JP2016060925A - Steel sheet for vessel, and production therefor - Google Patents

Steel sheet for vessel, and production therefor Download PDF

Info

Publication number
JP2016060925A
JP2016060925A JP2014187701A JP2014187701A JP2016060925A JP 2016060925 A JP2016060925 A JP 2016060925A JP 2014187701 A JP2014187701 A JP 2014187701A JP 2014187701 A JP2014187701 A JP 2014187701A JP 2016060925 A JP2016060925 A JP 2016060925A
Authority
JP
Japan
Prior art keywords
component
layer
steel plate
containers
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014187701A
Other languages
Japanese (ja)
Other versions
JP6156299B2 (en
Inventor
幹人 須藤
Mikihito Sudo
幹人 須藤
祐介 中川
Yusuke Nakagawa
祐介 中川
安秀 大島
Yasuhide Oshima
安秀 大島
威 鈴木
Takeshi Suzuki
威 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014187701A priority Critical patent/JP6156299B2/en
Publication of JP2016060925A publication Critical patent/JP2016060925A/en
Application granted granted Critical
Publication of JP6156299B2 publication Critical patent/JP6156299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for a vessel, which is excellent in corrosion resistance, and a manufacturing method therefor.SOLUTION: A steel sheet for a vessel comprises, in at least a portion of the surface of the steel sheet: a plated sheet steel having a plated layer composed of, at least one layer selected from the group composed of a Ni layer, a Sn layer, a Ni-Fe alloy layer, a Fe-Sn-Ni alloy layer and a Fe-Sn alloy layer; and a membrane arranged on the surface of said plated sheet steel on the side of said plating layer, wherein said membrane contains Ti and has a coating weight of Ti conversion of 1.0 mg/mor more and less than 60.0 mg/min the Ti conversion for one side of said plated sheet metal, and wherein said membrane contains in total at least one kind selected from the group consisting of K, Na, Mg and Ca at a mass ratio of 1.0×10to 1.0×10as a mass ratio to Ti in total.SELECTED DRAWING: None

Description

本発明は、容器用鋼板およびその製造方法に関する。   The present invention relates to a steel plate for containers and a method for producing the same.

缶等の容器に用いられる鋼板(容器用鋼板)として、例えば、特許文献1には、「鋼板の少なくとも片面に、Ni層、Sn層、Fe−Ni合金層、Fe−Sn合金層およびFe−Ni−Sn合金層のうちから選ばれた少なくとも1層からなる耐食性皮膜を有し、該耐食性皮膜上に、Tiを含み、さらにCo、Fe、Ni、V、Cu、MnおよびZnのうちから選ばれた少なくとも1種をその合計でTiに対する質量比として0.01〜10含有する密着性皮膜を有することを特徴とする表面処理鋼板」が開示されている([請求項1])。   As a steel plate (container steel plate) used for a container such as a can, for example, Patent Document 1 discloses that “at least one surface of a steel plate is Ni layer, Sn layer, Fe—Ni alloy layer, Fe—Sn alloy layer and Fe— It has a corrosion-resistant film composed of at least one layer selected from Ni-Sn alloy layers, contains Ti on the corrosion-resistant film, and is further selected from Co, Fe, Ni, V, Cu, Mn and Zn. A surface-treated steel sheet having an adhesive film containing 0.01 to 10 as a total mass ratio of at least one of the above-described materials is disclosed ([Claim 1]).

特開2010−31348号公報JP 2010-31348 A

本発明者らが、特許文献1に記載された容器用鋼板(表面処理鋼板)について、検討した結果、耐食性が劣る場合があることが分かった。具体的には、PETフィルムをラミネートした状態および塗料を塗装した状態で、容器用鋼板を酸性水溶液中に浸漬した際の傷部(地鉄(鋼板)まで到達する傷)の耐食性(それぞれ「フィルム貼付後耐食性」および「塗装後耐食性」ともいう)が不十分となる場合があることが分かった。   As a result of studying the steel plate for containers (surface-treated steel plate) described in Patent Document 1, the present inventors have found that the corrosion resistance may be inferior. Specifically, with the PET film laminated and the paint applied, the corrosion resistance of the scratches (scratches reaching the ground iron (steel plate)) when the steel plate for containers is immersed in an acidic aqueous solution (each “film”) It was found that “corrosion resistance after application” and “corrosion resistance after painting”) may be insufficient.

本発明は、以上の点を鑑みてなされたものであり、耐食性に優れる容器用鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of the above point, and it aims at providing the steel plate for containers which is excellent in corrosion resistance, and its manufacturing method.

本発明者らは、下記の構成を採用することで、上記目的を達成されることを見出した。
すなわち、本発明は、以下の(1)〜(7)を提供する。
(1)鋼板の表面の少なくとも一部に、Ni層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層からなる群から選ばれる少なくとも1層を含むめっき層を有するめっき鋼板と、上記めっき鋼板の上記めっき層側の表面上に配置された皮膜と、を有する容器用鋼板であって、上記皮膜は、Tiを含有し、上記めっき鋼板の片面あたりのTi換算の付着量が1.0mg/m2以上60.0mg/m2未満であり、上記皮膜は、K、Na、MgおよびCaからなる群から選ばれる少なくとも1種を、その合計でTiに対する質量比として、1.0×10-4〜1.0×10-2含有する、容器用鋼板。
(2)上記皮膜は、さらに、Ni、CoおよびMnからなる群から選ばれる少なくとも1種を、その合計でTiに対する質量比として、0.01〜0.10含有する、上記(1)に記載の容器用鋼板。
(3)上記(1)に記載の容器用鋼板を得る、容器用鋼板の製造方法であって、鋼板の表面の少なくとも一部に、Ni層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層からなる群から選ばれる少なくとも1層を含むめっき層を有するめっき鋼板を、Ti成分と、K成分、Na成分、Mg成分およびCa成分からなる群から選ばれる少なくとも1種であるM1成分とを含有する処理液中で陰極電解処理を施すことにより、上記皮膜を形成する、容器用鋼板の製造方法。
(4)上記処理液における上記Ti成分の含有量が、Ti換算した量で、0.01〜0.10mol/Lであり、上記処理液における上記M1成分の含有量が、金属換算した量で、上記Ti成分の含有量に対するモル比(M1/Ti)で、2.0〜30.0である、上記(3)に記載の容器用鋼板の製造方法。
(5)上記(2)に記載の容器用鋼板を得る、容器用鋼板の製造方法であって、鋼板の表面の少なくとも一部に、Ni層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層からなる群から選ばれる少なくとも1層を含むめっき層を有するめっき鋼板を、Ti成分と、K成分、Na成分、Mg成分およびCa成分からなる群から選ばれる少なくとも1種であるM1成分と、Ni成分、Co成分およびMn成分からなる群から選ばれる少なくとも1種であるM2成分とを含有する処理液中で陰極電解処理を施すことにより、上記皮膜を形成する、容器用鋼板の製造方法。
(6)上記処理液における上記Ti成分の含有量が、Ti換算した量で、0.01〜0.10mol/Lであり、上記処理液における上記M1成分の含有量が、金属換算した量で、上記Ti成分の含有量に対するモル比(M1/Ti)で、2.0〜30.0であり、上記処理液における上記M2成分の含有量が、金属換算した量で、上記Ti成分の含有量に対するモル比(M2/Ti)で、0.1〜1.0である、上記(5)に記載の容器用鋼板の製造方法。
(7)上記陰極電解処理を施す際の電解電流密度が、20.0A/dm2以上である、上記(3)〜(6)のいずれかに記載の容器用鋼板の製造方法。
The present inventors have found that the above object can be achieved by adopting the following configuration.
That is, the present invention provides the following (1) to (7).
(1) A plating layer including at least one layer selected from the group consisting of a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer on at least a part of the surface of the steel plate. And a coating disposed on the surface of the plated steel sheet on the plating layer side, wherein the coating contains Ti, and Ti per side of the plated steel sheet adhesion amount conversion is less than 1.0 mg / m 2 or more 60.0 mg / m 2, the coating mass K, Na, at least one selected from the group consisting of Mg and Ca, for Ti in the total Steel plate for containers containing 1.0 × 10 −4 to 1.0 × 10 −2 as a ratio.
(2) The film according to (1), further containing at least one selected from the group consisting of Ni, Co, and Mn in a total mass ratio of 0.01 to 0.10 with respect to Ti. Steel plate for containers.
(3) A method for producing a steel plate for containers according to (1) above, wherein a Ni layer, a Sn layer, a Ni—Fe alloy layer, Fe—Sn is formed on at least a part of the surface of the steel plate. A plated steel sheet having a plating layer including at least one layer selected from the group consisting of a Ni alloy layer and a Fe—Sn alloy layer is selected from the group consisting of a Ti component, a K component, a Na component, a Mg component, and a Ca component. by performing cathodic electrolysis treatment in the processing solution containing the M 1 component is at least one, to form the coating method for producing a container for steel.
The amount (4) The content of the Ti component in the processing liquid, in the amounts terms of Ti, a 0.01~0.10mol / L, the content of the M 1 component in the processing liquid, that is in terms of metal in a molar ratio to the content of the Ti component in (M 1 / Ti), is from 2.0 to 30.0, a manufacturing method of a container for a steel sheet according to (3).
(5) A method for producing a container steel plate according to the above (2), wherein a Ni layer, a Sn layer, a Ni-Fe alloy layer, Fe-Sn is formed on at least a part of the surface of the steel plate. A plated steel sheet having a plating layer including at least one layer selected from the group consisting of a Ni alloy layer and a Fe—Sn alloy layer is selected from the group consisting of a Ti component, a K component, a Na component, a Mg component, and a Ca component. By performing cathodic electrolysis treatment in a treatment liquid containing at least one M 1 component and at least one M 2 component selected from the group consisting of a Ni component, a Co component, and a Mn component, The manufacturing method of the steel plate for containers which forms.
(6) The content of the Ti component in the treatment liquid is an amount in terms of Ti and is 0.01 to 0.10 mol / L, and the content of the M 1 component in the treatment liquid is an amount in terms of metal. The molar ratio (M 1 / Ti) to the content of the Ti component is 2.0 to 30.0, and the content of the M 2 component in the treatment liquid is an amount in terms of metal, and the Ti in a molar ratio with respect to the content of the component (M 2 / Ti), 0.1 to 1.0, the manufacturing method of the container for steel sheet according to (5).
(7) The method for producing a steel plate for a container according to any one of (3) to (6), wherein an electrolytic current density at the time of performing the cathodic electrolysis treatment is 20.0 A / dm 2 or more.

