JP2016061538A - 熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器 - Google Patents
熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器 Download PDFInfo
- Publication number
- JP2016061538A JP2016061538A JP2014192309A JP2014192309A JP2016061538A JP 2016061538 A JP2016061538 A JP 2016061538A JP 2014192309 A JP2014192309 A JP 2014192309A JP 2014192309 A JP2014192309 A JP 2014192309A JP 2016061538 A JP2016061538 A JP 2016061538A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- transport device
- heat transport
- resin sheet
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
【課題】熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器において、製造工程を簡略化すること。
【解決手段】少なくとも一方が透明な二枚の樹脂シート21の各々の表面に金属層22を形成する工程と、二枚の樹脂シート21の各々の金属層22同士を密着させながら、流路25を形成する予定領域Rの縁における金属層22に透明な樹脂シート21を介してレーザLを照射することにより、樹脂シート21の各々の金属層22同士を溶着する工程と、金属層22同士を溶着した後、二枚の樹脂シート21に横から力Fを加えて未溶着の部分における各々の樹脂シート21を上下に離し、当該部分を流路25にする工程と、流路25に作動液Cを封入する工程とを有する熱輸送デバイスの製造方法による。
【選択図】図6
【解決手段】少なくとも一方が透明な二枚の樹脂シート21の各々の表面に金属層22を形成する工程と、二枚の樹脂シート21の各々の金属層22同士を密着させながら、流路25を形成する予定領域Rの縁における金属層22に透明な樹脂シート21を介してレーザLを照射することにより、樹脂シート21の各々の金属層22同士を溶着する工程と、金属層22同士を溶着した後、二枚の樹脂シート21に横から力Fを加えて未溶着の部分における各々の樹脂シート21を上下に離し、当該部分を流路25にする工程と、流路25に作動液Cを封入する工程とを有する熱輸送デバイスの製造方法による。
【選択図】図6
Description
本発明は、熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器に関する。
CPU(Central Processing Unit)等の電子部品を冷却する熱輸送デバイスとしてヒートパイプがある。ヒートパイプにはループヒートパイプや自励振動ヒートパイプ等の様々なタイプのものがある。
これらのうち、自励振動ヒートパイプは、作動液の流路を加熱部と冷却部との間で何度も往復させた構造を有する。この構造によれば、加熱部では作動液が気化して流路の圧力が増大するのに対し、冷却部では作動液が液化して流路の圧力が減り、加熱部と冷却部との間に圧力差が生じる。その圧力差によって作動液が流路を自律的に往復するようになり、作動液で加熱部の熱を冷却部に輸送することができる。
自励振動ヒートパイプは、このように加熱部と冷却部との間で流路を往復させるだけでよく、構造が簡単で軽量化と薄型化に有利である。
但し、自励振動ヒートパイプには、その製造工程を簡略化するという点で改善の余地がある。
開示の技術は、上記に鑑みてなされたものであって、熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器において、製造工程を簡略化することを目的とする。
以下の開示の一観点によれば、少なくとも一方が透明な二枚の樹脂シートの各々の表面に金属層を形成する工程と、二枚の前記樹脂シートの各々の金属層同士を密着させながら、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、前記金属層同士を溶着した後、二枚の前記樹脂シートに横から力を加えて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、前記流路に作動液を封入する工程とを有する熱輸送デバイスの製造方法が提供される。
また、その開示の他の観点によれば、少なくとも一方が透明であって、熱膨張率が異なる二枚の樹脂シートの各々の表面に金属層を形成する工程と、二枚の前記樹脂シートを加熱しながら、前記樹脂シートの各々の金属層同士を密着させて、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、前記金属層同士を溶着した後、二枚の前記樹脂シートを冷ますことにより、該樹脂シートの各々を異なる収縮量で収縮させて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、前記流路に作動液を封入する工程とを有する熱輸送デバイスの製造方法が提供される。
そして、その開示の別の観点によれば、少なくとも一方が透明であり、各々の表面に形成された金属層同士が流路の縁において溶着されて、未溶着の部分が上下に離間して前記流路とされた二枚の樹脂シートと、前記流路に封入された作動液とを有する熱輸送デバイスが提供される。
更に、その開示の更に別の観点によれば、電子部品と、前記電子部品に固着された熱輸送デバイスとを有し、前記熱輸送デバイスが、少なくとも一方が透明であり、各々の表面に形成された金属層同士が流路の縁において溶着されて、未溶着の部分が上下に離間して前記流路とされた二枚の樹脂シートと、前記流路に封入された作動液とを有する電子機器が提供される。
