JP2016050927A - Flow rate measurement device - Google Patents

Flow rate measurement device Download PDF

Info

Publication number
JP2016050927A
JP2016050927A JP2014178326A JP2014178326A JP2016050927A JP 2016050927 A JP2016050927 A JP 2016050927A JP 2014178326 A JP2014178326 A JP 2014178326A JP 2014178326 A JP2014178326 A JP 2014178326A JP 2016050927 A JP2016050927 A JP 2016050927A
Authority
JP
Japan
Prior art keywords
power generation
generation sheet
flow rate
flow
beam member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014178326A
Other languages
Japanese (ja)
Other versions
JP6406936B2 (en
Inventor
田村 至
Itaru Tamura
至 田村
直也 市村
Naoya Ichimura
直也 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014178326A priority Critical patent/JP6406936B2/en
Publication of JP2016050927A publication Critical patent/JP2016050927A/en
Application granted granted Critical
Publication of JP6406936B2 publication Critical patent/JP6406936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate measurement device, constructed to be simple and easily to assemble, with which it is possible to obtain an accurate output reliably.SOLUTION: A beam member 4 is provided along a direction crossing the direction of a measurement fluid 3 in a conduit line; a power generation sheet 5 of self-excitation type oscillating cyclically due to the flow of the measurement fluid 3 and generating electric power is attached to the beam member 4 in a cantilever posture; frequency detection means 6 for detecting the frequency of the electric power generated by the power generation sheet 5 is provided by connecting to the power generation sheet 5; and flow velocity derivation means 7 for deriving the flow velocity of the measurement fluid 3 on the basis of the frequency of the electric power detected by the frequency detection means 6 is provided.SELECTED DRAWING: Figure 1

Description

本発明は、管路内を通流する測定流体の流量を測定する流量測定装置に関する。   The present invention relates to a flow rate measuring device for measuring a flow rate of a measurement fluid flowing in a pipe line.

このような流量測定装置としては、従来から多種多様のものがある。一例を挙げると、カルマン渦の周期的な挙動に基づいて流体の流速を検出する流速センサがあり、通常、その検出した流速を基に流体の流量を検出するカルマン流量計として知られている(例えば、特許文献1参照)。   Conventionally, there are various types of such flow rate measuring devices. As an example, there is a flow rate sensor that detects the flow rate of fluid based on the periodic behavior of Karman vortex, and is generally known as a Karman flow meter that detects the flow rate of fluid based on the detected flow rate ( For example, see Patent Document 1).

しかし、カルマン流量計に適用される流量測定装置は、カルマン渦の挙動により圧力差が生じる2箇所の部位の圧力を、導圧路などを介して圧力センサに導いて検出する構成を採用しており、流体の流れに即した状態で、つまり、流体中の渦の流れに沿った状態で流速を直接検出する構成ではなかった。   However, the flow measurement device applied to the Karman flow meter adopts a configuration that detects the pressure at two locations where a pressure difference is caused by the behavior of the Karman vortex by guiding it to a pressure sensor via a pressure guiding path or the like. Therefore, the flow velocity is not directly detected in a state in accordance with the flow of the fluid, that is, in a state along the flow of the vortex in the fluid.

そこで、本発明者らは、流体の流れに即した状態で、その流体の流速を直接検出することのできる流量測定装置を提供する目的で、流体の流速検出のために自己励起式の発電シートを使用し、その発電シートが渦発生部により発生される渦の周期的な挙動によって、その渦に沿って振動して電力を発生するのを利用し、その電力の周波数に基づいて流体の流速を検出する流量測定装置を開発している(特許文献2参照)。   Accordingly, the present inventors have provided a self-excited power generation sheet for detecting the flow rate of a fluid in order to provide a flow rate measuring device that can directly detect the flow rate of the fluid in a state in accordance with the flow of the fluid. And the power generation sheet vibrates along the vortex by the periodic behavior of the vortex generated by the vortex generator, and generates electric power, and the flow velocity of the fluid based on the frequency of the electric power Has been developed (see Patent Document 2).

特開平3−20618号公報JP-A-3-20618 特開2012−173102号公報JP 2012-173102 A

しかし、上述の流量測定装置は、発電シートにカルマン渦を作用させる必要があるため、カルマン渦を形成するための障害物、溝等の渦発生部を設ける必要があり、その渦発生部により発生するカルマン渦に対して適した条件で発電シートを取り付けてはじめて、所望の出力が期待できる構造となっている。   However, since the flow rate measuring device described above needs to cause Karman vortices to act on the power generation sheet, it is necessary to provide vortex generating parts such as obstacles and grooves for forming Karman vortices. Only when the power generation sheet is attached under conditions suitable for Karman vortices, the desired output can be expected.

そのため、発電シートのわずかな形状寸法の相違、わずかな取り付け位置のずれ等によりその出力特性が大きく異なる場合があって、流量測定装置ごとに個別に較正作業を行わなければ、正確な出力を得ることができる流量測定装置として用いることができない虞があった。   Therefore, the output characteristics may vary greatly due to slight differences in the shape and size of the power generation sheet, slight displacement of the mounting position, etc., and accurate output can be obtained unless calibration is performed individually for each flow measurement device. There is a possibility that it cannot be used as a flow measuring device that can be used.

そこで、本発明の目的は、上記実情に鑑み、簡単で組み立て容易な構成としつつ、正確な出力を、より確実に得られる流量測定装置を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a flow rate measuring apparatus that can obtain an accurate output more reliably while having a simple and easily assembled structure.

