JP2016061735A - Radioactive-ray irradiation range detector and radioactive-ray irradiation detection method - Google Patents

Radioactive-ray irradiation range detector and radioactive-ray irradiation detection method Download PDF

Info

Publication number
JP2016061735A
JP2016061735A JP2014191766A JP2014191766A JP2016061735A JP 2016061735 A JP2016061735 A JP 2016061735A JP 2014191766 A JP2014191766 A JP 2014191766A JP 2014191766 A JP2014191766 A JP 2014191766A JP 2016061735 A JP2016061735 A JP 2016061735A
Authority
JP
Japan
Prior art keywords
irradiation range
radiation
state
polymer gel
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014191766A
Other languages
Japanese (ja)
Inventor
登志仁 高岡
Toshihito Takaoko
登志仁 高岡
雄大 小山
Takehiro Koyama
雄大 小山
田口 光正
Mitsumasa Taguchi
光正 田口
章博 廣木
Akihiro Hiroki
章博 廣木
勝 小宅
Masaru Koyake
勝 小宅
祥夫 福島
Yoshio Fukushima
祥夫 福島
広樹 黒岩
Hiroki Kuroiwa
広樹 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBATA GOSEI KK
Japan Atomic Energy Agency
Gunma Prefecture
Original Assignee
SHIBATA GOSEI KK
Japan Atomic Energy Agency
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBATA GOSEI KK, Japan Atomic Energy Agency, Gunma Prefecture filed Critical SHIBATA GOSEI KK
Priority to JP2014191766A priority Critical patent/JP2016061735A/en
Publication of JP2016061735A publication Critical patent/JP2016061735A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a dose distribution check before implementing radiotherapy to be simply carried out.SOLUTION: A plurally of radioactive-ray irradiation range detectors 1 are prepared that has a polymer gel sheet internally arranged, is formed of transparent resin, and is composed of a transparent holding member having a stacking mechanism part for arranging the radioactive-ray irradiation range detector with the radioactive-ray irradiation range detectors vertically stacked. Then, in a state where a plurality of radioactive-ray irradiation range detectors 1 is stacked by the stacking mechanism part, radioactive-ray is irradiated. In this case, the polymer gel sheet gets cloudy in responce to an irradiation state of the radioactive-ray. The radioactive-ray irradiation range detector 1 getting cloudy is checked by a visual observation, or the plurality of radioactive-ray irradiation range detectors 1 are read by a scanner with the radioactive-ray irradiation range detectors separated one by one, and from the cloudy state of each of the read polymer gel sheets, a detection of the radioactive-ray irradiation state is carried out.SELECTED DRAWING: Figure 6

Description

本発明は、放射線治療計画の確認などに使用される放射線照射範囲検出器、及びその放射線照射範囲検出器を使った放射線照射範囲検出方法に関する。   The present invention relates to a radiation irradiation range detector used for confirmation of a radiation treatment plan and the like, and a radiation irradiation range detection method using the radiation irradiation range detector.

がん患者に対する治療法として、放射線治療法が普及している。放射線治療法には、患者の病巣部に放射線を照射する放射線治療装置が使用される。放射線治療装置を使用して、患者の病巣部に放射線を照射することで、病巣部のがん細胞が破壊され、治療につながる。   As a treatment method for cancer patients, a radiation treatment method is widely used. In the radiotherapy method, a radiotherapy apparatus that irradiates a patient's lesion with radiation is used. By irradiating a patient's lesion with radiation using a radiotherapy device, cancer cells in the lesion are destroyed, leading to treatment.

通常、放射線治療を行う場合には、以下のステップ1からステップ4の順序で治療が行われる。
・ステップ1:病巣部の確認
CTスキャナーやMRI装置を利用して、患者の病巣部の大きさ、位置、形状を三次元的に把握する処理が行われる。
・ステップ2:治療計画
ステップ1で確認した大きさ及び形状の病巣部に放射線を照射する際の、方向、強さ、位置、範囲などを、コンピュータ装置上で専用のソフトウェアを使用して決める。
・ステップ3:線量分布確認
ステップ1で確認した病巣部に対して、ステップ2で作成した治療計画で放射線を患部に照射したときの照射状態を確かめるために、人体などの模型に線量計を取付け、その模型に放射線を照射する。
・ステップ4:放射線治療の開始
ステップ3の線量分布確認で放射線の照射状態に問題なければ、ステップ2で作成した治療計画で、患者の病巣部に放射線の照射を行う。この放射線の照射は、病巣部の大きさやがんの進行状況に応じて、数回から数十回程度行われる。
Usually, when performing radiotherapy, treatment is performed in the order of the following step 1 to step 4.
Step 1: Confirmation of the lesion site Using a CT scanner or an MRI apparatus, a process for three-dimensionally grasping the size, position, and shape of the lesion site of the patient is performed.
Step 2: Treatment plan The direction, intensity, position, range, and the like when irradiating the lesion of the size and shape confirmed in Step 1 are determined using dedicated software on the computer device.
・ Step 3: Confirmation of dose distribution To confirm the irradiation state when the affected area confirmed in step 1 is irradiated with radiation in the treatment plan created in step 2, a dosimeter is attached to a model such as a human body. Irradiate the model with radiation.
Step 4: Start of radiotherapy If there is no problem in the irradiation state in the dose distribution confirmation in step 3, the patient's lesion is irradiated with the treatment plan created in step 2. This irradiation is performed several times to several tens of times depending on the size of the lesion and the progress of cancer.

ここで、ステップ4での治療を的確に行う上で、ステップ3の線量分布確認が重要になる。すなわち、ステップ2での治療計画で決めた照射計画で病巣部に照射したとき、事前に計算した通りに、病巣部の全ての箇所に対して適切な強さで放射線が照射されるかを確認する必要がある。また、病巣部でない箇所への放射線の照射が最小限であるかについても同様に確認する必要がある。病巣部でない箇所に放射線が照射されると、正常細胞を破壊してしまい、病巣部の治療を行う上で好ましくない。   Here, the dose distribution confirmation in step 3 is important in accurately performing the treatment in step 4. In other words, when the lesion is irradiated with the irradiation plan determined in the treatment plan in step 2, it is confirmed whether the radiation is irradiated with an appropriate intensity to all the lesions as calculated in advance. There is a need to. In addition, it is necessary to confirm in the same manner whether or not the irradiation of radiation to a non-lesional part is minimal. If radiation is irradiated to a portion that is not a lesion, normal cells are destroyed, which is not preferable for treating the lesion.

