JP6610794B2 - Steel plate for container and manufacturing method thereof - Google Patents

Steel plate for container and manufacturing method thereof Download PDF

Info

Publication number
JP6610794B2
JP6610794B2 JP2018536211A JP2018536211A JP6610794B2 JP 6610794 B2 JP6610794 B2 JP 6610794B2 JP 2018536211 A JP2018536211 A JP 2018536211A JP 2018536211 A JP2018536211 A JP 2018536211A JP 6610794 B2 JP6610794 B2 JP 6610794B2
Authority
JP
Japan
Prior art keywords
tin
oxide film
tin oxide
steel plate
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018536211A
Other languages
Japanese (ja)
Other versions
JPWO2019039044A1 (en
Inventor
幹人 須藤
威 鈴木
洋一郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019039044A1 publication Critical patent/JPWO2019039044A1/en
Application granted granted Critical
Publication of JP6610794B2 publication Critical patent/JP6610794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising

Description

本発明は、飲料缶や食缶等の容器用素材に適用して好適な、塗料密着性と耐錫酸化性とに優れた容器用鋼板及びその製造方法に関する。   The present invention relates to a steel plate for containers that is suitable for application to container materials such as beverage cans and food cans, and is excellent in paint adhesion and tin oxidation resistance, and a method for producing the same.

飲料缶や食缶等の容器用素材として利用されている容器用鋼板の1種であるぶりきの化成処理としては、塗料密着性及び耐錫酸化性に優れることからクロメート処理が従来から用いられてきた。一方、昨今の環境負荷低減の観点から、容器用鋼板の製造工程では、6価クロムを含まない化成処理が望まれている。このような背景から、クロメート処理をリン酸塩処理で代替する方法が考案されている。例えば特許文献1には、リン酸塩皮膜形成過程における電解条件を制御して耐錫酸化性に優れたリン酸塩皮膜を形成する方法が記載されている。また、特許文献2には、錫めっき層上に酸化錫、リン酸錫、及びシラノール基含有有機化合物を含む皮膜を有する容器用鋼板が記載されている。   Chromate treatment is conventionally used as a chemical conversion treatment for tinplate, which is one of the steel plates for containers used as containers for beverage cans and food cans, because of its excellent paint adhesion and tin oxidation resistance. I came. On the other hand, from the viewpoint of reducing environmental burdens in recent years, chemical conversion treatment that does not contain hexavalent chromium is desired in the manufacturing process of steel plates for containers. From such a background, a method of replacing chromate treatment with phosphate treatment has been devised. For example, Patent Document 1 describes a method of forming a phosphate film excellent in tin oxidation resistance by controlling electrolysis conditions in the phosphate film formation process. Patent Document 2 describes a steel plate for containers having a coating containing tin oxide, tin phosphate, and a silanol group-containing organic compound on a tin plating layer.

特開2012−197495号公報JP 2012-197495 A 特開2008−202094号公報JP 2008-202094 A

しかしながら、特許文献1に記載された方法で製造されたリン酸塩皮膜は、塗料密着性に乏しく、さらに高温多湿環境下では錫酸化の抑制が不十分であった。また、特許文献2に記載された容器用鋼板は、表面にシラノール基含有有機化合物層が付与されているために塗料密着性には優れるが、錫酸化の抑制には不十分であった。   However, the phosphate film produced by the method described in Patent Document 1 has poor paint adhesion, and tin oxide was not sufficiently suppressed under a high temperature and high humidity environment. Moreover, although the steel plate for containers described in patent document 2 is excellent in coating-material adhesiveness, since the silanol group containing organic compound layer is provided on the surface, it was inadequate for suppression of tin oxidation.

本発明は、上記課題に鑑みてなされたものであって、その目的は、塗料密着性及び耐錫酸化性に優れる容器用鋼板及びその製造方法を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the steel plate for containers which is excellent in coating-material adhesiveness and tin-oxidation resistance, and its manufacturing method.

本発明の発明者らは、上記目的を達成するために鋭意検討を行なった結果、錫めっき鋼板の表面に酸化錫皮膜を特定量形成し、その酸化錫皮膜の形態を適切にコントロールし、さらにその表面にリン酸錫皮膜を形成することによって、塗料密着性及び耐錫酸化性に優れる容器用鋼板が得られることを見出し、本発明を想到するに至った。   The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, formed a specific amount of tin oxide film on the surface of the tin-plated steel sheet, appropriately controlling the form of the tin oxide film, By forming a tin phosphate film on the surface, it was found that a steel plate for containers excellent in paint adhesion and tin oxidation resistance was obtained, and the present invention was conceived.

本発明に係る容器用鋼板は、表面に錫めっき層を有する錫めっき鋼板と、前記錫めっき層の表面上に形成された酸化錫皮膜と、前記酸化錫皮膜の表面上に形成された、P量として0.1mg/m2以上3.0mg/m2以下のリン酸錫を含むリン酸錫皮膜と、を備え、前記酸化錫皮膜は、0.001Nの臭化水素水溶液中において電位を浸漬電位から卑側に掃引しながら前記酸化錫皮膜を還元した際、−800〜−500mV vs 飽和KCl―Ag/AgCl参照電極の範囲内に還元電流ピークを有し、後記数式(1)で定義されるA値が1.0未満であり、前記酸化錫皮膜の還元電流−電位曲線から計算される酸化錫皮膜の還元に要する電気量が1.5mC/cm2以上5.0mC/cm2以下の範囲内にあることを特徴とする。The steel plate for containers according to the present invention includes a tin-plated steel plate having a tin-plated layer on the surface, a tin oxide film formed on the surface of the tin-plated layer, and P formed on the surface of the tin oxide film. and a tin phosphate coating containing 0.1 mg / m 2 or more 3.0 mg / m 2 or less of tin phosphate as the amount, the tin oxide coating, dipping a potential in a hydrogen bromide aqueous 0.001N When the tin oxide film is reduced while sweeping from the potential to the base side, it has a reduction current peak in the range of −800 to −500 mV vs saturated KCl—Ag / AgCl reference electrode, and is defined by the following formula (1). The A value is less than 1.0, and the amount of electricity required for the reduction of the tin oxide film calculated from the reduction current-potential curve of the tin oxide film is 1.5 mC / cm 2 or more and 5.0 mC / cm 2 or less. It is in the range.

Figure 0006610794
ここで、Q1は、−600〜−500mVの範囲内に還元電流ピークを有する酸化錫皮膜の還元に要する電気量を表し、Q2は、−600mVより卑側に還元電流ピークを有する酸化錫皮膜の還元に要する電気量を表す。
Figure 0006610794
Here, Q 1 represents the amount of electricity required for the reduction of the tin oxide film having a reduction current peak in the range of −600 to −500 mV, and Q 2 is a tin oxide having a reduction current peak on the base side from −600 mV. It represents the amount of electricity required to reduce the film.

