cylindrical coil that is slidably combined along the stator on the outer peripheral side of the stator. The plurality of permanent magnets are housed in a pipe having an inner diameter larger than the outer diameter and smaller than the inner diameter of the coil, and a refrigerant supply means is provided on at least one end side of the pipe. It is connected so that the refrigerant can be introduced into a space between the outer periphery of the permanent magnet and the inner periphery of the pipe, and the refrigerant is jetted out of the pipe through a hole provided in a predetermined portion of the pipe. A linear motor is provided.

上記態様によるリニアモーターにおいては、前記複数の永久磁石は、それらの両側から2つの保持部により挟まれるようにして保持され、前記パイプは前記2つの保持部の間に架け渡され、少なくとも一方の前記保持部に、前記冷媒供給手段が接続されるとともに前記永久磁石の外周と前記パイプの内周との間の空間に冷媒を導入するための導入口が1個以上設けられていることが好ましい。   In the linear motor according to the above aspect, the plurality of permanent magnets are held so as to be sandwiched by two holding portions from both sides thereof, and the pipe is bridged between the two holding portions, and at least one of the permanent magnets is held. It is preferable that the holding unit is connected to the refrigerant supply means and is provided with one or more inlets for introducing the refrigerant into a space between the outer periphery of the permanent magnet and the inner periphery of the pipe. .

上記態様によるリニアモーターにおいてはまた、両方の前記保持部に前記1個以上の導入口が設けられ、前記穴は、前記パイプの中心軸方向に間隔をおいた複数箇所であって、かつ前記パイプの周方向に間隔をおいて複数個設けられ、前記パイプの中心軸方向に間隔をおいた複数箇所は、前記可動子のスライドの多い領域に設定されることが好ましい。   In the linear motor according to the aspect described above, the one or more introduction ports are provided in both the holding portions, and the holes are a plurality of locations spaced in the central axis direction of the pipe, and the pipe It is preferable that a plurality of portions spaced apart in the circumferential direction of the pipe and spaced apart in the central axis direction of the pipe are set in a region where the slide of the mover is large.

上記態様によるリニアモーターにおいては更に、前記導入口を持つ前記保持部と該保持部に最も近い前記永久磁石の間に、当該保持部との対向面を錐形状にしたスペーサを介在させることが望ましい。   In the linear motor according to the above aspect, it is preferable that a spacer having a conical surface facing the holding portion is interposed between the holding portion having the introduction port and the permanent magnet closest to the holding portion. .

上記態様によるリニアモーターにおいては更に、前記1個以上の導入口の総断面積を前記永久磁石の外周と前記パイプの内周との間の空間の断面積より大きくし、かつ前記穴の総面積を前記永久磁石の外周と前記パイプの内周との間の空間の断面積より小さくすることが望ましい。   In the linear motor according to the above aspect, the total cross-sectional area of the one or more inlets is larger than the cross-sectional area of the space between the outer periphery of the permanent magnet and the inner periphery of the pipe, and the total area of the holes Is preferably smaller than the cross-sectional area of the space between the outer periphery of the permanent magnet and the inner periphery of the pipe.

本発明によれば、固定子内部、つまり永久磁石の過熱を防ぐことができるだけでなく、可動子を冷却することができるので、温度に起因するリニアモーターの特性変化を防ぐことができる。   According to the present invention, not only can the overheating of the stator, that is, the permanent magnet be prevented, but also the mover can be cooled, so that the characteristic change of the linear motor due to temperature can be prevented.

本発明の実施形態によるリニアモーターにおける、固定子と可動子の断面構造を示した図である。It is the figure which showed the cross-section of the stator and the needle | mover in the linear motor by embodiment of this invention. 図1に示された固定子の外観を示した斜視図である。It is the perspective view which showed the external appearance of the stator shown by FIG. 本発明の実施形態によるリニアモーターにおける、パイプ表面、U相コイル表面、コイルケーシングの温度計測結果を室温と共に示した図である。It is the figure which showed the temperature measurement result of the pipe surface in the linear motor by embodiment of this invention, the U-phase coil surface, and the coil casing with room temperature. 本発明の実施形態によるリニアモーターにおける、U相コイル表面の温度とU相コイルの通電電流(実効値)との関係を、冷却有りと冷却無しの場合について示した図である。It is the figure which showed the relationship between the temperature of the U-phase coil surface and the energization current (effective value) of the U-phase coil in the linear motor according to the embodiment of the present invention with and without cooling. リニアモーターの一般的な例を説明するための図である。It is a figure for demonstrating the general example of a linear motor.