以下の開示によれば、二枚の樹脂シートの金属層同士を密着させながら、流路の縁の金属層同士をレーザで溶着し、更に各樹脂シートに横から力を加える。これにより、未溶着の部分の各樹脂シートが上下に離れて当該部分が流路となる。
本実施形態の説明に先立ち、本願発明者が検討した事項について説明する。
図1は、本願発明者が検討した自励振動ヒートパイプの平面図である。
この自励振動ヒートパイプ1は、加熱部4と冷却部5とを備えた樹脂シート2を有し、その樹脂シート2の内部に作動液用の流路3が形成される。
流路3は、加熱部4と冷却部5との間を何度も往復するように蛇行すると共に、加熱部4と冷却部5との間の領域では直線状に延びる。なお、加熱部4はCPU等の電子部品で加熱されるのに対し、冷却部5は大気に曝されて自然冷却される。
更に、流路3の内部は減圧されており、その約半分の容積に相当する不図示の作動液が流路3に封入される。その作動液としては例えばHFE(Hydro Fluoro Ethers)を使用し得る。
そして、このように減圧下の流路3に作動液を封入することでその作動液の沸点が低下し、CPU等の電子部品の温度が低い場合でも加熱部4において作動液を気化することができる。
なお、加熱部4側の流路3の端部には、製造時に流路3に作動液を注入するための第1の注入孔3aと第2の注入孔3bとが設けられる。
このような構造によれば、加熱部4においては作動液が気化することで流路3内の圧力が上昇するのに対し、冷却部5においては作動液が液化することで流路3内の圧力が低下する。そして、このような圧力差によって加熱部4と冷却部5の間を作動液が自律的に往復するようになり、この作動液の動きによって加熱部4から冷却部5に熱を輸送することができる。
次に、この自励振動ヒートパイプの製造方法について説明する。
図2〜図4は、本願発明者が検討した自励振動ヒートパイプの製造途中の断面図である。
まず、図2(a)に示すように、PET(ポリエチレンテレフタレート)等を材料とする透明な第1の樹脂シート11を用意し、その上に樹脂を材料とする第1のプライマ12を塗布する。
次いで、図2(b)に示すように、プライマ12の上に紫外線硬化樹脂の第1の塗膜13を形成した後、金型14の凹凸面14aを第1の塗膜13に埋め込む。そして、この状態で第1の樹脂シート11と第1のプライマ12とを介して第1の塗膜13に紫外線UVを照射することにより、第1の塗膜13を硬化させる。
なお、その第1の塗膜13と第1の樹脂シート11との密着力は、前述の第1のプライマ12によって高められる。
その後に、図3(a)に示すように、塗膜13から金型14を外すことにより、第1の塗膜13に流路3の一部を形成する。
次に、図3(b)に示す断面構造を得るまでの工程について説明する。
まず、第2の樹脂シート17、第2のプライマ18、及び紫外線硬化樹脂の第2の塗膜19をこの順に積層してなる積層体を用意し、その第2の塗膜19を第1の塗膜13に重ねる。
なお、第2の樹脂シート17の材料としては、第1の樹脂シート11と同様にPET等の透明な樹脂を使用し得る。また、第2のプライマ18は、第2の樹脂シート17と第2の塗膜19との密着力を高める機能を有する。
そして、図4に示すように、第2の樹脂シート17と第2のプライマ18とを介して第2の塗膜19に紫外線UVを照射して、第2の塗膜19を硬化させる。これにより、第2の塗膜19が第1の塗膜13に固着されると共に、これらの塗膜13、19を含む樹脂シート2内に前述の流路3が確定される。
この後は、流路3内を減圧しながら、その流路3の容積の半分程度の作動液を流路に注入する。作動液の注入や流路3の減圧は、前述の第1の注入孔3a(図1参照)や第2の注入孔3bから行われ、注入後にこれらの注入孔3a、3bは紫外線硬化樹脂で塞がれる。
以上により、この熱輸送デバイス1の基本構造が完成する。
このような熱輸送デバイスの製造方法によれば、流路3の下側と上側を画定するのに紫外線硬化樹脂の塗膜13、19を使用しており、これらの塗膜13、19を形成したり硬化させたりする工程が必要であり、これにより工程数の増大を招いてしまう。
また、紫外線硬化樹脂で注入孔3a、3bを塞ぐ際に、未硬化の紫外線硬化樹脂が作動液に溶け出し、作動液が変質してしまうという問題もある。
更に、各注入孔3a、3bは、流路3(図4参照)と同様に断面視で矩形状であるため、紫外線硬化樹脂で塞ごうとしても矩形状の四隅から空気が入ってしまい、これにより流路3内の圧力が上昇して熱輸送性能が低下してしまう。
以下に、この例よりも製造工程を簡略化し得る各実施形態について説明する。
(第1実施形態)
本実施形態では、以下のように熱輸送デバイスとして自励振動ヒートパイプを製造する。
本実施形態では、以下のように熱輸送デバイスとして自励振動ヒートパイプを製造する。
図5〜図8は、本実施形態に係る熱輸送デバイスの製造途中の断面図であり、図9〜図13はその平面図である。
まず、図5(a)に示すように、樹脂シート21として厚さが約0.05mmのPETシートを用意し、その上に金属層22としてスズ層を低温蒸着法で2μm〜3μm程度の厚さに形成する。その低温蒸着法においては、樹脂シート21の温度は240℃以下の低温とする。
蒸着時に樹脂シート21が受ける熱ダメージを抑制するために、金属層22の材料としては低融点金属を使用するのが好ましい。なお、本明細書における低融点金属は、融点が約350℃以下の金属を指す。
そのような低融点金属としては、前述のスズの他に、鉛、カドミウム、タリウム、ビスマス、インジウム、ナトリウム、及びカリウムがある。
なお、低温蒸着法に代えてめっき法により金属層22を形成してもよい。
また、樹脂シート21の材料は、非晶性樹脂や結晶性樹脂等の光学的に透明な材料であるのが好ましい。
このうち、非晶性樹脂としては、例えばPS(ポリスチレン)、LDPE(低密度ポリエチレン)、PC(ポリカーボネイト)、PMMA(ポリメタルリル酸メチル)、PAR(ポリアリレート)、PSF(ポリサルフォン)、PES(ポリエーテルサルフォン)等がある。
