JP2016058261A - Heat radiation socket and manufacturing method of the same, and led component including heat radiation socket - Google Patents

Heat radiation socket and manufacturing method of the same, and led component including heat radiation socket Download PDF

Info

Publication number
JP2016058261A
JP2016058261A JP2014184178A JP2014184178A JP2016058261A JP 2016058261 A JP2016058261 A JP 2016058261A JP 2014184178 A JP2014184178 A JP 2014184178A JP 2014184178 A JP2014184178 A JP 2014184178A JP 2016058261 A JP2016058261 A JP 2016058261A
Authority
JP
Japan
Prior art keywords
socket
filler
power supply
supply line
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014184178A
Other languages
Japanese (ja)
Inventor
均 安藤
Hitoshi Ando
均 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2014184178A priority Critical patent/JP2016058261A/en
Publication of JP2016058261A publication Critical patent/JP2016058261A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance heat radiation properties from a mount member of an LED to a socket, and to secure electrical insulation of a socket from a power supply line.SOLUTION: This invention is regarding a heat radiation socket 20, a manufacturing method of the same and an LED component 1 including the heat radiation socket 20. The heat radiation socket includes: a socket-like molding 21 which is made by dispersing a filler 55 which has excellent electrical conductivity and thermal conductivity compared to resin 56 in the resin 56 as a base material, and which can be electrically connected to a mount member 10 on which an LED 15 is mounted; a power supply line 30 arranged inside the molding 21, and for connecting the LED 15 and an external power source; and an insulation covering member 50 for covering a portion coming into contact at least with the molding 21 of the power supply line 30 and having more excellent insulation properties than the filler 55.SELECTED DRAWING: Figure 3

Description

本発明は、放熱性に優れた放熱ソケットおよびその製造方法、ならびに放熱ソケットを含むLEDコンポーネントに関する。   The present invention relates to a heat dissipation socket excellent in heat dissipation, a method for manufacturing the same, and an LED component including the heat dissipation socket.

発光ダイオード(Light Emitting Diode: LED)は、p型半導体とn型半導体を接合したpn接合ダイオードであり、電力を、直接、光のエネルギーに変換可能な光源として知られている。発光ダイオードの順方向(pからnの方向)に電圧をかけると、p型半導体中の伝導帯を流れる正孔(ホール)とn型半導体中の価電子帯を流れる電子とがpn接合部付近にて禁制体を越えて再結合する。このとき、禁制体の幅に相当するエネルギーが光として放出される。LEDから発光される光は、フィラメント内蔵の電球と異なり、発熱を介さずに、電力から変換されるので、低発熱、低消費電力などの特徴を有する。   A light emitting diode (LED) is a pn junction diode obtained by joining a p-type semiconductor and an n-type semiconductor, and is known as a light source capable of directly converting electric power into light energy. When a voltage is applied in the forward direction (direction from p to n) of the light emitting diode, holes flowing in the conduction band in the p-type semiconductor and electrons flowing in the valence band in the n-type semiconductor are near the pn junction. Recombine beyond the forbidden body. At this time, energy corresponding to the width of the forbidden body is emitted as light. Unlike light bulbs with a built-in filament, light emitted from LEDs is converted from electric power without passing through heat generation, and thus has features such as low heat generation and low power consumption.

近年、例えば、自動車用のヘッドライトのような高輝度用途において、複数のLEDを搭載することが要求されている。また、5W以上の高出力LEDを用いる場合には、その搭載個数が少ない場合でも高熱になり、ヘッドライトの寿命が短くなることが知られている(例えば、特許文献1を参照)。LED素子の温度上昇を防止するためには、放熱機能を高める必要がある。このような必要性から、例えば、アルミニウムあるいはアルミニウム合金製の細長形状のマウント部材に多数のLEDを搭載し、LEDからマウント部材に速やかに放熱できるようにする技術が知られている(例えば、特許文献2を参照)。   In recent years, for example, in a high brightness application such as a headlight for automobiles, it is required to mount a plurality of LEDs. Further, when a high-power LED of 5 W or more is used, it is known that even when the number of mounted LEDs is small, the heat is high and the life of the headlight is shortened (see, for example, Patent Document 1). In order to prevent the temperature rise of the LED element, it is necessary to enhance the heat dissipation function. From such a need, for example, a technique is known in which a large number of LEDs are mounted on an elongated mounting member made of aluminum or an aluminum alloy, and heat can be quickly radiated from the LEDs to the mounting member (for example, patents). Reference 2).

特開2005−125993号公報JP 2005-125993 A 特開2013−020911号公報JP2013-020911A

しかし、上記従来技術にも未だ改善すべき課題がある。熱伝導性に優れたアルミニウムあるいはアルミニウム合金製のマウント部材に多数のLEDを搭載した場合、当該マウント部材から大気中に放熱することで、速やかな放熱を実現できる。この場合、マウント部材の外側を被覆していると、その被覆部材の熱伝達性が低い場合には、放熱性が必ずしも高くならない。マウント部材に接続されるソケットに放熱できれば良いが、ソケットを構成する樹脂にグラファイトや金属粒子を分散させて放熱性を高めると、ソケット内部の給電ラインとソケットとが導通してしまい、給電ラインからのソケットの電気的絶縁性を確保できないという問題が生じる。   However, there are still problems to be improved in the above-described conventional technology. When a large number of LEDs are mounted on a mount member made of aluminum or aluminum alloy having excellent thermal conductivity, heat can be quickly radiated by radiating heat from the mount member to the atmosphere. In this case, if the outside of the mount member is covered, if the heat transferability of the covering member is low, the heat dissipation is not necessarily improved. It is sufficient if heat can be dissipated to the socket connected to the mount member. However, if graphite or metal particles are dispersed in the resin that constitutes the socket to improve heat dissipation, the power supply line inside the socket and the socket become conductive, and the power supply line This causes a problem that the electrical insulation of the socket cannot be ensured.

本発明は、上記のような問題を解決するためになされたものであり、LEDのマウント部材からソケットへの放熱性を高めると同時に、給電ラインからのソケットの電気的絶縁性を確保することを目的とする。   The present invention has been made to solve the above-described problems, and it is intended to improve the heat dissipation from the LED mounting member to the socket and to ensure the electrical insulation of the socket from the power supply line. Objective.

上記目的を達成するための本発明の一形態は、母材としての樹脂に、その樹脂に比べて導電性と熱伝導性に優れたフィラーを分散させて成り、発光ダイオードを搭載するマウント部材と電気的に接続可能なソケット形状の成形体と、その成形体の内部に配置され、発光ダイオードと外部電源とをつなぐ給電ラインと、その給電ラインの少なくとも成形体と接触する部分を被覆し、フィラーよりも絶縁性に優れた絶縁性被覆部材と、を備える放熱ソケットである。   One form of the present invention for achieving the above object is a mounting member on which a light emitting diode is mounted, in which a filler having excellent conductivity and thermal conductivity is dispersed in a resin as a base material. A socket-shaped molded body that can be electrically connected, a power supply line that is arranged inside the molded body and connects the light emitting diode and the external power source, and covers at least a portion of the power supply line that contacts the molded body, and a filler A heat radiating socket including an insulating covering member that is more excellent in insulation.

本発明の別の形態は、さらに、絶縁性被覆部材をシリコーンゴムとした放熱ソケットである。   Another embodiment of the present invention is a heat radiating socket in which the insulating covering member is made of silicone rubber.

本発明の別の形態は、また、成形体が、グラファイトを、ポリカーボネート、ポリアミド若しくはポリフェニレンサルファイドに分散させて成る放熱ソケットである。   Another embodiment of the present invention is a heat radiation socket in which the molded body is obtained by dispersing graphite in polycarbonate, polyamide, or polyphenylene sulfide.

本発明の一形態は、上述の放熱ソケットを製造する方法であって、未硬化状態の樹脂中に、その樹脂に比べて導電性と熱伝導性に優れたフィラーを混ぜてフィラー分散未硬化樹脂を用意するフィラー分散未硬化樹脂製造工程と、発光ダイオードと外部電源とをつなぐ給電ラインの一部に、フィラーよりも絶縁性に優れた絶縁性被覆部材を被覆する被覆工程と、フィラー分散未硬化樹脂を成形してなるソケット中に、絶縁性被覆部材を被覆した給電ラインを内在させる給電ライン配置工程と、を含む放熱ソケットの製造方法である。   One aspect of the present invention is a method for producing the above-described heat dissipation socket, and a filler-dispersed uncured resin obtained by mixing a filler having excellent conductivity and thermal conductivity with the uncured resin in comparison with the resin. A filler-dispersed uncured resin manufacturing process, a coating process for coating an insulating coating member with better insulation than a filler on a part of a power supply line connecting a light emitting diode and an external power source, and a filler-dispersed uncured resin A power supply line arranging step of including a power supply line coated with an insulating covering member in a socket formed by molding a resin.