この線量分布を確認するための手法として、フィルム線量計が知られている。フィルム線量計は、放射線が照射された箇所のフィルムの色を変色させる。この変色状態を判断することで、放射線治療を行う医師や技師は、放射線の照射状態を確認することができる。但し、従来から知られたフィルム線量計は、変色状態が目視では分かりにくく、スキャナーでフィルム線量計の画像をコンピュータ装置に取り込んだ上で、画像処理で変色状態を強調して、医師や技師が確認していた。   A film dosimeter is known as a method for confirming this dose distribution. The film dosimeter changes the color of the film where the radiation is irradiated. By determining the discoloration state, a doctor or engineer who performs radiation therapy can confirm the radiation irradiation state. However, in the conventional film dosimeter, the discoloration state is difficult to see visually, and after the image of the film dosimeter is taken into a computer device by a scanner, the discoloration state is emphasized by image processing. I was checking.

特開2012−2669号公報JP 2012-2669 A

従来のフィルム線量計では、目視で放射線の照射状態を確認するのが困難であり、目視で放射線の照射状態を容易に確認できるようにするための線量計として、ポリマーゲル線量計が開発されている。特許文献1には、このポリマーゲル線量計の例が記載されている。
ポリマーゲル線量計は、モノマーをゲル内に分散させたものであり、放射線を照射するとモノマーが重合してポリマーが生成され、これによってゲルが白濁し、その白濁の度合いから線量を測定する線量計である。ゲルが白濁するため、実際に放射線が照射された領域を可視化することができる。また、放射線量に比例して形成されるポリマーが増加し、ゲルの白濁度が増加するため、このゲルの白濁度を測定することで、放射線量を測定することができる。
With conventional film dosimeters, it is difficult to visually confirm the irradiation state of radiation, and polymer gel dosimeters have been developed as dosimeters to make it easy to visually confirm the irradiation state of radiation. Yes. Patent Document 1 describes an example of this polymer gel dosimeter.
A polymer gel dosimeter is a dosimeter in which a monomer is dispersed in a gel, and when irradiated with radiation, the monomer is polymerized to produce a polymer, which causes the gel to become cloudy and measure the dose from the degree of cloudiness. It is. Since the gel becomes cloudy, the region actually irradiated with radiation can be visualized. Moreover, since the polymer formed in proportion to the radiation dose increases and the turbidity of the gel increases, the radiation dose can be measured by measuring the turbidity of the gel.

ところで、上述したフィルム線量計やポリマーゲル線量計は、シート状の線量計であり、放射線の照射状態を平面的に見ることは可能であるが、立体的に照射状態を確認することは困難であった。
ポリマーゲル線量計の場合には、固形状の物質であるため、ある程度の大きさのブロック状に形成することも可能である。しかし、ブロック状に形成したポリマーゲル線量計を使用して、線量分布確認の作業を行った場合、病巣部の内部の照射状態が目視では分からないという問題が生じる。
例えば、治療計画が作成された状態で、放射線治療装置が、ブロック状のポリマーゲル線量計に放射線を照射することで、病巣部の外形形状とほぼ一致する形状の白濁部が得られたとする。このとき、病巣部の表面の照射状態が正しいことは白濁部の形状から分かるが、病巣部の内部の各部に均一に放射線が照射されているかどうかは、外形形状からは全く分からない。つまり、白濁部の内部が均一して白濁しているかどうかは目視では分からず、ポリマーゲル線量計を使用したとしても、目視で簡単に治療計画が正しいかどうかは分からなかった。
By the way, the above-mentioned film dosimeter and polymer gel dosimeter are sheet-like dosimeters, and it is possible to see the irradiation state in a plane, but it is difficult to confirm the irradiation state in three dimensions. there were.
In the case of the polymer gel dosimeter, since it is a solid substance, it can be formed into a block having a certain size. However, when a dose distribution confirmation operation is performed using a polymer gel dosimeter formed in a block shape, there is a problem that the irradiation state inside the lesion is not visually recognized.
For example, it is assumed that a white turbid portion having a shape that substantially matches the outer shape of the lesion is obtained by the radiation therapy apparatus irradiating the block-shaped polymer gel dosimeter with the radiation in a state where the treatment plan is created. At this time, it can be seen from the shape of the cloudy portion that the irradiation state of the surface of the lesion is correct, but it is not known from the outer shape at all whether or not the radiation inside the lesion is uniformly irradiated. In other words, it was not visually confirmed whether or not the inside of the white turbid portion was uniformly clouded, and even if a polymer gel dosimeter was used, it was not easy to visually determine whether the treatment plan was correct.

本発明は、放射線治療を行う前の線量分布確認を簡単に行うことができる放射線照射範囲検出器及び放射線照射範囲検出方法を提供することを目的とする。   An object of the present invention is to provide a radiation irradiation range detector and a radiation irradiation range detection method capable of easily confirming a dose distribution before performing radiotherapy.

本発明の放射線照射範囲検出器は、放射線の照射により透明状態から白濁状態に変化するポリマーゲルシートと、ポリマーゲルシートが配置される配置部を有し透明樹脂より成形された透明保持部材と、透明保持部材を重ねて配置するためのスタッキング用機構部とを備える。   The radiation irradiation range detector of the present invention includes a polymer gel sheet that changes from a transparent state to a cloudy state upon irradiation with radiation, a transparent holding member that is formed of a transparent resin and has a placement portion on which the polymer gel sheet is disposed, and transparent holding And a stacking mechanism for arranging the members in an overlapping manner.