本発明は以下の着想に基づいてなされたものである。   The present invention has been made based on the following idea.

筒状の永久磁石を複数個繋ぎ合わせたうえでパイプに収容して棒状の固定子を構成し、その周囲に筒状のコイルによる可動子をスライド可能に組み合わせたリニアモーターにおいては、コイルに通電し駆動した場合にジュール熱が発生する。この熱はコイルのケーシングを通してコイルの外側に放出されるか、コイルの内側の外気に伝わる。コイルの内側に伝わった熱は永久磁石を収容、保護しているパイプに伝わり、内部の永久磁石にまで達して永久磁石の温度を上昇させる。   In a linear motor in which a rod-shaped stator is constructed by connecting a plurality of cylindrical permanent magnets together and then housed in a pipe, and a movable coil is slidable around it, the coil is energized. Joule heat is generated when driven. This heat is released to the outside of the coil through the coil casing or is transferred to the outside air inside the coil. The heat transferred to the inside of the coil is transferred to the pipe that contains and protects the permanent magnet, reaches the permanent magnet inside, and raises the temperature of the permanent magnet.

この現象は、特に、可動子の駆動範囲(距離)が可動子全長より短い場合に顕著となる。これは、棒状の固定子を構成している複数の永久磁石の中には常にコイルからの発熱にさらされるものが出てくるためである。すなわち、永久磁石の外周にコイルが位置しているため、この箇所の永久磁石は熱の排出が滞り過熱されてしまう。永久磁石の温度が上昇すると磁気特性が変化するという問題が発生する。そして、磁気特性が変化すると、リニアモーターの特性が変化し精密な制御が出来なくなる。   This phenomenon is particularly remarkable when the drive range (distance) of the mover is shorter than the entire length of the mover. This is because some permanent magnets constituting the rod-shaped stator are always exposed to heat generated from the coil. That is, since the coil is located on the outer periphery of the permanent magnet, the permanent magnet at this location is overheated due to the heat exhaustion. When the temperature of the permanent magnet rises, there arises a problem that the magnetic characteristics change. When the magnetic characteristics change, the characteristics of the linear motor change and precise control becomes impossible.

本発明はこのような問題を解決しようとするものであり、永久磁石とその外側に配置されたパイプの間に流体を流すことで永久磁石を冷却する。このために、固定子の端部に流体の供給源を接続できるような構成とする。加えて、パイプの所定箇所に貫通穴を設けることにより、永久磁石をその外周側から直接冷却するとともに、パイプの貫通穴から流体を噴出させることにより、可動子、つまりコイルをその内側から冷却する。これにより、可動子側に冷却のための余分な部品を搭載すること無く固定子側からコイルを冷却することが可能になる。なお、流体は圧縮空気が好ましいが、液体でも良い。   The present invention is intended to solve such a problem, and cools the permanent magnet by flowing a fluid between the permanent magnet and a pipe disposed outside the permanent magnet. For this reason, it is set as the structure which can connect the supply source of the fluid to the edge part of a stator. In addition, by providing a through-hole at a predetermined location of the pipe, the permanent magnet is directly cooled from the outer peripheral side, and by ejecting fluid from the through-hole of the pipe, the mover, that is, the coil is cooled from the inside. . As a result, the coil can be cooled from the stator side without mounting extra parts for cooling on the mover side. The fluid is preferably compressed air, but may be liquid.

以下に、図1〜図4を参照して、本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は、本発明の実施形態による三相リニアモーターにおける固定子と可動子の断面構造を示し、図1(a)は固定子の中心軸に沿った断面図、図1(b)は固定子の中心軸に垂直な断面図、図1(c)は固定子と可動子の組み合わせを図1(a)の左側から見た図である。以下では、中心軸という場合、特にことわりがない場合、固定子の中心軸を意味する。また、以下では、固定子が円柱状で可動子が円筒状である場合について説明するが、これらは固定子の断面形状と可動子の開口面とが対応していれば良く、固定子は円柱状のほか、円筒状、角筒状、角棒状のいずれでも良く、可動子は円筒状のほか、角筒状でも良い。   FIG. 1 shows a cross-sectional structure of a stator and a mover in a three-phase linear motor according to an embodiment of the present invention. FIG. 1 (a) is a cross-sectional view along the central axis of the stator, and FIG. FIG. 1C is a cross-sectional view perpendicular to the center axis of the child, and FIG. 1C is a view of the combination of the stator and the mover as viewed from the left side of FIG. In the following, the central axis means the central axis of the stator unless otherwise specified. In the following, the case where the stator is columnar and the mover is cylindrical will be described. However, it is only necessary that the cross-sectional shape of the stator corresponds to the opening surface of the mover. In addition to the columnar shape, any of a cylindrical shape, a rectangular tube shape, and a rectangular bar shape may be used, and the mover may be a cylindrical shape or a rectangular tube shape.