また、結晶性樹脂としては、例えば、PP・PE(ポリポロピレン・ポリエチレン)、PBT(ポリブチレンテレフタレート)、PET(ポリエチレンテレフタレート)、PA(ポリアミド)、POM(ポリアセタール)、PPS(ポリファニルサルファイド)等がある。
図9は、本工程を終了した後の樹脂シート21の平面図である。
図9に示すように、樹脂シート21は概略矩形状であって、後で流路が形成される予定領域Rを有する。
予定領域Rの幅W1や、隣接する予定領域R同士の間隔W2は特に限定されない。この例では幅W1と間隔W2の双方を約1mmとする。
また、樹脂シート21の平面形状は概略矩形状であって、その端部には二つの突起片21aが設けられており、当該突起21aに予定領域Rが延在する。
樹脂シート21の大きさは特に限定されず、この例では樹脂シート21の長辺の長さを約100mmとし、短辺の長さを約50mmとする。
次に、図5(b)に示す工程について説明する。
まず、上記のようにして金属層22が形成された二枚の樹脂シート21を積層し、それらの金属層22同士が密着した状態で下側の樹脂シート21をステージ101の上に載せる。
そして、上側の樹脂シート21を透明な石英板102で押圧しながら、石英板102と上側の樹脂シート21とを介して金属層22にレーザLを照射する。本実施形態では、各樹脂シート21の温度を室温(25℃)に維持しつつ、大気中でレーザLの照射を行う。
前述のように樹脂シート21は透明であるため、レーザLは樹脂シート21において顕著に減衰することなしに金属層22に到達する。なお、レーザLは上側の樹脂シート21から照射するので、下側の樹脂シート21は透明でなくてもよい。
また、レーザLを照射する部分は、流路を形成する予定領域Rの縁とする。更に、使用するレーザとしては例えばYEGレーザがある。
これにより、レーザLが照射された部分においては、上下の金属層22同士が溶着してなる溶着部22xが形成される。
特に、本実施形態では金属層22の材料として低融点金属を採用するため、レーザLで金属層22を溶融させるのに要する温度を低くでき、樹脂シート21が受ける熱ダメージを低減できる。
なお、レーザLによって金属層22を効率的に加熱するには、透明な樹脂シート21においてレーザLが減衰するのを防止するのが好ましく、そのためには樹脂シート21の材料としてその全光線透過率がなるべく高いものを使用するのが好ましい。例えば、PETのように全光線透過率が86%〜89%程度の材料で樹脂シート21を形成すれば、金属層22に到達するまでの間にレーザLが樹脂シート21内で大きく減衰することはない。
更に、金属層22の反射率が高いと、レーザLが金属層22に吸収され難くなるため金属層22を加熱するのが難しくなる。レーザLで金属層22を効率的に加熱するには、レーザLの吸収率が40%以上となるような低融点金属で金属層22を形成するのが好ましい。
なお、金属層22の吸収率はその表面状態にも依存する。次の表1は、波長が約1μmのYAGレーザの吸収率が40%以上となるような表面状態の低融点金属の一例である。
また、金属層22がレーザLを吸収し易くするために、樹脂シート21との界面における金属層22の表面を粗化してもよい。粗化に代えて、金属層22の表面を着色したり酸化したりしても、レーザLが金属層22に吸収され易くなる。
図10は、本工程を終了した後の樹脂シート21の平面図であり、前述の図5(b)は図10のI−I線に沿う断面図に相当する。
図10に示すように、本実施形態では、予定領域Rの縁に沿ってレーザLを走査することにより、当該領域Rの縁に沿って溶着部22xを線状に形成する。
次に、図6(a)に示す工程について説明する。
まず、上下の樹脂シート21の上下に治具103を配し、予定領域Rの横における各樹脂シート21をその治具103で押さえる。治具103の材料は特に限定されず、樹脂や金属で治具103を形成し得る。
そして、この状態で各樹脂シート21に横から力Fを加えて未溶着の部分におけるそれぞれの樹脂シート21を上下に離し、当該部分を流路25とする。なお、力Fを加えるには、例えば専用の治具で樹脂シート21を横から押せばよい。
このとき、治具103で各樹脂シート21を押さえているため、力Fによって樹脂シート21の全体が撓むのが防止され、作業性が向上する。
なお、作業性が問題にならない場合には治具103を用いなくてもよい。
また、力Fの大きさは特に限定されないが、各樹脂シート21が座屈して確実に流路25が形成される程度の大きさの力Fを加えるのが好ましい。そのような力Fの大きさは、次の式(1)から算出し得る。
式(1)は、1枚の樹脂シート21を座屈させるのに要する最低限の応力σを求める式である。以下ではその応力σを座屈応力と呼ぶ。
式(1)において、Eは樹脂シート21のヤング率であり、tは樹脂シート21の厚さである。また、vは樹脂シート21のポアソン比であり、aは予定領域Rの幅である。
例えば、ポリカーボネイトについての上記の各物性値はそれぞれE=24.5Pa、v=0.39である。厚さtを0.05mm、幅aを1mmとした場合、ポリカーボネイト性の樹脂シート21の座屈応力は5.9×104Paとなり、これに対応する力Fの大きさは0.60kg重となる。
図11は、本工程で形成された流路25の平面図であり、前述の図6(a)の流路の25断面図は図11のII−II線に沿う断面図に相当する。
図11に示すように、流路25は、互いに平行な複数の直線部25aと、各直線部25aの端部に設けられたU字形状のターン部25bとを有する。
前述の力Fは、直線部25aにおいて二枚の樹脂シート21を上下に離し易くするために、直線部25aの延在方向D1に垂直な方向D2から加えるのが好ましい。
なお、ターン部25bにおいては力Fが作用し難く樹脂シート21同士が離れにくくなるおそれがある。よって、ターン部25bにおける流路25の幅bを、直線部25aにおける流路25の幅aよりも広くすることで、ターン部25bにおいて上下の樹脂シート21同士を離れ易くするのが好ましい。