本発明に係る容器用鋼板の製造方法は、pHが8以上13以下の範囲内にある水溶液中で表面に錫めっき層を有する錫めっき鋼板を陽極として電解処理を施し、水洗し、次いでリン酸塩水溶液中に錫めっき鋼板を1.0秒以上5.0秒以下浸漬する、又は、錫めっき鋼板を陽極として0.1A/dm2以上10A/dm2、0.1秒以上2.0秒以下の電解処理を施すことにより容器用鋼板を製造するステップを含むことを特徴とする。In the method for producing a steel plate for containers according to the present invention, electrolytic treatment is performed using a tin-plated steel plate having a tin-plated layer on the surface as an anode in an aqueous solution having a pH in the range of 8 to 13, and then washed with phosphoric acid. A tin-plated steel sheet is immersed in a salt solution for 1.0 to 5.0 seconds, or 0.1 A / dm 2 or more and 10 A / dm 2 for 0.1 to 2.0 seconds with the tin-plated steel sheet as an anode. It includes the step of producing a steel plate for containers by performing the following electrolytic treatment.

本発明によれば、塗料密着性及び耐錫酸化性に優れる容器用鋼板及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate for containers excellent in coating-material adhesiveness and tin-oxidation resistance, and its manufacturing method can be provided.

図1は、合金Snが存在する場合と存在しない場合とにおける還元電流−電位曲線の一例を示す図である。FIG. 1 is a diagram showing an example of a reduction current-potential curve when the alloy Sn is present and when it is not present. 図2は、ピーク分離結果の一例を示す図である。FIG. 2 is a diagram illustrating an example of the peak separation result.

以下、本発明に係る容器用鋼板及びその製造方法について詳しく説明する。   Hereinafter, the steel plate for containers and the manufacturing method thereof according to the present invention will be described in detail.

本発明に係る容器用鋼板は、鋼板と、鋼板の表面の少なくとも一部を覆うSn層、Fe−Sn合金層、及びFe−Ni−Sn合金層のうちから選ばれた少なくとも1層からなる錫めっき層と、を有する錫めっき鋼板によって形成されている。素材の鋼板としては、一般的な容器用の鋼板を使用できる。錫めっき層は、連続層であってもよいし、不連続の島状であってもよい。また、錫めっき層は、鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。錫めっき層の形成は、含有される金属元素に応じた公知の方法で行うことができる。以下、鋼板及び錫めっき層の好適な態様について詳述する。   A steel plate for containers according to the present invention is a tin comprising at least one layer selected from a steel plate and a Sn layer covering at least a part of the surface of the steel plate, a Fe—Sn alloy layer, and a Fe—Ni—Sn alloy layer. And a tin-plated steel sheet having a plating layer. As a raw steel plate, a general container steel plate can be used. The tin plating layer may be a continuous layer or a discontinuous island shape. Moreover, the tin plating layer should just be provided in the at least single side | surface of the steel plate, and may be provided in both surfaces. Formation of a tin plating layer can be performed by a well-known method according to the contained metal element. Hereinafter, the suitable aspect of a steel plate and a tin plating layer is explained in full detail.

〔鋼板〕
鋼板の種類は特に限定されるものではなく、通常、容器用材料として使用される鋼板(例えば極低炭素鋼板や低炭素鋼板)を用いることができる。鋼板の製造方法や材質等も特に限定されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、及び調質圧延等の工程を経て製造される。
〔steel sheet〕
The kind of steel plate is not particularly limited, and a steel plate (for example, an extremely low carbon steel plate or a low carbon steel plate) that is usually used as a container material can be used. The manufacturing method, material, etc. of the steel plate are not particularly limited, and the steel plate is manufactured through a normal slab manufacturing process through processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling.

鋼板は、必要に応じて、その表面にニッケル(Ni)含有層を形成したものを用い、Ni含有層上に錫めっき層を形成してもよい。Ni含有層を有する鋼板を用いて錫めっきを施すことにより、島状Snを含む錫めっき層を形成できるので溶接性が向上する。Ni含有層としてはニッケルが含まれていればよく、例えばNiめっき層やNi−Fe合金層等が挙げられる。   If necessary, a steel sheet having a nickel (Ni) -containing layer formed on the surface thereof may be used, and a tin plating layer may be formed on the Ni-containing layer. By performing tin plating using a steel sheet having a Ni-containing layer, a tin plating layer containing island-shaped Sn can be formed, so that weldability is improved. The Ni-containing layer only needs to contain nickel, and examples thereof include a Ni plating layer and a Ni—Fe alloy layer.

鋼板にNi含有層を付与する方法は特に限定されず、例えば公知の電気めっき等の方法が挙げられる。また、Ni含有層としてNi−Fe合金層を付与する場合、電気めっき等により鋼板表面上にNi付与後、焼鈍することにより、Ni拡散層を配位させ、Ni−Fe合金層を形成できる。   The method for applying the Ni-containing layer to the steel sheet is not particularly limited, and examples thereof include a known method such as electroplating. Moreover, when providing a Ni-Fe alloy layer as a Ni-containing layer, the Ni diffusion layer can be coordinated by forming Ni on the steel sheet surface by electroplating or the like, and then annealing to form a Ni-Fe alloy layer.

Ni含有層中のNi量は特に限定されず、片面当たりの金属Ni換算量が50mg/m2以上2000mg/m2以下の範囲内にあることが好ましい。上記範囲内であれば、耐硫化黒変性により優れ、コスト面でも有利となる。The amount of Ni in the Ni-containing layer is not particularly limited, and it is preferable that the amount of metal Ni converted on one side is in the range of 50 mg / m 2 to 2000 mg / m 2 . If it is in the above-mentioned range, it is more excellent in resistance to sulfur blackening and is advantageous in terms of cost.

〔錫めっき層〕
錫めっき層中における鋼板片面当たりのSn付着量は、0.1g/m2以上15.0g/m2以下の範囲内にあることが好ましい。Sn付着量が上記範囲内であれば、容器用鋼板の外観特性及び耐食性に優れる。中でも、これらの特性がより優れる点で、Sn付着量は、0.2g/m2以上15.0g/m2以下の範囲内がより好ましく、加工性がより優れる点で1.0g/m2以上15.0g/m2以下の範囲内がさらに好ましい。
[Tin plating layer]
The Sn adhesion amount per one surface of the steel plate in the tin plating layer is preferably in the range of 0.1 g / m 2 or more and 15.0 g / m 2 or less. When the Sn adhesion amount is within the above range, the outer appearance characteristics and corrosion resistance of the steel plate for containers are excellent. Among these, the Sn adhesion amount is more preferably in the range of 0.2 g / m 2 or more and 15.0 g / m 2 or less in terms of these characteristics being more excellent, and 1.0 g / m 2 in terms of excellent workability. More preferably, it is within the range of 15.0 g / m 2 or less.