本発明によれば、耐食性に優れる容器用鋼板およびその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate for containers excellent in corrosion resistance and its manufacturing method can be provided.

[容器用鋼板]
本発明の容器用鋼板は、概略的には、めっき鋼板と、めっき鋼板のめっき層側の表面上に配置された特定の皮膜と、を有する。本発明の容器用鋼板は、耐食性(フィルム貼付後耐食性および塗装後耐食性)が優れる。
まず、以下に、めっき鋼板および皮膜の具体的な態様について詳述する。
[Steel plate for containers]
The steel plate for containers of the present invention schematically has a plated steel plate and a specific film disposed on the surface of the plated steel plate on the plating layer side. The container steel plate of the present invention is excellent in corrosion resistance (corrosion resistance after film application and corrosion resistance after coating).
First, specific embodiments of the plated steel sheet and the coating will be described in detail below.

〔めっき鋼板〕
めっき鋼板は、鋼板の表面の少なくとも一部を覆うめっき層を有する。
素材の鋼板としては、一般的な缶用の鋼板を使用できる。めっき層は、連続層であってもよいし、不連続の島状であってもよい。また、めっき層は、鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。めっき層の形成は、含有される金属元素に応じた公知の方法で行える。
以下に、鋼板およびめっき層の好適態様について詳述する。
[Plated steel sheet]
The plated steel sheet has a plating layer that covers at least a part of the surface of the steel sheet.
As a raw steel plate, a general steel plate for cans can be used. The plating layer may be a continuous layer or a discontinuous island shape. Moreover, the plating layer should just be provided in the at least single side | surface of the steel plate, and may be provided in both surfaces. The plating layer can be formed by a known method according to the contained metal element.
Below, the suitable aspect of a steel plate and a plating layer is explained in full detail.

〈鋼板〉
鋼板の種類は特に限定されるものではなく、通常、容器材料として使用される鋼板(例えば、低炭素鋼板、極低炭素鋼板)を用いることができる。この鋼板の製造方法、材質なども特に限定されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。
鋼板は、必要に応じて、その表面にニッケル(Ni)含有層を形成したものを用い、このNi含有層上に後述するSn層を含むめっき層を形成してもよい。Ni含有層を有する鋼板を用いてSnめっきを施すことにより、島状Snを含むめっき層を形成することでき、溶接性が向上する。
Ni含有層としてはニッケルが含まれていればよく、例えば、Niめっき層(Ni層)、Ni−Fe合金層などが挙げられる。
鋼板にNi含有層を付与する方法は特に限定されず、例えば、公知の電気めっきなどの方法が挙げられる。また、Ni含有層としてNi−Fe合金層を付与する場合、電気めっきなどにより鋼板表面上にNi付与後、焼鈍することにより、Ni拡散層を配位させ、Ni−Fe合金層を形成できる。
Ni含有層中のNi量は特に限定されず、片面当たりのNi換算量として50〜2000mg/m2が好ましい。
<steel sheet>
The kind of steel plate is not particularly limited, and a steel plate (for example, a low carbon steel plate or an extremely low carbon steel plate) that is usually used as a container material can be used. The manufacturing method and material of the steel plate are not particularly limited, and the steel plate is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. from a normal slab manufacturing process.
If necessary, a steel sheet having a nickel (Ni) -containing layer formed on the surface thereof may be used, and a plated layer including an Sn layer described later may be formed on the Ni-containing layer. By performing Sn plating using a steel sheet having a Ni-containing layer, a plating layer containing island-shaped Sn can be formed, and weldability is improved.
The Ni-containing layer only needs to contain nickel, and examples thereof include a Ni plating layer (Ni layer) and a Ni—Fe alloy layer.
The method for applying the Ni-containing layer to the steel sheet is not particularly limited, and examples thereof include a known method such as electroplating. Moreover, when providing a Ni-Fe alloy layer as a Ni containing layer, a Ni diffused layer can be coordinated by forming Ni on a steel plate surface by electroplating etc., and annealing, thereby forming a Ni-Fe alloy layer.
The amount of Ni in the Ni-containing layer is not particularly limited, and is preferably 50 to 2000 mg / m 2 as the Ni conversion amount per one side.

〈めっき層〉
めっき鋼板は、鋼板表面の少なくとも一部に、Ni層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層からなる群から選ばれる少なくとも1層を含むめっき層を有する。このめっき層は鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。また、めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。
<Plating layer>
The plated steel sheet includes a plated layer including at least one layer selected from the group consisting of a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer on at least a part of the surface of the steel plate. Have The plating layer only needs to be provided on at least one side of the steel plate, and may be provided on both sides. Moreover, a plating layer is a layer which covers at least one part on the steel plate surface, A continuous layer may be sufficient and a discontinuous island shape may be sufficient as it.

めっき層の鋼板片面当たりのSn付着量は、0.1〜15.0g/m2が好ましく、0.2〜15.0g/m2がより好ましく、1.0〜15.0g/m2がさらに好ましい。
なお、Sn付着量は、電量法または蛍光X線により表面分析して測定できる。蛍光X線の場合、Sn量既知のSn付着量サンプルを用いて、Sn量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にSn量を特定する。
0.1-15.0 g / m < 2 > is preferable, as for Sn adhesion amount per one side of the steel plate of a plating layer, 0.2-15.0 g / m < 2 > is more preferable, and 1.0-15.0 g / m < 2 > is. Further preferred.
In addition, Sn adhesion amount can be measured by surface analysis by coulometric method or fluorescent X-ray. In the case of fluorescent X-rays, a calibration curve relating to the Sn amount is specified in advance using a Sn adhesion amount sample with a known Sn amount, and the Sn amount is relatively specified using the calibration curve.