〔構成1〕
上記目的を達成するための本発明の流量測定装置の特徴構成は、
管路内を通流する測定流体の流量を測定する流量測定装置であって、
前記管路内の測定流体の流れ方向を横断する方向に沿って梁部材を設け、
前記測定流体の流れにより、周期的に振動して電力を発生する自己励起式の発電シートを、前記梁部材に片持ち姿勢で取り付け、
前記発電シートにより発生する電力の周波数を検出する周波数検出手段を、前記発電シートに接続して設け、
前記周波数検出手段により検出される電力の周波数に基づいて、前記測定流体の流速を導出する流速導出手段を設けてある点にある。
[Configuration 1]
In order to achieve the above object, the characteristic configuration of the flow rate measuring device of the present invention is:
A flow rate measuring device for measuring a flow rate of a measurement fluid flowing through a pipeline,
A beam member is provided along a direction crossing a flow direction of the measurement fluid in the pipe;
A self-exciting power generation sheet that periodically vibrates and generates power by the flow of the measurement fluid is attached to the beam member in a cantilevered posture,
A frequency detection means for detecting the frequency of power generated by the power generation sheet is provided in connection with the power generation sheet,
A flow velocity deriving unit for deriving the flow velocity of the measurement fluid based on the frequency of the electric power detected by the frequency detection unit is provided.

〔作用効果1〕
上記構成によると、発電シートは、梁部材に片持ち姿勢で取り付けられているから、その発電シートは管路の内周面から離間した姿勢に保持される。ここで、管路内の測定流体の流れ方向を横断する方向に沿って設けられる梁部材は、カルマン渦を発生させないまでも、前記梁部材に取り付けられた発電シートの周囲に測定流体の断続的な流れを生起する。そのため、測定流体の断続的な流れは、その発電シートを、旗がはためくように動かし、その発電シートを周期的に振動させることができる。つまり、自己励起式の発電シートを使用し、その発電シートが前記測定流体の流れにより、周期的に振動する周期的な挙動によって、電力を発生するのを利用し、周波数検出手段により検出される電力の周波数に基づいて流速導出手段が流体の流速を検出する。そのため、流体の流れに即した状態で、その流体の流速を直接検出することができる。
[Operation effect 1]
According to the above configuration, since the power generation sheet is attached to the beam member in a cantilever posture, the power generation sheet is held in a posture separated from the inner peripheral surface of the pipeline. Here, even if the beam member provided along the direction crossing the flow direction of the measurement fluid in the pipe line does not generate Karman vortex, the measurement fluid is intermittently provided around the power generation sheet attached to the beam member. A new flow. Therefore, the intermittent flow of the measurement fluid moves the power generation sheet so that the flag flutters, and can periodically vibrate the power generation sheet. In other words, a self-excited power generation sheet is used, and the power generation sheet is detected by the frequency detection means by utilizing the generation of electric power by the periodic behavior that vibrates periodically by the flow of the measurement fluid. Based on the frequency of electric power, the flow velocity deriving means detects the flow velocity of the fluid. Therefore, the flow velocity of the fluid can be directly detected in a state corresponding to the fluid flow.

そのため、前記発電シートは、測定流体の流れに即して振動し、安定した出力が得られやすい。   Therefore, the power generation sheet vibrates in accordance with the flow of the measurement fluid, and a stable output is easily obtained.

したがって、管路内の測定流体の流れ方向を横断する方向に沿って設けられる梁部材に、発電シートを、前記梁部材に片持ち姿勢で取り付けるだけの簡単な構成でありながら、安定した出力の得られる流量測定装置を得られるようになった。   Therefore, the power generation sheet is simply attached to the beam member in a cantilever posture on the beam member provided along the direction crossing the flow direction of the measurement fluid in the pipe line, and stable output is achieved. An obtained flow rate measuring device can be obtained.

〔構成2〕
また、前記梁部材に、前記発電シートを複数併設するとともに、前記発電シートを直列に接続しておくことができる。
[Configuration 2]
In addition, a plurality of the power generation sheets can be provided on the beam member, and the power generation sheets can be connected in series.

〔作用効果2〕
このようにしておけば、発電シートごとの振動特性の相違は、その発電シートの複数を電気的に直列に接続した状態で用いることにより、各発電シートに固有の周波数の出力が重畳するために高出力化される。そのために、複数直列接続された発電シートの振動特性は、安定した出力特性を有するものとして得られやすいことを、本発明者らは実証により明らかにした。そのため、構成を大きく複雑化することなく、正確で高い出力の得られる流量測定装置を得られる。
[Operation effect 2]
In this way, the difference in vibration characteristics for each power generation sheet is due to the use of a plurality of the power generation sheets electrically connected in series, so that the output of a specific frequency is superimposed on each power generation sheet. High output. For this reason, the present inventors have proved through demonstration that the vibration characteristics of the power generation sheets connected in series are easily obtained as having stable output characteristics. Therefore, it is possible to obtain a flow rate measuring device that can obtain an accurate and high output without greatly complicating the configuration.

〔構成3〕
また、上記構成において、複数の前記発電シートは、同一形状で同一厚さに形成してあることが好ましい。
[Configuration 3]
Moreover, the said structure WHEREIN: It is preferable that the said several electric power generation sheet | seat is formed in the same shape and the same thickness.

〔作用効果3〕
このような構成によると、各発電シートの振動特性は、あらかじめほぼ同一に規格化しておくことができる。そのため、梁部材に取り付けた複数の発電シートの振動特性(固有周波数)に大きなばらつきは生じにくくなり、より一層正確で高い出力の得られる流量測定装置を得るのに寄与することになる。
[Operation effect 3]
According to such a configuration, the vibration characteristics of the respective power generation sheets can be standardized almost in advance. Therefore, large variations in vibration characteristics (natural frequencies) of the plurality of power generation sheets attached to the beam member are unlikely to occur, which contributes to obtaining a flow measurement device that can obtain a more accurate and high output.