なお、Sn付着量は、電量法又は蛍光X線により表面分析することにより測定できる。蛍光X線を用いる場合には、金属Sn量既知のSn付着量サンプルを用いて、金属Sn量に関する検量線を予め特定しておき、同検量線を用いて相対的に金属Sn量を特定する。   The Sn adhesion amount can be measured by surface analysis using a coulometric method or fluorescent X-ray. When fluorescent X-rays are used, a calibration curve related to the amount of metal Sn is specified in advance using a sample of the amount of Sn deposited with a known amount of metal Sn, and the amount of metal Sn is specified relatively using the calibration curve. .

錫めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。錫めっき層としては、錫をめっきして得られる錫めっき層、又は、錫めっき後、通電加熱等によって錫を加熱溶融させ、錫めっき最下層(錫めっき/地鉄界面)にFe−Sn合金層が一部形成した錫めっき層も含む。また、錫めっき層としては、Ni含有層を表面に有する鋼板に対して錫めっきを行い、さらに通電加熱等によって錫を加熱溶融させ、錫めっき最下層(錫めっき層/鋼板界面)にFe−Sn−Ni合金層、Fe−Sn合金層等が一部形成した錫めっき層も含む。   The tin plating layer is a layer covering at least a part on the surface of the steel plate, and may be a continuous layer or a discontinuous island shape. As the tin plating layer, a tin plating layer obtained by plating tin, or after tin plating, tin is heated and melted by energization heating or the like, and the Fe-Sn alloy is formed on the tin plating bottom layer (tin plating / base metal interface). A tin plating layer in which a part of the layer is formed is also included. In addition, as the tin plating layer, tin plating is performed on a steel sheet having a Ni-containing layer on the surface, and further tin is heated and melted by energization heating or the like, and Fe— A tin plating layer in which a Sn—Ni alloy layer, a Fe—Sn alloy layer or the like is partially formed is also included.

錫めっき層の製造方法としては、周知の方法(例えば電気めっき法や溶融したSnに浸漬してめっきする方法)が挙げられる。例えば、フェノールスルフォン酸錫めっき浴、メタンスルフォン酸錫めっき浴、又は、ハロゲン系錫めっき浴を用い、片面当たりの付着量が所定量(例えば2.8g/m2)となるように鋼板表面にSnを電気めっきした後、Snの融点(231.9℃)以上の温度でリフロー処理を行って、錫単体のめっき層の最下層にFe−Sn合金層を形成した錫めっき層を製造できる。リフロー処理を省略した場合、錫単体のめっき層を製造できる。As a method for producing the tin plating layer, a known method (for example, an electroplating method or a method of immersing and plating in molten Sn) may be mentioned. For example, a phenol sulfonic acid tin plating bath, a methane sulfonic acid tin plating bath, or a halogen-based tin plating bath is used, and the amount of adhesion per one surface is adjusted to a predetermined amount (for example, 2.8 g / m 2 ). After Sn is electroplated, a reflow treatment is performed at a temperature equal to or higher than the melting point of Sn (231.9 ° C.) to produce a tin plating layer in which a Fe—Sn alloy layer is formed in the lowermost layer of the tin plating layer. When the reflow process is omitted, a plating layer of simple tin can be produced.

また、鋼板がその表面上にNi含有層を有する場合、Ni含有層上に錫めっき層を形成させ、リフロー処理を行うと、錫単体のめっき層の最下層(錫めっき層/鋼板界面)にFe−Sn−Ni合金層やFe−Sn合金層等が形成される。   In addition, when the steel sheet has a Ni-containing layer on the surface, a tin plating layer is formed on the Ni-containing layer, and when reflow treatment is performed, the bottom layer of the tin plating layer (tin plating layer / steel sheet interface) is formed. An Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, or the like is formed.

〔酸化錫皮膜〕
本発明に係る容器用鋼板は、錫めっき層とリン酸錫皮膜との間に酸化錫皮膜を有する。酸化錫皮膜の量と質を適正に制御することにより、耐錫酸化性に優れる容器用鋼板を提供できる。具体的には、後述する容器用鋼板の還元電流−電位曲線において、−800〜−500mV vs 飽和KCl―Ag/AgCl参照電極の範囲内に酸化錫皮膜の還元電流ピークを有し、以下に示す数式(1)で定義されるA値が1.0未満であり、その還元電流−電位曲線から計算される酸化錫皮膜の還元に要する電気量が1.5mC/cm2以上5.0mC/cm2以下の範囲内にある。
[Tin oxide film]
The steel plate for containers according to the present invention has a tin oxide film between the tin plating layer and the tin phosphate film. By appropriately controlling the quantity and quality of the tin oxide film, a steel plate for containers having excellent tin oxidation resistance can be provided. Specifically, in the reduction current-potential curve of the steel plate for containers described later, the reduction current peak of the tin oxide film is within the range of −800 to −500 mV vs saturated KCl—Ag / AgCl reference electrode, and is shown below. The A value defined by Equation (1) is less than 1.0, and the amount of electricity required for reduction of the tin oxide film calculated from the reduction current-potential curve is 1.5 mC / cm 2 or more and 5.0 mC / cm. Within 2 or less.

Figure 0006610794
ここで、Q1は−600〜−500mVの範囲内に還元電流ピークを有する酸化錫皮膜の還元に要する電気量を表し、Q2は−600mVより卑側に還元電流ピークを有する酸化錫皮膜の還元に要する電気量を表す。
Figure 0006610794
Here, Q 1 represents the amount of electricity required for reduction of a tin oxide film having a reduction current peak in the range of −600 to −500 mV, and Q 2 is a tin oxide film having a reduction current peak on the base side from −600 mV. Represents the amount of electricity required for reduction.

−600〜−500mVの範囲内に還元電流ピークを有する還元電流はSnOの還元に由来し、−600mVより卑側に還元電流ピークを有する還元電流はSnO2及びSn−Fe又はSn−Fe−Ni合金層酸化膜の還元に由来すると推定される。錫めっき層とリン酸錫皮膜との間に付与する酸化錫皮膜がSnO主体である場合、耐錫酸化性が劣化する。これに対して、酸化錫皮膜がSnO2主体である場合、つまりA値が1.0未満である場合には、耐錫酸化性が向上する。これはSnO2がSnOと比較して大気下での経時に対して安定であり、製造直後の時点からSnO2が付与されることにより経時による錫酸化を抑制可能となるためと推定される。しかしながら、酸化錫皮膜が厚く付与されると酸化錫皮膜の凝集破壊が起点となり、塗料密着性を低下させる。また、酸化錫皮膜が薄すぎても十分な耐錫酸化性が得られない。以上の観点から、酸化錫皮膜の量はその還元に要する還元電気量換算で1.5mC/cm2以上5.0mC/cm2以下の範囲内にあると好ましい。A reduction current having a reduction current peak in the range of −600 to −500 mV is derived from the reduction of SnO, and a reduction current having a reduction current peak on the base side from −600 mV is SnO 2 and Sn—Fe or Sn—Fe—Ni. It is presumed to originate from the reduction of the alloy layer oxide film. When the tin oxide film provided between the tin plating layer and the tin phosphate film is mainly SnO, the tin oxidation resistance deteriorates. On the other hand, when the tin oxide film is mainly SnO 2 , that is, when the A value is less than 1.0, the tin oxidation resistance is improved. This is presumably because SnO 2 is more stable with time in the atmosphere than SnO, and tin oxidation over time can be suppressed by adding SnO 2 from the time immediately after production. However, when the tin oxide film is applied thickly, the cohesive failure of the tin oxide film becomes a starting point, and the paint adhesion is lowered. Moreover, even if the tin oxide film is too thin, sufficient tin oxidation resistance cannot be obtained. From the above viewpoint, the amount of the tin oxide film is preferably in the range of 1.5 mC / cm 2 or more and 5.0 mC / cm 2 or less in terms of the amount of reducing electricity required for the reduction.