本発明の別の形態は、さらに、給電ライン配置工程には、絶縁性被覆部材を被覆した給電ラインを金型内にセットし、その金型内に、フィラー分散未硬化樹脂を供給する樹脂供給工程と、金型内のフィラー分散未硬化樹脂を硬化させる樹脂硬化工程と、を含む放熱ソケットの製造方法である。   According to another aspect of the present invention, in the power supply line arranging step, a power supply line covering the insulating coating member is set in the mold, and the resin supply for supplying the filler-dispersed uncured resin into the mold is provided. It is a manufacturing method of a heat radiating socket including a process and a resin curing process of curing a filler-dispersed uncured resin in a mold.

本発明の別の形態は、また、絶縁性被覆部材をチューブ形状とし、被覆工程には、チューブ形状の絶縁性被覆部材中に給電ラインを挿入する挿入工程を含む放熱ソケットの製造方法である。   Another embodiment of the present invention is a method for manufacturing a heat radiating socket, wherein the insulating covering member is formed into a tube shape, and the covering step includes an insertion step of inserting a power supply line into the tube-shaped insulating covering member.

本発明の別の形態は、また、被覆工程には、挿入工程に続いて、チューブ形状の絶縁性被覆部材を加熱して給電ラインに密着させる密着工程を含む放熱ソケットの製造方法である。   Another form of the present invention is a method for manufacturing a heat radiating socket, wherein the covering step includes an adhesion step in which the tube-shaped insulating covering member is heated and brought into close contact with the power supply line following the insertion step.

本発明の一形態は、上述の放熱ソケットに、発光ダイオードを搭載するマウント部材を電気的に接続させて成るLEDコンポーネントである。   One embodiment of the present invention is an LED component in which a mounting member on which a light emitting diode is mounted is electrically connected to the above-described heat dissipation socket.

本発明によれば、LEDのマウント部材からソケットへの放熱性を高めると同時に、給電ラインからのソケットの電気的絶縁性を確保することができる。   ADVANTAGE OF THE INVENTION According to this invention, while improving the heat dissipation from the mounting member of LED to a socket, the electrical insulation of the socket from an electric power feeding line is securable.

図1は、本発明の実施の形態に係るLEDコンポーネントの組み立て斜視図(1A)および組み立て後の斜視図(1B)をそれぞれ示す。FIG. 1 shows an assembled perspective view (1A) and an assembled perspective view (1B) of an LED component according to an embodiment of the present invention. 図2は、図1のLEDコンポーネントを構成するマウント部材の組み立て斜視図(2A)および図1のLEDコンポーネントを搭載したライト部材の一部透過斜視図(2B)をそれぞれ示す。2 shows an assembled perspective view (2A) of the mount member constituting the LED component of FIG. 1 and a partially transparent perspective view (2B) of the light member on which the LED component of FIG. 1 is mounted. 図3は、図1の放熱ソケットの斜視図(3A)、(3A)のC面を黒矢印方向に移動させて切断したときのC面切断面(3B)、および(3A)のD面を白矢印方向に移動させて切断したときのD面切断面(3C)をそれぞれ示す。3 is a perspective view of the heat radiation socket of FIG. 1 (3A), a C plane cut surface (3B) when the C plane of (3A) is moved in the direction of the black arrow and cut, and a D plane of (3A). The D-plane cut surface (3C) when cut by moving in the direction of the white arrow is shown. 図4は、図3の(3B)の一部Eの拡大図を示す。FIG. 4 shows an enlarged view of a part E of (3B) of FIG. 図5は、本発明の実施の形態に係る放熱ソケットの製造方法のフローを示す。FIG. 5 shows a flow of the manufacturing method of the heat dissipation socket according to the embodiment of the present invention. 図6は、図5のステップの一部を具体化したフローを示す。FIG. 6 shows a flow that embodies some of the steps of FIG. 図7は、図5の被覆工程(ステップS102)の一例を説明するための図であり、給電ラインにチューブ形状の絶縁性被覆部材を被覆する前の状態(7A)および給電ラインにチューブ形状の絶縁性被覆部材を被覆した後の状態(7B)を、それぞれ示す。FIG. 7 is a diagram for explaining an example of the covering step (step S102) in FIG. 5, in a state (7A) before the tube-shaped insulating covering member is coated on the power supply line and the tube-shaped power supply line. The state (7B) after coating the insulating covering member is shown respectively. 図8は、図1のLEDコンポーネントの変形例であって、その組み立て斜視図(8A)および組み立て後の斜視図(8B)をそれぞれ示す。FIG. 8 is a modified example of the LED component of FIG. 1 and shows an assembled perspective view (8A) and an assembled perspective view (8B).

次に、本発明に係る放熱ソケット、その製造方法、およびLEDコンポーネントの各実施形態について説明する。ただし、以下に説明する実施の形態は、本発明に係る放熱ソケット、その製造方法、およびLEDコンポーネントの好適な形態であって、該形態に含まれる各構成は、本発明に係る放熱ソケット、その製造方法、およびLEDコンポーネントに必須の構成とは限らない。   Next, each embodiment of the thermal radiation socket which concerns on this invention, its manufacturing method, and LED component is described. However, the embodiment described below is a preferred form of the heat dissipation socket according to the present invention, its manufacturing method, and the LED component, and each configuration included in the form includes the heat dissipation socket according to the present invention, its It is not necessarily an essential configuration for the manufacturing method and the LED component.

<1.放熱ソケットおよびLEDコンポーネント>
図1は、本発明の実施の形態に係るLEDコンポーネントの組み立て斜視図(1A)および組み立て後の斜視図(1B)をそれぞれ示す。図2は、図1のLEDコンポーネントを構成するマウント部材の組み立て斜視図(2A)および図1のLEDコンポーネントを搭載したライト部材の一部透過斜視図(2B)をそれぞれ示す。
<1. Thermal socket and LED component>
FIG. 1 shows an assembled perspective view (1A) and an assembled perspective view (1B) of an LED component according to an embodiment of the present invention. 2 shows an assembled perspective view (2A) of the mount member constituting the LED component of FIG. 1 and a partially transparent perspective view (2B) of the light member on which the LED component of FIG. 1 is mounted.

この実施の形態に係るLEDコンポーネント1は、発光ダイオード(以下、「LED」という)15を搭載するマウント部材10と、放熱ソケット20とを備える。マウント部材10は、放熱ソケット20と電気的に接続され、LEDコンポーネント1を構成する。   The LED component 1 according to this embodiment includes a mount member 10 on which a light emitting diode (hereinafter referred to as “LED”) 15 is mounted, and a heat dissipation socket 20. The mount member 10 is electrically connected to the heat dissipation socket 20 and constitutes the LED component 1.

(1)マウント部材の構造
マウント部材10は、好適に、筒状部材11の上面および側面に複数のLED15を備える。図2の(2A)に示すように、マウント部材10は、スリーブ11と、凸型透明部材12と、基板13と、側面被覆透明部材14と、フレキシブル基板19と、を備える。
(1) Structure of Mount Member The mount member 10 preferably includes a plurality of LEDs 15 on the upper surface and side surfaces of the cylindrical member 11. As shown in FIG. 2 (2 A), the mount member 10 includes a sleeve 11, a convex transparent member 12, a substrate 13, a side surface covering transparent member 14, and a flexible substrate 19.

スリーブ11は、この実施の形態では、円筒形状であるが、三角以上の多角筒形状であっても良い。また、スリーブ11に代えて、中実の円柱形状若しくは多角柱形状の部材を用いても良い。スリーブ11は、一方向に延び、多くのLED15を搭載可能な面積を有する。スリーブ11は、LED15から効果的に放熱できるように、熱伝導率の高い材料から構成される。スリーブ11の構成材料としては、アルミニウム、アルミニウム合金などに代表される高熱伝導性の金属材料; 窒化アルミニウム、ダイヤモンドライクカーボンなどに代表される高熱伝導性のセラミックス; 樹脂若しくはゴムに上記高熱伝導性の金属材料若しくはセラミックスを分散させた複合材; などを例示できる。スリーブ11は、基板13およびフレキシブル基板19上の配線と非接触状態にあるため、電気絶縁性に優れた材料で構成されていなくとも良い。かかる理由から、スリーブ11の構成材料として、アルミニウム等の金属材料を用いることができる。   In this embodiment, the sleeve 11 has a cylindrical shape, but may have a polygonal cylindrical shape of a triangle or more. Further, instead of the sleeve 11, a solid columnar or polygonal columnar member may be used. The sleeve 11 extends in one direction and has an area where many LEDs 15 can be mounted. The sleeve 11 is made of a material having high thermal conductivity so that heat can be effectively radiated from the LED 15. The constituent material of the sleeve 11 includes a metal material with high thermal conductivity typified by aluminum, aluminum alloy, etc .; ceramics with high thermal conductivity typified by aluminum nitride, diamond-like carbon, etc .; Examples include metal materials or composite materials in which ceramics are dispersed. Since the sleeve 11 is not in contact with the wiring on the substrate 13 and the flexible substrate 19, the sleeve 11 does not have to be made of a material having excellent electrical insulation. For this reason, a metal material such as aluminum can be used as the constituent material of the sleeve 11.