めっき層としては、Snをめっきして得られるSn層からなるめっき層のほか、Snめっき後通電加熱などによりSnを加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe−Sn合金層が一部形成されためっき層も挙げられる。
また、めっき層としては、Ni含有層を表面に有する鋼板に対してSnめっきを行い、さらに通電加熱などによりSnを加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe−Sn−Ni合金層、Fe−Sn合金層などが一部形成されためっき層も挙げられる。
なお、本発明においては、上述したNi含有層(Ni層、Ni−Fe合金層)も、めっき鋼板のめっき層に含まれるものとする。
As a plating layer, in addition to a plating layer composed of an Sn layer obtained by plating Sn, the lowermost layer (Sn layer / steel plate interface) of the Sn layer obtained by heating and melting Sn by energization heating after Sn plating, etc. A plating layer in which a part of the Fe—Sn alloy layer is formed is also included.
Moreover, as a plating layer, Sn plating is performed on a steel sheet having a Ni-containing layer on the surface, and Sn is heated and melted by current heating or the like, and is formed on the lowermost layer (Sn layer / steel sheet interface) of the Sn layer. Examples thereof include a plating layer in which an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, etc. are partially formed.
In the present invention, the aforementioned Ni-containing layer (Ni layer, Ni—Fe alloy layer) is also included in the plated layer of the plated steel sheet.

めっき層の製造方法としては、周知の方法(例えば、電気めっき法や溶融したSnに浸漬してめっきする方法)が挙げられる。
例えば、フェノールスルフォン酸Snめっき浴、メタンスルフォン酸Snめっき浴、またはハロゲン系Snめっき浴を用い、片面あたりの付着量が所定量(例えば、2.8g/m2)となるように鋼板表面にSnを電気めっきした後、Snの融点(231.9℃)以上の温度で加熱溶融処理を行って、Sn単体のめっき層(Sn層)の最下層(Sn層/鋼板界面)にFe−Sn合金層を形成しためっき層を製造できる。加熱溶融処理を省略した場合、Sn単体のめっき層(Sn層)を製造できる。
また、鋼板がその表面上にNi含有層を有する場合、Ni含有層上にSnめっき後、加熱溶融処理を行うと、Sn単体のめっき層(Sn層)の最下層(Sn層/鋼板界面)にFe−Sn−Ni合金層、Fe−Sn合金層などが形成される。
Examples of the method for producing the plating layer include a known method (for example, an electroplating method or a method of plating by immersing in molten Sn).
For example, a phenol sulfonic acid Sn plating bath, a methane sulfonic acid Sn plating bath, or a halogen-based Sn plating bath is used, and the adhesion amount per one surface is set to a predetermined amount (for example, 2.8 g / m 2 ). After Sn is electroplated, it is heated and melted at a temperature equal to or higher than the melting point of Sn (231.9 ° C.), and Fe—Sn is applied to the bottom layer (Sn layer / steel plate interface) of the Sn single layer. A plating layer on which an alloy layer is formed can be manufactured. When the heat melting treatment is omitted, a Sn single plating layer (Sn layer) can be manufactured.
In addition, when the steel sheet has a Ni-containing layer on its surface, the lowermost layer (Sn layer / steel sheet interface) of the plating layer (Sn layer) of Sn alone is obtained by performing a heat melting treatment after Sn plating on the Ni-containing layer. An Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, and the like are formed.

〔皮膜〕
次に、上述しためっき鋼板のめっき層側の表面上に配置される皮膜について説明する。皮膜は、概略的には、Ti(チタニウム元素)を主成分として含有し、さらに、K(カリウム元素)、Na(ナトリウム元素)、Mg(マグネシウム元素)およびCa(カルシウム元素)からなる群から選ばれる少なくとも1種を含有する皮膜であり、後述する処理液を用いて形成される。
[Coating]
Next, the film | membrane arrange | positioned on the surface by the side of the plating layer of the plated steel plate mentioned above is demonstrated. The coating generally contains Ti (titanium element) as a main component, and is further selected from the group consisting of K (potassium element), Na (sodium element), Mg (magnesium element), and Ca (calcium element). It is a film containing at least one selected from the above, and is formed using a treatment liquid described later.

皮膜は、めっき鋼板の片面あたりのTi換算の付着量(以下、「Ti付着量」ともいう)が1.0mg/m2以上60mg/m2未満である。Ti付着量が1.0mg/m2未満または60mg/m2以上であると耐食性が劣るが、この範囲内であれば耐食性に優れる。Ti付着量は、耐食性がより優れるという理由から、3〜30mg/m2が好ましく、5〜20mg/m2がより好ましい。 The coating has a Ti equivalent adhesion amount (hereinafter also referred to as “Ti adhesion amount”) per side of a plated steel sheet of 1.0 mg / m 2 or more and less than 60 mg / m 2 . If the Ti adhesion amount is less than 1.0 mg / m 2 or 60 mg / m 2 or more, the corrosion resistance is inferior, but if it is within this range, the corrosion resistance is excellent. Ti adhesion amount, for the reason that corrosion resistance more excellent, preferably 3~30mg / m 2, 5~20mg / m 2 is more preferable.

また、皮膜は、K、Na、MgおよびCaからなる群から選ばれる少なくとも1種(以下、「M1」とも表記する)を、その合計のTiに対する質量比(以下、「質量比(M1/Ti)」とも表記する)として、1.0×10-4〜1.0×10-2含有する。
これにより、本発明の容器用鋼板は、耐食性に優れる。その理由は明らかではないが、以下のように推測される。すなわち、皮膜中に微量なK、Na、MgおよびCaの少なくともいずれかが含まれることで、めっき層に対する被覆性が向上し、酸性水溶液中で地鉄(鋼板)まで到達する傷があった場合に、めっき層表面へのHイオンのイオン供給を抑制でき、腐食のカソード反応速度を低下させることができるためと考えられる。もっともこのメカニズムは推測であり、メカニズムが別であっても本発明の範囲内とする。
上記質量比(M1/Ti)は、耐食性がより優れるという理由から、3.0×10-4〜9.0×10-3が好ましく、9.0×10-4〜5.0×10-3がより好ましい。
In addition, the coating is composed of at least one selected from the group consisting of K, Na, Mg, and Ca (hereinafter also referred to as “M 1 ”) with respect to the total mass ratio of Ti (hereinafter referred to as “mass ratio (M 1)”. / Ti) ”) is contained in the range of 1.0 × 10 −4 to 1.0 × 10 −2 .
Thereby, the steel plate for containers of this invention is excellent in corrosion resistance. The reason is not clear, but is presumed as follows. That is, when the coating contains at least one of a trace amount of K, Na, Mg, and Ca, the coverage with respect to the plating layer is improved, and there is a scratch reaching the base iron (steel plate) in an acidic aqueous solution. Furthermore, it is considered that the supply of H + ions to the plating layer surface can be suppressed, and the cathodic reaction rate of corrosion can be reduced. However, this mechanism is speculation, and even if the mechanism is different, it is within the scope of the present invention.
The mass ratio (M 1 / Ti) is preferably 3.0 × 10 −4 to 9.0 × 10 −3 and more preferably 9.0 × 10 −4 to 5.0 × 10 because the corrosion resistance is more excellent. -3 is more preferable.