固定子10は、複数のリング状あるいは円筒状の永久磁石11を複数個直列に繋ぎ合わせてなる。特に、永久磁石11はその中心軸方向に着磁され、N極、S極が交互になるように同じ磁極同士を対向させて組み合わされている。この組み合わせ手法の一例を説明すると以下の通りである。   The stator 10 is formed by connecting a plurality of ring-shaped or cylindrical permanent magnets 11 in series. In particular, the permanent magnet 11 is magnetized in the direction of its central axis, and is combined with the same magnetic poles facing each other so that N poles and S poles are alternated. An example of this combination technique is as follows.

全長にわたって雄ネジを切ったセンター軸12の一端側を、保持部13aの一端側中心に設けた雌ネジ13a−1にねじ込む。次に、センター軸12にスペーサ14aを装着する。スペーサ14aは、後述する理由により、保持部13aとの対向面が円錐の先端部を切断した錐形にされている。   One end side of the center shaft 12 having a male screw cut over the entire length is screwed into a female screw 13a-1 provided at the center of one end side of the holding portion 13a. Next, the spacer 14 a is attached to the center shaft 12. The spacer 14a has a conical shape in which the surface facing the holding portion 13a is cut from the tip of a cone for the reason described later.

続いて、複数の円筒状の永久磁石11を、N極、S極が交互になるように同じ磁極同士を対向させてセンター軸12に装着してゆく。その際、隣り合う永久磁石11の間には反発力が作用するので、図示しない治具により永久磁石11を中心軸方向に関して押さえながら装着してゆく。あるいはまた、永久磁石11の内径側にセンター軸12の雄ネジに螺合する雌ネジが形成されていても良い。永久磁石11の個数は、可動子20のストロークにより決められる。   Subsequently, the plurality of cylindrical permanent magnets 11 are mounted on the center shaft 12 with the same magnetic poles facing each other so that the N poles and the S poles are alternated. At that time, since a repulsive force acts between the adjacent permanent magnets 11, the permanent magnet 11 is mounted while being pressed in the direction of the central axis by a jig (not shown). Alternatively, a female screw that is screwed into the male screw of the center shaft 12 may be formed on the inner diameter side of the permanent magnet 11. The number of permanent magnets 11 is determined by the stroke of the mover 20.

所定数の永久磁石11を装着したら、センター軸12にナット15−1を装着し、所定数の永久磁石11相互の締め付けを行なう。この締め付けは、後で緩みが生じないように、ダブルナット15−1、15−2で行なわれるのが望ましい。   When the predetermined number of permanent magnets 11 are mounted, the nut 15-1 is mounted on the center shaft 12, and the predetermined number of permanent magnets 11 are tightened. This tightening is preferably performed with the double nuts 15-1 and 15-2 so as not to be loosened later.

次に、センター軸12にスペーサ14bを装着した後、パイプ16を装着し、センター軸12の他端側を保持部13bの一端側中心に設けた雌ネジ13b−1にねじ込む。スペーサ14bは、スペーサ14aと同様、保持部13bとの対向面が円錐の先端部を切断した錐形状にされているほか、反対側にはダブルナット15−1、15−2の収納部が形成されている。また、パイプ16を保持部13aと保持部13bとの間に架け渡すために、保持部13a、13bの外周部の一部がパイプ16に入り込むようにされている。この場合、パイプ16と保持部13a、13の継ぎ目は、気密を保つためにO(オー)リングや粘性流体状のシール材、あるいはロウ付け等の方法により密閉するのが好ましい。   Next, after the spacer 14b is attached to the center shaft 12, the pipe 16 is attached, and the other end side of the center shaft 12 is screwed into a female screw 13b-1 provided at the center of one end side of the holding portion 13b. Like the spacer 14a, the spacer 14b has a conical shape in which the surface facing the holding portion 13b is cut at the tip of the cone, and a storage portion for the double nuts 15-1 and 15-2 is formed on the opposite side. Has been. Further, in order to bridge the pipe 16 between the holding part 13 a and the holding part 13 b, a part of the outer peripheral part of the holding parts 13 a and 13 b enters the pipe 16. In this case, the joint between the pipe 16 and the holding portions 13a and 13 is preferably sealed by a method such as an O (O) ring, a viscous fluid-like sealing material, or brazing in order to maintain airtightness.