スリーブ11は、その長さ方向略中央部分に、その外表面を内方に少し窪ませた凹領域17を備える。凹領域17は、スリーブ11の内側から外側に向けてLED15を露出可能な形状および大きさを持つ貫通孔18を備える。貫通孔18の数は、特に制約は無いが、好ましくは、LED15の数と同一若しくはそれ以上である。   The sleeve 11 includes a concave region 17 whose outer surface is slightly recessed inward at a substantially central portion in the length direction. The recessed area 17 includes a through hole 18 having a shape and a size capable of exposing the LED 15 from the inner side to the outer side of the sleeve 11. The number of through holes 18 is not particularly limited, but is preferably equal to or more than the number of LEDs 15.

スリーブ11の側面から露出するLED15は、スリーブ11より小径のスリーブ形状のフレキシブル基板19に搭載されている。フレキシブル基板19の構成材料は、電気絶縁性に優れ、かつ伸縮性を有する材料であれば、特に制約されない。フレキシブル基板19は、その表面に、図示されない配線(好適には、通電可能な電気伝導性に優れる金属から成る)が形成されている。フレキシブル基板19は、その筒径を小さくして、スリーブ11の内部に挿入され、LED15を貫通孔18から通過させて、スリーブ11内部に固定される。フレキシブル基板19は、その筒を完全に閉じておらず、その一部を縦方向に切り、容易に筒径を変更可能に形成されている。しかし、フレキシブル基板19を完全に周方向に閉じた筒形状に構成しても良い。さらに、筒状のフレキシブル基板19に代えて、短冊状のフレキシブル基板上にLED15を縦方向に3個搭載し、その短冊状のフレキシブル基板を複数本、スリーブ11の内壁に周方向に沿って並べて固定しても良い。また、フレキシブル基板19をスリーブ11の外側面に取り付けるようにしても良い。その場合には、貫通孔18は、必ずしも要しない。   The LED 15 exposed from the side surface of the sleeve 11 is mounted on a sleeve-shaped flexible substrate 19 having a smaller diameter than the sleeve 11. The constituent material of the flexible substrate 19 is not particularly limited as long as it is excellent in electrical insulation and has elasticity. On the surface of the flexible substrate 19, wiring (not shown) (preferably made of a metal capable of being energized and having excellent electrical conductivity) is formed. The flexible substrate 19 is inserted into the sleeve 11 with its cylindrical diameter being reduced, and the LED 15 is passed through the through hole 18 and is fixed inside the sleeve 11. The flexible substrate 19 is not completely closed, and a part thereof is cut in the vertical direction so that the cylinder diameter can be easily changed. However, you may comprise the flexible substrate 19 in the cylinder shape closed completely in the circumferential direction. Further, instead of the cylindrical flexible substrate 19, three LEDs 15 are vertically mounted on a strip-shaped flexible substrate, and a plurality of the strip-shaped flexible substrates are arranged on the inner wall of the sleeve 11 along the circumferential direction. It may be fixed. Further, the flexible substrate 19 may be attached to the outer surface of the sleeve 11. In that case, the through hole 18 is not necessarily required.

側面被覆透明部材14は、スリーブ11の凹領域17に取り付け可能な略円筒形状の部材であり、LED15から発する光を外に透過可能とする透明性の高い樹脂、ゴムあるいはガラスから好適に構成される。側面被覆透明部材14も、フレキシブル基板19と同様、その筒を完全に閉じておらず、その一部を縦方向に切り、容易に凹領域17を被覆可能に形成されているが、完全に周方向に閉じた筒形状に構成されていても良い。   The side covering transparent member 14 is a substantially cylindrical member that can be attached to the concave region 17 of the sleeve 11, and is preferably composed of highly transparent resin, rubber, or glass that allows light emitted from the LED 15 to be transmitted outside. The Similarly to the flexible substrate 19, the side covering transparent member 14 is not completely closed, and a part of the side covering transparent member 14 is cut in the vertical direction so that the concave region 17 can be covered easily. You may be comprised in the cylinder shape closed in the direction.

基板13は、スリーブ11の天面(上面ともいう)に取り付け可能であって、この実施の形態では、薄い円板形状を有する。スリーブ11の上面の形状が多角形であれば、基板13は、その多角形と同じ形状の板状部材であるのが好ましい。基板13は、その外表面に、LED15を備える。LED15の個数は、1個以上であれば、その個数を問わない。ただし、スリーブ11の天面に、必ずしもLED15を備えていなくても良い。   The substrate 13 can be attached to the top surface (also referred to as the upper surface) of the sleeve 11 and has a thin disk shape in this embodiment. If the shape of the upper surface of the sleeve 11 is a polygon, the substrate 13 is preferably a plate-like member having the same shape as the polygon. The substrate 13 includes LEDs 15 on the outer surface thereof. The number of LEDs 15 is not limited as long as it is one or more. However, the LED 15 is not necessarily provided on the top surface of the sleeve 11.

凸型透明部材12は、スリーブ11の天面側に備えるLED15から発する光を外に透過可能とする透明性の高い樹脂、ゴムあるいはガラスから好適に構成される。LED15がスリーブ11の天面から突出しない場合には、凸型透明部材12に代えて平板型透明部材を用いても良い。また、スリーブ11の天面にLED15を備えない場合には、凸型透明部材12を備える必要はない。   The convex transparent member 12 is preferably composed of a highly transparent resin, rubber, or glass that allows light emitted from the LED 15 provided on the top surface side of the sleeve 11 to be transmitted to the outside. When the LED 15 does not protrude from the top surface of the sleeve 11, a flat plate-type transparent member may be used instead of the convex transparent member 12. Further, when the LED 15 is not provided on the top surface of the sleeve 11, it is not necessary to provide the convex transparent member 12.

マウント部材10は、フレキシブル基板19および基板13から電気的に接続される通電端子16を放熱ソケット20側に突出して備える。通電端子16は、図1の(1A)に示すように、矢印A方向に放熱ソケット20側の給電ライン30に接続されることにより、外部電源から受電可能となる。   The mount member 10 includes a flexible substrate 19 and a current-carrying terminal 16 electrically connected from the substrate 13 so as to protrude toward the heat radiating socket 20. As shown in (1A) of FIG. 1, the energization terminal 16 can receive power from an external power source by being connected to the power supply line 30 on the heat dissipation socket 20 side in the direction of arrow A.

(2)放熱ソケットの外部構造
図1および図2に示すように、放熱ソケット20は、ソケット形状の成形体21と、給電ライン30と、その給電ライン30の少なくとも成形体21と接触する部分を被覆する絶縁性被覆部材(図3を参照)と、を備える。ソケット形状の成形体21は、略L字形状を有し、マウント部材10との接続部から順に、略筒形状の第1筒状部材22と、当該第1筒状部材22よりも大径の鍔部23と、略L字形状の管部材24と、当該管部材24より大径の略筒形状の第2筒状部材25と、を接続して成る。なお、管部材24の形状は、この実施の形態では、略L字形状であるが、それ以外の形状、例えば、直管形状であっても良い。また、放熱ソケット20の放熱性をさらに高めるべく、成形体21のいずれかの外壁に複数枚のフィンを形成するのが好ましい。
(2) External structure of heat dissipation socket As shown in FIGS. 1 and 2, the heat dissipation socket 20 includes a socket-shaped molded body 21, a power supply line 30, and at least a portion of the power supply line 30 that contacts the molded body 21. And an insulating covering member (see FIG. 3) to be covered. The socket-shaped molded body 21 has a substantially L-shape, and in order from the connection portion with the mount member 10, a substantially cylindrical first cylindrical member 22 and a diameter larger than that of the first cylindrical member 22. The flange portion 23, a substantially L-shaped tube member 24, and a substantially cylindrical second tubular member 25 having a larger diameter than the tube member 24 are connected to each other. In addition, although the shape of the pipe member 24 is a substantially L shape in this embodiment, other shapes, for example, a straight pipe shape may be used. In order to further improve the heat dissipation of the heat dissipation socket 20, it is preferable to form a plurality of fins on any outer wall of the molded body 21.