さらに、皮膜は、Ni、CoおよびMnからなる群から選ばれる少なくとも1種(以下、「M2」とも表記する)を、その合計のTiに対する質量比(以下、「質量比(M2/Ti)」とも表記する)として、0.01〜0.10含有するのが好ましい。
これにより、本発明の容器用鋼板は、耐食性がより優れる。その理由は明らかではないが、以下のように推測される。すなわち、皮膜中にNi、CoおよびMnの少なくともいずれかが含まれることで、皮膜自体の強度が高まり、皮膜の凝集破壊を抑制し、皮膜とめっき層との密着力が向上するため、Hイオン等の透過を抑制でき、腐食のカソード反応速度を低下させることができるためと考えられる。もっとも、このメカニズムは推測であり、メカニズムが別であっても本発明の範囲内とする。
上記質量比(M2/Ti)は、0.02〜0.09がより好ましく、0.04〜0.08がさらに好ましい。
Further, the film is made of at least one selected from the group consisting of Ni, Co, and Mn (hereinafter also referred to as “M 2 ”) with respect to the total mass ratio to Ti (hereinafter referred to as “mass ratio (M 2 / Ti). ) ”)), It is preferable to contain 0.01 to 0.10.
Thereby, the steel plate for containers of this invention is more excellent in corrosion resistance. The reason is not clear, but is presumed as follows. That is, it contained at least either in the coating Ni, Co and Mn are increased strength of the film itself, suppressing cohesive failure of the coating, for improving the adhesion between the coating and the plating layer, H + This is probably because the permeation of ions and the like can be suppressed, and the cathodic reaction rate of corrosion can be reduced. However, this mechanism is speculation, and even if the mechanism is different, it is within the scope of the present invention.
The mass ratio (M 2 / Ti) is more preferably 0.02 to 0.09, and further preferably 0.04 to 0.08.

Ti付着量は、蛍光X線による表面分析により測定する。
一方、K、Na、MgおよびCa、ならびに、Ni、CoおよびMnについては、皮膜中に含まれる量が極微量であるため、上記皮膜が形成された鋼板を、100mLの水中に片面100cm2の面積になるように浸漬させ、30分間煮沸した後に、水中に溶出した元素量をICP質量分析およびイオンクロマトグラフィーを用いて定量する。
The amount of Ti adhesion is measured by surface analysis using fluorescent X-rays.
On the other hand, for K, Na, Mg and Ca, and Ni, Co and Mn, the amount contained in the film is extremely small. Therefore, the steel sheet on which the film is formed is 100 cm 2 on one side in 100 mL of water. After immersing to an area and boiling for 30 minutes, the amount of element eluted in water is quantified using ICP mass spectrometry and ion chromatography.

皮膜中のTi、K、Na、Mg、Ca、Ni、CoおよびMn等は、各種の化合物として含まれ、この化合物の種類や態様は、特に限定されない。   Ti, K, Na, Mg, Ca, Ni, Co, Mn, and the like in the film are included as various compounds, and the types and aspects of the compounds are not particularly limited.

[容器用鋼板の製造方法]
次に、上述した本発明の容器用鋼板を製造する方法(以下、「本発明の製造方法」ともいう)について説明する。本発明の製造方法は、少なくとも、後述する処理液(以下、「本発明の処理液」ともいう)を用いて上述した皮膜を形成する皮膜形成工程を備える。
[Manufacturing method of steel plate for containers]
Next, a method for producing the above-described container steel plate of the present invention (hereinafter also referred to as “the production method of the present invention”) will be described. The production method of the present invention includes at least a film forming step of forming the above-described film using a treatment liquid described later (hereinafter also referred to as “treatment liquid of the present invention”).

〔皮膜形成工程〕
皮膜形成工程は、めっき鋼板のめっき層側の表面上に、上述した皮膜を形成する工程であって、後述する本発明の処理液中に浸漬しためっき鋼板に陰極電解処理を施す工程である。なお、陰極電解処理と陽極電解処理とを交互に行う交番電解を実施してもよい。
以下に、使用される本発明の処理液や陰極電解処理の条件などについて詳述する。
[Film formation process]
The film forming step is a step of forming the above-described film on the surface of the plated steel plate on the plating layer side, and is a step of subjecting the plated steel plate immersed in the treatment liquid of the present invention described later to cathodic electrolysis. In addition, you may implement the alternating electrolysis which performs a cathode electrolytic treatment and an anodic electrolytic treatment alternately.
Hereinafter, the treatment liquid of the present invention used, conditions for the cathodic electrolysis, and the like will be described in detail.

〈処理液〉
本発明の処理液は、上記皮膜にTi(チタニウム元素)を供給するためのTi成分(Ti化合物)を含有する。
このTi成分としては、特に限定されないが、例えば、チタンアルコキシド、シュウ酸チタニルアンモニウム、シュウ酸チタニルカリウム二水和物、硫酸チタン、チタンラクテート、チタンフッ化水素酸(H2TiF6)および/またはその塩が挙げられる。なお、チタンフッ化水素酸の塩の具体例としては、六フッ化チタン酸カリウム(K2TiF6)、六フッ化チタン酸ナトリウム(Na2TiF6)、六フッ化チタン酸アンモニウム((NH42TiF6)等が挙げられる。
これらのうち、処理液の安定性、入手の容易性などの観点から、チタンフッ化水素酸および/またはその塩が好ましい。
<Processing liquid>
The treatment liquid of the present invention contains a Ti component (Ti compound) for supplying Ti (titanium element) to the film.
The Ti component is not particularly limited. For example, titanium alkoxide, titanyl ammonium oxalate, potassium titanyl oxalate dihydrate, titanium sulfate, titanium lactate, titanium hydrofluoric acid (H 2 TiF 6 ) and / or its Salt. Specific examples of the salt of titanium hydrofluoric acid include potassium hexafluorotitanate (K 2 TiF 6 ), sodium hexafluorotitanate (Na 2 TiF 6 ), and ammonium hexafluorotitanate ((NH 4 ) 2 TiF 6 ) and the like.
Of these, titanium hydrofluoric acid and / or a salt thereof is preferable from the viewpoints of stability of the treatment liquid, availability, and the like.

本発明の処理液におけるTi成分の含有量は、Ti換算した量で、0.01〜0.10mol/Lが好ましく、0.03〜0.07mol/Lがより好ましい。
なお、「Ti換算した量」としては、例えば、チタンフッ化水素酸および/またはその塩を使用する場合においては、六フッ化チタン酸イオン(TiF6 2-)に換算した量が該当し、より詳細には、六フッ化チタン酸カリウム(K2TiF6)が1mol/L存在する場合は、Ti換算した量は、1mol/Lとなる。
The content of the Ti component in the treatment liquid of the present invention is an amount in terms of Ti, preferably 0.01 to 0.10 mol / L, more preferably 0.03 to 0.07 mol / L.
In addition, as “amount converted to Ti”, for example, when using titanium hydrofluoric acid and / or a salt thereof, the amount converted to hexafluorotitanate ion (TiF 6 2− ) corresponds, Specifically, when 1 mol / L of potassium hexafluorotitanate (K 2 TiF 6 ) is present, the amount in terms of Ti is 1 mol / L.

さらに、本発明の処理液は、上記皮膜にK、Na、MgおよびCaからなる群から選ばれる少なくとも1種(M1)を供給するための、K成分(K化合物)、Na成分(Na化合物)、Mg成分(Mg化合物)およびCa成分(Ca化合物)からなる群から選ばれる少なくとも1種(以下、「M1成分」ともいう)を含有する。
1成分としては、特に限定されないが、例えば、硫酸カリウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウムなどの硫酸塩;硝酸カリウム、硝酸ナトリウム、硝酸マグネシウム、硝酸カルシウムなどの硝酸塩;塩化カリウム、塩化ナトリウム、塩化マグネシウム、塩化カルシウムなどの塩化物;等が挙げられる。
本発明の処理液におけるM1成分の含有量は、金属換算した量で、Ti成分の含有量に対するモル比(M1/Ti)で、2.0〜30.0が好ましく、5.0〜20.0がより好ましい。
Furthermore, the treatment liquid of the present invention provides a K component (K compound), a Na component (Na compound) for supplying at least one (M 1 ) selected from the group consisting of K, Na, Mg and Ca to the film. ), Mg component (Mg compound), and Ca component (Ca compound) at least one selected from the group consisting of Ca (Ca compound) (hereinafter also referred to as “M 1 component”).
Examples of the M 1 component include, but are not limited to, sulfates such as potassium sulfate, sodium sulfate, magnesium sulfate, and calcium sulfate; nitrates such as potassium nitrate, sodium nitrate, magnesium nitrate, and calcium nitrate; potassium chloride, sodium chloride, and chloride. And chlorides such as magnesium and calcium chloride.
The content of the M 1 component in the treatment liquid of the present invention is a metal-converted amount, and the molar ratio (M 1 / Ti) to the content of the Ti component is preferably 2.0 to 30.0, preferably 5.0 to 20.0 is more preferable.