以上のように構成された固定子10に、3つのリング状あるいは円筒状のコイル21U、21V、21Wをコイルケーシング22に収容してなる円筒状の可動子20が、固定子10に沿ってスライド可能に組み合わされる。コイル21U、21V、21Wはそれぞれボビンに巻線を巻回してなり、巻線はスターあるいはデルタ結線されて、図示しない三相電源に接続されるとともに図示しない制御装置に接続される。三相電源との接続形態や制御装置による制御形態は本発明の要旨ではないので、詳しい説明は省略する。   A cylindrical mover 20 in which three ring-shaped or cylindrical coils 21U, 21V, and 21W are accommodated in a coil casing 22 slides along the stator 10 on the stator 10 configured as described above. Can be combined. Each of the coils 21U, 21V, and 21W is formed by winding a winding around a bobbin, and the winding is star or delta-connected and connected to a three-phase power source (not shown) and a control device (not shown). Since the connection form with the three-phase power supply and the control form by the control device are not the gist of the present invention, the detailed description is omitted.

保持部13a、13bにはそれぞれ、等角度間隔をおいて中心軸方向に貫通する複数、ここでは90度の角度間隔をおいて3個の導入口13a−2、13b−2が設けられている。これらの導入口にはそれぞれ、冷媒供給源としての送風機30から冷媒として圧縮空気を供給するための配管31が継ぎ手32を介して接続されている。なお、保持部13bには、図1(c)に示すように、中心軸に直角な方向に、雌ネジ13b−1にまで至るネジ穴13b−3を設けて雄ネジをねじ込むことによりセンター軸12の緩みを防止するようにしている。これは、保持部13a側も同様である。   Each of the holding portions 13a and 13b is provided with a plurality of through holes 13a-2 and 13b-2 that penetrate in the central axis direction at equal angular intervals, here, at an angular interval of 90 degrees. . A pipe 31 for supplying compressed air as a refrigerant from a blower 30 as a refrigerant supply source is connected to each of these inlets via a joint 32. As shown in FIG. 1C, the holding portion 13b is provided with a screw hole 13b-3 extending to the female screw 13b-1 in a direction perpendicular to the central axis, and the male screw is screwed into the center shaft. 12 is prevented from loosening. The same applies to the holding portion 13a side.

さて、パイプ16は、その内径が永久磁石11の外径より大きく、外径がコイル21U、21V、21Wの内径より小さいので、永久磁石11の外周とパイプ16の内周との間にはギャップG1の環状空間が形成され、パイプ16の外周と可動子20の内周との間にはギャップG2の空間が形成される。   Now, since the pipe 16 has an inner diameter larger than the outer diameter of the permanent magnet 11 and an outer diameter smaller than the inner diameter of the coils 21U, 21V, and 21W, there is a gap between the outer periphery of the permanent magnet 11 and the inner periphery of the pipe 16. An annular space G1 is formed, and a gap G2 space is formed between the outer periphery of the pipe 16 and the inner periphery of the mover 20.

また、本実施形態では、パイプ16には、中心軸方向に間隔をおいた2箇所であって、周方向に間隔をおいた8箇所に、合計16個の貫通穴16aが設けられている。   In the present embodiment, the pipe 16 is provided with a total of 16 through holes 16a at two places spaced in the central axis direction and at eight places spaced in the circumferential direction.