なお、容器用鋼板の還元電流−電位曲線は、容器用鋼板をAr等の不活性ガスで置換された0.001Nの臭化水素水溶液中に浸漬し、参照電極として飽和KCl−Ag/AgCl電極を、対極として白金板を用いて容器用鋼板の電位を浸漬電位から卑側に掃引速度1mV/秒で掃引することにより、測定することができる。得られた還元電流−電位曲線から充電電流及び水素発生に伴う還元電流を差し引き、ピーク分離処理を行うことによりSnO、SnO2、及びSn−Fe又はSn−Fe−Ni合金層酸化膜(合金Sn)の還元に由来する還元電流を分離でき、そのピーク面積からそれぞれの還元に要する電気量を算出することができる。以下、図1,図2を参照して、還元に要する電気量の算出方法の一例について説明する。The reduction current-potential curve of the vessel steel plate is obtained by immersing the vessel steel plate in a 0.001N hydrogen bromide aqueous solution substituted with an inert gas such as Ar, and using a saturated KCl-Ag / AgCl electrode as a reference electrode. Can be measured by sweeping the potential of the steel plate for containers from the immersion potential to the base side at a sweep rate of 1 mV / sec using a platinum plate as a counter electrode. By subtracting the charging current and the reduction current accompanying hydrogen generation from the resulting reduction current-potential curve and performing peak separation treatment, SnO, SnO 2 and Sn—Fe or Sn—Fe—Ni alloy layer oxide film (alloy Sn) ) Can be separated, and the amount of electricity required for each reduction can be calculated from the peak area. Hereinafter, an example of a method for calculating the amount of electricity required for reduction will be described with reference to FIGS.

図1(a),(b)はそれぞれ、合金Snが存在する場合と存在しない場合とにおける還元電流−電位曲線の一例を示す図である。ここで、図1(a),(b)において、曲線L1,L2,L3はそれぞれ、還元電流の実測値、バックグラウンド(ベースライン)電流、及びバックグラウンド電流除去後の還元電流の実測値を示している。また、図1(a),(b)に示すバックグラウンド電流は、以下に示す数式(2)により求められるバックグラウンド電流Iが電位−0.9〜−0.8Vの範囲の還元電流の実測値と一致するように、数式(2)中のパラメータα,βを調整することにより求めた。図1(a),(b)に示すように、還元電流の実測値からバックグランド電流を除去することによって、充電電流及び水素発生に伴う還元電流を差し引いた還元電流−電位曲線を求めることができる。   FIGS. 1A and 1B are diagrams showing examples of reduction current-potential curves when the alloy Sn is present and when it is not present. Here, in FIGS. 1A and 1B, curves L1, L2, and L3 respectively show the actual value of the reduction current, the background (baseline) current, and the actual value of the reduction current after removal of the background current. Show. Further, the background current shown in FIGS. 1A and 1B is an actual measurement of the reduction current in the range where the background current I obtained by the following formula (2) is in the range of −0.9 to −0.8V. It was obtained by adjusting the parameters α and β in the formula (2) so as to coincide with the values. As shown in FIGS. 1A and 1B, a reduction current-potential curve obtained by subtracting the charging current and the reduction current associated with the generation of hydrogen can be obtained by removing the background current from the actual measurement value of the reduction current. it can.

Figure 0006610794
ここで、Iはバックグラウンド電流、Ichは充電電流、I0は浸漬電位での電流値、E0は浸漬電位を示す。
Figure 0006610794
Here, I is the background current, I ch is the charging current, I 0 is the current value at the immersion potential, and E 0 is the immersion potential.

図2(a),(b)はそれぞれ、図1(a)及び図1(b)に示す場合におけるピーク分離結果を示す図である。ここで、図2(a),(b)において、曲線L11,L12,L13,L14,L15はそれぞれ、充電電流及び水素発生に伴う還元電流を差し引いた還元電流−電位曲線、SnOに由来する還元電流−電位曲線、SnO2に由来する還元電流−電位曲線、合金Snに由来する還元電流−電位曲線、及び曲線L12と曲線L13と曲線L15との和を示す曲線を示している。また、曲線L12,L13,L14の電流値は、電極表面に吸着した物質の酸化還元電流を表す以下に示す数式(3)を応用して、曲線L11,L12,L13,L14の電流値をそれぞれI,I1,I2,I3として、I=I1+I2+I3となるように数式(3)中のパラメータn,A,Γ,Eoを調整することにより求めた。そして、曲線L12,L13,L14のピーク面積からSnO、SnO2、及び合金Snそれぞれの還元に要する電気量Q1,Q2,Q3を算出した。算出結果の一例を以下の表1に示す。FIGS. 2A and 2B are diagrams showing peak separation results in the cases shown in FIGS. 1A and 1B, respectively. Here, in FIGS. 2A and 2B, curves L11, L12, L13, L14, and L15 are reduction current-potential curves obtained by subtracting the charging current and the reduction current associated with hydrogen generation, respectively, and the reduction derived from SnO. A current-potential curve, a reduction current-potential curve derived from SnO 2 , a reduction current-potential curve derived from alloy Sn, and a curve indicating the sum of curves L12, L13, and L15 are shown. Further, the current values of the curves L12, L13, L14 are obtained by applying the following formula (3) representing the oxidation-reduction current of the substance adsorbed on the electrode surface, and the current values of the curves L11, L12, L13, L14, respectively. I, I 1 , I 2 , and I 3 were obtained by adjusting parameters n, A, Γ, and E o in Equation (3) so that I = I 1 + I 2 + I 3 . Then, electric quantities Q1, Q2, and Q3 required for reducing SnO, SnO 2 , and alloy Sn were calculated from the peak areas of the curves L12, L13, and L14. An example of the calculation result is shown in Table 1 below.

Figure 0006610794
ここで、nは電子数、Fはファラデー定数、Aは電極面積、vは掃引速度、Rは気体定数、Tは温度、Γは吸着量、Eは電極電位、Eoは酸化還元電位を示す。
Figure 0006610794
Here, n is the number of electrons, F is the Faraday constant, A is the electrode area, v is the sweep rate, R is the gas constant, T is the temperature, Γ is the amount of adsorption, E is the electrode potential, and E o is the redox potential. .