なお、発電シートの出力は交流波形となるため、複数の発電シートを電気的に直列に接続した場合の各発電シートの出力の総和としての合成出力値は、各発電シートからの出力のピーク値の和になるとは限らないようにも思われるが、実際の実験結果では、合成出力値は、各発電シートの出力値の単純和に近い値として得られる。これは、各発電シートの振動が共振するような形で同期することによると考えることができる。   Since the output of the power generation sheet has an AC waveform, the combined output value as the sum of the output of each power generation sheet when a plurality of power generation sheets are electrically connected in series is the peak value of the output from each power generation sheet However, in the actual experimental results, the combined output value is obtained as a value close to the simple sum of the output values of the respective power generation sheets. This can be considered to be due to synchronization in such a manner that the vibrations of the respective power generation sheets resonate.

〔構成4〕
また、上記目的を達成するために、本発明の流量測定装置として、
前記発電シートを、少なくともそのシート表面の一部が水平方向に沿う姿勢で、前記梁部材に片持ち姿勢で取り付けてある構成とすることができる。
[Configuration 4]
In order to achieve the above object, the flow rate measuring device of the present invention includes:
The power generation sheet may be configured such that at least a part of the sheet surface is attached to the beam member in a cantilever position in a posture along the horizontal direction.

〔作用効果4〕
上記構成によると、前記発電シートは、少なくともそのシート表面の一部が水平方向に沿う姿勢で、前記梁部材に片持ち姿勢で取り付けることにより、発電シートの変形、復帰に伴う振動を誘導しやすく、安定した高出力が得られやすいことを、本発明者らは実験により明らかにしている。
[Operation effect 4]
According to the above configuration, the power generation sheet can be easily induced to vibrate due to deformation and return of the power generation sheet by attaching the power generation sheet in a cantilevered position to at least a part of the sheet surface along the horizontal direction. The inventors have clarified through experiments that stable high output can be easily obtained.

具体的には、少なくともシート表面の一部を水平方向に沿う姿勢とすることによって、その発電シートが自重で下方に垂れようとする動きと、測定流体の流れにより発電シートが上方へ跳ね上げられる動きとが、測定流体の断続的な流れにより振動として現れる。この振動は、梁部材に片持ち姿勢で取り付ける構造に起因するものであり、梁部材に対する取り付け構造が簡便に得られやすいことから、この振動状態も規格化されやすく、取り付け構造による個体差が生じにくく、安定した出力特性を有するものとして得られやすくなる原因となっているものと考えられる。   Specifically, by setting at least a part of the sheet surface along the horizontal direction, the power generation sheet is splashed upward by the movement of the power generation sheet to drop downward by its own weight and the flow of the measurement fluid. The movement appears as vibration due to the intermittent flow of the measurement fluid. This vibration is caused by a structure that can be attached to the beam member in a cantilevered posture. Since the attachment structure to the beam member can be easily obtained, this vibration state is also easily standardized, and individual differences due to the attachment structure occur. This is considered to be a cause of being difficult to obtain and having a stable output characteristic.

また、少なくともシート表面の一部を水平方向に沿う姿勢であるから、その発電シートが自重で下方に垂れようとする動きにねじれが生じにくく、測定流体の断続的な流れにより安定した振動を生起しやすい。   In addition, since at least a part of the surface of the sheet is in the horizontal direction, the power generation sheet is unlikely to twist when it is moved downward by its own weight, and stable vibration is generated by the intermittent flow of the measurement fluid. It's easy to do.

そのため、管路内の測定流体の流れ方向を横断する方向に沿って設けられる梁部材に、発電シートを、上記適切な姿勢で取り付ける簡単な構成とするだけで、正確で高い出力の得られる流量測定装置を作成することが容易になった。   Therefore, an accurate and high output flow rate can be obtained simply by attaching the power generation sheet to the beam member provided along the direction crossing the flow direction of the measurement fluid in the pipe in the above-mentioned appropriate posture. It became easy to create a measuring device.

〔構成5〕
また、上記構成において、長手方向における一端部を前記梁部材に固定するとともに、自由端としての他端部に、おもり部材を付設することができる。
[Configuration 5]
Moreover, in the said structure, while fixing the one end part in a longitudinal direction to the said beam member, a weight member can be attached to the other end part as a free end.

〔作用効果5〕
このように、他端部におもりを設けると、前記発電シートからの出力を増強することができ、ノイズ等に対する発電シートの出力の分離特性を向上することができ、正確な出力周波数を求めるのに寄与する。
[Operation effect 5]
Thus, if a weight is provided at the other end, the output from the power generation sheet can be increased, the separation characteristics of the output of the power generation sheet against noise and the like can be improved, and an accurate output frequency is obtained. Contribute to.

〔構成6〕
また、上記構成において、前記梁部材に取り付けられる一端部となる短辺と、その一端部に対して発電シートが振動する必要長さ以上の長辺を有する短冊状とすることができる。
[Configuration 6]
Moreover, the said structure WHEREIN: It can be set as the strip shape which has the short side used as the one end part attached to the said beam member, and the long side more than the required length which a power generation sheet vibrates with respect to the one end part.

〔作用効果6〕
このように構成すると、発電シートは一端部となる短辺を梁部材に沿わせた状態で固定することができ、作業性が高く、安定して同一特性の流量測定装置を組み立てるのに寄与する。また、前記発電シートは、その一端部に対して発電シートが振動する必要長さ以上の長辺を有するから、片持ち姿勢とされた他端部は、前記一端部を固定された状態で、幟の先に設けられた吹き流しのごとくはためき、振動する形態で梁部材に固定される。すると、その発電シートの振動は容易に検出されるとともに、十分高い電力が出力されるように構成することができる。したがって、正確で高い出力の得られる流量測定装置を作成することができる。
[Operation effect 6]
If comprised in this way, a power generation sheet can be fixed in the state where the short side used as one end part was along a beam member, and it contributes to assembling a flow measuring device with high workability and the same characteristic stably. . Further, since the power generation sheet has a long side longer than a necessary length with which the power generation sheet vibrates with respect to one end portion thereof, the other end portion in a cantilever posture is in a state where the one end portion is fixed, It is fixed to the beam member in a form that flutters and vibrates like a windsock provided at the tip of the rod. Then, the vibration of the power generation sheet can be easily detected, and a sufficiently high power can be output. Therefore, it is possible to create a flow measuring device that can obtain an accurate and high output.