以上のような構造により、固定子10の両側の保持部13a、13bにおける導入口13a−2、13b−2から導入された圧縮空気はそれぞれ、スペーサ14a、14bの錐形状の外面側のスペースを通して永久磁石11とパイプ16の間の環状空間に導入されて中央部側に流れ、貫通穴16aを通してパイプ16の外に噴出する。この時、導入口とギャップG1の環状空間との間に、錐形状のスペーサによるスペースがあることにより、3個の導入口から導入された圧縮空気はギャップG1の環状空間に均一に流れ易くなる。これが、スペーサ14a、14bの保持部13a、13bとの対向面を錐形状にしている理由である。   With the above-described structure, the compressed air introduced from the inlets 13a-2 and 13b-2 in the holding portions 13a and 13b on both sides of the stator 10 passes through the space on the outer surface side of the conical shape of the spacers 14a and 14b, respectively. It is introduced into the annular space between the permanent magnet 11 and the pipe 16 and flows toward the center, and is ejected out of the pipe 16 through the through hole 16a. At this time, since there is a space formed by the conical spacer between the inlet and the annular space of the gap G1, the compressed air introduced from the three inlets easily flows uniformly into the annular space of the gap G1. . This is the reason why the surfaces of the spacers 14a and 14b facing the holding portions 13a and 13b are conical.

ギャップG1の環状空間を通る圧縮空気は固定子10、つまり永久磁石11をその外周側から冷却し、貫通穴16aから噴出した圧縮空気は可動子20、つまりコイル21U、21V、21Wをそれらの内周側から冷却する。特に、貫通穴16aを設ける領域を、可動子20のストローク範囲の中でも、特に往復移動において重なりを生じ易い領域、つまりコイルからの発熱が滞り易い領域、例えば中心軸方向に関して中央部領域とすることで、可動子20の冷却効率を向上させることができる。   The compressed air passing through the annular space of the gap G1 cools the stator 10, that is, the permanent magnet 11, from the outer peripheral side, and the compressed air ejected from the through hole 16a causes the mover 20, that is, the coils 21U, 21V, and 21W to be included therein. Cool from the circumferential side. In particular, the region in which the through hole 16a is provided is a region that tends to overlap in the stroke range of the mover 20, that is, a region where heat generation from the coil tends to be stagnant, for example, a central region with respect to the central axis direction. Thus, the cooling efficiency of the mover 20 can be improved.

更に、各保持部における3つの導入口の総断面積を、永久磁石11の外周とパイプ16の内周との間のギャップG1の環状空間の断面積より大きくし、かつ貫通穴16aの総面積をギャップG1の環状空間の断面積より小さくすることで圧縮空気の流速、コイル内面への噴出速度を高くして可動子20の冷却効果を高めることができる。   Furthermore, the total cross-sectional area of the three inlets in each holding portion is made larger than the cross-sectional area of the annular space of the gap G1 between the outer periphery of the permanent magnet 11 and the inner periphery of the pipe 16, and the total area of the through hole 16a Is made smaller than the cross-sectional area of the annular space of the gap G1, the flow rate of the compressed air and the ejection speed to the coil inner surface can be increased, and the cooling effect of the mover 20 can be enhanced.

図3は、本実施形態によるリニアモーターにおける、パイプ16表面、U相コイル21U表面、コイルケーシング22の温度計測結果を室温と共に示した図である。   FIG. 3 is a view showing the temperature measurement results of the pipe 16 surface, the U-phase coil 21U surface, and the coil casing 22 together with the room temperature in the linear motor according to the present embodiment.

図3から明らかなように、固定子10に圧縮空気を導入すると、パイプ16表面、U相コイル21U表面、コイルケーシング22のいずれも、速やかに温度が低下し、冷却効果の高いことがわかる。   As can be seen from FIG. 3, when compressed air is introduced into the stator 10, the temperature of the pipe 16 surface, the U-phase coil 21U surface, and the coil casing 22 are all quickly reduced and the cooling effect is high.

図4は、本実施形態によるリニアモーターにおける、U相コイル21U表面の温度とU相コイル21Uの通電電流との関係を、冷却有りと冷却無しの場合について示した図である。   FIG. 4 is a diagram showing the relationship between the temperature of the surface of the U-phase coil 21U and the energization current of the U-phase coil 21U in the linear motor according to the present embodiment, with and without cooling.

図4からも、本実施形態の冷却構造による冷却効果の向上により、通電電流を冷却無しの場合に比べて増加させることができることがわかる。その結果、リニアモーターとしての推力アップを実現することができる。   FIG. 4 also shows that the energization current can be increased as compared to the case without cooling due to the improvement of the cooling effect by the cooling structure of the present embodiment. As a result, an increase in thrust as a linear motor can be realized.