次に、図6(b)に示すように、治具103で各樹脂シート21を押さえつつ、炉の中で各樹脂シート21を130℃〜140℃程度にアニールする。これにより、各樹脂シート21が加熱により軟化するため、樹脂シート21が元のフラットな形状に戻り難くなり、流路25が潰れるのを防止できる。
なお、樹脂シート21の形が元に戻らないようにするには、本工程における加熱温度を樹脂シート21の熱変形温度以上とするのが好ましい。その熱変形温度を定める標準的な試験法としてはASTM D648やJIS 7191がある。
そして、104分〜116分程度の時間だけ樹脂シート21を加熱した後、室温(約25℃)にまで樹脂シート21を冷ます。なお、樹脂シート21の加熱時間はこれに限定されず、加熱の昇温速度に応じて適宜設定し得る。
その後に、図7に示すように、各樹脂シート21から治具103を外す。
このとき、上記のように樹脂シート21をアニールしたため、治具103を外しても樹脂シート21は元の形状に戻り難くなり、流路25が潰れるのを防止できる。
更に、樹脂シート21の外表面21bは、流路25に対応して畝状に盛り上がった状態となる。
図12は、本工程を終了した後の樹脂シート21の平面図であり、前述の図7は図12のIII−III線に沿う断面図に相当する。
図12に示すように、流路25の端部25zは前述の突起片21aに位置しており、その端部25zにおいて流路22は大気に解放された状態となっている。
この後は、その端部25zから流路25に作動液を封入する工程に移る。
その工程において、図8(a)、(b)を参照しながら説明する。
なお、図8(a)、(b)においては、図12のIV-IV線に沿う第1断面Aと、図12のV-V線に沿う第2断面Bとを併記する。
まず、図8(a)に示すように、不図示の真空ポンプを端部25zに接続し、その真空ポンプで流路25内を減圧する。
次いで、不図示の注射器等を用いて端部25zから流路25内に作動液Cを注入する。作動液Cの種類は特に限定されないが、オゾン破壊係数がゼロで地球温暖化係数も低いHFE等の環境に優しい液を作動液Cとして使用するのが好ましい。
また、作動液Cの注入量は、流路25の全体積の約半分程度とする。
次に、図8(b)に示すように、治具107を用いて端部25zを上下から潰し、上下の金属層22同士を密着させる。
そして、この状態を維持しつつ、端部25zにおける金属層22に樹脂シート21を介してレーザLを照射することにより、端部25zにおける上下の金属層22同士を溶着する。
なお、本工程で使用するレーザLとしては、図5(b)の工程と同様にYAGレーザがある。
これにより、レーザLが照射された部分においては、上下の金属層22同士が溶着してなる溶着部22xが形成される。
また、各樹脂シート21は元々はフラットな形状であったため、このように端部25zを潰すと、各金属層22が元のフラットな状態に戻って互いに良好に密着する。これにより、各金属層22同士を隙間なく溶着することができると共に、溶着時に外部から流路25に空気が入り難くなり、空気に起因して流路25の内部の圧力が上昇するのを防止できる。
更に、紫外線硬化樹脂等の樹脂で端部25zを塞ぐ場合には未硬化の樹脂との接触で作動液Cが変質してしまうが、本実施形態では樹脂を使用せずに端部25zを塞ぐので、作動液Cが変質するおそれもない。
図13は、本工程を終了した後の樹脂シート21の平面図である。
図13の点線円内に示すように、本実施形態では端部25zの全幅にわたって溶着部22xが形成され、これにより流路25内が気密にされる。
なお、上記のようにして作動液Cを注入する際は、二つの端部25zのうちの一方を空気穴として使用しながら他方の端部25zから作動液Cを注入すればよく、注入後に二つの端部25zは上記のように塞がれる。
以上により、本実施形態に係る熱輸送デバイス20の基本構造が完成する。
その熱輸送デバイス20の両端にはそれぞれ加熱部28と冷却部29とが設けられる。これらのうち、加熱部28にはCPU等の電子部品が熱的に接続され、冷却部29は大気に曝されて自然冷却される。
そして、加熱部28と冷却部29との間を何度も往復するように流路25が設けられており、その流路25内の作動液によって加熱部28から冷却部29に熱を移動することができる。
更に、その熱輸送デバイス20は、各樹脂シート21の厚さが約0.05mmと薄いために可撓性を有しており、スマートフォン等の電子機器の狭い空間内に熱輸送デバイス20を折り曲げて収納することができる。
上記した本実施形態によれば、レーザで各樹脂シート21を溶着した後に、樹脂シート21に横から力を加えて未溶着部分の各樹脂シート21を上下に離すことで簡単に流路25を形成できる。そのため、図2〜図4の例のように紫外線硬化樹脂の塗布や紫外線の照射を行う必要がなく、熱輸送デバイスの製造工程を簡略化することができる。
しかも、流路25の内部が上下の金属層22により気密にされるので、流路25に大気が浸入し難くなり、流路25内の大気が原因で作動液Cの気化が阻害されるのを防止できる。
(第2実施形態)
第1実施形態では、図6(b)の工程で樹脂シート21をアニールすることにより、樹脂シート21が元のフラットな状態に戻るのを防止した。本実施形態では、これとは別の方法を用いて樹脂シート21の形状が元に戻るのを防止する。
第1実施形態では、図6(b)の工程で樹脂シート21をアニールすることにより、樹脂シート21が元のフラットな状態に戻るのを防止した。本実施形態では、これとは別の方法を用いて樹脂シート21の形状が元に戻るのを防止する。
図14は、本実施形態に係る熱輸送デバイス40の平面図である。
なお、図14において、第1実施形態で説明したのと同じ要素には第1実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。
図14に示すように、本実施形態では、樹脂シート21の外周に弾性体リング41を嵌め、その弾性体リング41の収縮力Fを樹脂シート21に横から加える。弾性体リング41の材料は、収縮力Fを発揮する弾性体であれば特に限定されず、例えば合成ゴム等を弾性体リング41の材料として使用し得る。
図15は、図14のVI−VI線に沿う断面図である。