したがって、簡単な構成で、組み立て容易で、正確な出力をより確実に得られる流量測定装置を提供することができた。   Therefore, it is possible to provide a flow rate measuring device that has a simple configuration, is easy to assemble, and can obtain an accurate output more reliably.

本発明の流量測定装置の概略図Schematic diagram of the flow measurement device of the present invention 発電シートの出力特性を示すグラフGraph showing output characteristics of power generation sheet 直列接続された発電シートの出力例Output example of power generation sheets connected in series 別実施形態における流量測定装置の概略図Schematic of the flow measurement device in another embodiment

以下に、本発明の流量測定装置を説明する。なお、以下に好適な実施形態を記すが、これら実施形態はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Hereinafter, the flow rate measuring device of the present invention will be described. Preferred embodiments will be described below, but these embodiments are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

本発明の実施形態に係る流量測定装置1は、図1に示すように、たとえば、各家庭や事業所等に供給される都市ガスの配管中に通流される都市ガスの流量を測定すべく、その管路2に取り付けて設けられる。
前記流量測定装置1は、前記管路2内の測定流体3の流れ方向を横断する方向に沿って梁部材4を設け、
前記測定流体3の流れにより、周期的に振動して電力を発生する自己励起式の発電シート5の複数を、前記梁部材4に片持ち姿勢で取り付け、
前記発電シート5により発生する電力の周波数を検出する周波数検出手段6を、前記発電シート5に接続して設け、
前記周波数検出手段6により検出される電力の周波数に基づいて、前記測定流体3の流速を導出する流速導出手段7を設けてある。
As shown in FIG. 1, the flow rate measuring apparatus 1 according to the embodiment of the present invention measures, for example, the flow rate of city gas that is circulated in a city gas pipe supplied to each household or business office. It is provided by being attached to the pipeline 2.
The flow rate measuring device 1 is provided with a beam member 4 along a direction crossing the flow direction of the measurement fluid 3 in the pipe 2,
A plurality of self-exciting power generation sheets 5 that periodically vibrate to generate electric power due to the flow of the measurement fluid 3 are attached to the beam member 4 in a cantilever posture,
A frequency detection means 6 for detecting the frequency of power generated by the power generation sheet 5 is provided in connection with the power generation sheet 5;
A flow velocity deriving means 7 for deriving the flow velocity of the measurement fluid 3 based on the frequency of the electric power detected by the frequency detecting means 6 is provided.

前記梁部材4は、管路2を管径方向に水平に横断する樹脂製の棒状体からなり、管路2の周壁に両端を接着固定して設けられる。前記発電シート5は、たとえば、ポリフッ化ビニリデンに代表される強誘電性高分子からなり、より具体的には、例えば、ピエゾフィルム((株)東京センサ製の商品名)からなり、振動することにより自己励起して高電圧の電力を発生する特性を備えている。この発電シート5は、たとえば、薄膜化により柔軟性に優れ、かつ、耐水性や耐衝撃性などを備えた複数(図中4片)の短冊状の発電シート5の一端部となる短辺が梁部材4の長手方向に沿い、かつ、発電シート5が振動する必要長さ以上の長辺が、梁部材4の下流側で、管路2に流通する測定流体3の流れ方向に沿う姿勢で、梁部材4に接着により各別に取り付けられ、その発電シート5のシート面に直交する方向での両側に、測定流体3が通流する構成となっている。   The beam member 4 is formed of a resin rod-like body that horizontally traverses the pipe line 2 in the pipe diameter direction, and is provided with both ends bonded and fixed to the peripheral wall of the pipe line 2. The power generation sheet 5 is made of, for example, a ferroelectric polymer typified by polyvinylidene fluoride, and more specifically, is made of, for example, a piezo film (trade name, manufactured by Tokyo Sensor Co., Ltd.) and vibrates. It has the characteristic of generating high voltage power by self-exciting. The power generation sheet 5 has, for example, a short side that is one end of a plurality of (four pieces in the figure) strip-shaped power generation sheets 5 that are excellent in flexibility due to thin film formation and that have water resistance, impact resistance, and the like. In a posture along the longitudinal direction of the beam member 4 and the longer side longer than the necessary length that the power generation sheet 5 vibrates is along the flow direction of the measurement fluid 3 flowing in the pipe line 2 on the downstream side of the beam member 4. The measuring fluid 3 is attached to the beam member 4 by bonding, and the measurement fluid 3 flows on both sides in the direction orthogonal to the sheet surface of the power generation sheet 5.

具体的には、内径25mmのガス供給配管に対しては、厚さ40μmのピエゾフィルムからなる発電シート5の場合、短辺5mm、長辺30〜50mmの短冊状に形成され、長辺が測定流体3の流れ方向に沿う姿勢で、かつ、少なくともそのシート表面の一部が水平方向に沿う姿勢に、前記梁部材4に片持ち姿勢で取り付けられる。(図1の構成ではシート表面が測定流体3の流れ方向に沿う水平姿勢となるように取り付けられる。)   Specifically, for a gas supply pipe having an inner diameter of 25 mm, the power generation sheet 5 made of a piezoelectric film with a thickness of 40 μm is formed in a strip shape having a short side of 5 mm and a long side of 30 to 50 mm, and the long side is measured. The beam member 4 is attached to the beam member 4 in a cantilever posture in a posture along the flow direction of the fluid 3 and in a posture in which at least a part of the sheet surface is in a horizontal direction. (In the configuration of FIG. 1, the sheet surface is attached so as to have a horizontal posture along the flow direction of the measurement fluid 3.)