また、本発明の放射線照射範囲検出方法は、放射線の照射により透明状態から白濁状態に変化するポリマーゲルシートが内部に配置され、透明樹脂より成形され、上下に重ねて配置するためのスタッキング用機構部を有する透明保持部材よりなる放射線照射範囲検出器を複数個用意する。そして、複数個の放射線照射範囲検出器をスタッキング用機構部で重ねた状態で、放射線を照射した後、複数の放射線照射範囲検出器を、1個ごとに分離した状態でスキャナーで読み取り、読み取ったそれぞれのポリマーゲルシートの白濁状態から、放射線照射状態の検出を行うようにしている。   Further, in the radiation irradiation range detection method of the present invention, a polymer gel sheet that changes from a transparent state to a cloudy state by irradiation of radiation is disposed inside, is formed from a transparent resin, and is stacked on top and bottom. A plurality of radiation irradiation range detectors comprising a transparent holding member having Then, after irradiating the radiation with the plurality of radiation irradiation range detectors stacked on the stacking mechanism, the plurality of radiation irradiation range detectors were read and read by the scanner in a state of being separated one by one. The radiation irradiation state is detected from the cloudy state of each polymer gel sheet.

本発明によると、ポリマーゲルシートが配置された透明保持部材を、複数個重ねて配置した上で放射線を照射するため、ポリマーゲルシートの変化で、放射線の照射状態を立体的に目視で確認できるようになる。したがって、例えば放射線治療を行う前の確認が、簡単にできるようになるという作用効果を奏する。
また、放射線の照射後の複数の放射線照射範囲検出器を、1個ごとに分離してスキャナーで読み取らせるので、読み取った画像から、放射線照射状態の立体的な検出ができようになり、これによって放射線照射状態の確認がコンピュータ装置を使用して簡単にできるようになる。
According to the present invention, since a plurality of transparent holding members on which polymer gel sheets are arranged are arranged in a stacked manner and irradiated with radiation, the irradiation state of the radiation can be confirmed three-dimensionally by changing the polymer gel sheet. Become. Therefore, for example, there is an effect that confirmation before performing radiotherapy can be easily performed.
In addition, since a plurality of radiation irradiation range detectors after radiation irradiation are separated and read by a scanner, a three-dimensional detection of the radiation irradiation state can be performed from the read image. The radiation irradiation state can be easily confirmed using a computer device.

本発明の一実施の形態例による放射線照射範囲検出器の斜視図である。It is a perspective view of the radiation irradiation range detector by the example of 1 embodiment of this invention. 本発明の一実施の形態例による放射線照射範囲検出器の分解斜視図である。It is a disassembled perspective view of the radiation irradiation range detector by the example of 1 embodiment of this invention. 本発明の一実施の形態例による放射線照射範囲検出器の分解側面図である。It is a decomposition | disassembly side view of the radiation irradiation range detector by one embodiment of this invention. 本発明の一実施の形態例による放射線照射範囲検出器の側面図である。It is a side view of the radiation irradiation range detector by one embodiment of this invention. 本発明の一実施の形態例による放射線照射範囲検出器の積層例を示す側面図である。It is a side view which shows the lamination example of the radiation irradiation range detector by the example of 1 embodiment of this invention. 本発明の一実施の形態例による検出処理手順の例を示す説明図である。It is explanatory drawing which shows the example of the detection process procedure by one embodiment of this invention. 本発明の一実施の形態例による検出状態の例を示す側面図である。It is a side view which shows the example of the detection state by one embodiment of this invention. 本発明の一実施の形態例による検出画像を取り込む例を示す説明図である。It is explanatory drawing which shows the example which takes in the detection image by one embodiment of this invention. 本発明の一実施の形態の変形例による放射線照射範囲検出器の斜視図である。It is a perspective view of the radiation irradiation range detector by the modification of one embodiment of this invention.

[1.放射線照射範囲検出器の構成例]
以下、本発明の一実施の形態例(以下、「本例」と称する。)の放射線照射範囲検出器を、添付図面を参照して説明する。
図1は本例の放射線照射範囲検出器1を示す斜視図であり、図2は分解斜視図である。また、図3は本例の放射線照射範囲検出器1を分解した状態の側面図であり、図4は組み立てた状態の側面図である。
放射線照射範囲検出器1は、透明な樹脂で成形された薄型の四角形状の透明保持部材10を備える。透明保持部材10は、例えばアクリル樹脂やポリカーボネート樹脂などの透明な樹脂よりなる。この透明保持部材10は、図2に示すように、上側にポリマーゲル配置部11を備える。ポリマーゲル配置部11には、ポリマーゲルシート20が配置される。
[1. Configuration example of radiation irradiation range detector]
Hereinafter, a radiation irradiation range detector according to an embodiment of the present invention (hereinafter referred to as “this example”) will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view showing a radiation irradiation range detector 1 of this example, and FIG. 2 is an exploded perspective view. 3 is a side view of the radiation irradiation range detector 1 of this example in an exploded state, and FIG. 4 is a side view of the assembled state.
The radiation irradiation range detector 1 includes a thin rectangular transparent holding member 10 formed of a transparent resin. The transparent holding member 10 is made of a transparent resin such as an acrylic resin or a polycarbonate resin. As shown in FIG. 2, the transparent holding member 10 includes a polymer gel arrangement portion 11 on the upper side. A polymer gel sheet 20 is arranged in the polymer gel arrangement part 11.

ポリマーゲルシート20は、放射線が照射されない状態ではほぼ透明であり、放射線が照射されることで、その照射箇所が白濁するシートである。すなわち、ポリマーゲルシート20は、モノマーをゲル内に分散させたシートであり、放射線が照射されると、モノマーが重合してポリマーが生成され、これによってゲルが白濁化する。この白濁化により、実際に放射線が照射された領域を可視化することができる。ポリマーゲルシート20の白濁状態は、放射線の線量に比例してほぼ直線的に変化し、放射線量が高い程、白濁状態が強くなる。但し、放射線量と白濁状態との相関関係は、ポリマーゲルシート20の組成によって変化し、ほぼ直線的に白濁状態が変化するのは一例である。
ここでは、ポリマーゲルシート20は、厚さが1mmから数mm程度の比較的薄いシートとする。なお、ポリマーゲルシート20の組成については、例えば先に示した特許文献1に開示されている。また、この特許文献1などに開示された組成以外にも、様々な組成のものが知られており、放射線の照射により白濁状態のように透明度が変化するものであれば、ポリマーゲルシート20として、各種組成のものが適用可能である。
The polymer gel sheet 20 is a sheet that is substantially transparent in a state where no radiation is irradiated, and is irradiated with radiation so that the irradiated portion becomes cloudy. That is, the polymer gel sheet 20 is a sheet in which a monomer is dispersed in a gel, and when irradiated with radiation, the monomer is polymerized to produce a polymer, thereby causing the gel to become clouded. This white turbidity makes it possible to visualize a region actually irradiated with radiation. The cloudiness state of the polymer gel sheet 20 changes substantially linearly in proportion to the radiation dose, and the cloudiness state becomes stronger as the radiation dose is higher. However, the correlation between the radiation dose and the cloudiness state changes depending on the composition of the polymer gel sheet 20, and the cloudiness state changes almost linearly as an example.
Here, the polymer gel sheet 20 is a relatively thin sheet having a thickness of about 1 mm to several mm. In addition, about the composition of the polymer gel sheet 20, it is disclosed by patent document 1 shown previously, for example. In addition to the composition disclosed in Patent Document 1 and the like, various compositions are known, and if the transparency changes like a cloudy state by irradiation of radiation, as the polymer gel sheet 20, Various compositions are applicable.