また、上記皮膜がNi、CoおよびMnからなる群から選ばれる少なくとも1種(M2)を含有する場合は、本発明の処理液は、さらに、Ni成分(Ni化合物)、Co成分(Co化合物)およびMn成分(Mn化合物)からなる群から選ばれる少なくとも1種(以下、「M2成分」ともいう)を含有する。
2成分としては、特に限定されないが、例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガンなどの硫酸塩;硝酸ニッケル、硝酸コバルト、硝酸マンガンなどの硝酸塩;塩化ニッケル、塩化コバルト、塩化マンガンなどの塩化物;等が挙げられる。
本発明の処理液におけるM2成分の含有量は、金属換算した量で、Ti成分の含有量に対するモル比(M2/Ti)で、0.1〜1.0が好ましく、0.3〜0.8がより好ましい。
Further, when the coating containing Ni, at least one selected from the group consisting of Co and Mn and (M 2), the processing liquid of the present invention, further, Ni component (Ni compounds), Co component (Co compound And at least one selected from the group consisting of Mn components (Mn compounds) (hereinafter also referred to as “M 2 component”).
The M 2 component is not particularly limited, but for example, sulfates such as nickel sulfate, cobalt sulfate and manganese sulfate; nitrates such as nickel nitrate, cobalt nitrate and manganese nitrate; chlorides such as nickel chloride, cobalt chloride and manganese chloride And the like.
The content of the M 2 component in the treatment liquid of the present invention is a metal-converted amount and is a molar ratio (M 2 / Ti) to the content of the Ti component, preferably 0.1 to 1.0, 0.3 to 0.8 is more preferable.

1成分およびM2成分の含有量における「金属換算した量」とは、これらの成分を金属(金属イオン)に換算した量であり、例えば、硫酸カリウム(K2SO4)と硫酸マグネシウム(MgSO4)とが共に1mol/Lずつ存在する場合、金属換算した量は、前者が2mol/Lとなり、後者が1mol/Lとなる。 The “amount in terms of metal” in the contents of the M 1 component and the M 2 component is an amount in which these components are converted into metals (metal ions). For example, potassium sulfate (K 2 SO 4 ) and magnesium sulfate ( In the case where both MgSO 4 ) and 1 mol / L are present, the amount in terms of metal is 2 mol / L for the former and 1 mol / L for the latter.

なお、Ti成分が、例えば、六フッ化チタン酸カリウム(K2TiF6)や六フッ化チタン酸ナトリウム(Na2TiF6)である場合、Ti成分は、カリウムイオン(K)やナトリウムイオン(Na)を含むため、M1成分を兼ねる。
このように、Ti成分、M1成分およびM2成分は、それぞれが他の成分を兼ねる場合があるが、そのような場合であっても、本発明の範囲内であるものとする。
When the Ti component is, for example, potassium hexafluorotitanate (K 2 TiF 6 ) or sodium hexafluorotitanate (Na 2 TiF 6 ), the Ti component is potassium ion (K + ) or sodium ion. Since it contains (Na + ), it also serves as the M 1 component.
As described above, the Ti component, the M 1 component, and the M 2 component may also serve as other components, but even such a case is within the scope of the present invention.

本発明の処理液中の溶媒としては、通常水が使用され、有機溶媒を併用してもよい。
本発明の処理液のpHは、特に限定されないが、処理時間を短くでき、かつ、処理液の安定性に優れるという理由から、pH2.0〜5.0が好ましい。pHの調整には公知の酸成分(例えば、リン酸、硫酸)またはアルカリ成分(例えば、水酸化ナトリウム、アンモニア水)を使用できる。
また、本発明の処理液には、必要に応じて、ラウリル硫酸ナトリウム、アセチレングリコールなどの界面活性剤が含まれていてもよい。また、付着挙動の経時的な安定性の観点から、処理液には、ピロリン酸塩などの縮合リン酸塩が含まれていてもよい。
処理液の液温は、20〜80℃が好ましく、40〜60℃がより好ましい。
As the solvent in the treatment liquid of the present invention, water is usually used, and an organic solvent may be used in combination.
The pH of the treatment liquid of the present invention is not particularly limited, but is preferably 2.0 to 5.0 because the treatment time can be shortened and the stability of the treatment liquid is excellent. For adjusting the pH, a known acid component (for example, phosphoric acid, sulfuric acid) or an alkali component (for example, sodium hydroxide, aqueous ammonia) can be used.
Further, the treatment liquid of the present invention may contain a surfactant such as sodium lauryl sulfate or acetylene glycol as necessary. Further, from the viewpoint of the stability of the adhesion behavior over time, the treatment liquid may contain a condensed phosphate such as pyrophosphate.
20-80 degreeC is preferable and, as for the liquid temperature of a process liquid, 40-60 degreeC is more preferable.

〈陰極電解処理〉
皮膜形成工程において、陰極電解処理を施す際の電解電流密度は、形成される皮膜中のTi、M1およびM2が適量となり、本発明の容器用鋼板の耐食性がより優れるという理由から、10.0A/dm2以上が好ましく、20.0A/dm2以上がより好ましく、30.0A/dm2以上がさらに好ましい。なお、電解電流密度の上限値は特に限定されないが、120.0A/dm2以下が挙げられ、100.0A/dm2以下が好ましい。
また、陰極電解処理の通電時間は、同様の理由から、0.1〜5秒が好ましく、0.3〜2秒がより好ましい。なお、陰極電解処理の際の電気量密度は、電流密度と通電時間との積であり、適宜設定される。
<Cathode electrolysis treatment>
In the film forming step, the electrolytic current density when performing the cathodic electrolysis treatment is 10 for the reason that Ti, M 1 and M 2 in the formed film are appropriate, and the corrosion resistance of the steel plate for containers of the present invention is more excellent. 0.0 A / dm 2 or more is preferable, 20.0 A / dm 2 or more is more preferable, and 30.0 A / dm 2 or more is more preferable. In addition, although the upper limit of an electrolysis current density is not specifically limited, 120.0 A / dm < 2 > or less is mentioned, and 100.0 A / dm < 2 > or less is preferable.
Moreover, for the same reason, the energization time of the cathodic electrolysis treatment is preferably 0.1 to 5 seconds, and more preferably 0.3 to 2 seconds. The quantity of electricity at the time of cathodic electrolysis is the product of the current density and the energization time, and is appropriately set.

なお、皮膜表面の不純物を除去する観点から、陰極電解処理の後、得られた鋼板の水洗処理を行うのが好ましい。
水洗処理の方法は特に限定されず、例えば、連続ラインで製造を行う場合、皮膜処理タンクの後に水洗タンクを設け、皮膜処理後に連続して水に浸漬する方法などが挙げられる。水洗処理に用いる水の温度は、40〜90℃が好ましい。
このとき、水洗時間は、水洗処理による効果がより優れるという理由から、0.5秒超が好ましく、1.0〜5.0秒が好ましい。
さらに、水洗処理に代えて、または、水洗処理の後に、乾燥を行ってもよい。乾燥の際の温度および方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、皮膜の酸化を抑制でき、皮膜組成の安定性が保たれる。なお、下限は特に限定されないが、通常室温程度である。
In addition, it is preferable to perform the water-washing process of the obtained steel plate after a cathodic electrolysis process from a viewpoint of removing the impurity of the membrane | film | coat surface.
The method of the water washing treatment is not particularly limited. For example, when the production is performed on a continuous line, a method of providing a water washing tank after the film treatment tank and continuously immersing in water after the film treatment is exemplified. The temperature of the water used for the water washing treatment is preferably 40 to 90 ° C.
At this time, the washing time is preferably more than 0.5 seconds, and more preferably 1.0 to 5.0 seconds, because the effect of the washing treatment is more excellent.
Further, drying may be performed instead of or after the washing process. The temperature and method during drying are not particularly limited, and for example, a normal dryer or an electric furnace drying method can be applied. The temperature during the drying treatment is preferably 100 ° C. or lower. If it is in the said range, the oxidation of a film | membrane can be suppressed and stability of a film | membrane composition is maintained. The lower limit is not particularly limited, but is usually about room temperature.