また、発電シート5は、電気的に直列に接続されるとともに、2本のリード線8が接続され、そのリード線8の端子8aが、管路2外部へ取り出される状態で設けられる。また、リード線8の端子8aには、2本のケーブル9を介して周波数検出手段6が接続されている。つまり、周波数検出手段6が、2本のリード線8とケーブル9を介して発電シート5に電気的に接続して設けられ、その周波数検出手段6が、発電シート5により発生する電力の周波数に基づいて発電シート5の振動周波数を求めるように構成され、その周波数検出手段6に対して、流速導出手段7が接続されている。   The power generation sheet 5 is electrically connected in series and connected to two lead wires 8, and the terminal 8 a of the lead wire 8 is provided in a state of being taken out of the pipe line 2. Further, the frequency detection means 6 is connected to the terminal 8 a of the lead wire 8 via two cables 9. That is, the frequency detection means 6 is provided by being electrically connected to the power generation sheet 5 via the two lead wires 8 and the cable 9, and the frequency detection means 6 has the frequency of the electric power generated by the power generation sheet 5. Based on this, the vibration frequency of the power generation sheet 5 is determined, and the flow velocity deriving means 7 is connected to the frequency detecting means 6.

このような構成により、前記管路2に測定流体3を通流させると、その発電シート5が自重で下方に垂れようとする動きと、測定流体3の流れにより発電シート5が上方に跳ね上げられる動きとが、測定流体3の断続的な流れにより振動として現れる。そして、その振動に基づき、発電シート5による電力出力が得られる。   With such a configuration, when the measurement fluid 3 is caused to flow through the pipe line 2, the power generation sheet 5 jumps upward due to the movement of the power generation sheet 5 to drop downward due to its own weight and the flow of the measurement fluid 3. The observed movement appears as vibration due to the intermittent flow of the measuring fluid 3. And the electric power output by the electric power generation sheet | seat 5 is obtained based on the vibration.

流速導出手段7は、予め計測された発電シート5の振動周波数と流体の流速との関係データを記憶していて、周波数検出手段6から送信される発電シート5により検出される電力の周波数に基づいて流体の流速(もしくは、さらに管径を考慮して流量)を導出するように構成されている。   The flow velocity deriving means 7 stores relational data between the vibration frequency of the power generation sheet 5 and the fluid flow velocity measured in advance, and is based on the frequency of the power detected by the power generation sheet 5 transmitted from the frequency detection means 6. The flow velocity of the fluid (or the flow rate in consideration of the tube diameter) is derived.

〔実施例〕
先に示した、内径25mmのガス供給配管に対して、厚さ40μm、短辺5mm、長辺30mmの短冊状のピエゾフィルムからなる発電シート5のそれぞれを、長辺が測定流体3の流れ方向に沿う姿勢で、かつ、少なくともそのシート表面の一部が水平方向に沿う姿勢に、前記梁部材4に片持ち姿勢で取り付けた流体測定装置1の出力特性を調べたところ、図2のようになった。図中L1〜L4は、4片の発電シート5それぞれの出力特性(出力周波数の風速依存性)を求めたものである。
〔Example〕
With respect to the gas supply pipe having an inner diameter of 25 mm, the power generation sheet 5 made of a strip-shaped piezo film having a thickness of 40 μm, a short side of 5 mm, and a long side of 30 mm is used. 2 and the output characteristics of the fluid measuring device 1 attached to the beam member 4 in a cantilevered posture so that at least a part of the sheet surface is in the horizontal direction are as shown in FIG. became. In the figure, L1 to L4 are obtained for output characteristics (dependence of output frequency on wind speed) of each of the four power generation sheets 5.

すなわち、測定流体3の流速(風速)に応じて発電シート5から得られる電力の周波数が直線的に変化していることが読み取れる。また、その変化度合いは発電シート5ごとにある程度のばらつきを有するものになっているが、合成出力(発電シート5を電気的に直列に接続した場合の合成出力)は、発電シート5ごとの出力周波数が固有値に集約されるとともに、出力が重畳して高出力化されるものとなっている。また、この時の合成出力について出力の周波数依存性は、図3のようになっており、商用電源のノイズに比してきわめて高く鋭い、識別性の高い出力として得られ、出力電力の周波数に基づき、測定流体3の流速を精度よく求められることが読み取れる。   That is, it can be read that the frequency of the electric power obtained from the power generation sheet 5 changes linearly according to the flow velocity (wind velocity) of the measurement fluid 3. In addition, the degree of change has a certain degree of variation for each power generation sheet 5, but the combined output (the combined output when the power generation sheets 5 are electrically connected in series) is the output for each power generation sheet 5. The frequency is collected into eigenvalues, and the output is superimposed to increase the output. In addition, the frequency dependence of the output of the combined output at this time is as shown in FIG. 3, which is obtained as an output that is extremely high and sharp compared to the noise of the commercial power supply and has high discriminability. Based on this, it can be read that the flow velocity of the measurement fluid 3 can be accurately obtained.