透明保持部材10のポリマーゲル配置部11は、ポリマーゲルシート20の厚さに対応して、上端部12から数ミリ凹んだ形状である。このポリマーゲル配置部11にポリマーゲルシート20が配置された状態で、上端部12は、透明シート30により蓋がされ、ポリマーゲルシート20が密閉された状態に保持される。透明シート30は、接着剤などにより上端部12に固定される。   The polymer gel placement portion 11 of the transparent holding member 10 has a shape that is recessed several millimeters from the upper end portion 12 corresponding to the thickness of the polymer gel sheet 20. In a state where the polymer gel sheet 20 is arranged in the polymer gel arrangement portion 11, the upper end portion 12 is covered with the transparent sheet 30, and the polymer gel sheet 20 is held in a sealed state. The transparent sheet 30 is fixed to the upper end portion 12 with an adhesive or the like.

透明保持部材10のポリマーゲル配置部11の周囲の上面側には、上側の側壁の厚さが薄くなった段差部13が形成される。また、図3に示すように、透明保持部材10の下面側には、スタッキング用凹部14が形成される。これらの段差部13とスタッキング用凹部14は、複数個の透明保持部材10を上下に積み重ねるためのスタッキング用機構部として機能する。
すなわち、図3に示すように、複数個の透明保持部材10を用意したとき、透明保持部材10の上面側の段差部13が、別の透明保持部材10の下面側のスタッキング用凹部14に嵌る形状としてある。このように積み重ねた状態のとき、段差部13の直立面13aと、スタッキング用凹部14の直立面14aとが接触した状態になる。
On the upper surface side around the polymer gel placement portion 11 of the transparent holding member 10, a step portion 13 having a thin upper side wall is formed. Further, as shown in FIG. 3, a stacking recess 14 is formed on the lower surface side of the transparent holding member 10. The step portion 13 and the stacking concave portion 14 function as a stacking mechanism portion for stacking the plurality of transparent holding members 10 up and down.
That is, as shown in FIG. 3, when a plurality of transparent holding members 10 are prepared, the stepped portion 13 on the upper surface side of the transparent holding member 10 fits into the stacking concave portion 14 on the lower surface side of another transparent holding member 10. As a shape. In this stacked state, the upright surface 13a of the stepped portion 13 and the upright surface 14a of the stacking recess 14 are in contact with each other.

図5は、放射線照射範囲検出器1を積み重ねた状態の例を示す。
図5の例では、10個の放射線照射範囲検出器1を用意して、上下に積み重ねた状態を示している。ここでは、それぞれの透明保持部材10の上面側の段差部13が、別の透明保持部材10の下面側のスタッキング用凹部14に嵌ることで、透明保持部材10が積み重ねられる。
この図5に示すように積み重ねた状態では、それぞれの放射線照射範囲検出器1に配置されたポリマーゲルシート20が、10枚積層配置された状態になる。
FIG. 5 shows an example of a state in which the radiation irradiation range detectors 1 are stacked.
In the example of FIG. 5, ten radiation irradiation range detectors 1 are prepared and stacked one above the other. Here, the transparent holding member 10 is stacked by fitting the step portion 13 on the upper surface side of each transparent holding member 10 into the stacking recess 14 on the lower surface side of another transparent holding member 10.
In the state where they are stacked as shown in FIG. 5, ten polymer gel sheets 20 arranged in each radiation irradiation range detector 1 are arranged in a stacked manner.

[2.放射線照射範囲を検出する処理例]
図6は、放射線照射範囲を検出する処理例を示す図である。ここでは、がん患者に対して放射線治療法を行う際の、治療計画で決められた放射線照射状態での、線量分布確認を行う例について説明する。
[2. Example of processing to detect radiation range]
FIG. 6 is a diagram illustrating a processing example for detecting a radiation irradiation range. Here, an example of performing dose distribution confirmation in a radiation irradiation state determined in a treatment plan when performing radiation therapy on a cancer patient will be described.

まず、図6Aに示すように、放射線照射範囲検出器1は、複数個用意して積層される。このとき、それぞれの透明保持部材10は、上面側の段差部13が別の透明保持部材10の下面側のスタッキング用凹部14に嵌まることによって積層される。放射線照射範囲検出器1を積み重ねる数は、検出する放射線照射範囲の高さに依存する。例えば、確認したい病巣部のサイズが、直径5cm程度であれば、それよりも若干大きな高さとなるように、複数個の放射線照射範囲検出器1を積層させる。積層された放射線照射範囲検出器1は、透明保持部材10が透明であると共に、内部に保持されたポリマーゲルシート20もほぼ透明であり、内部が透き通って見える状態になっている。   First, as shown in FIG. 6A, a plurality of radiation irradiation range detectors 1 are prepared and stacked. At this time, each transparent holding member 10 is laminated by fitting the stepped portion 13 on the upper surface side into the stacking concave portion 14 on the lower surface side of another transparent holding member 10. The number of stacked radiation irradiation range detectors 1 depends on the height of the radiation irradiation range to be detected. For example, if the size of a lesion to be confirmed is about 5 cm in diameter, a plurality of radiation irradiation range detectors 1 are stacked so that the height is slightly larger than that. In the laminated radiation irradiation range detector 1, the transparent holding member 10 is transparent, and the polymer gel sheet 20 held inside is almost transparent, so that the inside can be seen through.