〔前処理工程〕
本発明の製造方法は、上述した皮膜形成工程の前に、前処理工程を備えていてもよい。前処理工程は、アルカリ性水溶液(例えば、炭酸ナトリウム水溶液)中で、めっき鋼板に陰極電解処理を施す工程である。
Sn層等を含むめっき層を形成する際に、その表面が酸化されて錫酸化物が形成される場合があるが、陰極電解処理を施すことにより、不要な錫酸化物が除去されて、錫酸化物量を調整できる。
前処理工程の陰極電解処理に使用される溶液としては、アルカリ性水溶液(例えば、炭酸ナトリウム水溶液)が挙げられる。アルカリ性水溶液中のアルカリ成分(例えば、炭酸ナトリウム)の含有量は特に限定されないが、例えば、5〜15g/Lが好ましく、8〜12g/Lがより好ましい。
陰極電解処理の際のアルカリ性水溶液の液温は特に限定されないが、40〜60℃が好ましい。陰極電解処理の電解条件(電流密度、電解時間)は、適宜調整される。なお、陰極電解処理の後に、必要に応じて、水洗処理を施してもよい。
[Pretreatment process]
The manufacturing method of this invention may be equipped with the pre-processing process before the membrane | film | coat formation process mentioned above. The pretreatment step is a step of subjecting the plated steel plate to cathodic electrolysis in an alkaline aqueous solution (for example, a sodium carbonate aqueous solution).
When forming a plating layer containing an Sn layer or the like, the surface may be oxidized to form tin oxide. However, by performing cathodic electrolysis treatment, unnecessary tin oxide is removed and tin is formed. The amount of oxide can be adjusted.
Examples of the solution used for the cathodic electrolysis in the pretreatment step include an alkaline aqueous solution (for example, an aqueous sodium carbonate solution). Although content of the alkali component (for example, sodium carbonate) in alkaline aqueous solution is not specifically limited, For example, 5-15 g / L is preferable and 8-12 g / L is more preferable.
The temperature of the alkaline aqueous solution during the cathodic electrolysis is not particularly limited, but is preferably 40 to 60 ° C. The electrolysis conditions (current density, electrolysis time) of the cathodic electrolysis are appropriately adjusted. In addition, you may perform a water washing process after a cathode electrolytic process as needed.

本発明の製造方法によって得られる本発明の容器用鋼板は、例えば、DI缶、食缶、飲料缶などの種々の容器の製造に使用される。   The steel plate for containers of the present invention obtained by the production method of the present invention is used for manufacturing various containers such as DI cans, food cans, and beverage cans.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

〈めっき鋼板の製造〉
以下の方法によって、めっき鋼板を製造した。
まず、板厚0.22mmの鋼板(T4原板)を電解脱脂し、ワット浴を用いて第3表に示す片面当たりのNi付着量でニッケルめっき層を両面に形成した。その後、10vol.%H2+90vol.%N2雰囲気中にて700℃で焼鈍してニッケルめっきを拡散浸透させることによりNi−Fe合金層(Ni含有層)(第3表にNi付着量を示す)を両面に形成した。
引き続き、上記表層にNi含有層を有する鋼板を、Snめっき浴を用い、第3表中に示す片面当たりのSn付着量でSn層を両面に形成した。その後、Snの融点以上で加熱溶融処理を施し、めっき層をT4原板の両面に形成した。このようにして、下層側から順に、Ni−Fe合金層/Fe−Sn−Ni合金層/Sn層からなるめっき層を形成した。
<Manufacture of plated steel sheets>
A plated steel sheet was produced by the following method.
First, a steel plate (T4 original plate) having a thickness of 0.22 mm was electrolytically degreased, and a nickel plating layer was formed on both sides with a Ni adhesion amount per one side shown in Table 3 using a Watt bath. After that, Ni—Fe alloy layer (Ni-containing layer) (the Ni adhesion amount is shown in Table 3) by annealing at 700 ° C. in an atmosphere of 10 vol.% H 2 +90 vol.% N 2 to diffuse and infiltrate nickel plating. ) Was formed on both sides.
Subsequently, the Sn layer was formed on both surfaces of the steel sheet having the Ni-containing layer as the surface layer, using an Sn plating bath, with the Sn adhesion amount per one side shown in Table 3. Thereafter, a heat melting treatment was performed at a melting point of Sn or higher, and plating layers were formed on both surfaces of the T4 original plate. In this way, a plating layer composed of Ni—Fe alloy layer / Fe—Sn—Ni alloy layer / Sn layer was formed in order from the lower layer side.

〈容器用鋼板の試験材の作製〉
以下のようにして、容器用鋼板の試験材を作製した。
《前処理工程》
製造しためっき鋼板を、浴温50℃、10g/Lの炭酸ナトリウム水溶液中に浸漬し、第2表に示す条件にて、陰極電解処理を行った。
《皮膜形成工程》
次いで、前処理工程を経ためっき鋼板を水洗し、pHを4.0に調整した第1表に示す組成の処理液(溶媒:水)を用い、第2表に示す処理温度および電解条件(電流密度、通電時間および電気量密度)で陰極電解処理を施した。その後、第2表に示す水洗時間で水洗処理をして、ブロアを用いて室温で乾燥を行い、皮膜を両面に形成した。これにより、容器用鋼板の試験材を作製した。
<Production of test materials for steel plates for containers>
The test material of the steel plate for containers was produced as follows.
<< Pretreatment process >>
The manufactured plated steel sheet was immersed in an aqueous sodium carbonate solution having a bath temperature of 50 ° C. and 10 g / L, and was subjected to cathodic electrolysis under the conditions shown in Table 2.
<< Film formation process >>
Next, the plated steel sheet that had undergone the pretreatment step was washed with water, and using the treatment liquid (solvent: water) having the composition shown in Table 1 whose pH was adjusted to 4.0, the treatment temperature and electrolysis conditions (current) shown in Table 2 were used. The cathode electrolysis treatment was performed at a density, a current-carrying time and a quantity of electricity). Then, it washed with the water washing | cleaning time shown in Table 2, and dried at room temperature using the blower, and formed the film | membrane on both surfaces. Thereby, the test material of the steel plate for containers was produced.

〈評価〉
その後、作製した容器用鋼板の試験材について、以下の方法で、フィルム貼付後耐食性および塗装後耐食性を評価した。なお、皮膜中の各成分量等については、上述した方法により測定ないし計算した。結果をまとめて下記第3表に示す。
<Evaluation>
Then, the corrosion resistance after film sticking and the corrosion resistance after painting were evaluated by the following methods for the test materials of the produced steel plates for containers. In addition, about each component amount in a film | membrane, it measured or calculated by the method mentioned above. The results are summarized in Table 3 below.