〔別実施形態〕
上記実施形態では、発電シート5を短冊状に形成したが、梁部材4に対して取り付けられる一端部の長さが、その一端部を梁部材4に取り付けた状態における一端部から、自由端となる他端部までの長さよりも長い方形であってもよく、寸法比率は、上述のものに限るものではない。また、方形でなくても、ペナント型でもよく、さらに立体的に屈曲した形状としてあってもよい(図4(a)、(b)参照)。立体的に屈曲させることにより、発電シート5が電力を出力する好適な流速範囲を調整することができ、たとえば、トンボの羽状に屈曲した図4(a)のものでは、流速の低い測定流体3の流速を測定するのに適しており、昆虫の触覚形状に屈曲した図4(b)のものでは、測定流体3の流速がある程度のレベルを超えた時に特異的に出力を発するので、異常検知時のみ出力を得たいような用途で有用であるといえる。
[Another embodiment]
In the said embodiment, although the electric power generation sheet 5 was formed in strip shape, the length of the one end part attached to the beam member 4 is a free end from the one end part in the state which attached the one end part to the beam member 4. The square may be longer than the length to the other end, and the dimensional ratio is not limited to that described above. Further, it may be a pennant type, not a square shape, and may be a three-dimensionally bent shape (see FIGS. 4A and 4B). By bending three-dimensionally, it is possible to adjust a suitable flow velocity range in which the power generation sheet 5 outputs electric power. For example, in the case of FIG. 4 (b), which is suitable for measuring the flow velocity of 3 and bent to the tactile shape of an insect, produces an output specifically when the flow velocity of the measurement fluid 3 exceeds a certain level. It can be said that it is useful in applications where it is desired to obtain output only during detection.

また、上記実施形態では、梁部材4を管径方向に水平に横断する姿勢に設けて、発電シート5をほぼ水平姿勢に設けたが、これに限らず、発電シート5の姿勢は任意に設定することができる。たとえば、梁部材4を管径方向に鉛直に横断する姿勢に設けて発電シート5を立て姿勢に設けた場合(図4(c)参照)であっても、発電シート5の複数を直列に接続して設けてあれば、発電シート5の測定流体3による振動が微小なものとなっても十分に出力を増幅できるとともに、識別性を高くすることができるので、測定流体3の流速を正確に求めることができる。なお、短冊状の発電シート5を梁部材4に片持ち姿勢で取り付ける場合に、シート表面の一部が水平方向に沿う姿勢で、取り付けることが好ましいが、シート表面が鉛直方向に沿う姿勢で、短冊状の発電シート5の長辺側が測定流体3の流れ方向に交差する方向に取り付けてあった場合(図4(d)参照、この場合、測定流体3の流れ方向にほぼ直交する垂下姿勢)でも、測定流体3の作用により、シート表面の一部が水平方向に沿う姿勢となりうる姿勢であれば同様に出力を得ることができる。本発明においては、発電シート5の一部が梁部材4に固定され、一部に対向する他端部が自由端となるこれらの姿勢を総称して、「梁部材4に片持ち姿勢で取り付け」ているものとする。   Moreover, in the said embodiment, although the beam member 4 was provided in the attitude | position which crosses horizontally in a pipe diameter direction, and the electric power generation sheet | seat 5 was provided in the substantially horizontal attitude | position, the attitude | position of the electric power generation sheet | seat 5 is set arbitrarily not only in this. can do. For example, even when the beam member 4 is provided in a posture that vertically traverses the pipe diameter direction and the power generation sheet 5 is provided in a standing posture (see FIG. 4C), a plurality of power generation sheets 5 are connected in series. If it is provided, it is possible to sufficiently amplify the output even when the vibration of the power generation sheet 5 due to the measurement fluid 3 becomes minute, and to increase the discriminability. Can be sought. In addition, when attaching the strip-shaped power generation sheet 5 to the beam member 4 in a cantilever posture, it is preferable that a part of the sheet surface is attached in a posture along the horizontal direction, but the sheet surface is in a posture along the vertical direction, When the long side of the strip-shaped power generation sheet 5 is attached in a direction intersecting the flow direction of the measurement fluid 3 (see FIG. 4D, in this case, a hanging posture substantially orthogonal to the flow direction of the measurement fluid 3) However, if the posture of the part of the sheet surface can be in a posture along the horizontal direction by the action of the measurement fluid 3, an output can be obtained similarly. In the present invention, a part of the power generating sheet 5 is fixed to the beam member 4 and the other end opposite to the part is a free end. ".

一方、発電シート5が、少なくともそのシート表面の一部が水平方向に沿う姿勢に、前記梁部材4に片持ち姿勢で取り付けられている場合、すなわち発電シート5の取り付け姿勢が、シート表面の一部に水平成分を有する場合、その発電シート5が自重で下方に垂れようとする動きと、測定流体3の流れにより発電シート5が平坦な形状に復帰させられる動きとが、測定流体3の断続的な流れにより振動として現れるため、少なくとも一枚の発電シート5からの出力によって、十分高い出力を得ることができ、測定流体3の流速を正確に求めることができる。   On the other hand, when the power generation sheet 5 is attached to the beam member 4 in a cantilevered posture in such a manner that at least a part of the surface of the sheet is in the horizontal direction, that is, the mounting posture of the power generation sheet 5 is When the measurement component 3 has a horizontal component, the movement of the power generation sheet 5 to drop downward due to its own weight and the movement of the power generation sheet 5 to return to a flat shape by the flow of the measurement fluid 3 are intermittent. Therefore, a sufficiently high output can be obtained by the output from at least one power generation sheet 5, and the flow velocity of the measurement fluid 3 can be accurately obtained.