次に、放射線治療装置を使用して、事前に治療計画で決められた放射線照射状態で、積層された放射線照射範囲検出器1に対して放射線を照射する。放射線を照射することで、図6Bに示すように、放射線照射範囲検出器1内のポリマーゲルシート20は、放射線が強く照射された箇所aが白濁する。この白濁箇所aの形状は、事前の治療計画が適正であれば、事前に確認した病巣部の形状とほぼ一致する。
したがって、放射線治療を行う医師や技師は、このまま目視で白濁箇所aの形状を確認することで、事前の治療計画が適正であるか否かが判断できるようになる。
Next, the radiation treatment apparatus is used to irradiate the stacked radiation irradiation range detectors 1 in a radiation irradiation state determined in advance in a treatment plan. By irradiating with radiation, as shown in FIG. 6B, the polymer gel sheet 20 in the radiation irradiation range detector 1 becomes clouded at a location a where the radiation is strongly irradiated. If the prior treatment plan is appropriate, the shape of the cloudy portion a substantially matches the shape of the lesion that has been confirmed in advance.
Therefore, a doctor or engineer who performs radiation therapy can determine whether or not the prior treatment plan is appropriate by confirming the shape of the cloudiness point a by visual observation.

図6Bに示した積層状態で、目視により確認できる白濁箇所aの形状は、白濁箇所aの外形形状である。そして、白濁箇所aの内部の放射線照射範囲が適正か否かの判断は、積層された放射線照射範囲検出器1を分離して行う。
例えば、図6Cに示すように、画像読み取りを行うスキャナー130を用意する。そして、そのスキャナー130の読み取り台131の上に、放射線照射範囲検出器1を1個ずつ並べて、スキャナー130が放射線照射範囲検出器1のポリマーゲルシート20の白濁状態を画像として読み取る。スキャナー130が複数個の放射線照射範囲検出器1を一度に読み取るのは1つの例であり、スキャナー130が1個ずつの放射線照射範囲検出器1を順にスキャナー130で読み取るようにしてもよい。
The shape of the cloudy spot a that can be visually confirmed in the stacked state shown in FIG. 6B is the outer shape of the cloudy spot a. And the judgment whether the radiation irradiation range inside the cloudy part a is appropriate is performed by separating the stacked radiation irradiation range detectors 1.
For example, as shown in FIG. 6C, a scanner 130 for reading an image is prepared. Then, the radiation irradiation range detectors 1 are arranged one by one on the reading table 131 of the scanner 130, and the scanner 130 reads the white turbid state of the polymer gel sheet 20 of the radiation irradiation range detector 1 as an image. The scanner 130 reads a plurality of radiation irradiation range detectors 1 at one time. This is one example, and the scanner 130 may read the radiation irradiation range detectors 1 one by one with the scanner 130 in order.

そして、図6Dに示すように、コンピュータ装置100内の画像処理部110が、スキャナー130で読み取った画像データを3D画像として解析処理し、この解析結果がディスプレイ120上に表示される。例えば、白濁箇所aがディスプレイ120上に様々な角度から立体的に表示される。また、スキャナー130が読み取った個々の放射線照射範囲検出器1のポリマーゲルシート20の白濁状態を、画像として表示するようにしてもよい。   6D, the image processing unit 110 in the computer apparatus 100 analyzes the image data read by the scanner 130 as a 3D image, and the analysis result is displayed on the display 120. For example, the cloudy part a is displayed three-dimensionally on the display 120 from various angles. Moreover, you may make it display the cloudiness state of the polymer gel sheet 20 of each radiation irradiation range detector 1 which the scanner 130 read as an image.

さらに、コンピュータ装置100は、CTスキャナーやMRI装置を利用して得た患者の病巣部の画像と、スキャナー130で読み取った画像データとを比較して、放射線照射範囲が適正か否かの判断を自動的に行うようにしてもよい。
なお、コンピュータ装置100を使用して画像解析を行うのは1つの例であり、例えば図6Cに示すように1個ずつに分離した放射線照射範囲検出器1のポリマーゲルシート20の白濁状態を、医者や技師が目視で確認して、病巣部の内部の放射線照射状態が適切か否かを判断してもよい。
Further, the computer apparatus 100 compares the image of the lesion area of the patient obtained by using a CT scanner or an MRI apparatus with the image data read by the scanner 130, and determines whether or not the radiation irradiation range is appropriate. You may make it perform automatically.
Note that image analysis using the computer device 100 is one example. For example, as shown in FIG. 6C, the white turbid state of the polymer gel sheet 20 of the radiation irradiation range detector 1 separated one by one is determined by a doctor. Or an engineer may visually confirm whether or not the radiation irradiation state inside the lesion is appropriate.

次に、図7を参照して、積み重ねた状態の放射線照射範囲検出器1を使用して、放射線を照射したときに白濁箇所aが生じる具体的な例を説明する。
この図7の例では、10個の放射線照射範囲検出器1を積み重ねた状態を示す。この積み重ねた放射線照射範囲検出器1の内部に放射線を照射したとき、その照射箇所が白濁する。ここで、ポリマーゲルシート20は、透明保持部材10で保持する厚さの分だけ、1枚ごとに隙間が空いた状態で配置される。したがって、例えば図7に示すように8枚のポリマーゲルシート20に白濁箇所a1〜a8が分かれ、それぞれの白濁箇所a1〜a8は、若干の透明な隙間が生じる。この隙間は極力少ないことが好ましく、例えば1mm以下の厚さとすることが好ましい。但し、このような隙間があることは、放射線の照射範囲を解析する上では、問題がない。
Next, with reference to FIG. 7, a specific example in which a cloudy spot a occurs when radiation is irradiated using the radiation irradiation range detector 1 in a stacked state will be described.
The example of FIG. 7 shows a state in which ten radiation irradiation range detectors 1 are stacked. When radiation is radiated into the stacked radiation irradiation range detector 1, the irradiated portion becomes cloudy. Here, the polymer gel sheet 20 is arranged in a state where a gap is left for each sheet by the thickness held by the transparent holding member 10. Therefore, for example, as shown in FIG. 7, the white turbid portions a1 to a8 are divided into eight polymer gel sheets 20, and a slight transparent gap is generated in each of the white turbid portions a1 to a8. The gap is preferably as small as possible, for example, a thickness of 1 mm or less. However, such a gap has no problem in analyzing the radiation irradiation range.