成形体21は、母材としての樹脂に、当該樹脂に比べて導電性と熱伝導性に優れたフィラーを分散させて成り、LED15を搭載するマウント部材10と電気的に接続可能な部材である。この実施の形態では、成形体21を構成する第1筒状部材22、鍔部23、管部材24および第2筒状部材25は、全て、樹脂とフィラーとの複合部材である。しかし、成形体21の主要部を当該複合部材で構成されていれば、一部を当該複合部材以外の材料から構成されていても良い。例えば、管部材24のみを上記複合部材にて構成し、第1筒状部材22、鍔部23および第2筒状部材25を絶縁性の高い他の部材(例えば、複合部材からフィラーを除外した樹脂)から構成しても良い。また、管部材24と鍔部23を上記複合部材にて構成し、第1筒状部材22および第2筒状部材25を絶縁性の高い他の部材から構成しても良い。マウント部材10から放熱ソケット20側に効果的に放熱できるように、成形体21の全部もしくは主要部を複合部材にて形成する限り、上記例示以外の複合部材とそれ以外の材料との組み合わせを自由に選択できる。   The molded body 21 is a member that is electrically connectable to the mount member 10 on which the LED 15 is mounted, in which a filler having excellent conductivity and thermal conductivity compared to the resin is dispersed in a resin as a base material. . In this embodiment, the first cylindrical member 22, the flange 23, the pipe member 24, and the second cylindrical member 25 constituting the molded body 21 are all composite members of resin and filler. However, as long as the main part of the molded body 21 is composed of the composite member, a part may be composed of a material other than the composite member. For example, only the pipe member 24 is composed of the composite member, and the first tubular member 22, the flange 23, and the second tubular member 25 are made of other highly insulating members (for example, filler is excluded from the composite member). (Resin). Moreover, the pipe member 24 and the collar part 23 may be comprised by the said composite member, and the 1st cylindrical member 22 and the 2nd cylindrical member 25 may be comprised from another member with high insulation. As long as all or the main part of the molded body 21 is formed of a composite member so that heat can be effectively radiated from the mount member 10 to the heat dissipation socket 20 side, combinations of composite members other than the above examples and other materials are free. Can be selected.

第1筒状部材22は、マウント部材10との接続部位であって、その筒内26に、マウント部材10側の通電端子16と電気的に接続可能な第1接続部31を突出して備える。第1接続部31は、給電ライン30の一端に形成されている。第1接続部31の形状は、この実施の形態では、通電端子16を挿入可能な管形状であるが、通電端子16と接続可能である限り、通電端子16の形状に応じて管以外の形状とすることもできる。   The first cylindrical member 22 is a connection portion with the mount member 10, and a first connection portion 31 that can be electrically connected to the current-carrying terminal 16 on the mount member 10 side protrudes in the cylinder 26. The first connection portion 31 is formed at one end of the power supply line 30. In this embodiment, the shape of the first connection portion 31 is a tube shape into which the current-carrying terminal 16 can be inserted. However, as long as the current-carrying terminal 16 can be connected, the shape of the first connection portion 31 is a shape other than the tube. It can also be.

第2筒状部材25は、外部電源(交流電源であるか、直流電源であるかを問わない)側と接続可能な部位であって、その筒内27に、外部電源側と電気的に接続可能な第2接続部32を突出して備える。第2接続部32は、給電ライン30における第1接続部31と反対側の一端に形成されている。第2接続部32の形状は、この実施の形態では、薄板形状であるが、外部電源と接続可能である限り、それ以外の形状とすることもできる。   The second cylindrical member 25 is a part that can be connected to the external power supply (whether it is an AC power supply or a DC power supply) side, and is electrically connected to the external power supply side in the cylinder 27. A possible second connection 32 is provided protruding. The second connection portion 32 is formed at one end of the power supply line 30 opposite to the first connection portion 31. The shape of the second connection portion 32 is a thin plate shape in this embodiment, but may be any other shape as long as it can be connected to an external power source.

(3)ライト部材の構造
図2の(2B)に示すように、LEDコンポーネント1の主にマウント部材10は、カップ状の反射板40のカップ内部に配置される。反射板40の上方開口部は、透明部材41にて覆われる。このような形態のライト部材は、マウント部材10に搭載された多数のLED15からの光の一部を、反射板40にて反射しながら、透明部材41から外部へと透過させることができる。LED15からの熱は、マウント部材10に接続された放熱ソケット20側にも効果的に伝達され、空気中へと放出される。このため、放熱ソケット20を構成することによって、マウント部材10から反射板40を経由して空気中へと放熱されるルート以外にも放熱ルートを形成できるので、放熱性の高いライト部材を実現できる。
(3) Structure of light member As shown in (2B) of FIG. 2, the mount member 10 of the LED component 1 is mainly disposed inside the cup of the cup-shaped reflector 40. The upper opening of the reflecting plate 40 is covered with a transparent member 41. The light member having such a configuration can transmit a part of light from the many LEDs 15 mounted on the mount member 10 to the outside from the transparent member 41 while being reflected by the reflecting plate 40. The heat from the LED 15 is also effectively transmitted to the heat radiating socket 20 connected to the mount member 10 and is released into the air. For this reason, since the heat dissipation route can be formed in addition to the route that dissipates heat from the mount member 10 to the air via the reflector 40 by configuring the heat dissipation socket 20, a light member with high heat dissipation can be realized. .

(4)放熱ソケットの内部構造
図3は、図1の放熱ソケットの斜視図(3A)、(3A)のC面を黒矢印方向に移動させて切断したときのC面切断面(3B)、および(3A)のD面を白矢印方向に移動させて切断したときのD面切断面(3C)をそれぞれ示す。図4は、図3の(3B)の一部Eの拡大図を示す。
(4) Internal structure of heat radiating socket FIG. 3 is a perspective view of the heat radiating socket of FIG. 1 (3A), C surface cut surface (3B) when cut by moving the C surface of (3A) in the direction of the black arrow, And D plane cut surface (3C) when the D plane of (3A) is moved in the direction of the white arrow and cut. FIG. 4 shows an enlarged view of a part E of (3B) of FIG.

放熱ソケット20は、その内部に、略L字形状に曲がった給電ライン30を備える。給電ライン30は、導電性に優れた材料であれば特に制約は無いが、銅、銀、アルミニウム、アルミニウム合金、タングステンなどを例示できる。給電ライン30の一端は、第1接続部31を備え、第1筒状部材22の筒内26にて露出している。また、給電ライン30における第1接続部31と反対側の端部は、第2接続部32を備え、第2筒状部材25の筒内27にて露出している。この実施の形態では、第1接続部31は第1筒状部材22の開口面から外方向に突出しないように、かつ第2接続部32は第2筒状部材25の開口面から外方向に突出しないように、それぞれ形成されている。しかし、第1接続部31および第2接続部32は、それぞれ、第1筒状部材22の開口面および第2筒状部材25の開口面から突出していても良い。   The heat dissipation socket 20 includes a power supply line 30 bent in a substantially L shape therein. The power supply line 30 is not particularly limited as long as it is a material having excellent conductivity, and examples thereof include copper, silver, aluminum, aluminum alloy, and tungsten. One end of the power supply line 30 includes a first connection portion 31 and is exposed in the cylinder 26 of the first cylindrical member 22. Further, the end of the power supply line 30 opposite to the first connection portion 31 includes a second connection portion 32 and is exposed in the cylinder 27 of the second cylindrical member 25. In this embodiment, the first connection portion 31 does not protrude outward from the opening surface of the first tubular member 22, and the second connection portion 32 extends outward from the opening surface of the second tubular member 25. Each is formed so as not to protrude. However, the first connection portion 31 and the second connection portion 32 may protrude from the opening surface of the first tubular member 22 and the opening surface of the second tubular member 25, respectively.

給電ライン30の成形体21と接触する部分は、成形体21と電気的に絶縁を保持する必要から、絶縁性被覆部材50にて覆われている。絶縁性被覆部材50は、予めL字形状に曲げられた給電ライン30に対して被覆されても良く、あるいはまっすぐな給電ライン30に対して被覆された後、給電ライン30をL字形状に曲げても良い。この実施の形態では、成形体21の内部は、筒内26および筒内27を除き、中実形成されている。このため、給電ライン30の第1接続部31および第2接続部32以外の部分は、全て、絶縁性被覆部材50にて覆われている。しかし、成形体21の内部に空間がある場合、あるいは成形体21の一部を複合部材以外の電気導電性が極めて低い材料で構成している場合には、当該空間に存在し、あるいは当該複合部材以外の材料と接する給電ライン30の一部を絶縁性被覆部材50にて覆わなくても良い。すなわち、給電ライン30において、最低限、成形体21の複合部材と電気的に絶縁すべき部分のみを絶縁性被覆部材50にて覆えば良い。   A portion of the power supply line 30 that comes into contact with the molded body 21 is covered with an insulating covering member 50 because it needs to be electrically insulated from the molded body 21. The insulating covering member 50 may be coated on the power supply line 30 bent in advance in an L shape, or after being coated on the straight power supply line 30, the power supply line 30 is bent in an L shape. May be. In this embodiment, the inside of the molded body 21 is solid except for the cylinder interior 26 and the cylinder interior 27. For this reason, all portions of the power supply line 30 other than the first connection portion 31 and the second connection portion 32 are covered with the insulating covering member 50. However, when there is a space inside the molded body 21, or when a part of the molded body 21 is made of a material having extremely low electrical conductivity other than the composite member, it exists in the space or the composite It is not necessary to cover a part of the power supply line 30 in contact with the material other than the member with the insulating covering member 50. That is, at least the portion of the power supply line 30 that should be electrically insulated from the composite member of the molded body 21 may be covered with the insulating covering member 50.