また、前記発電シート5の長手方向における一端部を前記梁部材4に固定するとともに、自由端としての他端部に、おもり部材5aを付設することができる(図4(e)参照)。このようにすると、発電シート5の振動特性をおもり部材5aの重さにより調整できるので、適切な流量範囲で識別性の高い電力出力を得られるように調整することができるので有効である。具体的には、発電シート5からの出力に商用電源からの電力周波数ノイズが混入して出力の識別性が低下するような場合、おもり部材5aを付設することにより、出力を増大させることができるので、商用電源ノイズとの識別性を向上することができる。厚さ40μm、短辺10mm、長辺65mmの短冊状のピエゾフィルムからなる発電シート5の場合、先端5mmの範囲にアルミフォイルを200μm厚で貼付(付設)しておくと、流速2.6m/秒において得られる電力の出力がFFT変換後で約4倍となることがわかっている。
また、上記実施形態では、複数の発電シート5を電気的に直列に接続する例を示したが、電気的に並列に接続することもできる。さらには単数で用いることもできる。また、一つの梁部材4に複数の発電シート5を併設するのに代え、複数の梁部材4にそれぞれ設けた発電シート5どうしを互いに接続して出力を得る構成としたり、それぞれ独立に出力を得る構成とすることもできる。後者の場合、管路2内の測定流体3の流速分布を知るような用途で有効と考えられる。
Moreover, while fixing the one end part in the longitudinal direction of the said electric power generation sheet 5 to the said beam member 4, the weight member 5a can be attached to the other end part as a free end (refer FIG.4 (e)). In this way, the vibration characteristics of the power generation sheet 5 can be adjusted by the weight of the weight member 5a, and therefore, it is effective because it can be adjusted to obtain a highly discriminating power output in an appropriate flow rate range. Specifically, when power frequency noise from a commercial power source is mixed in the output from the power generation sheet 5 and the output discriminability is lowered, the output can be increased by attaching the weight member 5a. Therefore, it is possible to improve the distinguishability from commercial power supply noise. In the case of the power generation sheet 5 made of a strip-shaped piezo film having a thickness of 40 μm, a short side of 10 mm, and a long side of 65 mm, if an aluminum foil is pasted (attached) at a thickness of 200 μm in the range of 5 mm at the tip, a flow rate of 2.6 m / It has been found that the power output obtained in seconds is about 4 times after the FFT conversion.
Moreover, in the said embodiment, although the example which connects the several electric power generation sheet | seat 5 electrically in series was shown, it can also be electrically connected in parallel. Furthermore, it can also be used singularly. Further, instead of providing a plurality of power generation sheets 5 on one beam member 4, the power generation sheets 5 provided on each of the plurality of beam members 4 are connected to each other to obtain outputs, or outputs can be independently performed. It can also be set as the structure obtained. In the latter case, it is considered effective for the purpose of knowing the flow velocity distribution of the measurement fluid 3 in the pipe 2.

なお、上述の例では、測定流体3を都市ガスとして、ガスヒートポンプに流通される都市ガスの流量を測定するものとして流量測定装置1を構成し、0.5m/秒〜3.0m/秒の流速を測定するのに特に好適な例を示したが、測定流体3の種別、流速範囲に応じて発電シート5の出力特性を設計することができる。   In the above-described example, the flow rate measuring device 1 is configured to measure the flow rate of the city gas circulated through the gas heat pump using the measurement fluid 3 as the city gas, and the flow rate measuring device 1 is 0.5 m / second to 3.0 m / second. Although an example particularly suitable for measuring the flow velocity has been shown, the output characteristics of the power generation sheet 5 can be designed according to the type of the measurement fluid 3 and the flow velocity range.

尚、流量測定装置1の配設形態としては、直管部分における層流を検知して平均流量を求めるのみならず、曲管部分の断面視で、複数の流量測定装置1を設けることで、曲管部分における流速分布を求めるのに用いることもできる。   In addition, as an arrangement form of the flow rate measuring device 1, not only the laminar flow in the straight pipe portion is detected and the average flow rate is obtained, but also by providing a plurality of flow rate measuring devices 1 in a sectional view of the curved pipe portion, It can also be used to determine the flow velocity distribution in the curved pipe section.

上記実施形態では、発電シート5からの出力は、直接リード線8の端子8aから周波数検出手段6に対して取り出す形態としたが、出力増幅器を介して赤外線発光素子等に取り出し、その赤外線発光素子からの無線出力を介して、周波数検出手段6、流速導出手段7が、電力の周波数に基づいて、前記測定流体3の流速を導出する構成とすることもできる。   In the above embodiment, the output from the power generation sheet 5 is directly taken out from the terminal 8a of the lead wire 8 to the frequency detection means 6, but is taken out to the infrared light emitting element or the like via the output amplifier, and the infrared light emitting element. The frequency detection means 6 and the flow velocity deriving means 7 may be configured to derive the flow velocity of the measurement fluid 3 based on the frequency of the electric power via the wireless output from.

本発明の流量測定装置は、組み立て容易で、正確な出力をより確実に得られるため、たとえば、ガス供給配管における流量測定装置として利用することができる。   Since the flow rate measuring device of the present invention is easy to assemble and an accurate output can be obtained more reliably, it can be used, for example, as a flow rate measuring device in a gas supply pipe.

1 :流量測定装置
2 :管路
3 :測定流体
4 :梁部材
5 :発電シート
5a :おもり部材
6 :周波数検出手段
7 :流速導出手段
8 :リード線
8a :端子
9 :ケーブル
1: Flow rate measuring device 2: Pipe line 3: Measurement fluid 4: Beam member 5: Power generation sheet 5a: Weight member 6: Frequency detecting means 7: Flow velocity deriving means 8: Lead wire 8a: Terminal 9: Cable

Claims (6)