Figure 0006610794
Figure 0006610794

〔リン酸錫皮膜〕
次に、上述した錫めっき鋼板の錫めっき層側の表面上に配置されるリン酸錫皮膜について説明する。リン酸錫皮膜は、概略的には、その成分としてリン酸及びSnを含有する皮膜であり、後述する処理液を用いて形成される。リン酸錫皮膜は、錫めっき鋼板の片面あたりのP換算の付着量(以下、「P付着量」ともいう)が0.1mg/m2以上3.0mg/m2以下の範囲内になるように形成されている。P付着量が0.1mg/m2未満である場合、塗料との結合に寄与するリン酸錫皮膜が錫めっき層全面を覆うことができないために塗料密着性が劣化する。一方、P付着量が3.0mg/m2より多い場合には、リン酸錫皮膜自体の凝集破壊により塗料密着性が劣化する。P付着量が0.1mg/m2以上3.0mg/m2以下の範囲内にあれば、塗料密着性に優れ、上述した酸化錫皮膜と併用することにより塗料密着性及び耐錫酸化性に優れる。なお、P付着量は、蛍光X線による表面分析により測定できる。
[Tin phosphate coating]
Next, the tin phosphate film disposed on the surface of the tin-plated steel sheet on the tin plating layer side will be described. The tin phosphate film is generally a film containing phosphoric acid and Sn as its components, and is formed using a treatment liquid described later. The tin phosphate coating has a P-converted adhesion amount (hereinafter also referred to as “P adhesion amount”) per side of a tin-plated steel sheet within a range of 0.1 mg / m 2 to 3.0 mg / m 2. Is formed. When the P adhesion amount is less than 0.1 mg / m 2 , the paint adhesion deteriorates because the tin phosphate coating that contributes to bonding with the paint cannot cover the entire surface of the tin plating layer. On the other hand, when the P adhesion amount is more than 3.0 mg / m 2 , the paint adhesion deteriorates due to the cohesive failure of the tin phosphate coating itself. If the P adhesion amount is in the range of 0.1 mg / m 2 or more and 3.0 mg / m 2 or less, the paint adhesion is excellent, and in combination with the above-described tin oxide film, the paint adhesion and tin oxidation resistance are improved. Excellent. Note that the P adhesion amount can be measured by surface analysis using fluorescent X-rays.

〔容器用鋼板の製造方法〕
本発明に係る容器用鋼板の製造方法としては、まず、錫めっき鋼板をアルカリ性の処理液中に浸漬し、錫めっき鋼板が陽極となるよう適切な電気量密度で電解処理することで錫めっき層の表面に酸化錫皮膜を付与する。次いで、後述する処理液中に錫めっき鋼板を浸漬する、又は、処理液中に浸漬した錫めっき鋼板が陽極となるよう電解処理を施す。以下、本発明に係る容器用鋼板の製造方法について説明を行う。
[Manufacturing method of steel plate for containers]
As a method for manufacturing a steel plate for containers according to the present invention, first, a tin plating layer is obtained by immersing a tin plating steel plate in an alkaline processing liquid and electrolytically treating it with an appropriate electric density so that the tin plating steel plate becomes an anode. A tin oxide film is applied to the surface of the film. Next, the tin-plated steel sheet is immersed in a treatment liquid described later, or electrolytic treatment is performed so that the tin-plated steel sheet immersed in the treatment liquid becomes an anode. Hereinafter, the manufacturing method of the steel plate for containers which concerns on this invention is demonstrated.

〔前処理工程〕
本発明に係る容器用鋼板の製造方法では、後述するリン酸錫皮膜形成工程の前に後述する前処理工程を行う。前処理工程は、アルカリ性前処理液に錫めっき鋼板を陽極となるように電解処理することにより、錫めっき鋼板の錫めっき層側の表面上に酸化錫皮膜を形成する工程である。錫めっき鋼板を前処理液で陽極電解処理することにより、錫めっき鋼板が有する錫めっき層の一部が酸化錫を含有する酸化錫皮膜となる。アルカリ性前処理液は特に限定されない。例えば炭酸ナトリウムや炭酸カリウム等のアルカリ金属の炭酸塩類の水溶液、水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物類の水溶液が挙げられる。
[Pretreatment process]
In the method for manufacturing a steel plate for containers according to the present invention, a pretreatment step described later is performed before a tin phosphate film forming step described later. The pretreatment step is a step of forming a tin oxide film on the surface of the tin-plated steel sheet on the tin plating layer side by subjecting the tin-plated steel sheet to an electrolytic treatment with an alkaline pretreatment liquid so as to serve as an anode. By subjecting the tin-plated steel sheet to anodic electrolytic treatment with a pretreatment liquid, a part of the tin-plated layer of the tin-plated steel sheet becomes a tin oxide film containing tin oxide. The alkaline pretreatment liquid is not particularly limited. Examples include aqueous solutions of alkali metal carbonates such as sodium carbonate and potassium carbonate, and aqueous solutions of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.

前処理液中の成分濃度は特に限定されないが、酸化錫皮膜を錫めっき鋼板の表面上に連続的、且つ、緻密に形成できるという理由から、5g/L以上30g/L以下の範囲内が好ましく、10g/L以上20g/L以下の範囲内がより好ましい。前処理液のpHは酸化錫皮膜を錫めっき鋼板上に連続的、且つ、緻密に形成できるという理由から、8以上13以下の範囲内にあることが好ましく、10以上12以下の範囲内にあることがより好ましい。前処理工程において、処理を実施する際の前処理液の液温は、形成される酸化錫皮膜量が適量となって、経時による錫酸化をより抑制できるという理由から、20℃以上60℃以下の範囲内が好ましく、30℃以上50℃以下の範囲内がより好ましい。   The component concentration in the pretreatment liquid is not particularly limited, but is preferably in the range of 5 g / L or more and 30 g / L or less because the tin oxide film can be continuously and densely formed on the surface of the tin-plated steel sheet. A range of 10 g / L or more and 20 g / L or less is more preferable. The pH of the pretreatment liquid is preferably in the range of 8 to 13 and preferably in the range of 10 to 12 because the tin oxide film can be continuously and densely formed on the tin-plated steel sheet. It is more preferable. In the pretreatment step, the temperature of the pretreatment liquid when performing the treatment is 20 ° C. or more and 60 ° C. or less because the amount of tin oxide film formed is an appropriate amount and tin oxidation over time can be further suppressed. The range of 30 degreeC or more and 50 degrees C or less are more preferable.