なお、第1筒状部材22を複合部材にて構成する場合には、第1接続部31と筒内26の筒底面との間には、第1筒状部材22と第1接続部31との電気的接続を確実に防止する観点から、絶縁シート51を介在させるのが好ましい。第1接続部31の径を給電ライン30の主要部の径よりも大径に形成していると、第1接続部31の底部と筒底面との間で通電する可能性があるからである。一方、第2接続部32は、この実施の形態では、給電ライン30の主要部の径と同一若しくはそれ以下の幅にて薄板形状に構成されている。このため、絶縁シート51を第2筒状部材25の内底部に敷く必要性は低い。ただし、給電ライン30と管部材24あるいは第2筒状部材25との通電を確実に防止する観点から、給電ライン30を覆う絶縁性被覆部材50は、第2筒状部材25の内底面と同じ位置若しくはそれ以上筒内27側に露出する位置まで存在する方が好ましい。   When the first cylindrical member 22 is composed of a composite member, the first cylindrical member 22, the first connection portion 31, and the first connection portion 31 are arranged between the first connection portion 31 and the cylinder bottom surface of the cylinder 26. Insulating sheet 51 is preferably interposed from the viewpoint of reliably preventing the electrical connection. This is because if the diameter of the first connection portion 31 is formed larger than the diameter of the main portion of the power supply line 30, there is a possibility of energization between the bottom portion of the first connection portion 31 and the bottom surface of the cylinder. . On the other hand, in this embodiment, the second connection portion 32 is configured in a thin plate shape with a width equal to or less than the diameter of the main portion of the power supply line 30. For this reason, the necessity of laying the insulating sheet 51 on the inner bottom portion of the second cylindrical member 25 is low. However, the insulating covering member 50 that covers the power supply line 30 is the same as the inner bottom surface of the second cylindrical member 25 from the viewpoint of reliably preventing the power supply line 30 and the pipe member 24 or the second cylindrical member 25 from being energized. It is preferable to exist up to a position that is exposed to the position 27 or more on the side of the cylinder 27.

図4に示すように、成形体21は、母材としての樹脂56に、当該樹脂56に比べて導電性と熱伝導性に優れたフィラー55を分散させて成る。かかる樹脂56中にフィラー55を分散させた複合部材は、フィラー55の存在に起因して、成形体21に熱伝導性を付与すると同時に、導電性をも付与する。熱伝導性が高く、かつ導電性が低いフィラー、例えば、ダイヤモンドや窒化アルミニウムなどのフィラーを樹脂56に分散すれば、給電ライン30を絶縁性被覆部材50にて覆う必要はない。しかし、このような熱伝導性が高く、かつ導電性が低いフィラーは、高価であり、放熱ソケット20の高コスト化を招く可能性がある。このため、より低価であって熱伝導性に優れるフィラー55、例えば、グラファイトあるいはアルミニウム等の金属を使用する方が好ましい。このようなフィラー55は、比較的、導電性も高いことから、給電ライン30と成形体21における複合材料で構成した部分との間に、フィラー55よりも絶縁性の高い絶縁性被覆部材50を介在させている。   As shown in FIG. 4, the molded body 21 is formed by dispersing a filler 55 having excellent conductivity and thermal conductivity in a resin 56 as a base material as compared with the resin 56. Due to the presence of the filler 55, the composite member in which the filler 55 is dispersed in the resin 56 imparts thermal conductivity to the molded body 21 and at the same time imparts conductivity. If a filler having a high thermal conductivity and a low conductivity, for example, a filler such as diamond or aluminum nitride is dispersed in the resin 56, it is not necessary to cover the power supply line 30 with the insulating covering member 50. However, such a filler having high thermal conductivity and low conductivity is expensive, and may increase the cost of the heat radiating socket 20. Therefore, it is preferable to use a filler 55 having a lower price and excellent thermal conductivity, for example, a metal such as graphite or aluminum. Since such a filler 55 is relatively high in conductivity, an insulating covering member 50 having a higher insulating property than the filler 55 is provided between the power supply line 30 and the portion formed of the composite material in the molded body 21. Intervene.

成形体21を構成する樹脂56は、特に制約なく用いることができ、ポリアミド、ポリプロピレン、ポリエチレンテレフタレート、アクリル樹脂、ポリブチレンテレフタレート、ポリカーボネート、ポリフェニレンサルファイド、ABS樹脂などを好適に用いることができる。特に好ましい樹脂は、ポリカーボネート、ポリアミド若しくはポリフェニレンサルファイドである。また、上記樹脂56に分散するフィラー55としては、粒状、ファイバー状、針状、板状など種々の形状のものを用いることができる。フィラー55は、樹脂56とフィラー55の複合部材100体積%中、5〜50体積%、好ましくは10〜30体積%、より好ましくは15〜25体積%含まれる。また、フィラー55の材料としては、グラファイト、アルミニウム、アルミニウム合金などを好適に例示できる。樹脂56とフィラー55とのより好適な組み合わせは、ポリカーボネート、ポリアミド若しくはポリフェニレンサルファイドのいずれかと、グラファイトとの組み合わせである。   The resin 56 constituting the molded body 21 can be used without particular limitation, and polyamide, polypropylene, polyethylene terephthalate, acrylic resin, polybutylene terephthalate, polycarbonate, polyphenylene sulfide, ABS resin, and the like can be suitably used. Particularly preferred resins are polycarbonate, polyamide or polyphenylene sulfide. Further, as the filler 55 dispersed in the resin 56, those having various shapes such as a granular shape, a fiber shape, a needle shape, and a plate shape can be used. The filler 55 is contained in 5 to 50% by volume, preferably 10 to 30% by volume, and more preferably 15 to 25% by volume in 100% by volume of the composite member of the resin 56 and the filler 55. Moreover, as a material of the filler 55, graphite, aluminum, an aluminum alloy, etc. can be illustrated suitably. A more preferable combination of the resin 56 and the filler 55 is a combination of any one of polycarbonate, polyamide, or polyphenylene sulfide and graphite.

絶縁性被覆部材50は、給電ライン30において絶縁性を付与する部位に、絶縁性の被膜を形成可能な液状組成物を給電ライン30に塗布若しくはコーティングする方法; 上記液状組成物中に給電ラインを浸漬する方法; 絶縁性被覆部材50をチューブ形状に成形して、給電ライン30を当該チューブの中に挿入する方法; などを例示できる。絶縁性被覆部材50としては、フィラー55よりも絶縁性が高ければ、特に制約なく用いることができる。絶縁性被覆部材50を樹脂にて構成する場合には、成形体21の母材として用いる樹脂56の選択肢と同様のものを用いることができる。絶縁性被覆部材50をゴムにて構成する場合には、例えば、シリコーンゴム、ウレタンゴム、エチレンプロピレンゴムあるいはエチレンプロピレンジエンゴム等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系あるいはフッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を用いることができ、特に、成形体21を複合部材の射出により成形する場合には、耐熱性に優れるシリコーンゴムをより好適に用いることができる。   The insulating covering member 50 is a method in which a liquid composition capable of forming an insulating film is applied or coated on a portion of the power supply line 30 that imparts insulation to the power supply line 30; Examples of the dipping method include: forming the insulating covering member 50 into a tube shape, and inserting the power supply line 30 into the tube. The insulating covering member 50 can be used without particular limitation as long as it has higher insulating properties than the filler 55. When the insulating covering member 50 is made of resin, the same options as the resin 56 used as the base material of the molded body 21 can be used. When the insulating covering member 50 is made of rubber, for example, a thermosetting elastomer such as silicone rubber, urethane rubber, ethylene propylene rubber or ethylene propylene diene rubber; urethane, ester, styrene, olefin or Fluorine-based thermoplastic elastomers or composites thereof can be used. In particular, when the molded body 21 is molded by injection of a composite member, it is more preferable to use silicone rubber having excellent heat resistance. it can.