図8は、放射線を照射した複数個の放射線照射範囲検出器1を分離して示した例である。
この図8に示すように、それぞれの放射線照射範囲検出器1のポリマーゲルシート20には、放射線の照射範囲を示す白濁箇所a1,a2,a3,・・・が、断面状に現れる。
放射線治療を行う医師や技師が、この断面状の白濁箇所a1,a2,a3,・・・を見て、内部が均一に白濁しているかどうかを見ることで、病巣部の内部の各部に均一に放射線が照射されているかどうかが目視で分かるようになる。もし、白濁箇所a1,a2,a3,・・・の内部で白濁していない箇所、あるいは、白濁していても、その白濁状態がたの箇所よりも薄い場合には、その箇所への放射線の照射が足りないことが分かる。
したがって、本例の放射線照射範囲検出器1を使用することで、放射線治療計画が適正か否かが、目視から簡単に分かるようになる。
また、図6C及び図6Dに示すように、スキャナー130が接続されたコンピュータ装置100を用意して、そのコンピュータ装置100で読み取った画像を解析することで、コンピュータ装置100が自動的に放射線治療計画の良否を判断できるようになる。
FIG. 8 is an example in which a plurality of radiation irradiation range detectors 1 irradiated with radiation are shown separately.
As shown in FIG. 8, in the polymer gel sheet 20 of each radiation irradiation range detector 1, cloudy spots a1, a2, a3,... Showing the radiation irradiation range appear in a cross-sectional shape.
A doctor or engineer who performs radiation therapy looks at the cross-sectionally clouded points a1, a2, a3,... And sees whether the inside is uniformly clouded. Whether or not radiation has been irradiated to can be visually confirmed. If the cloudy spots a1, a2, a3,... Are not clouded or if they are cloudy but the cloudiness is less than the spot, the radiation It turns out that there is not enough irradiation.
Therefore, by using the radiation irradiation range detector 1 of this example, it can be easily seen visually whether or not the radiation treatment plan is appropriate.
Also, as shown in FIGS. 6C and 6D, a computer device 100 to which a scanner 130 is connected is prepared, and an image read by the computer device 100 is analyzed, so that the computer device 100 automatically performs a radiation treatment plan. It will be possible to judge the quality of.

[3.変形例]
図9は、円筒形状とした放射線照射範囲検出器1′の例である。この放射線照射範囲検出器1′は、透明保持部材10を円筒形状とし、この透明保持部材10に配置されるポリマーゲルシート20や、上端に蓋をする透明シート30についても円形とする。透明保持部材10の周囲の段差部13などのスタッキング用機構部についても、円形形状とする。
放射線照射範囲検出器1′を円筒形状とすることで、放射線照射後のポリマーゲルシート20の白濁状態が、どの角度からも見やすくなる。また、放射線治療を行う際の確認用に適用したとき、円形のポリマーゲルシート20は、実際の病巣部の形状に近い形状であることが考えられ、効率のよい放射線量の確認ができるようになる。なお、確認を行う人体の部位に対応して、放射線照射範囲検出器1′を楕円形状としてもよい。例えば、胴体内の臓器が病巣部である場合には、胴体の横断面に相当するサイズの楕円形状などの様々な形状やサイズの放射線照射範囲検出器1′としてもよい。
[3. Modified example]
FIG. 9 shows an example of a radiation irradiation range detector 1 ′ having a cylindrical shape. In the radiation irradiation range detector 1 ′, the transparent holding member 10 has a cylindrical shape, and the polymer gel sheet 20 disposed on the transparent holding member 10 and the transparent sheet 30 with a lid on the upper end also have a circular shape. The stacking mechanism such as the step 13 around the transparent holding member 10 is also circular.
By making the radiation irradiation range detector 1 ′ cylindrical, it becomes easy to see the cloudiness of the polymer gel sheet 20 after radiation irradiation from any angle. In addition, when applied for confirmation when performing radiotherapy, the circular polymer gel sheet 20 is considered to have a shape close to the shape of the actual lesion, so that the radiation dose can be confirmed efficiently. . Note that the radiation irradiation range detector 1 ′ may have an elliptical shape corresponding to the part of the human body to be confirmed. For example, when the internal organ of the trunk is a lesion, the radiation irradiation range detector 1 ′ having various shapes and sizes such as an elliptical shape corresponding to the cross section of the trunk may be used.

また、上述した実施の形態例では、透明保持部材10が備えるスタッキング用機構部として、上面側の段差部と下面側の凹部とが嵌る形状とした。これに対して、その他の形状のスタッキング用機構部としてもよい。この場合、スタッキング用機構部として、例えば積み重ねる際に、左右の方向が定まるような、左右で非対称の形状としてもよい。
また、上述した実施の形態例では、透明保持部材10のポリマーゲル配置部11に配置されたポリマーゲルシート20の上に、透明シート30を配置して、ポリマーゲルシート20が密閉構造で保持されるようにした。これに対して、例えば透明シート30を省略してもよい。但し、透明シート30が配置された放射線照射範囲検出器1の方が、取り扱い性などに優れており、放射線照射範囲検出器1は、透明シート30を備えるのが好ましい。
In the above-described embodiment, the stacking mechanism provided in the transparent holding member 10 has a shape in which the step portion on the upper surface side and the recess portion on the lower surface side are fitted. On the other hand, a stacking mechanism having another shape may be used. In this case, the stacking mechanism portion may have an asymmetric shape on the left and right so that the left and right directions are determined when stacking, for example.
In the embodiment described above, the transparent sheet 30 is arranged on the polymer gel sheet 20 arranged in the polymer gel arrangement part 11 of the transparent holding member 10 so that the polymer gel sheet 20 is held in a sealed structure. I made it. On the other hand, for example, the transparent sheet 30 may be omitted. However, the radiation irradiation range detector 1 in which the transparent sheet 30 is disposed is superior in handling and the like, and the radiation irradiation range detector 1 preferably includes the transparent sheet 30.