上記のように収縮力Fが樹脂シート21の横から加わることで、溶着部22xが形成されていない部分の各樹脂シート21が上下に離れ、当該部分に流路25を形成することができる。
上記した本実施形態によれば、弾性体リング41を嵌めている限り収縮力Fが樹脂シート21に作用し続けるため、樹脂シート21が元のフラットな形状に戻らず、流路25が潰れない。そのため、樹脂シート21が元のフラットな状態に戻るのを防止する目的で樹脂シート21をアニールする必要がなくなり、熱輸送デバイス40の製造工程を簡略化することができる。
(第3実施形態)
第1実施形態や第2実施形態では流路25を形成するために各樹脂シート21に力Fを加えたが、本実施形態では以下のようにして力Fを不要とする。
第1実施形態や第2実施形態では流路25を形成するために各樹脂シート21に力Fを加えたが、本実施形態では以下のようにして力Fを不要とする。
図16〜図17は、本実施形態に係る熱輸送デバイスの製造途中の断面図である。
なお、図16〜図17において、第1実施形態や第2実施形態で説明したのと同じ要素にはこれらの実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。
まず、第1実施形態の図5(a)と同じ工程を行うことにより、図16(a)に示すように二枚の樹脂シート21の各々の表面に金属層22としてスズ層を形成する。
但し、本実施形態では二枚の樹脂シート21の各々を熱膨張率が異なる材料から形成する。以下では熱膨張率として線膨張係数を採用する。
例えば、二枚の樹脂シート21のうち上側の樹脂シート21として厚さが約0.05mmで線膨張係数が66ppm℃-1のPCシートを使用し、下側の樹脂シート21として厚さが約0.05mmで線膨張係数が20ppm℃-1のPETシートを使用する。
なお、上側のPCシートのヤング率は24.5MPaであり、ポアソン比は0.39である。一方、下側のPETシートのヤング率は30.0MPaであり、ポアソン比は0.40である。
次に、図16(b)に示すように、金属層22同士が密着した状態で下側の樹脂シート21をステージ101の上に載せ、更に上側の樹脂シート21を透明な石英板102で押圧する。
そして、この状態で各樹脂シート21を不図示の恒温槽の中に入れることにより、各樹脂シート21を室温(25℃)よりもΔTだけ高い温度に加熱する。
このように加熱することで各樹脂シート21は熱膨張することになるが、その熱膨張により各樹脂シート21が伸長しきるまで加熱を続ける。
その後、石英板102と上側の樹脂シート21とを介して金属層22にレーザLを照射することにより、上下の金属層22同士を溶着させて溶着部22xを形成する。
なお、第1実施形態と同様に、レーザLを照射する部分は流路を形成する予定領域Rの縁であり、使用するレーザは例えばYEGレーザである。
続いて、図17に示すように、二枚の樹脂シート21を炉から取り出し、それらを室温(25℃)にまで冷ます。冷まし方は特に限定されず、例えば各樹脂シート21を大気中で自然冷却してもよいし、冷風等により各樹脂シート21を強制的に冷却してもよい。
ここで、各樹脂シート21の熱膨張率は前述のように異なるため、本工程では各樹脂シート21が異なる収縮量Δk1、Δk2で収縮する。
この例では上側の樹脂シート21の熱膨張率が下側の樹脂シート21のそれよりも大きいため、上側の樹脂シート21の収縮量Δk1は下側の樹脂シート21の収縮量Δk2よりも大きくなる。
各樹脂シート21は溶着部22xにおいて互いに留められているため、各収縮量Δk1、Δk2の相違を吸収するために上側の樹脂シート21には引っ張り応力が加わるのに対し、下側の樹脂シート21には圧縮応力が加わる。そして、これらの応力の違いに起因して下側の樹脂シート21に弛みができ、それにより未溶着の部分における各樹脂シート21が上下に離れて当該部分に流路25ができる。
なお、樹脂シート21の弛みは、加熱状態にあった樹脂シート21が室温にまで冷却されるときの温度差ΔTが大きいほど大きくなる。
特に、冷却途中で下側の樹脂シート21にその座屈応力を超えた圧縮応力が加わる程度に温度差ΔTを大きくすると、冷却の際に下側の樹脂シート21が座屈して大きな流路25を形成することができる。以下にそのような温度差ΔTについて試算する。試算に際しては、以下の各樹脂シート21のヤング率の差ΔE、線膨張係数の差Δα、下側の樹脂シート21の座屈応力σを使用する。
・ΔE=30.0MPa−24.5Mpa=5.5×106Pa
・Δα=66ppm−20ppm・℃-1=46×10-16℃-1
・σ=5.2×104Pa
下側の樹脂シート21が座屈する場合にはΔT×ΔE×Δα=σという式が成り立ち、この式に上記の各パラメータを代入すると、ΔT=2.1℃となる。
・ΔE=30.0MPa−24.5Mpa=5.5×106Pa
・Δα=66ppm−20ppm・℃-1=46×10-16℃-1
・σ=5.2×104Pa
下側の樹脂シート21が座屈する場合にはΔT×ΔE×Δα=σという式が成り立ち、この式に上記の各パラメータを代入すると、ΔT=2.1℃となる。
この後は、第1実施形態の図8(a)、(b)と同じ工程を行うことにより流路25に作動液を封入し、本実施形態に係る熱輸送デバイス50の基本構造を完成させる。
以上説明した本実施形態によれば、各樹脂シート21の熱膨張率が異なるため、各樹脂シート21を冷ますことで図17のように各樹脂シート21が異なる収縮量Δk1、Δk2で収縮して、流路25が自然に出来上がる。そのため、第1実施形態とは異なり、流路25を形成するために各樹脂シート21に横から力を加える必要がなく、工程数の簡略化が図られる。
(第4実施形態)
図18は、本実施形態に係る熱輸送デバイス60の断面図である。なお、図18において、第1〜第3実施形態で説明したのと同じ要素にはこれらの実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。
図18は、本実施形態に係る熱輸送デバイス60の断面図である。なお、図18において、第1〜第3実施形態で説明したのと同じ要素にはこれらの実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。