<2.放熱ソケットの製造方法>
図5は、本発明の実施の形態に係る放熱ソケットの製造方法のフローを示す。図6は、図5のステップの一部を具体化したフローを示す。
<2. Manufacturing method of heat dissipation socket>
FIG. 5 shows a flow of the manufacturing method of the heat dissipation socket according to the embodiment of the present invention. FIG. 6 shows a flow that embodies some of the steps of FIG.

この実施の形態に係る放熱ソケット20は、未硬化状態の樹脂56中に、当該樹脂56に比べて導電性と熱伝導性に優れたフィラー55を混ぜてフィラー分散未硬化樹脂を用意するフィラー分散未硬化樹脂製造工程(ステップS101)と、LED15と外部電源とをつなぐ給電ライン30の一部に、フィラー55よりも絶縁性に優れた絶縁性被覆部材50を被覆する被覆工程(ステップS102)と、フィラー分散未硬化樹脂を成形してなるソケット中に、絶縁性被覆部材50を被覆した給電ライン30を内在させる給電ライン配置工程(ステップS103)と、を含む。   The heat radiating socket 20 according to this embodiment is a filler dispersion in which a filler-dispersed uncured resin is prepared by mixing an uncured resin 56 with a filler 55 having superior conductivity and thermal conductivity compared to the resin 56. An uncured resin manufacturing process (step S101), and a covering process (step S102) for covering an insulating covering member 50 having a better insulating property than the filler 55 on a part of the power supply line 30 that connects the LED 15 and the external power source. And a power feed line arranging step (step S103) in which a power feed line 30 covered with the insulating covering member 50 is contained in a socket formed by molding filler-dispersed uncured resin.

ここで、給電ライン配置工程(ステップS103)は、金型(不図示)内に絶縁性被覆部材50を被覆した給電ライン30をセットした後、その金型内にフィラー分散未硬化樹脂を供給するインサート成形方式; 二つ割りのソケットの間に絶縁性被覆部材50を被覆した給電ライン30を挟む組み立て方式; などの給電ライン30を成形体21内に存在せしめる如何なる方式をも含む。   Here, in the power supply line arrangement step (step S103), after setting the power supply line 30 covered with the insulating coating member 50 in a mold (not shown), the filler-dispersed uncured resin is supplied into the mold. An insert molding method; an assembly method in which the power supply line 30 covered with the insulating covering member 50 is sandwiched between the split sockets; and any method in which the power supply line 30 exists in the molded body 21 are included.

この実施の形態では、次のように、図6に示すインサート成形方式を採用している。すなわち、給電ライン配置工程(ステップS103)は、絶縁性被覆部材50を被覆した給電ライン30を金型内にセットし、その金型内に、フィラー分散未硬化樹脂を供給する樹脂供給工程(ステップS201)と、金型内のフィラー分散未硬化樹脂を硬化させる樹脂硬化工程(ステップS202)と、を含む。フィラー分散未硬化樹脂を硬化させる手段は、特に制約されないが、樹脂56に熱硬化性樹脂を用いた場合には加熱を、樹脂56に熱可塑性樹脂を用いた場合には冷却(自然放冷も含む)を、樹脂56に紫外線硬化性樹脂を用いた場合にはUV照射を、樹脂56に電子線硬化性樹脂を用いた場合には電子線照射を、それぞれ行う。   In this embodiment, the insert molding method shown in FIG. 6 is adopted as follows. That is, in the power supply line arrangement step (step S103), the power supply line 30 that covers the insulating coating member 50 is set in a mold, and the resin supply step (step of supplying filler-dispersed uncured resin into the mold). S201) and a resin curing step (step S202) for curing the filler-dispersed uncured resin in the mold. The means for curing the filler-dispersed uncured resin is not particularly limited. However, when a thermosetting resin is used as the resin 56, heating is performed, and when a thermoplastic resin is used as the resin 56, cooling (natural cooling is also possible). In the case where an ultraviolet curable resin is used for the resin 56, UV irradiation is performed, and when an electron beam curable resin is used for the resin 56, electron beam irradiation is performed.

図7は、図5の被覆工程(ステップS102)の一例を説明するための図であり、給電ラインにチューブ形状の絶縁性被覆部材を被覆する前の状態(7A)および給電ラインにチューブ形状の絶縁性被覆部材を被覆した後の状態(7B)を、それぞれ示す。   FIG. 7 is a diagram for explaining an example of the covering step (step S102) in FIG. 5, in a state (7A) before the tube-shaped insulating covering member is coated on the power supply line and the tube-shaped power supply line. The state (7B) after coating the insulating covering member is shown respectively.

被覆工程(ステップS102)として、給電ライン30をチューブ形状の絶縁性被覆部材50(「絶縁チューブ50a」と称する)内に挿入する方法を好適な例として挙げることができる。すなわち、絶縁性被覆部材50をチューブ形状とする場合、被覆工程(ステップS102)は、矢印Fに示すように、絶縁チューブ50a中に給電ライン30を挿入する挿入工程を含む(7Aを参照)。さらに、被覆工程(ステップS102)は、上記挿入工程に続いて、絶縁チューブ50aを加熱して給電ライン30に密着させる密着工程を含むことも可能である(7Bを参照)。   As a covering step (step S102), a method of inserting the power supply line 30 into a tube-shaped insulating covering member 50 (referred to as “insulating tube 50a”) can be cited as a suitable example. That is, when the insulating covering member 50 is formed into a tube shape, the covering step (step S102) includes an inserting step of inserting the power supply line 30 into the insulating tube 50a as shown by the arrow F (see 7A). Further, the covering step (step S102) may include a contact step for heating the insulating tube 50a to be in close contact with the power supply line 30 following the insertion step (see 7B).

ここで用いる絶縁チューブ50aは、熱収縮可能であって、かつ熱収縮してもなお、給電ライン30を確実に被覆できる厚さを有する。当該厚さは、例えば、0.1〜1.0mm、好ましくは0.3〜0.7mmである。絶縁チューブ50aの好ましい硬度は、デュロメーター硬さ(タイプA)にて40〜70度であり、給電ライン30の形状、成形体21中のフィラー55の種類などに応じて、適宜、選択可能である。   The insulating tube 50a used here is heat-shrinkable and has a thickness that can reliably cover the power supply line 30 even when heat-shrinking. The said thickness is 0.1-1.0 mm, for example, Preferably it is 0.3-0.7 mm. The preferable hardness of the insulating tube 50a is 40 to 70 degrees in durometer hardness (type A), and can be appropriately selected according to the shape of the power supply line 30, the type of the filler 55 in the molded body 21, and the like. .

<3.実施の形態による作用・効果>
以上のように、この実施の形態に係る放熱ソケット20は、母材としての樹脂56に、樹脂56に比べて導電性と熱伝導性に優れたフィラー55を分散させて成り、LED15を搭載するマウント部材10と電気的に接続可能なソケット形状の成形体21と、成形体21の内部に配置され、LED15と外部電源とをつなぐ給電ライン30と、給電ライン30の少なくとも成形体21と接触する部分を被覆し、フィラー55よりも絶縁性に優れた絶縁性被覆部材50と、を備える。このため、フィラー55が比較的高い導電性を有する場合であっても、LED15のマウント部材10から放熱ソケット20への放熱性を高めると同時に、給電ライン30からの放熱ソケット20の電気的絶縁性を確保することもできる。
<3. Actions and effects according to the embodiment>
As described above, the heat radiating socket 20 according to this embodiment is formed by dispersing the filler 55 having excellent conductivity and thermal conductivity compared to the resin 56 in the resin 56 as a base material, and mounting the LED 15. A socket-shaped molded body 21 that can be electrically connected to the mount member 10, a power supply line 30 that is disposed inside the molded body 21 and connects the LED 15 and an external power source, and at least the molded body 21 of the power supply line 30 are in contact with each other. An insulating covering member 50 that covers the portion and is more excellent in insulation than the filler 55. For this reason, even when the filler 55 has a relatively high conductivity, the heat dissipation from the mounting member 10 of the LED 15 to the heat dissipation socket 20 is enhanced, and at the same time, the electrical insulation of the heat dissipation socket 20 from the power supply line 30 is achieved. Can also be secured.

また、絶縁性被覆部材50をシリコーンゴムとすると、その高い耐熱性に起因して、成形体21を製造する上で高温になっても、絶縁性被覆部材50が溶け、あるいは破れる危険性が低くなる。   Further, when the insulating covering member 50 is made of silicone rubber, the risk of the insulating covering member 50 being melted or broken is low even when the temperature is high in manufacturing the molded body 21 due to its high heat resistance. Become.

また、成形体21を、グラファイト(フィラー55の一例)を、ポリカーボネート、ポリアミド若しくはポリフェニレンサルファイド(樹脂56の一例)に分散させて成るので、比較的容易に成形体21を製造できる。   Further, since the molded body 21 is formed by dispersing graphite (an example of the filler 55) in polycarbonate, polyamide, or polyphenylene sulfide (an example of the resin 56), the molded body 21 can be manufactured relatively easily.