前処理液中での電解条件は、錫めっき鋼板側が陽極になるよう電解するが、その際、上述した酸化錫皮膜の量及び質にするためには最適な電気量密度が適用される。最適な電気量密度の絶対値は、整流器、鋼板、その他配線等の抵抗により変化するため、装置によってなる。最適な電気量密度条件は、上述した酸化錫皮膜の還元による還元電流−電位曲線を各条件で測定し、A値が1.0未満、還元電気量が1.5mC/cm2以上8.0mC/cm2以下の範囲内となる電気量密度を選択すればよい。なお、前処理液中での電解処理後においては、必要に応じて水洗処理を施してもよい。As electrolysis conditions in the pretreatment liquid, electrolysis is performed so that the tin-plated steel sheet side becomes an anode. In this case, an optimum electric density is applied in order to obtain the above-described amount and quality of the tin oxide film. The optimum absolute value of the electric quantity density varies depending on the resistance of a rectifier, a steel plate, other wiring, etc., and therefore depends on the device. The optimum electric quantity density condition is that the above-described reduction current-potential curve by reduction of the tin oxide film is measured under each condition, the A value is less than 1.0, and the reduced electric quantity is 1.5 mC / cm 2 or more and 8.0 mC. An electric quantity density that falls within the range of / cm 2 or less may be selected. In addition, you may perform a water-washing process as needed after the electrolytic treatment in a pre-processing liquid.

〔リン酸錫皮膜形成工程〕
リン酸錫皮膜形成工程は、錫めっき鋼板の錫めっき層側の表面上に酸化錫皮膜層を形成した後にリン酸錫皮膜を形成する工程であって、処理液中に錫めっき鋼板を浸漬する(浸漬処理)、又は、浸漬した錫めっき鋼板に陽極電解処理を施す工程である。処理液としては市販のリン酸錫処理液を使用することができる。例えば日本パーカライジング社製のリン酸錫処理液PF−K5102等が挙げられる。錫めっき鋼板の浸漬時間は、P付着量を0.1mg/m2以上3.0mg/m2以下の範囲内に確保するという点から、1.0秒以上5.0秒以下の範囲内にあることが好ましく、2.0秒以上4.0秒以下の範囲内にあることがより好ましい。
[Tin phosphate film formation process]
The tin phosphate film forming step is a step of forming a tin phosphate film after forming a tin oxide film layer on the surface of the tin-plated steel sheet on the tin plating layer side, and immersing the tin-plated steel sheet in the treatment liquid (Immersion treatment) or a step of subjecting the immersed tin-plated steel sheet to an anodic electrolytic treatment. A commercially available tin phosphate treatment solution can be used as the treatment solution. For example, a tin phosphate treatment solution PF-K5102 manufactured by Nippon Parkerizing Co., Ltd. may be mentioned. The immersion time of the tin-plated steel sheet is within the range of 1.0 second or more and 5.0 second or less from the viewpoint of securing the P adhesion amount within the range of 0.1 mg / m 2 or more and 3.0 mg / m 2 or less. It is preferable that it is within a range of 2.0 seconds or more and 4.0 seconds or less.

錫めっき鋼板を浸漬し、さらに陽極電解処理を施してもよい。この場合、浸漬のみの場合と比較して、より短時間でリン酸錫皮膜を形成でき、コスト的に有利である。陽極電解処理を施す際の電解電流密度は、P付着量を0.1mg/m2以上3.0mg/m2以下の範囲内に確保するという点から、0.1A/dm2以上10A/dm2以下の範囲内にあることが好ましく、0.5A/dm2以上5A/dm2以下の範囲内にあることがより好ましい。また、電解時間は、P付着量を0.1mg/m2以上3.0mg/m2以下の範囲内に確保するという点から、0.1秒以上2.0秒以下の範囲内にあることが好ましく、0.2秒以上1.0秒以下の範囲内にあることがより好ましい。なお、処理液中での浸漬又は電解処理後においては、必要に応じて室温から90℃の水で洗浄処理を施してもよい。A tin-plated steel sheet may be immersed and further subjected to anodic electrolysis. In this case, compared with the case of only immersion, the tin phosphate film can be formed in a shorter time, which is advantageous in terms of cost. The electrolytic current density during the anodic electrolysis is 0.1 A / dm 2 or more and 10 A / dm from the viewpoint of securing the P adhesion amount within the range of 0.1 mg / m 2 or more and 3.0 mg / m 2 or less. It is preferably in the range of 2 or less, and more preferably in the range of 0.5 A / dm 2 or more and 5 A / dm 2 or less. The electrolysis time is within the range of 0.1 second to 2.0 seconds from the viewpoint of securing the P adhesion amount within the range of 0.1 mg / m 2 to 3.0 mg / m 2. Is more preferable, and it is more preferably within a range of 0.2 seconds to 1.0 seconds. In addition, after immersion in a process liquid or electrolytic treatment, you may perform a washing process with water of room temperature to 90 degreeC as needed.

以下、実施例を挙げて本発明を具体的に説明する。但し、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

[錫めっき鋼板の製造]
まず、板厚0.22mmの鋼板(T4原板)を電解脱脂し、ワット浴を用いて以下の表2に示す片面当たりのNi付着量でニッケルめっき層を両面に形成後、10vol.%H2+90vol.%N2雰囲気中にて700℃で焼鈍してニッケルめっきを拡散浸透させることによりFe−Ni合金層(Ni含有層)を両面に形成した。引き続き、表層にNi含有層を有する鋼板に対して錫めっき浴を用い、表2中に示す片面当たりのSn付着量でSn層を両面に形成後、Snの融点以上でリフロー処理を施し、錫めっき層をT4原板の両面に形成した。
[Manufacture of tinned steel sheet]
First, a steel plate (T4 original plate) having a thickness of 0.22 mm was electrolytically degreased and a nickel plating layer was formed on both sides with a Ni adhesion amount per one side shown in Table 2 below using a Watt bath, and then 10 vol.% H 2 + 90 vol at.% N 2 atmosphere and annealed at 700 ° C. by diffusing penetrate nickel plating to form Fe-Ni alloy layer (Ni-containing layer) on both sides. Subsequently, a tin plating bath was used for the steel sheet having the Ni-containing layer as the surface layer, and after Sn layers were formed on both sides with the Sn adhesion amount per one side shown in Table 2, reflow treatment was performed at a melting point of Sn or more, Plating layers were formed on both sides of the T4 original plate.