さらに、上述した実施の形態例では、放射線照射範囲検出器1は、放射線治療の治療計画の確認用に使用した。これに対して、放射線照射範囲検出器1は、その他の放射線照射状態の確認用に使用してもよい。   Furthermore, in the above-described embodiment, the radiation irradiation range detector 1 is used for confirming a treatment plan for radiation therapy. On the other hand, the radiation irradiation range detector 1 may be used for confirmation of other radiation irradiation states.

1,1′…放射線照射範囲検出器、10…透明保持部材、11…ポリマーゲル配置部、12…上端部、13…段差部、13a…直立面、14…スタッキング用凹部、14a…直立面、20…ポリマーゲルシート、30…透明シート、100…コンピュータ装置、110…画像処理部、120…ディスプレイ、121…解析画像、130…スキャナー、131…読み取り台   DESCRIPTION OF SYMBOLS 1,1 '... Radiation irradiation range detector, 10 ... Transparent holding member, 11 ... Polymer gel arrangement | positioning part, 12 ... Upper end part, 13 ... Step part, 13a ... Upright surface, 14 ... Stacking recessed part, 14a ... Upright surface, DESCRIPTION OF SYMBOLS 20 ... Polymer gel sheet, 30 ... Transparent sheet, 100 ... Computer apparatus, 110 ... Image processing part, 120 ... Display, 121 ... Analysis image, 130 ... Scanner, 131 ... Reading stand

Claims (5)

放射線の照射により透明状態から白濁状態に変化するポリマーゲルシートと、
前記ポリマーゲルシートが配置される配置部を有し、透明樹脂より成形された透明保持部材と、
透明保持部材を重ねて配置するためのスタッキング用機構部とを備えた
放射線照射範囲検出器。
A polymer gel sheet that changes from a transparent state to a cloudy state upon irradiation with radiation, and
A transparent holding member having an arrangement part in which the polymer gel sheet is arranged and molded from a transparent resin;
A radiation irradiation range detector comprising: a stacking mechanism for arranging transparent holding members in an overlapping manner.
前記ポリマーゲルシートが配置された前記透明保持部材の配置部は、透明シートにより蓋をするようにした
請求項1記載の放射線照射範囲検出器。
The radiation irradiation range detector according to claim 1, wherein the arrangement part of the transparent holding member on which the polymer gel sheet is arranged is covered with a transparent sheet.
前記スタッキング用機構部は、前記透明保持部材の上側と下側の一方の面に設けた段差部と、他方の面に設けた、前記段差部に対応した形状の凹部とを備えた
請求項1又は2に記載の放射線照射範囲検出器。
The stacking mechanism portion includes a stepped portion provided on one of the upper and lower surfaces of the transparent holding member, and a concave portion provided on the other surface and having a shape corresponding to the stepped portion. Or the radiation irradiation range detector of 2.
前記ポリマーゲルシートは、円形形状とし、
前記透明保持部材の前記配置部についても、前記円形形状のポリマーゲルシートが配置
請求項1〜3のいずれか1項に記載の放射線照射範囲検出器。
The polymer gel sheet has a circular shape,
The radiation irradiation range detector according to any one of claims 1 to 3, wherein the circular polymer gel sheet is also arranged in the arrangement portion of the transparent holding member.
放射線の照射により透明状態から白濁状態に変化するポリマーゲルシートが内部に配置され、透明樹脂より成形され、上下に重ねて配置するためのスタッキング用機構部を有する透明保持部材よりなる放射線照射範囲検出器を複数個用意し、
前記複数個の放射線照射範囲検出器を前記スタッキング用機構部で重ねた状態で、放射線を照射した後、
前記複数の放射線照射範囲検出器を、1個ごとに分離した状態で、スキャナーで読み取り、
前記読み取ったそれぞれのポリマーゲルシートの白濁状態を画像処理して、放射線照射状態の検出を行うようにした
放射線照射範囲検出方法。
Radiation irradiation range detector comprising a transparent holding member having a stacking mechanism for arranging a polymer gel sheet that changes from a transparent state to a cloudy state by irradiation with radiation, formed from a transparent resin, and stacked vertically Prepare several,
In a state where the plurality of radiation irradiation range detectors are overlapped with the stacking mechanism unit, after irradiating radiation,
In a state where the plurality of radiation irradiation range detectors are separated for each one, read by a scanner,
A radiation irradiation range detection method, wherein the read cloudy state of each polymer gel sheet is subjected to image processing to detect a radiation irradiation state.
JP2014191766A 2014-09-19 2014-09-19 Radioactive-ray irradiation range detector and radioactive-ray irradiation detection method Pending JP2016061735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014191766A JP2016061735A (en) 2014-09-19 2014-09-19 Radioactive-ray irradiation range detector and radioactive-ray irradiation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191766A JP2016061735A (en) 2014-09-19 2014-09-19 Radioactive-ray irradiation range detector and radioactive-ray irradiation detection method

Publications (1)

Publication Number Publication Date
JP2016061735A true JP2016061735A (en) 2016-04-25

Family

ID=55797576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191766A Pending JP2016061735A (en) 2014-09-19 2014-09-19 Radioactive-ray irradiation range detector and radioactive-ray irradiation detection method

Country Status (1)