また、上述の放熱ソケット20は、未硬化状態の樹脂56中に、当該樹脂56に比べて導電性と熱伝導性に優れたフィラー55を混ぜてフィラー分散未硬化樹脂を用意するフィラー分散未硬化樹脂製造工程(ステップS101)と、LED15と外部電源とをつなぐ給電ライン30の一部に、フィラー55よりも絶縁性に優れた絶縁性被覆部材50を被覆する被覆工程(ステップS102)と、フィラー分散未硬化樹脂を成形してなるソケット形状の成形体21中に、絶縁性被覆部材50を被覆した給電ライン30を内在させる給電ライン配置工程(ステップS103)と、を含む方法にて製造される。かかる製造方法により製造された放熱ソケット20によれば、LED15のマウント部材10から放熱ソケット20への放熱性を高めると同時に、給電ライン30からの放熱ソケット20の電気的絶縁性を確保することもできる。   In addition, the above-described heat dissipation socket 20 is a filler-dispersed uncured material in which a filler-dispersed uncured resin is prepared by mixing an uncured resin 56 with a filler 55 having superior conductivity and thermal conductivity compared to the resin 56. A resin manufacturing process (step S101), a coating process (step S102) for coating an insulating coating member 50 having a better insulating property than the filler 55 on a part of the power supply line 30 connecting the LED 15 and an external power source; A power supply line arranging step (step S103) in which a power supply line 30 covered with an insulating covering member 50 is contained in a socket-shaped molded body 21 formed by molding a dispersion uncured resin. . According to the heat dissipation socket 20 manufactured by such a manufacturing method, the heat dissipation from the mounting member 10 of the LED 15 to the heat dissipation socket 20 is enhanced, and at the same time, the electrical insulation of the heat dissipation socket 20 from the power supply line 30 is ensured. it can.

また、給電ライン配置工程(ステップS103)は、絶縁性被覆部材50を被覆した給電ライン30を金型内にセットし、その金型内に、フィラー分散未硬化樹脂を供給する樹脂供給工程(ステップS201)と、金型内のフィラー分散未硬化樹脂を硬化させる樹脂硬化工程(ステップS202)と、を含む。このため、インサート成形を用いて、放熱ソケット20を容易に製造可能である。   In the power supply line arranging step (step S103), the power supply line 30 covering the insulating covering member 50 is set in the mold, and the resin supply step (step of supplying filler-dispersed uncured resin into the mold) S201) and a resin curing step (step S202) for curing the filler-dispersed uncured resin in the mold. For this reason, the heat radiation socket 20 can be easily manufactured using insert molding.

また、絶縁性被覆部材50をチューブ形状とし、被覆工程(ステップS102)は、チューブ形状の前記絶縁性被覆部材50中に給電ライン30を挿入する挿入工程を含む。このため、給電ライン30に絶縁性被覆部材50を容易に被覆可能である。   The insulating covering member 50 is formed into a tube shape, and the covering step (step S102) includes an inserting step of inserting the power supply line 30 into the tube-shaped insulating covering member 50. For this reason, the insulating coating member 50 can be easily coated on the power supply line 30.

さらに、被覆工程(ステップS102)は、上記挿入工程に続いて、チューブ形状の絶縁性被覆部材50を加熱して給電ライン30に密着させる密着工程を含む。このため、放熱ソケット20の製造時に、フィラー分散未硬化樹脂が絶縁性被覆部材50と給電ライン30との隙間から侵入する危険性が低くなり、成形体21と給電ライン30との間の絶縁性を確保しやすくなる。   Further, the covering step (step S102) includes an adhesion step for heating the tube-shaped insulating covering member 50 to be in close contact with the power supply line 30 following the insertion step. For this reason, the risk of the filler-dispersed uncured resin entering from the gap between the insulating coating member 50 and the power supply line 30 during the manufacture of the heat radiating socket 20 is reduced, and the insulation between the molded body 21 and the power supply line 30 is reduced. It becomes easy to secure.

また、LEDコンポーネント1は、放熱ソケット20に、LED15を搭載するマウント部材10を電気的に接続させて成る。このようなLEDコンポーネント1は、多くのLED15を搭載していても、放熱性に優れるため、高輝度および高寿命の発光部材となる。   The LED component 1 is formed by electrically connecting a mount member 10 on which the LED 15 is mounted to a heat radiating socket 20. Such an LED component 1 is excellent in heat dissipation even if many LEDs 15 are mounted, and thus becomes a light emitting member with high luminance and long life.

<4.その他の実施の形態>
以上、本発明の好適な実施の形態について説明してきたが、本発明は、上記実施の形態に限定されることなく、種々変形して実施することができる。
<4. Other Embodiments>
The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and can be implemented with various modifications.

図8は、図1のLEDコンポーネントの変形例であって、その組み立て斜視図(8A)および組み立て後の斜視図(8B)をそれぞれ示す。   FIG. 8 is a modified example of the LED component of FIG. 1 and shows an assembled perspective view (8A) and an assembled perspective view (8B).

この変形例に係るLEDコンポーネント1aは、矢印Gに示すように、図1のLEDコンポーネント1を構成する放熱ソケット20に、略円板形状のマウント部材60を取り付けて構成される。マウント部材60は、図1のマウント部材10と異なり薄厚であって、複数のLED15を上板61から上方に露出させ、上板61の表面上に分散配置している。LED15は、回路基板(不図示)上に配置され、上板61の上面に形成されたLED15を通過可能な貫通孔から露出している。マウント部材60は、第1筒状部材22より大径の上板61と、その下方にあって放熱ソケット20の筒内26に挿入可能な径の下板62と、上板61および下板62と絶縁性を保持しながら下板62から下方に突出する通電端子16と、を備える。上板61および下板62は、LED15から効果的に放熱できるように、熱伝導率の高い材料から構成される。上板61および下板62は、図1のスリーブ11と同様、好ましくは、アルミニウム、アルミニウム合金などに代表される高熱伝導性の金属材料; 窒化アルミニウム、ダイヤモンドライクカーボンなどに代表される高熱伝導性のセラミックス; 樹脂若しくはゴムに上記高熱伝導性の金属材料若しくはセラミックスを分散させた複合材; などから構成される。このように、図1のマウント部材10に代えて、より低背のマウント部材60を用いてLEDコンポーネント1aを構成しても良い。   As shown by an arrow G, the LED component 1a according to this modification is configured by attaching a substantially disc-shaped mounting member 60 to the heat dissipation socket 20 that constitutes the LED component 1 of FIG. The mount member 60 is thin unlike the mount member 10 of FIG. 1, and the plurality of LEDs 15 are exposed upward from the upper plate 61 and are distributed on the surface of the upper plate 61. The LED 15 is disposed on a circuit board (not shown), and is exposed from a through-hole through which the LED 15 formed on the upper surface of the upper plate 61 can pass. The mount member 60 includes an upper plate 61 having a diameter larger than that of the first tubular member 22, a lower plate 62 below which can be inserted into the cylinder 26 of the heat radiating socket 20, and the upper plate 61 and the lower plate 62. And an energizing terminal 16 projecting downward from the lower plate 62 while maintaining insulation. The upper plate 61 and the lower plate 62 are made of a material having high thermal conductivity so that heat can be effectively radiated from the LED 15. The upper plate 61 and the lower plate 62 are preferably made of a metal material with high thermal conductivity represented by aluminum, an aluminum alloy or the like, like the sleeve 11 of FIG. 1; high thermal conductivity represented by aluminum nitride, diamond-like carbon, or the like. A composite material in which the above-mentioned highly heat-conductive metal material or ceramic is dispersed in a resin or rubber. As described above, the LED component 1a may be configured using a lower-profile mount member 60 instead of the mount member 10 of FIG.

LED15は、本発明において必須の光源ではなく、他の種類の光源を用いても良い。例えば、フィラメント型の電球などを用いても良い。給電ライン30を被覆する絶縁性被覆部材50は、通電端子16と第1接続部31との電気的接続を阻害しない限り、第1接続部31の一部を覆っていても良い。同様に、絶縁性被覆部材50は、第2接続部32との外部電源との電気的接続を阻害しない限り、第2接続部32の一部を覆っていても良い。   The LED 15 is not an essential light source in the present invention, and other types of light sources may be used. For example, a filament-type light bulb may be used. The insulating covering member 50 that covers the power supply line 30 may cover a part of the first connecting portion 31 as long as the electrical connection between the energizing terminal 16 and the first connecting portion 31 is not hindered. Similarly, the insulating covering member 50 may cover a part of the second connection portion 32 as long as the electrical connection between the second connection portion 32 and the external power supply is not hindered.