[皮膜の形成]
浴温30℃、pHが11の、10g/Lの炭酸ナトリウム、又は、水酸化ナトリウム水溶液中にめっき層付き鋼板を浸漬し、以下の表2に示す前処理条件にて陽極電解処理を行い、酸化錫皮膜を形成した。次いで、得られた酸化錫皮膜付き鋼板を水洗し、日本パーカライジング社製のリン酸錫処理液PF−K5102を100g/Lとなるよう添加した60℃の処理液(溶媒:水)を用い、以下の表2に示す電解条件(電流密度、浸漬時間、電解時間)で陽極電解処理を施した。その後、得られた酸化錫皮膜付き鋼板を85℃の水で洗浄し、ブロアを用いて室温で乾燥させることにより、鋼板の両面に本発明の皮膜を形成した。これにより、容器用鋼板の試験材を作製した。その後、作製した容器用鋼板の試験材について、塗料密着性及び耐錫酸化性を後述する方法で評価した。評価結果を以下の表3にまとめて示す。
[Formation of film]
A steel plate with a plating layer is immersed in a 10 g / L sodium carbonate solution having a bath temperature of 30 ° C. and a pH of 11 or a sodium hydroxide aqueous solution, and an anodic electrolytic treatment is performed under the pretreatment conditions shown in Table 2 below. A tin oxide film was formed. Subsequently, the obtained steel plate with a tin oxide film was washed with water, and a 60 ° C. treatment solution (solvent: water) added with 100 μg / L of a tin phosphate treatment solution PF-K5102 manufactured by Nihon Parkerizing Co., Ltd. was used. The anodic electrolysis was performed under the electrolysis conditions (current density, immersion time, electrolysis time) shown in Table 2. Then, the obtained steel sheet with a tin oxide film was washed with water at 85 ° C. and dried at room temperature using a blower, thereby forming the film of the present invention on both surfaces of the steel sheet. Thereby, the test material of the steel plate for containers was produced. Then, about the produced test material of the steel plate for containers, paint adhesiveness and tin oxidation resistance were evaluated by the method mentioned later. The evaluation results are summarized in Table 3 below.

[塗料密着性]
作製した容器用鋼板の表面に付着量50mg/dm2のエポキシフェノール系塗料を塗布した後、210℃で10分間の焼付を行った。次いで、上記塗布及び焼付を行った容器用鋼板にカッターナイフで碁盤目を100マス(1マスの面積は1mm2)入れ、その後、テープ剥離を行い、以下に示す評価基準で塗料の剥離率を評価した。実用上、評価が◎又は○であれば、塗料密着性に優れるものとして評価できる。
[Paint adhesion]
An epoxyphenol-based paint having an adhesion amount of 50 mg / dm 2 was applied to the surface of the produced steel plate for containers, and then baked at 210 ° C. for 10 minutes. Next, 100 square grids (the area of 1 square is 1 mm 2 ) are put into the steel plate for containers which has been coated and baked with a cutter knife, and then the tape is peeled off. evaluated. Practically, if the evaluation is 又 は or ○, it can be evaluated as having excellent paint adhesion.

◎:0.0%以上10.0%未満(クロメート処理材同等)
○:10.0%以上60.0%未満
×:60%以上
A: 0.0% or more and less than 10.0% (equivalent to chromate treatment material)
○: 10.0% or more and less than 60.0% ×: 60% or more

[耐錫酸化性]
作製した直後(作製後1週間以内)の容器用鋼板について、温度50℃、相対湿度80%の環境下で2週間保管し、その前後の鋼板表面の呈色を評価した。具体的には、日本電色工業社製SQ−2000を用いてb値を測定し、Δb値(試験後鋼板b値−試験前鋼板b値)を以下に示す評価基準で評価した。そして、評価が○であれば、耐錫酸化性に優れるものとして評価した。
[Tin oxidation resistance]
The container steel plate immediately after production (within one week after production) was stored for 2 weeks in an environment of a temperature of 50 ° C. and a relative humidity of 80%, and the coloration of the steel plate surface before and after that was evaluated. Specifically, b value was measured using SQ-2000 manufactured by Nippon Denshoku Industries Co., Ltd., and Δb value (post-test steel plate b value-pre-test steel plate b value) was evaluated according to the following evaluation criteria. And if evaluation was (circle), it evaluated as what is excellent in tin-oxidation resistance.

○:Δb値 0.0以上1.0未満
△:Δb値 1.0以上2.0未満
×:Δb値 2.0以上
○: Δb value 0.0 or more and less than 1.0 Δ: Δb value 1.0 or more and less than 2.0 ×: Δb value 2.0 or more

Figure 0006610794
Figure 0006610794

Figure 0006610794
Figure 0006610794

表2,3に示す結果から明らかなように、本発明例はいずれも塗料密着性及び耐錫酸化性に優れることが確認された。これに対して、リン酸錫皮膜のP付着量が0.1mg/m2以上3.0mg/m2以下の範囲内にない比較例、又は、酸化錫皮膜の還元電気量が5.0mC/cm2より多い比較例では、塗料密着性が劣っていた。また、A値が1.0以上、酸化錫皮膜の還元電気量が1.5mC/cm2より少ない比較例では、耐錫酸化性が劣っていた。As is clear from the results shown in Tables 2 and 3, it was confirmed that all of the inventive examples were excellent in paint adhesion and tin oxidation resistance. On the other hand, the P adhesion amount of the tin phosphate coating is not within the range of 0.1 mg / m 2 or more and 3.0 mg / m 2 or less, or the reducing electricity amount of the tin oxide coating is 5.0 mC / In comparative examples with more than cm 2 , the paint adhesion was poor. Moreover, tin oxide resistance was inferior in the comparative example in which the A value was 1.0 or more and the amount of reducing electricity of the tin oxide film was less than 1.5 mC / cm 2 .

本発明によれば、塗料密着性及び耐錫酸化性に優れる容器用鋼板及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate for containers excellent in coating-material adhesiveness and tin-oxidation resistance, and its manufacturing method can be provided.

Claims (2)