以上、本発明を、好ましい実施形態を参照して説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、請求項に記載された本発明の精神や範囲内で当業者が理解し得る様々な変更をすることができる。   While the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the spirit and scope of the present invention described in the claims.

本発明によるリニアモーターは、精密機器の搬送部、例えば半導体製造装置の搬送系に適しているが、この限りではない。   The linear motor according to the present invention is suitable for a transport unit of precision equipment, for example, a transport system of a semiconductor manufacturing apparatus, but is not limited thereto.

10 固定子
11 永久磁石
12 センター軸
13a、13b 保持部
14a、14b スペーサ
16 パイプ
20 可動子
21U、21V、21W コイル
31 配管
32 継ぎ手
DESCRIPTION OF SYMBOLS 10 Stator 11 Permanent magnet 12 Center shaft 13a, 13b Holding | maintenance part 14a, 14b Spacer 16 Pipe 20 Movable element 21U, 21V, 21W Coil 31 Piping 32 Joint

Claims (5)

複数の永久磁石を直列に繋ぎ合わせてなる固定子と、この固定子の外周側に該固定子に沿ってスライド可能に組み合わされた筒状のコイルを持つ可動子とを備えたリニアモーターにおいて、
前記複数の永久磁石を、その外径より大きな内径を有するとともに前記コイルの内径より小さな外径を有するパイプに収容し、
前記パイプの少なくとも一端側に冷媒供給手段を接続して前記永久磁石の外周と前記パイプの内周との間の空間に冷媒を導入可能にし、しかも前記パイプの所定箇所に設けられた穴を通して前記冷媒を前記パイプ外に噴出させるようにしたことを特徴とするリニアモーター。
In a linear motor including a stator formed by connecting a plurality of permanent magnets in series, and a mover having a cylindrical coil that is slidably combined along the stator on the outer peripheral side of the stator,
Storing the plurality of permanent magnets in a pipe having an inner diameter larger than an outer diameter thereof and an outer diameter smaller than an inner diameter of the coil;
A refrigerant supply means is connected to at least one end of the pipe so that the refrigerant can be introduced into a space between the outer periphery of the permanent magnet and the inner periphery of the pipe, and the hole is provided through a hole provided at a predetermined position of the pipe. A linear motor characterized in that a refrigerant is jetted out of the pipe.
請求項1に記載のリニアモーターにおいて、前記複数の永久磁石は、それらの両側から2つの保持部により挟まれるようにして保持され、前記パイプは前記2つの保持部の間に架け渡され、少なくとも一方の前記保持部に、前記冷媒供給手段が接続されるとともに前記永久磁石の外周と前記パイプの内周との間の空間に冷媒を導入するための導入口が1個以上設けられていることを特徴とするリニアモーター。   The linear motor according to claim 1, wherein the plurality of permanent magnets are held so as to be sandwiched by two holding portions from both sides thereof, and the pipe is bridged between the two holding portions, and at least One of the holding portions is connected to the refrigerant supply means and is provided with one or more inlets for introducing the refrigerant into a space between the outer periphery of the permanent magnet and the inner periphery of the pipe. A linear motor characterized by 請求項2に記載のリニアモーターにおいて、両方の前記保持部に前記1個以上の導入口が設けられ、前記穴は、前記パイプの中心軸方向に間隔をおいた複数箇所であって、かつ前記パイプの周方向に間隔をおいて複数個設けられ、前記パイプの中心軸方向に間隔をおいた複数箇所は、前記可動子のスライドの多い領域に設定されることを特徴とするリニアモーター。   3. The linear motor according to claim 2, wherein the one or more introduction ports are provided in both of the holding portions, and the holes are a plurality of locations spaced in the central axis direction of the pipe, and A linear motor, wherein a plurality of pipes are provided at intervals in a circumferential direction of the pipe, and a plurality of places spaced in the central axis direction of the pipe are set in an area where the slide of the mover is large. 請求項2又は3に記載のリニアモーターにおいて、前記導入口を持つ前記保持部と該保持部に最も近い前記永久磁石の間に、当該保持部との対向面を錐形状にしたスペーサを介在させたことを特徴とするリニアモーター。   4. The linear motor according to claim 2, wherein a spacer having a conical surface facing the holding portion is interposed between the holding portion having the introduction port and the permanent magnet closest to the holding portion. A linear motor characterized by that. 請求項2〜4のいずれか1項に記載のリニアモーターにおいて、前記1個以上の導入口の総断面積を前記永久磁石の外周と前記パイプの内周との間の空間の断面積より大きくし、かつ前記穴の総面積を前記永久磁石の外周と前記パイプの内周との間の空間の断面積より小さくしたことを特徴とするリニアモーター。   5. The linear motor according to claim 2, wherein a total cross-sectional area of the one or more introduction ports is larger than a cross-sectional area of a space between an outer periphery of the permanent magnet and an inner periphery of the pipe. The total area of the holes is smaller than the cross-sectional area of the space between the outer periphery of the permanent magnet and the inner periphery of the pipe.
JP2011048875A 2011-03-07 2011-03-07 Linear motor Active JP5832763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048875A JP5832763B2 (en) 2011-03-07 2011-03-07 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048875A JP5832763B2 (en) 2011-03-07 2011-03-07 Linear motor