この熱輸送デバイス60は、第1〜第3実施形態と同様に樹脂シート21を積層してなる自励振動ヒートパイプである。
但し、本実施形態では、第1〜第3実施形態とは異なり、上下の樹脂シート21の各々の金属層22の材料として異なるものを使用する。
金属層22の材料は、スズ、鉛、カドミウム、タリウム、ビスマス、インジウム、ナトリウム、及びカリウム等の低融点金属であって、これらから任意に選択した二つの金属のうちの一方を上側の金属層22の材料とし、他方を下側の金属層22の材料とし得る。
また、上下の金属層22の一方を前述の低融点金属とし、他方を低融点金属以外の金属としてもよい。そのような低融点金属以外の金属としては、例えば、アンチモン、亜鉛、マグネシウム、及び金等がある。
このように異種の材料で各金属層22を形成すると、これらの金属層22の融点よりも低い温度で各金属層22同士の合金化が進む。そのため、各金属層22として同一の材料を用いる場合と比較して、レーザLによる金属層22の加熱温度を低くしても各金属層22に溶着部22xを形成することができ、金属層22の周囲の樹脂シート21が受ける熱的なダメージを緩和できる。
なお、本実施形態において形成される溶着部22xの材料は、各金属層22の材料からなる二元共晶合金となる。
図19は、二元共晶合金の主成分金属と添加金属の組み合わせと、その組み合わせで得られた二元共晶合金の融点の一例を示す図である。
以上説明した本実施形態によれば、上下の金属層22を異なる材料から形成したため、各金属層22の材料が同一の場合よりレーザによる加熱温度を低くしても各金属層22を溶着できる。
(第5実施形態)
本実施形態では、第1実施形態に係る熱輸送デバイス20を備えた電子機器について説明する。
本実施形態では、第1実施形態に係る熱輸送デバイス20を備えた電子機器について説明する。
図20は、本実施形態に係る電子機器70の平面図である。
なお、図20において、第1実施形態で説明したのと同じ要素には第1実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。
この電子機器70は、スマートフォン等のモバイル機器であって、筐体71とその中に収容された熱輸送デバイス20とを有する。
筐体71の内部にはCPU等の電子部品72が収容されており、その電子部品72が熱輸送デバイス20の加熱部28に固着される。一方、熱輸送デバイス20の冷却部29は空冷方式により冷却される。
このような電子機器30によれば、第1実施形態のように製造工程が簡略化された熱輸送デバイス70によりコストダウンを図ることができる。
なお、上記では第1実施形態に係る熱輸送デバイス20を備えた電子機器70について説明したが、第2〜第4実施形態に係る熱輸送デバイスを電子機器70に設けてもよい。
以上説明した各実施形態に関し、更に以下の付記を開示する。
(付記1) 少なくとも一方が透明な二枚の樹脂シートの各々の表面に金属層を形成する工程と、
二枚の前記樹脂シートの各々の金属層同士を密着させながら、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、
前記金属層同士を溶着した後、二枚の前記樹脂シートに横から力を加えて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、
前記流路に作動液を封入する工程と、
を有することを特徴とする熱輸送デバイスの製造方法。
二枚の前記樹脂シートの各々の金属層同士を密着させながら、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、
前記金属層同士を溶着した後、二枚の前記樹脂シートに横から力を加えて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、
前記流路に作動液を封入する工程と、
を有することを特徴とする熱輸送デバイスの製造方法。
(付記2) 前記未溶着の部分を前記流路にする工程の後、二枚の前記樹脂シートの各々を加熱する工程を更に有することを特徴とする付記1に記載の熱輸送デバイスの製造方法。
(付記3) 前記未溶着の部分を前記流路にする工程は、前記樹脂シートの外周に弾性体リングを嵌め、該弾性体リングの収縮力を二枚の前記樹脂シートに横から加えることにより行われることを特徴とする付記1に記載の熱輸送デバイスの製造方法。
(付記4) 前記未溶着の部分を前記流路にする工程は、前記流路の横における二枚の前記樹脂シートを上下から押さえながら行われることを特徴とする付記1に記載の熱輸送デバイスの製造方法。
(付記5) 少なくとも一方が透明であって、熱膨張率が異なる二枚の樹脂シートの各々の表面に金属層を形成する工程と、
二枚の前記樹脂シートを加熱しながら、前記樹脂シートの各々の金属層同士を密着させて、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、
前記金属層同士を溶着した後、二枚の前記樹脂シートを冷ますことにより、該樹脂シートの各々を異なる収縮量で収縮させて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、
前記流路に作動液を封入する工程と、
を有することを特徴とする熱輸送デバイスの製造方法。
二枚の前記樹脂シートを加熱しながら、前記樹脂シートの各々の金属層同士を密着させて、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、
前記金属層同士を溶着した後、二枚の前記樹脂シートを冷ますことにより、該樹脂シートの各々を異なる収縮量で収縮させて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、
前記流路に作動液を封入する工程と、
を有することを特徴とする熱輸送デバイスの製造方法。
(付記6) 前記流路は、前記力の方向に垂直な方向に延びる直線部と、前記直線部の端部に設けられたターン部とを有し、