Country Link
JP (1) JP2016061735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051845A (en) * 2018-01-16 2018-05-18 李紫霞 A kind of portable radiographic measuring apparatus
JP2021021651A (en) * 2019-07-29 2021-02-18 株式会社Technology of Radiotherapy Radiation therapy plan verification method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506157A (en) * 1981-01-14 1985-03-19 Kernforschungsanlage Julich Gmbh Thermoluminescence dosimeter taking account of tissue depth of dose
JPH0228585A (en) * 1988-07-19 1990-01-30 Japan Atom Energy Res Inst Method and implement for easily measuring electron ray penetration rate
JPH02117382U (en) * 1989-03-08 1990-09-20
JPH06156561A (en) * 1992-11-30 1994-06-03 Matsushita Electric Ind Co Ltd Packaging apparatus for electronic component
JP2003231575A (en) * 2002-02-06 2003-08-19 Earth Chem Corp Ltd Medicine container and assembling medicine container
WO2004023159A1 (en) * 2002-09-02 2004-03-18 Asahi Techno Glass Corporation Dose distribution reading method for glass dosimeter and its apparatus
JP2005148033A (en) * 2003-11-20 2005-06-09 Aarutekku Kk Phantom element and water phantom
JP2006047009A (en) * 2004-08-02 2006-02-16 Aarutekku Kk Method of measuring integrated absorption dose of radiation ray and tabular fluoroglass dosimeter
JP2009265033A (en) * 2008-04-28 2009-11-12 Canon Inc Color dosimeter
JP2010127930A (en) * 2009-10-23 2010-06-10 Rikkyo Gakuin Thermofluorescent stack, thermofluorescent plate, method of manufacturing thermofluorescent stack, method of manufacturing thermofluorescent plate, and method of acquiring three-dimensional dose distribution of radiation
JP2011052179A (en) * 2009-09-04 2011-03-17 Rikkyo Gakuin Method for producing thermofluorescent plate like body, method for producing thermofluorescent laminate, thermofluorescent plate like body and thermofluorescent laminate
JP2012002669A (en) * 2010-06-17 2012-01-05 Japan Atomic Energy Agency Radiation dosimeter gel and radiation dosimeter using the same
JP2014185969A (en) * 2013-03-25 2014-10-02 Univ Of Tsukuba Polymer gel dosimeter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506157A (en) * 1981-01-14 1985-03-19 Kernforschungsanlage Julich Gmbh Thermoluminescence dosimeter taking account of tissue depth of dose
JPH0228585A (en) * 1988-07-19 1990-01-30 Japan Atom Energy Res Inst Method and implement for easily measuring electron ray penetration rate
JPH02117382U (en) * 1989-03-08 1990-09-20
JPH06156561A (en) * 1992-11-30 1994-06-03 Matsushita Electric Ind Co Ltd Packaging apparatus for electronic component
JP2003231575A (en) * 2002-02-06 2003-08-19 Earth Chem Corp Ltd Medicine container and assembling medicine container
WO2004023159A1 (en) * 2002-09-02 2004-03-18 Asahi Techno Glass Corporation Dose distribution reading method for glass dosimeter and its apparatus
JP2005148033A (en) * 2003-11-20 2005-06-09 Aarutekku Kk Phantom element and water phantom
JP2006047009A (en) * 2004-08-02 2006-02-16 Aarutekku Kk Method of measuring integrated absorption dose of radiation ray and tabular fluoroglass dosimeter
JP2009265033A (en) * 2008-04-28 2009-11-12 Canon Inc Color dosimeter
JP2011052179A (en) * 2009-09-04 2011-03-17 Rikkyo Gakuin Method for producing thermofluorescent plate like body, method for producing thermofluorescent laminate, thermofluorescent plate like body and thermofluorescent laminate
JP2010127930A (en) * 2009-10-23 2010-06-10 Rikkyo Gakuin Thermofluorescent stack, thermofluorescent plate, method of manufacturing thermofluorescent stack, method of manufacturing thermofluorescent plate, and method of acquiring three-dimensional dose distribution of radiation
JP2012002669A (en) * 2010-06-17 2012-01-05 Japan Atomic Energy Agency Radiation dosimeter gel and radiation dosimeter using the same
JP2014185969A (en) * 2013-03-25 2014-10-02 Univ Of Tsukuba Polymer gel dosimeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051845A (en) * 2018-01-16 2018-05-18 李紫霞 A kind of portable radiographic measuring apparatus
JP2021021651A (en) * 2019-07-29 2021-02-18 株式会社Technology of Radiotherapy Radiation therapy plan verification method
JP7194382B2 (en) 2019-07-29 2022-12-22 株式会社Technology of Radiotherapy Radiotherapy plan verification method

Similar Documents

Publication Publication Date Title
Hanley et al. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators
US9830718B2 (en) Image processor, image processing method, and treatment system
US20100288916A1 (en) Phantoms and methods for verification in radiotherapy systems
Khan et al. Clinical and dosimetric implications of air gaps between bolus and skin surface during radiation therapy
EP2977008A1 (en) Method, apparatus, and system for manufacturing phantom customized to patient
Rahman et al. Sophisticated test objects for the quality assurance of optical computed tomography scanners
JP2016061735A (en) Radioactive-ray irradiation range detector and radioactive-ray irradiation detection method
Kairn et al. Monte Carlo verification of gel dosimetry measurements for stereotactic radiotherapy
CN201107168Y (en) Apparatus for testing consistency of light fields with radiation fields
Cloutier et al. Deformable scintillation dosimeter: II. Real-time simultaneous measurements of dose and tracking of deformation vector fields
Cutsinger et al. Experimental validation of a new COMS-like 24 mm eye plaque for the treatment of large ocular melanoma tumors
EP2127697B1 (en) Dynamic tumor radiation treatment apparatus and dynamic tumor radiation treatment program
Trombetta et al. Evaluation of the radiotherapy treatment planning in the presence of a magnetic valve tissue expander
CN104606796A (en) Dose calculation error testing method of radiotherapy system and phantom
Tonigan Evaluation of intensity modulated radiation therapy (IMRT) delivery error due to IMRT treatment plan complexity and improperly matched dosimetry data
Arilli et al. Combined use of a transmission detector and an EPID-based in vivo dose monitoring system in external beam whole breast irradiation: a study with an anthropomorphic female phantom
Martišíková et al. Study of the capabilities of the Timepix detector for Ion Beam radiotherapy applications
WO2020054211A1 (en) X-ray image capturing device
Wilcox et al. Dosimetric verification of intensity modulated radiation therapy of 172 patients treated for various disease sites: comparison of EBT film dosimetry, ion chamber measurements, and independent MU calculations
Park et al. Dosimetric characteristics of a reusable 3D radiochromic dosimetry material
Abolaban On board cone beam CT for treatment planning in image guided radiotherapy
JP2011130929A (en) Radiotherapy treated part monitor, radiotherapy apparatus and control method thereof
JP2006075411A (en) Medical positioning support device and method of supporting positioning
CN105521568B (en) A kind of gyro knife dosage distribution verification method
Abdallah et al. Assessment of field size on radiotherapy machines using texture analysis

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204