Publications (2)

Publication Number Publication Date
JP2012186936A true JP2012186936A (en) 2012-09-27
JP5832763B2 JP5832763B2 (en) 2015-12-16

Family

ID=47016491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048875A Active JP5832763B2 (en) 2011-03-07 2011-03-07 Linear motor

Country Status (1)

Country Link
JP (1) JP5832763B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464887B1 (en) 2013-07-26 2014-11-24 (주) 티피씨 메카트로닉스 Rotor for cylindrical linear motor and linear motor using the same
JP2016144286A (en) * 2015-01-30 2016-08-08 日本パルスモーター株式会社 Linear motor shaft and manufacturing method of same
CN113541436A (en) * 2021-07-20 2021-10-22 中国科学院电工研究所 Electromagnetic driving device and driving method suitable for object load

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209962A (en) * 2002-01-16 2003-07-25 Nikon Corp Linear motor and stage device
WO2009041185A1 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Yaskawa Denki Cylindrical linear motor, and its stator manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209962A (en) * 2002-01-16 2003-07-25 Nikon Corp Linear motor and stage device
WO2009041185A1 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Yaskawa Denki Cylindrical linear motor, and its stator manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464887B1 (en) 2013-07-26 2014-11-24 (주) 티피씨 메카트로닉스 Rotor for cylindrical linear motor and linear motor using the same
JP2016144286A (en) * 2015-01-30 2016-08-08 日本パルスモーター株式会社 Linear motor shaft and manufacturing method of same
CN113541436A (en) * 2021-07-20 2021-10-22 中国科学院电工研究所 Electromagnetic driving device and driving method suitable for object load
CN113541436B (en) * 2021-07-20 2022-10-21 中国科学院电工研究所 Electromagnetic driving device and driving method suitable for object load

Also Published As

Publication number Publication date
JP5832763B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6194409B2 (en) Permanent magnet linear actuator
JP2016515799A5 (en)
JP5602482B2 (en) Magnetic refrigeration equipment
JP5832763B2 (en) Linear motor
CN104682612A (en) Versatile cooling housing for an electrical motor
JP6270213B2 (en) Electric motor
JP2013542707A5 (en)
US20180261374A1 (en) Reactor, motor driver, power conditioner and machine
JPWO2009041185A1 (en) Cylindrical linear motor and its stator manufacturing method
US9397546B2 (en) Field rotor with cooling passages for superconducting electric machine
JP5575678B2 (en) Stage device and cooling unit
US8471426B2 (en) Electric machine with power taps
JP5816491B2 (en) Magnetic refrigeration equipment
TW201611479A (en) Linear motor
WO2017077813A1 (en) Axial-gap rotating electric machine
JP2018133491A (en) Reactor, motor drive device, power conditioner, and machine
JP2010220396A (en) Canned linear-motor armature and canned linear motor
JP7115185B2 (en) Moving coil type voice coil motor
KR101547580B1 (en) Apparatus for cooling motor
JP5447308B2 (en) Linear motor
JP2021044905A (en) Magnetic circuit unit, and movable coil type voice coil motor having magnetic circuit unit
JP2020167764A (en) Movable coil type voice coil motor
JP2016046930A (en) Superconducting coil support structure
KR20160032606A (en) Apparatus for coolong motor
JP2002247831A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151028

R150 Certificate of patent or registration of utility model

Ref document number: 5832763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250