前記ターン部における前記流路の幅が、前記直線部における前記流路の幅よりも広いことを特徴とする付記1乃至付記5のいずれかに記載の熱輸送デバイスの製造方法。
前記ターン部における前記流路の幅が、前記直線部における前記流路の幅よりも広いことを特徴とする付記1乃至付記5のいずれかに記載の熱輸送デバイスの製造方法。
(付記7) 前記流路に作動液を封入する工程は、
前記流路内を減圧する工程と、
前記流路の端部から前記流路内に前記作動液を注入する工程と、
前記作動液を注入する工程の後、前記端部を上下から潰しながら、前記端部における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記端部における前記金属層同士を溶着する工程とを有することを特徴とする付記1乃至付記6のいずれかに記載の熱輸送デバイスの製造方法。
前記流路内を減圧する工程と、
前記流路の端部から前記流路内に前記作動液を注入する工程と、
前記作動液を注入する工程の後、前記端部を上下から潰しながら、前記端部における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記端部における前記金属層同士を溶着する工程とを有することを特徴とする付記1乃至付記6のいずれかに記載の熱輸送デバイスの製造方法。
(付記8) 前記金属層の材料は低融点金属であることを特徴とする付記1乃至付記7のいずれかに記載の熱輸送デバイスの製造方法。
(付記9) 二枚の前記樹脂シートのうち、一方の前記樹脂シートに形成された前記金属層と、他方の前記樹脂シートに形成された金属層とは材料が異なることを特徴とする付記1乃至付記8のいずれかに記載の熱輸送デバイスの製造方法。
(付記10) 少なくとも一方が透明であり、各々の表面に形成された金属層同士が流路の縁において溶着されて、未溶着の部分が上下に離間して前記流路とされた二枚の樹脂シートと、
前記流路に封入された作動液と、
を有することを特徴とする熱輸送デバイス。
前記流路に封入された作動液と、
を有することを特徴とする熱輸送デバイス。
(付記11) 前記樹脂シートの外表面が、前記流路に対応して畝状に盛り上がっていることを特徴とする付記10に記載の熱輸送デバイス。
(付記12) 電子部品と、
前記電子部品に固着された熱輸送デバイスとを有し、
前記熱輸送デバイスが、
少なくとも一方が透明であり、各々の表面に形成された金属層同士が流路の縁において溶着されて、未溶着の部分が上下に離間して前記流路とされた二枚の樹脂シートと、
前記流路に封入された作動液と、
を有することを特徴とする電子機器。
前記電子部品に固着された熱輸送デバイスとを有し、
前記熱輸送デバイスが、
少なくとも一方が透明であり、各々の表面に形成された金属層同士が流路の縁において溶着されて、未溶着の部分が上下に離間して前記流路とされた二枚の樹脂シートと、
前記流路に封入された作動液と、
を有することを特徴とする電子機器。
1…自励振動ヒートパイプ、2…樹脂シート、3…流路、3a、3b…第1及び第2の注入孔、4、28…加熱部、5、29…冷却部、11…第1の樹脂シート、12…第1のプライマ、13…第1の塗膜、14…金型、14a…凹凸面、17…第2の樹脂シート、18…第2のプライマ、19…第2の塗膜、20、40、50、60…熱輸送デバイス、21…樹脂シート、21a…突起片、21b…外表面、22…金属層、22x…溶着部、25…流路、25a…直線部、25b…ターン部、25z…端部、41…弾性体リング、70…電子機器、71…筐体、72…電子部品、101…ステージ、102…石英板、103…治具、L…レーザ。
Claims (7)
- 少なくとも一方が透明な二枚の樹脂シートの各々の表面に金属層を形成する工程と、
二枚の前記樹脂シートの各々の金属層同士を密着させながら、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、
前記金属層同士を溶着した後、二枚の前記樹脂シートに横から力を加えて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、
前記流路に作動液を封入する工程と、
を有することを特徴とする熱輸送デバイスの製造方法。 - 前記未溶着の部分を前記流路にする工程の後、二枚の前記樹脂シートの各々を加熱する工程を更に有することを特徴とする請求項1に記載の熱輸送デバイスの製造方法。
- 前記未溶着の部分を前記流路にする工程は、前記流路の横における二枚の前記樹脂シートを上下から押さえながら行われることを特徴とする請求項1に記載の熱輸送デバイスの製造方法。
- 少なくとも一方が透明であって、熱膨張率が異なる二枚の樹脂シートの各々の表面に金属層を形成する工程と、
二枚の前記樹脂シートを加熱しながら、前記樹脂シートの各々の金属層同士を密着させて、流路を形成する予定領域の縁における前記金属層に透明な前記樹脂シートを介してレーザを照射することにより、前記樹脂シートの各々の前記金属層同士を溶着する工程と、
前記金属層同士を溶着した後、二枚の前記樹脂シートを冷ますことにより、該樹脂シートの各々を異なる収縮量で収縮させて未溶着の部分における各々の前記樹脂シートを上下に離し、当該部分を前記流路にする工程と、
前記流路に作動液を封入する工程と、
を有することを特徴とする熱輸送デバイスの製造方法。 - 前記流路は、前記力の方向に垂直な方向に延びる直線部と、前記直線部の端部に設けられたターン部とを有し、
前記ターン部における前記流路の幅が、前記直線部における前記流路の幅よりも広いことを特徴とする請求項1乃至請求項4のいずれか1項に記載の熱輸送デバイスの製造方法。 - 少なくとも一方が透明であり、各々の表面に形成された金属層同士が流路の縁において溶着されて、未溶着の部分が上下に離間して前記流路とされた二枚の樹脂シートと、
前記流路に封入された作動液と、
を有することを特徴とする熱輸送デバイス。 - 電子部品と、
前記電子部品に固着された熱輸送デバイスとを有し、
前記熱輸送デバイスが、
少なくとも一方が透明であり、各々の表面に形成された金属層同士が流路の縁において溶着されて、未溶着の部分が上下に離間して前記流路とされた二枚の樹脂シートと、