〈フィルム貼付後耐食性〉
作製した容器用鋼板の表面に、市販のPETフィルム(Melinex850、デュポン社製)を、ロール加圧4kg/cm、板送り速度40mpm、ロール通過後の板の表面温度が160℃となる条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行い、ラミネート鋼板を作製した。
次いで、作製したラミネート鋼板(幅70mm×長さ40mm)のフィルム面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れたラミネート鋼板を、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄および乾燥をした後、フィルム面にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。クロスカット部中心の任意の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求めた。フィルム剥離幅の平均値を腐食幅とみなし、下記基準で評価した。実用上、結果が◎または○であれば、耐食性に優れるものとして評価できる。
◎:腐食幅0.5mm未満
○:腐食幅0.5mm以上1.0mm未満
△:腐食幅1.0mm以上2.0mm未満
×:腐食幅2.0mm以上
<Corrosion resistance after film application>
A commercially available PET film (Melinex 850, manufactured by DuPont) is applied to the surface of the produced steel plate for containers under the conditions that the roll pressure is 4 kg / cm 2 , the plate feed speed is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was performed, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
Next, a cross cut having a depth reaching the ground iron (steel plate) was put on the film surface of the produced laminated steel plate (width 70 mm × length 40 mm) using a cutter. The laminated steel sheet with the cross cut was immersed in a test solution at 55 ° C. composed of a mixed aqueous solution containing 1.5 mass% citric acid and 1.5 mass% sodium chloride for 96 hours. After dipping, washing and drying, a cellophane adhesive tape was applied to the film surface, and the tape was peeled off. The film peeling width (total width on the left and right extending from the cut portion) was measured at any four locations at the center of the cross cut portion, and the average value of the four locations was determined. The average value of the film peeling width was regarded as the corrosion width and evaluated according to the following criteria. Practically, if the result is ま た は or ◯, it can be evaluated as having excellent corrosion resistance.
◎: Corrosion width less than 0.5 mm ○: Corrosion width 0.5 mm or more and less than 1.0 mm △: Corrosion width 1.0 mm or more and less than 2.0 mm ×: Corrosion width 2.0 mm or more

〈塗装後耐食性〉
作製した容器用鋼板(幅70mm×長さ40mm)の表面に、エポキシフェノール系塗料を塗布した後、210℃で10分間の焼付を行い、付着量50mg/dm2の塗装を施した。
次いで、上記塗装を施した容器用鋼板(塗装鋼板)の塗装面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れた塗装鋼板を、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄および乾燥をした後、塗膜にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。クロスカット部中心の任意の4箇所についてフィルム剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求めた。フィルム剥離幅の平均値を腐食幅とみなし、下記基準で評価した。実用上、結果が◎または○であれば、耐食性に優れるものとして評価できる。
◎:腐食幅0.2mm未満
○:腐食幅0.2mm以上0.6mm未満
△:腐食幅0.6mm以上1.0mm未満
×:腐食幅1.0mm以上
<Corrosion resistance after painting>
An epoxy phenol-based paint was applied to the surface of the produced steel plate for containers (width 70 mm × length 40 mm), and then baked at 210 ° C. for 10 minutes to give a coating amount of 50 mg / dm 2 .
Next, a cross-cut having a depth reaching the ground iron (steel plate) was put on the coated surface of the coated steel plate (painted steel plate) using a cutter. The coated steel sheet with the cross cut was immersed in a test solution at 55 ° C. composed of a mixed aqueous solution containing 1.5% by mass citric acid and 1.5% by mass sodium chloride for 96 hours. After immersion, after washing and drying, a cellophane adhesive tape was applied to the coating film, and the tape was peeled off. The film peeling width (total width on the left and right extending from the cut portion) was measured at any four locations at the center of the cross cut portion, and the average value of the four locations was determined. The average value of the film peeling width was regarded as the corrosion width and evaluated according to the following criteria. Practically, if the result is ま た は or ◯, it can be evaluated as having excellent corrosion resistance.
◎: Corrosion width less than 0.2 mm ○: Corrosion width 0.2 mm or more and less than 0.6 mm △: Corrosion width 0.6 mm or more and less than 1.0 mm ×: Corrosion width 1.0 mm or more

上記第1〜3表に示す結果から明らかなように、本発明例(試験材No.4〜9および13〜30)は、いずれも、耐食性が優れていた。
なお、皮膜中にM2を含有せずM1のみを含有する発明例(試験材No.4〜9および13〜21)のうち、質量比(M1/Ti)が3.0×10-4〜9.0×10-3の範囲内であるが、9.0×10-4〜5.0×10-3の範囲外である発明例(試験材No.4〜6および16〜21)どうしを対比すると、電流密度が50.0A/dm2mまたは100.0A/dm2である発明例(試験材No.5,6,17,18,20および21)は、電流密度が10.0A/dm2である発明例(試験材No.4,16および19)よりも、耐食性がより優れていた。
ただし、皮膜中にM2を含有せずM1のみを含有する発明例(試験材No.4〜9および13〜21)のうち、質量比(M1/Ti)が9.0×10-4〜5.0×10-3の範囲内である発明例(試験材No.7〜9および13〜15)は、電流密度が10.0A/dm2である発明例(試験材No.7および13)であっても、電流密度が50.0A/dm2mまたは100.0A/dm2である発明例(試験材No.8,9,14および15)と同程度に耐食性が優れていた。
また、皮膜中にM1とM2とを併用して含有する発明例(試験材No.22〜30)は、電流密度が10.0A/dm2である発明例(試験材No.22,25および28)であっても、電流密度が50.0A/dm2mまたは100.0A/dm2である発明例(23,24,26,27,29および30)と同程度に耐食性が優れていた。
As is clear from the results shown in Tables 1 to 3 above, all of the inventive examples (test materials Nos. 4 to 9 and 13 to 30) were excellent in corrosion resistance.
In addition, among the inventive examples (test materials No. 4 to 9 and 13 to 21) containing only M 1 but not M 2 in the film, the mass ratio (M 1 / Ti) is 3.0 × 10 −. Invention examples (test materials No. 4 to 6 and 16 to 21) which are within the range of 4 to 9.0 × 10 −3 but outside the range of 9.0 × 10 −4 to 5.0 × 10 −3 ) In contrast, the inventive examples (test materials No. 5, 6, 17, 18, 20, and 21) having a current density of 50.0 A / dm 2 m or 100.0 A / dm 2 have a current density of 10 Corrosion resistance was superior to that of the inventive examples (test materials Nos. 4, 16 and 19) of 0.0 A / dm 2 .
However, among the inventive examples (test materials No. 4 to 9 and 13 to 21) containing only M 1 without containing M 2 in the film, the mass ratio (M 1 / Ti) is 9.0 × 10 −. Invention examples (test materials No. 7 to 9 and 13 to 15) within the range of 4 to 5.0 × 10 −3 are invention examples (test material No. 7) having a current density of 10.0 A / dm 2. And 13), the corrosion resistance is as excellent as the invention examples (test materials Nos. 8, 9, 14, and 15) having a current density of 50.0 A / dm 2 m or 100.0 A / dm 2. It was.
In the invention examples containing a combination of the M 1 and M 2 in the film (test material Nanba22~30) are invention examples current density of 10.0A / dm 2 (test material No.22, 25 and 28) have excellent corrosion resistance to the same extent as the inventive examples (23, 24, 26, 27, 29 and 30) having a current density of 50.0 A / dm 2 m or 100.0 A / dm 2. It was.

これに対して、質量比(M1/Ti)が1.0×10-4未満である比較例(試験材No.1〜3)、ならびに、質量比(M1/Ti)が1.0×10-2よりも大きい比較例(試験材No.10〜12および31〜33)は、耐食性が劣っていた。 In contrast, Comparative Example weight ratio (M 1 / Ti) is less than 1.0 × 10 -4 (test material Nanba1~3), and the mass ratio (M 1 / Ti) of 1.0 The comparative example (test material No. 10-12 and 31-33) larger than * 10 <-2 > was inferior in corrosion resistance.