表面に錫めっき層を有する錫めっき鋼板と、
前記錫めっき層の表面上に形成された酸化錫皮膜と、
前記酸化錫皮膜の表面上に形成された、P量として0.1mg/m以上3.0mg/m以下のリン酸錫を含むリン酸錫皮膜と、
を備え、
前記酸化錫皮膜は、0.001Nの臭化水素水溶液中において電位を浸漬電位から卑側に掃引しながら前記酸化錫皮膜を還元した際、−800〜−500mV vs 飽和KCl―Ag/AgCl参照電極の範囲内に還元電流ピークを有し、
後記数式(1)で定義されるA値が1.0未満であり、
前記酸化錫皮膜の還元電流−電位曲線から計算される酸化錫皮膜の還元に要する電気量が2.60mC/cm以上5.0mC/cm以下の範囲内にある
ことを特徴とする容器用鋼板。
Figure 0006610794
ここで、Qは、−600〜−500mVの範囲内に還元電流ピークを有する酸化錫皮膜の還元に要する電気量を表し、Qは、−600mVより卑側に還元電流ピークを有する酸化錫皮膜の還元に要する電気量を表す。
A tinned steel sheet having a tinned layer on the surface;
A tin oxide film formed on the surface of the tin plating layer;
A tin phosphate film formed on the surface of the tin oxide film and containing 0.1 mg / m 2 or more and 3.0 mg / m 2 or less of tin phosphate as an amount of P;
With
When the tin oxide film was reduced in a 0.001N hydrogen bromide aqueous solution while sweeping the potential from the immersion potential to the base side, the -800 to -500 mV vs. saturated KCl-Ag / AgCl reference electrode Having a reduction current peak in the range of
A value defined by the following mathematical formula (1) is less than 1.0,
Container, characterized in that in the range amount of electricity required for reduction of the tin oxide film calculated from the potential curve is 2.60 mC / cm 2 or more 5.0mC / cm 2 or less - reduction current of the tin oxide film Steel plate.
Figure 0006610794
Here, Q 1 represents the amount of electricity required for the reduction of the tin oxide film having a reduction current peak in the range of −600 to −500 mV, and Q 2 is a tin oxide having a reduction current peak on the base side from −600 mV. It represents the amount of electricity required to reduce the film.
pHが8以上13以下の範囲内にある水溶液中で表面に錫めっき層を有する錫めっき鋼板を陽極として電解処理を施した後に該錫めっき鋼板を水洗することにより、前記酸化錫皮膜を形成する前処理ステップと、
前記前処理ステップ後の錫めっき鋼板をリン酸塩水溶液中に1.0秒以上5.0秒以下浸漬する、又は、前記前処理ステップ後の錫めっき鋼板をリン酸塩水溶液中に浸漬し、該錫めっき鋼板を陽極として0.1A/dm以上10A/dm 以下、0.1秒以上2.0秒以下の電解処理を施すことにより、前記リン酸錫皮膜を形成するリン酸皮膜形成ステップを含むことを特徴とする請求項1に記載の容器用鋼板の製造方法。
The tin oxide film is formed by subjecting the tin-plated steel sheet to an aqueous treatment in an aqueous solution having a pH in the range of 8 to 13 and subjecting the tin-plated steel sheet to an electrolytic treatment, followed by washing with water. A pre-processing step;
Immerse the tin-plated steel sheet after the pretreatment step in a phosphate aqueous solution at 1.0 second or more and 5.0 seconds or less, or immerse the tin-plated steel sheet after the pretreatment step in a phosphate aqueous solution, the tin-plated steel sheet 0.1 a / dm 2 or more 10A / dm 2 or less as an anode, by subjecting the electrolysis of 2.0 seconds or less than 0.1 seconds, phosphate film forming of forming the tin phosphate coating The manufacturing method of the steel plate for containers of Claim 1 characterized by including a step.
JP2018536211A 2017-08-25 2018-06-08 Steel plate for container and manufacturing method thereof Active JP6610794B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017161768 2017-08-25
JP2017161768 2017-08-25
PCT/JP2018/022006 WO2019039044A1 (en) 2017-08-25 2018-06-08 Steel sheet for container and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2019039044A1 JPWO2019039044A1 (en) 2019-11-07
JP6610794B2 true JP6610794B2 (en) 2019-11-27

Family

ID=65438573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018536211A Active JP6610794B2 (en) 2017-08-25 2018-06-08 Steel plate for container and manufacturing method thereof

Country Status (6)

Country Link
JP (1) JP6610794B2 (en)
KR (1) KR102337924B1 (en)
CN (1) CN111065764B (en)
MY (1) MY195277A (en)
TW (1) TWI676712B (en)
WO (1) WO2019039044A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3960900A4 (en) * 2019-04-23 2022-05-18 JFE Steel Corporation Method for producing surface-treated steel sheet, and surface-treated steel sheet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586612A (en) * 1969-03-27 1971-06-22 Council Scient Ind Res Anodic phosphating of metallic articles
JPS5268832A (en) * 1975-12-05 1977-06-08 Nippon Steel Corp Surface treatment of tin plated steel sheet
JPS5275626A (en) * 1975-12-19 1977-06-24 Nippon Steel Corp Subsequent treating process for galvanized steel sheet
JP4935295B2 (en) * 2005-10-20 2012-05-23 Jfeスチール株式会社 Tin-plated steel sheet and method for producing the same
JP4864493B2 (en) * 2006-03-07 2012-02-01 新日本製鐵株式会社 Plated steel sheet for cans
JP4869976B2 (en) 2007-02-20 2012-02-08 新日本製鐵株式会社 Plated steel sheet for can and manufacturing method thereof
KR101310598B1 (en) * 2009-02-04 2013-09-23 신닛테츠스미킨 카부시키카이샤 Tin-plated steel sheet and method for producing the same
JP5365335B2 (en) * 2009-04-30 2013-12-11 Jfeスチール株式会社 Tin-plated steel sheet and method for producing the same
DE102011002837A1 (en) * 2011-01-18 2012-07-19 Henkel Ag & Co. Kgaa Multi-stage pre-treatment of tinplate before painting
JP2012197495A (en) 2011-03-22 2012-10-18 Toyo Kohan Co Ltd Method for producing surface treated steel sheet for can
DE102012000414B4 (en) * 2012-01-12 2014-03-20 Thyssenkrupp Rasselstein Gmbh Process for passivating tinplate and tinned steel strip or sheet
JP6003912B2 (en) * 2014-01-30 2016-10-05 Jfeスチール株式会社 Steel plate for container and method for producing the same

Also Published As

Publication number Publication date
KR20200026978A (en) 2020-03-11
MY195277A (en) 2023-01-12
TWI676712B (en) 2019-11-11
CN111065764B (en) 2022-03-01
JPWO2019039044A1 (en) 2019-11-07
TW201912836A (en) 2019-04-01
CN111065764A (en) 2020-04-24
KR102337924B1 (en) 2021-12-09
WO2019039044A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
JP5633117B2 (en) Method for producing tin-plated steel sheet, tin-plated steel sheet and chemical conversion treatment liquid
JP6610794B2 (en) Steel plate for container and manufacturing method thereof
FR2564488A1 (en) STEEL SHEET WITH MULTILAYER SURFACE BASED ON CHROME BASED ON EXCELLENT WELDABILITY AND METHOD OF PRODUCING SAME
WO2015174190A1 (en) Steel plate for container
KR101803219B1 (en) Steel sheet for container and manufacturing method therefor
TWI792744B (en) Surface-treated steel sheet and manufacturing method thereof
JP6098763B2 (en) Sn-plated steel sheet, chemical conversion-treated steel sheet, and production methods thereof
KR102524705B1 (en) Method of producing surface-treated steel sheet and surface-treated steel sheet
JP5994960B1 (en) Steel plate for container and method for producing steel plate for container
JP6156299B2 (en) Steel plate for container and method for producing the same
TWI840140B (en) Surface treated steel plate and manufacturing method thereof
JP6052305B2 (en) Steel plate for containers
JP6066030B2 (en) Steel plate for container and method for producing steel plate for container
JP6135650B2 (en) Steel plate for containers
JP6048441B2 (en) Steel plate for containers
JP5626416B2 (en) Tinned steel sheet
JP2010133014A (en) Method for producing tinned steel sheet, and the tinned steel sheet
JP2011102417A (en) Method of producing tin-plated steel sheet and tin-plated steel sheet
JPS6179800A (en) Sulfidation discoloring resistant steel plate electroplated with tin
JPS6348958B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250