前記流路に封入された作動液と、
を有することを特徴とする電子機器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014192309A JP2016061538A (ja) | 2014-09-22 | 2014-09-22 | 熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014192309A JP2016061538A (ja) | 2014-09-22 | 2014-09-22 | 熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016061538A true JP2016061538A (ja) | 2016-04-25 |
Family
ID=55795893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014192309A Withdrawn JP2016061538A (ja) | 2014-09-22 | 2014-09-22 | 熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016061538A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198350A1 (ja) * | 2017-04-28 | 2018-11-01 | 株式会社村田製作所 | ベーパーチャンバー |
JP2018185094A (ja) * | 2017-04-26 | 2018-11-22 | レノボ・シンガポール・プライベート・リミテッド | プレート型熱輸送装置、電子機器及びプレート型熱輸送装置の製造方法 |
-
2014
- 2014-09-22 JP JP2014192309A patent/JP2016061538A/ja not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018185094A (ja) * | 2017-04-26 | 2018-11-22 | レノボ・シンガポール・プライベート・リミテッド | プレート型熱輸送装置、電子機器及びプレート型熱輸送装置の製造方法 |
US10677539B2 (en) | 2017-04-26 | 2020-06-09 | Lenovo (Singapore) Pte Ltd | Plate-type heat transport device |
WO2018198350A1 (ja) * | 2017-04-28 | 2018-11-01 | 株式会社村田製作所 | ベーパーチャンバー |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018274837B2 (en) | Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding | |
KR101801823B1 (ko) | 폴리머 기반 진동형 히트 파이프 및 제작방법 | |
KR101528034B1 (ko) | 표시 장치의 제조 방법 | |
WO2008120452A1 (ja) | 電子デバイスおよびその製造方法 | |
KR101395520B1 (ko) | 반도체 수지 몰드용 이형 필름 | |
CN106211701B (zh) | 薄型散热片及其制作方法 | |
MY150139A (en) | Laminated body, method of manufacturing substrate, substrate and semiconductor device | |
JP2016061538A (ja) | 熱輸送デバイス、熱輸送デバイスの製造方法、及び電子機器 | |
US20140113116A1 (en) | Attaching Window Assembly Using Optical Welding | |
US20140138023A1 (en) | Method and device for welding thermoplastic resin articles | |
JP2014103109A5 (ja) | ||
TW200620730A (en) | Method for fabricating organic electroluminescence device | |
SG160302A1 (en) | Method for manufacturing semiconductor substrate | |
JP2016035357A (ja) | 熱輸送デバイスとその製造方法、及び電子機器 | |
JP2017224573A5 (ja) | ||
JP2018071884A (ja) | 自励振動ヒートパイプ及び電子機器 | |
JP2007036130A (ja) | 熱膨張係数の差を利用した基板接合方法及び装置 | |
US8895451B2 (en) | Method for etching micro-electrical films using a laser beam | |
JP2009274067A5 (ja) | ||
JP2016533040A5 (ja) | ||
CN109712875A (zh) | 晶圆直接键合方法 | |
JP5535262B2 (ja) | 光学部品の接着方法及び光学装置 | |
KR102073377B1 (ko) | 플렉서블 디스플레이의 형상 제작 장치 및 방법 | |
JP2009125963A (ja) | 熱可塑性樹脂部材の溶着方法 | |
JP2013022804A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170605 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20171225 |