Claims (7)

鋼板の表面の少なくとも一部に、Ni層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層からなる群から選ばれる少なくとも1層を含むめっき層を有するめっき鋼板と、前記めっき鋼板の前記めっき層側の表面上に配置された皮膜と、を有する容器用鋼板であって、
前記皮膜は、Tiを含有し、前記めっき鋼板の片面あたりのTi換算の付着量が1.0mg/m2以上60.0mg/m2未満であり、
前記皮膜は、K、Na、MgおよびCaからなる群から選ばれる少なくとも1種を、その合計でTiに対する質量比として、1.0×10-4〜1.0×10-2含有する、容器用鋼板。
Plating having a plating layer including at least one layer selected from the group consisting of a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer on at least a part of the surface of the steel plate A steel plate for containers having a steel plate and a coating disposed on the surface of the plated steel plate on the plating layer side,
The coating contains a Ti, the amount of deposition of Ti in terms of per side of the plated steel sheet is less than 1.0 mg / m 2 or more 60.0 mg / m 2,
The film contains at least one selected from the group consisting of K, Na, Mg, and Ca in a total mass ratio of 1.0 × 10 −4 to 1.0 × 10 −2 with respect to Ti. Steel plate.
前記皮膜は、さらに、Ni、CoおよびMnからなる群から選ばれる少なくとも1種を、その合計でTiに対する質量比として、0.01〜0.10含有する、請求項1に記載の容器用鋼板。   The steel sheet for containers according to claim 1, wherein the coating further contains at least one selected from the group consisting of Ni, Co, and Mn in a total mass ratio of 0.01 to 0.10 with respect to Ti. . 請求項1に記載の容器用鋼板を得る、容器用鋼板の製造方法であって、
鋼板の表面の少なくとも一部に、Ni層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層からなる群から選ばれる少なくとも1層を含むめっき層を有するめっき鋼板を、Ti成分と、K成分、Na成分、Mg成分およびCa成分からなる群から選ばれる少なくとも1種であるM1成分とを含有する処理液中で陰極電解処理を施すことにより、前記皮膜を形成する、容器用鋼板の製造方法。
It is a manufacturing method of the steel plate for containers which obtains the steel plate for containers according to claim 1,
Plating having a plating layer including at least one layer selected from the group consisting of a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer on at least a part of the surface of the steel plate The coating film is obtained by subjecting the steel sheet to cathodic electrolysis in a treatment liquid containing a Ti component and at least one M 1 component selected from the group consisting of a K component, a Na component, a Mg component, and a Ca component. The manufacturing method of the steel plate for containers which forms.
前記処理液における前記Ti成分の含有量が、Ti換算した量で、0.01〜0.10mol/Lであり、
前記処理液における前記M1成分の含有量が、金属換算した量で、前記Ti成分の含有量に対するモル比(M1/Ti)で、2.0〜30.0である、請求項3に記載の容器用鋼板の製造方法。
The content of the Ti component in the treatment liquid is 0.01 to 0.10 mol / L in terms of Ti,
The content of the M 1 component in the treatment liquid is a metal-converted amount and is a molar ratio (M 1 / Ti) to the content of the Ti component, and is 2.0 to 30.0. The manufacturing method of the steel plate for containers of description.
請求項2に記載の容器用鋼板を得る、容器用鋼板の製造方法であって、
鋼板の表面の少なくとも一部に、Ni層、Sn層、Ni−Fe合金層、Fe−Sn−Ni合金層およびFe−Sn合金層からなる群から選ばれる少なくとも1層を含むめっき層を有するめっき鋼板を、Ti成分と、K成分、Na成分、Mg成分およびCa成分からなる群から選ばれる少なくとも1種であるM1成分と、Ni成分、Co成分およびMn成分からなる群から選ばれる少なくとも1種であるM2成分とを含有する処理液中で陰極電解処理を施すことにより、前記皮膜を形成する、容器用鋼板の製造方法。
It is a manufacturing method of the steel plate for containers which obtains the steel plate for containers according to claim 2,
Plating having a plating layer including at least one layer selected from the group consisting of a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer on at least a part of the surface of the steel plate The steel sheet is at least one selected from the group consisting of a Ti component, a M 1 component selected from the group consisting of a K component, a Na component, a Mg component and a Ca component, and a Ni component, a Co component and a Mn component. by performing cathodic electrolysis treatment in the processing solution containing the M 2 component is a species, to form the coating method for producing a container for steel.
前記処理液における前記Ti成分の含有量が、Ti換算した量で、0.01〜0.10mol/Lであり、
前記処理液における前記M1成分の含有量が、金属換算した量で、前記Ti成分の含有量に対するモル比(M1/Ti)で、2.0〜30.0であり、
前記処理液における前記M2成分の含有量が、金属換算した量で、前記Ti成分の含有量に対するモル比(M2/Ti)で、0.1〜1.0である、請求項5に記載の容器用鋼板の製造方法。
The content of the Ti component in the treatment liquid is 0.01 to 0.10 mol / L in terms of Ti,
The content of the M 1 component in the treatment liquid is a metal-converted amount, and a molar ratio (M 1 / Ti) to the content of the Ti component is 2.0 to 30.0,
The content of the M 2 component in the treatment liquid, in the amounts in terms of metal, the molar ratio of the content of the Ti component (M 2 / Ti), 0.1 to 1.0, in claim 5 The manufacturing method of the steel plate for containers of description.
前記陰極電解処理を施す際の電解電流密度が、20.0A/dm2以上である、請求項3〜6のいずれか1項に記載の容器用鋼板の製造方法。 The manufacturing method of the steel plate for containers of any one of Claims 3-6 whose electrolytic current density at the time of performing the said cathodic electrolysis process is 20.0 A / dm < 2 > or more.
JP2014187701A 2014-09-16 2014-09-16 Steel plate for container and method for producing the same Active JP6156299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187701A JP6156299B2 (en) 2014-09-16 2014-09-16 Steel plate for container and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187701A JP6156299B2 (en) 2014-09-16 2014-09-16 Steel plate for container and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016060925A true JP2016060925A (en) 2016-04-25
JP6156299B2 JP6156299B2 (en) 2017-07-05

Family

ID=55797257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187701A Active JP6156299B2 (en) 2014-09-16 2014-09-16 Steel plate for container and method for producing the same

Country Status (1)

Country Link
JP (1) JP6156299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084527A (en) * 2014-10-24 2016-05-19 Jfeスチール株式会社 Steel sheet for vessel and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009046A (en) * 2004-06-22 2006-01-12 Toyo Seikan Kaisha Ltd Surface treated metallic material and its surface treatment method, resin-coated metallic material, metallic can and metallic lid
JP2010031348A (en) * 2007-10-31 2010-02-12 Jfe Steel Corp Surface treated steel sheet and resin-coated steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009046A (en) * 2004-06-22 2006-01-12 Toyo Seikan Kaisha Ltd Surface treated metallic material and its surface treatment method, resin-coated metallic material, metallic can and metallic lid
JP2010031348A (en) * 2007-10-31 2010-02-12 Jfe Steel Corp Surface treated steel sheet and resin-coated steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084527A (en) * 2014-10-24 2016-05-19 Jfeスチール株式会社 Steel sheet for vessel and manufacturing method thereof

Also Published As

Publication number Publication date
JP6156299B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5015239B2 (en) Plated steel sheet for can and manufacturing method thereof
JP5332836B2 (en) Plated steel sheet for cans
JP2009256726A (en) Plated steel sheet for can and method of manufacturing the same
JP6040716B2 (en) Treatment liquid, steel plate for container, and method for producing steel plate for container
JP5842988B2 (en) Steel plate for containers
JP2003082497A (en) Tinned steel sheet, and production method therefor
JP6156299B2 (en) Steel plate for container and method for producing the same
JP6197778B2 (en) Steel plate for container and method for producing the same
JP5978923B2 (en) Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JP6610794B2 (en) Steel plate for container and manufacturing method thereof
JP5895905B2 (en) Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JPWO2016167343A1 (en) Steel plate for container and method for producing steel plate for container
JP6003912B2 (en) Steel plate for container and method for producing the same
JP2002356785A (en) Tinned steel sheet having excellent oxidation resistance and production method therefor
JP6462249B2 (en) Method for producing surface-treated substrate
JP2014088589A (en) Steel sheet for vessel, treatment liquid used for production thereof, and production method of steel sheet for vessel
JP6146402B2 (en) Steel plate for containers
JP6135650B2 (en) Steel plate for containers
JP6197911B2 (en) Treatment liquid and method for producing steel plate for container
JP6052305B2 (en) Steel plate for containers
JP6003553B2 (en) Treatment liquid, steel plate for container, and method for producing steel plate for container
JP6048441B2 (en) Steel plate for containers
JP6094694B2 (en) Manufacturing method of steel plate for containers
TW202124788A (en) Sn-based plated steel sheet wherein the depth position A where the Mn element concentration is the largest is located on the surface side of the film layer relative to the depth position B where the Zr element concentration is the largest
JP6003910B2 (en) Steel plate for container and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6156299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250