本発明は、例えば、自動車、室内、野外などの照明用のライト部材に用いることができる。   The present invention can be used for a light member for illumination such as an automobile, a room, and the outdoors.

1,1a LEDコンポーネント
10 マウント部材
15 LED(発光ダイオード)
20 放熱ソケット
21 成形体
30 給電ライン
50 絶縁性被覆部材
55 フィラー
56 樹脂
60 マウント部材
1, 1a LED component 10 Mount member 15 LED (light emitting diode)
20 Heat Dissipation Socket 21 Molded Body 30 Power Supply Line 50 Insulating Cover Member 55 Filler 56 Resin 60 Mount Member

Claims (8)

母材としての樹脂に、当該樹脂に比べて導電性と熱伝導性に優れたフィラーを分散させて成り、発光ダイオードを搭載するマウント部材と電気的に接続可能なソケット形状の成形体と、
当該成形体の内部に配置され、前記発光ダイオードと外部電源とをつなぐ給電ラインと、
前記給電ラインの少なくとも前記成形体と接触する部分を被覆し、前記フィラーよりも絶縁性に優れた絶縁性被覆部材と、
を備える放熱ソケット。
A socket-shaped molded body that is formed by dispersing a filler that is superior in conductivity and thermal conductivity to the resin as a base material, and that can be electrically connected to a mount member on which a light-emitting diode is mounted,
A power supply line arranged inside the molded body and connecting the light emitting diode and an external power source;
An insulating covering member that covers at least a portion of the power supply line that comes into contact with the molded body, and has better insulating properties than the filler;
Heat dissipation socket with.
前記絶縁性被覆部材をシリコーンゴムとした請求項1に記載の放熱ソケット。   The heat dissipation socket according to claim 1, wherein the insulating covering member is made of silicone rubber. 前記成形体は、グラファイトを、ポリカーボネート、ポリアミド若しくはポリフェニレンサルファイドに分散させて成る請求項1または請求項2に記載の放熱ソケット。   The heat dissipation socket according to claim 1, wherein the molded body is formed by dispersing graphite in polycarbonate, polyamide, or polyphenylene sulfide. 請求項1から請求項3に記載の放熱ソケットを製造する方法であって、
未硬化状態の樹脂中に、当該樹脂に比べて導電性と熱伝導性に優れたフィラーを混ぜてフィラー分散未硬化樹脂を用意するフィラー分散未硬化樹脂製造工程と、
発光ダイオードと外部電源とをつなぐ給電ラインの一部に、前記フィラーよりも絶縁性に優れた絶縁性被覆部材を被覆する被覆工程と、
前記フィラー分散未硬化樹脂を成形してなるソケット中に、前記絶縁性被覆部材を被覆した前記給電ラインを内在させる給電ライン配置工程と、
を含む放熱ソケットの製造方法。
A method of manufacturing the heat dissipation socket according to claim 1,
In the uncured resin, a filler-dispersed uncured resin production step of preparing a filler-dispersed uncured resin by mixing a filler excellent in conductivity and thermal conductivity compared to the resin,
A coating step of coating an insulating coating member that is more insulative than the filler on a part of a power supply line that connects a light emitting diode and an external power source,
In a socket formed by molding the filler-dispersed uncured resin, a power feed line arranging step that includes the power feed line covered with the insulating coating member; and
A method for manufacturing a heat dissipation socket.
前記給電ライン配置工程は、
前記絶縁性被覆部材を被覆した前記給電ラインを金型内にセットし、その金型内に、フィラー分散未硬化樹脂を供給する樹脂供給工程と、
前記金型内の前記フィラー分散未硬化樹脂を硬化させる樹脂硬化工程と、
を含む請求項4に記載の放熱ソケットの製造方法。
The power supply line arranging step includes:
A resin supply step of setting the power supply line coated with the insulating covering member in a mold, and supplying filler-dispersed uncured resin into the mold;
A resin curing step of curing the filler-dispersed uncured resin in the mold;
The manufacturing method of the thermal radiation socket of Claim 4 containing this.
前記絶縁性被覆部材をチューブ形状とし、
前記被覆工程は、チューブ形状の前記絶縁性被覆部材中に前記給電ラインを挿入する挿入工程を含む請求項4または請求項5に記載の放熱ソケットの製造方法。
The insulating covering member has a tube shape,
The said covering process is a manufacturing method of the thermal radiation socket of Claim 4 or Claim 5 including the insertion process which inserts the said electric power feeding line in the said insulating covering member of tube shape.
前記被覆工程は、前記挿入工程に続いて、チューブ形状の前記絶縁性被覆部材を加熱して前記給電ラインに密着させる密着工程を含む請求項6に記載の放熱ソケットの製造方法。   The said covering process is a manufacturing method of the heat radiating socket of Claim 6 including the contact | adherence process which heats the said tube-shaped insulating coating | coated member and adheres to the said electric power feeding line following the said insertion process. 請求項1から請求項3に記載の放熱ソケットに、発光ダイオードを搭載するマウント部材を電気的に接続させて成るLEDコンポーネント。 4. An LED component comprising: a heat radiating socket according to claim 1; and a mounting member on which a light emitting diode is mounted is electrically connected.
JP2014184178A 2014-09-10 2014-09-10 Heat radiation socket and manufacturing method of the same, and led component including heat radiation socket Pending JP2016058261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184178A JP2016058261A (en) 2014-09-10 2014-09-10 Heat radiation socket and manufacturing method of the same, and led component including heat radiation socket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184178A JP2016058261A (en) 2014-09-10 2014-09-10 Heat radiation socket and manufacturing method of the same, and led component including heat radiation socket

Publications (1)

Publication Number Publication Date
JP2016058261A true JP2016058261A (en) 2016-04-21

Family

ID=55758859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184178A Pending JP2016058261A (en) 2014-09-10 2014-09-10 Heat radiation socket and manufacturing method of the same, and led component including heat radiation socket

Country Status (1)

Country Link
JP (1) JP2016058261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617459A (en) * 2019-10-11 2019-12-27 朱席 LED aluminum substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421079U (en) * 1990-06-11 1992-02-21
JP2010102977A (en) * 2008-10-24 2010-05-06 Jst Mfg Co Ltd Connector
JP2013089718A (en) * 2011-10-17 2013-05-13 Kaneka Corp Heat sink with highly heat-conducting resin, and led light source
JP2014510407A (en) * 2011-03-08 2014-04-24 ライトサーム リミテッド Heat sink assembly for optoelectronic components and method of manufacturing the same
JP2014120446A (en) * 2012-12-19 2014-06-30 Ichikoh Ind Ltd Light source unit of semiconductor type light source of vehicle lamp fitting and vehicle lamp fitting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421079U (en) * 1990-06-11 1992-02-21
JP2010102977A (en) * 2008-10-24 2010-05-06 Jst Mfg Co Ltd Connector
JP2014510407A (en) * 2011-03-08 2014-04-24 ライトサーム リミテッド Heat sink assembly for optoelectronic components and method of manufacturing the same
JP2013089718A (en) * 2011-10-17 2013-05-13 Kaneka Corp Heat sink with highly heat-conducting resin, and led light source
JP2014120446A (en) * 2012-12-19 2014-06-30 Ichikoh Ind Ltd Light source unit of semiconductor type light source of vehicle lamp fitting and vehicle lamp fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617459A (en) * 2019-10-11 2019-12-27 朱席 LED aluminum substrate

Similar Documents

Publication Publication Date Title
KR101253199B1 (en) Lighting apparatus
US8246215B2 (en) LED bulb
KR101227527B1 (en) Lighting apparatus
JP5029822B2 (en) Light source and lighting device
US20100327751A1 (en) Self-ballasted lamp and lighting equipment
US8803409B1 (en) Lamp device, light-emitting device and luminaire
KR101349843B1 (en) Lighting apparatus
JP2012252791A (en) Bulb type lamp, and lighting fixture using bulb type lamp
JP5849238B2 (en) Lamp and lighting device
KR20130024450A (en) Lighting apparatus
JP5802497B2 (en) Light bulb type lighting device
JP2015076281A (en) Lighting device
JP6536259B2 (en) Vehicle lighting device and vehicle lighting device
KR101227526B1 (en) Lighting apparatus
JP2017004709A (en) Led illumination member
JP2016058261A (en) Heat radiation socket and manufacturing method of the same, and led component including heat radiation socket
JP2016066485A (en) Heat radiation light valve and light member including the same
JP6469402B2 (en) Light member
JP2013065442A (en) Lighting device
US20130128596A1 (en) Led bulb
US20150323167A1 (en) Bulb-type lighting apparatus
JP6499011B2 (en) LED illumination member
US20170268762A1 (en) Light Mounting Apparatus
JP2016162735A (en) Luminaire and heat sink
KR101908545B1 (en) Led lamp and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181023