管路内を通流する測定流体の流量を測定する流量測定装置であって、
前記管路内の測定流体の流れ方向を横断する方向に沿って梁部材を設け、
前記測定流体の流れにより、周期的に振動して電力を発生する自己励起式の発電シートを、前記梁部材に片持ち姿勢で取り付け、
前記発電シートにより発生する電力の周波数を検出する周波数検出手段を、前記発電シートに接続して設け、
前記周波数検出手段により検出される電力の周波数に基づいて、前記測定流体の流速を導出する流速導出手段を設けてある流量測定装置。
A flow rate measuring device for measuring a flow rate of a measurement fluid flowing through a pipeline,
A beam member is provided along a direction crossing a flow direction of the measurement fluid in the pipe;
A self-exciting power generation sheet that periodically vibrates and generates power by the flow of the measurement fluid is attached to the beam member in a cantilevered posture,
A frequency detection means for detecting the frequency of power generated by the power generation sheet is provided in connection with the power generation sheet,
A flow rate measuring device provided with flow velocity deriving means for deriving the flow velocity of the measurement fluid based on the frequency of electric power detected by the frequency detecting means.
前記梁部材に、前記発電シートを複数併設するとともに、前記発電シートを直列に接続してある請求項1に記載の流量測定装置。   The flow rate measuring device according to claim 1, wherein a plurality of the power generation sheets are provided on the beam member, and the power generation sheets are connected in series. 複数の前記発電シートは、同一形状で同一厚さに形成してある請求項2に記載の流量測定装置。   The flow rate measuring device according to claim 2, wherein the plurality of power generation sheets have the same shape and the same thickness. 前記発電シートを、少なくともそのシート表面の一部が水平方向に沿う姿勢で、前記梁部材に片持ち姿勢で取り付けてある請求項1〜3のいずれか一項に記載の流量測定装置。   The flow rate measuring device according to any one of claims 1 to 3, wherein the power generation sheet is attached to the beam member in a cantilevered posture so that at least a part of the surface of the sheet is in a horizontal direction. 前記発電シートは、長手方向における一端部を前記梁部材に固定するとともに、自由端としての他端部に、おもり部材を付設してある請求項1〜4のいずれか一項に記載の流量測定装置。   The flow rate measurement according to any one of claims 1 to 4, wherein the power generation sheet has one end in the longitudinal direction fixed to the beam member and a weight member attached to the other end as a free end. apparatus. 前記発電シートは、前記梁部材に取り付けられる一端部となる短辺と、その一端部に対して発電シートが振動する必要長さ以上の長辺を有する短冊状である請求項1〜5のいずれか一項に記載の流量測定装置。   The said power generation sheet is a strip shape which has the short side used as the one end part attached to the said beam member, and the long side more than the required length which a power generation sheet vibrates with respect to the one end part. The flow measuring device according to claim 1.
JP2014178326A 2014-09-02 2014-09-02 Flow measuring device Active JP6406936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178326A JP6406936B2 (en) 2014-09-02 2014-09-02 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178326A JP6406936B2 (en) 2014-09-02 2014-09-02 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2016050927A true JP2016050927A (en) 2016-04-11
JP6406936B2 JP6406936B2 (en) 2018-10-17

Family

ID=55658515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178326A Active JP6406936B2 (en) 2014-09-02 2014-09-02 Flow measuring device

Country Status (1)

Country Link
JP (1) JP6406936B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019457U (en) * 1973-06-18 1975-03-05
JPS5117042U (en) * 1974-07-26 1976-02-07
JPS5778503A (en) * 1980-11-04 1982-05-17 Ohkura Electric Co Ltd Mechanical light modulator
JPS58169030A (en) * 1982-03-31 1983-10-05 Ohkura Electric Co Ltd Karman's vortex street flowmeter
JPS63247619A (en) * 1987-04-02 1988-10-14 Tokyo Keiso Kk Karman vortex flowmeter
US5869772A (en) * 1996-11-27 1999-02-09 Storer; William James A. Vortex flowmeter including cantilevered vortex and vibration sensing beams
JP2012173102A (en) * 2011-02-21 2012-09-10 Osaka Gas Co Ltd Self-excitation type flow velocity sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019457U (en) * 1973-06-18 1975-03-05
JPS5117042U (en) * 1974-07-26 1976-02-07
JPS5778503A (en) * 1980-11-04 1982-05-17 Ohkura Electric Co Ltd Mechanical light modulator
JPS58169030A (en) * 1982-03-31 1983-10-05 Ohkura Electric Co Ltd Karman's vortex street flowmeter
JPS63247619A (en) * 1987-04-02 1988-10-14 Tokyo Keiso Kk Karman vortex flowmeter
US5869772A (en) * 1996-11-27 1999-02-09 Storer; William James A. Vortex flowmeter including cantilevered vortex and vibration sensing beams
JP2012173102A (en) * 2011-02-21 2012-09-10 Osaka Gas Co Ltd Self-excitation type flow velocity sensor

Also Published As

Publication number Publication date
JP6406936B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
CN104868785B (en) A kind of cylinder vortex TRT of built-in piezoelectric beam
JP5705111B2 (en) Oscillating element sensor for detecting boundary layer transition 1
Azadeh-Ranjbar et al. Vortex-induced vibration of finite-length circular cylinders with spanwise free-ends: Broadening the lock-in envelope
US11187715B2 (en) Multi-component fast-response velocity sensor
JP4910134B2 (en) Self-supporting river monitoring device
US20140265733A1 (en) Flexure-enhancing system for improved power generation in a wind-powered piezoelectric system
JP6406936B2 (en) Flow measuring device
JP5676301B2 (en) Self-exciting flow rate sensor
JPWO2014123144A1 (en) Vibration detector
JP6697906B2 (en) Flow measurement method
JP6656021B2 (en) Flow sensor
WO2015063079A1 (en) A flow meter for ultrasonically measuring the flow velocity of fluids
KR101431461B1 (en) Flowmeter using bimorph
KR101150023B1 (en) Piezoelectric cantilever fluid energy harvester
Dančová et al. Experimental investigation of a synthetic jet array in a laminar channel flow
JP2015212524A (en) Power generating system
JP5996764B1 (en) Coriolis flow meter and phase difference detection method of Coriolis flow meter
KR100732116B1 (en) Vortex flowmeter
KR101218331B1 (en) Vortex frequency measuring apparatus using piezoelectric film
JP2015040797A (en) Vortex flowmeter
Zhang et al. A flow-induced structure-based kinetic energy harvester
Methal et al. Microwatt energy harvesting by exploiting flow-induced vibration
US10942049B2 (en) Device and method for determining the flow velocity of a fluid in a hollow body
JP6313939B2 (en) Vortex flow meter
Lv et al. Simulation study for energy harvesting using polyvinylidene fluoride flag in the flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R150 Certificate of patent or registration of utility model

Ref document number: 6406936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150