JP2012173102A - Self-excitation type flow velocity sensor - Google Patents

Self-excitation type flow velocity sensor Download PDF

Info

Publication number
JP2012173102A
JP2012173102A JP2011034720A JP2011034720A JP2012173102A JP 2012173102 A JP2012173102 A JP 2012173102A JP 2011034720 A JP2011034720 A JP 2011034720A JP 2011034720 A JP2011034720 A JP 2011034720A JP 2012173102 A JP2012173102 A JP 2012173102A
Authority
JP
Japan
Prior art keywords
power generation
vortex
fluid
generation sheet
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011034720A
Other languages
Japanese (ja)
Other versions
JP5676301B2 (en
Inventor
Itaru Tamura
至 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011034720A priority Critical patent/JP5676301B2/en
Publication of JP2012173102A publication Critical patent/JP2012173102A/en
Application granted granted Critical
Publication of JP5676301B2 publication Critical patent/JP5676301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow velocity sensor capable of directly detecting the flow velocity of a fluid in conformity with the flow of the fluid.SOLUTION: The flow velocity sensor includes a vortex generation part 4 which periodically generates a vortex in the fluid flowing in a flow passage 2, and a self-excitation type power generation sheet 6 which vibrates by periodic behavior of vortexes to generate electric power. Vibration period detection means 10 of finding the vibration period of the power generation sheet 6 based upon the frequency of the electric power generated by the power generation sheet 6 is provided while electrically connected to the power generation sheet 6. Further, there is provided flow velocity derivation means 11 of deriving the flow velocity of the fluid based upon the vibration period of the power generation sheet 6 detected by the vibration period detection means 10.

Description

本発明は、流路内を通流する流体の流速を測定する流速センサに関する。   The present invention relates to a flow rate sensor that measures a flow rate of a fluid flowing through a flow path.

このような流速センサとしては、従来から多種多様のものがある。一例を挙げると、カルマン渦の周期的な挙動に基づいて流体の流速を検出する流速センサがあり、通常、その検出した流速を基に流体の流量を検出するカルマン流量計として知られている(例えば、特許文献1参照)。   Conventionally, there are a wide variety of such flow rate sensors. As an example, there is a flow rate sensor that detects the flow rate of fluid based on the periodic behavior of Karman vortex, and is generally known as a Karman flow meter that detects the flow rate of fluid based on the detected flow rate ( For example, see Patent Document 1).

特開平3−20618号公報JP-A-3-20618

しかしながら、カルマン流量計に適用される流速センサは、カルマン渦の挙動により圧力差が生じる2箇所の部位の圧力を導圧路などを介して圧力センサに導いて検出する構成を採用しており、流体の流れに即した状態で、つまり、流体中の渦の流れに沿った状態で流速を直接検出する構成ではなかった。   However, the flow velocity sensor applied to the Karman flowmeter adopts a configuration in which the pressure at two locations where a pressure difference is caused by the behavior of the Karman vortex is guided to the pressure sensor via a pressure guiding path or the like, and is detected. It is not a configuration in which the flow velocity is directly detected in a state in accordance with the flow of the fluid, that is, in a state along the flow of the vortex in the fluid.

本発明は、このような点に着目したもので、その目的は、流体の流れに即した状態で、その流体の流速を直接検出することのできる流速センサを提供することにある。   The present invention pays attention to such points, and an object of the present invention is to provide a flow rate sensor capable of directly detecting the flow rate of the fluid in a state in accordance with the flow of the fluid.

上記の目的を達成するため、本発明に係る流路内を通流する流体の流速を測定する流速センサの特徴構成は、前記流路内を通流する流体中に周期的に渦を発生させる渦発生部と、その渦の周期的な挙動により振動して電力を発生する自己励起式の発電シートを備え、その発電シートにより発生する電力の周波数に基づいて前記発電シートの振動周期を求める振動周期検出手段が、前記発電シートに電気的に接続して設けられ、前記振動周期検出手段により検出する前記発電シートの振動周期に基づいて流体の流速を導出する流速導出手段が設けられているところにある。   In order to achieve the above object, the flow velocity sensor characteristic configuration for measuring the flow velocity of the fluid flowing in the flow channel according to the present invention periodically generates vortices in the fluid flowing in the flow channel. A vibration that includes a vortex generator and a self-exciting power generation sheet that generates electric power by vibrating due to the periodic behavior of the vortex, and determines the vibration period of the power generation sheet based on the frequency of the power generated by the power generation sheet A period detecting means is provided electrically connected to the power generation sheet, and a flow velocity deriving means for deriving the flow velocity of the fluid based on the vibration period of the power generation sheet detected by the vibration period detecting means is provided. It is in.

上記特徴構成によれば、流体の流速検出のために自己励起式の発電シートを使用し、その発電シートが渦発生部により発生される渦の周期的な挙動によって、その渦に沿って振動して電力を発生するのを利用し、その電力の周波数に基づいて流体の流速を検出するので、流体の流れに即した状態で、その流体の流速を直接検出することができる。
そして、その発電シートが発生する電力の周波数に基づいて、振動周期検出手段が発電シートの振動周期を求め、その発電シートの振動周期に基づいて、流速導出手段が流体の流速を導出するので、発電シートに電力を供給する必要もなく、流路内を通流する流体の流速を流体の流れに即した状態で直接検出することが可能となる。
According to the above characteristic configuration, a self-excited power generation sheet is used to detect the flow velocity of the fluid, and the power generation sheet vibrates along the vortex due to the periodic behavior of the vortex generated by the vortex generator. Therefore, the flow velocity of the fluid is detected based on the frequency of the electric power, so that the flow velocity of the fluid can be directly detected in a state corresponding to the flow of the fluid.
And, based on the frequency of the electric power generated by the power generation sheet, the vibration period detecting means obtains the vibration period of the power generation sheet, and based on the vibration period of the power generation sheet, the flow velocity deriving means derives the flow velocity of the fluid. There is no need to supply electric power to the power generation sheet, and the flow velocity of the fluid flowing through the flow path can be directly detected in a state in accordance with the flow of the fluid.

上記特徴構成を備えた流量センサにおいて、前記流路の下方に流体の通流方向に直交する渦発生用溝が設けられ、その渦発生用溝の上方エッジのうちの流体の通流方向上流側に位置するエッジが、前記渦発生部として機能する渦発生用エッジに構成され、その渦発生用エッジに前記発電シートが取り付けられていることが好ましい。   In the flow sensor having the above characteristic configuration, a vortex generating groove perpendicular to the fluid flow direction is provided below the flow path, and the fluid flow direction upstream side of the upper edge of the vortex generation groove It is preferable that the edge located at is configured as a vortex generating edge that functions as the vortex generating portion, and the power generation sheet is attached to the vortex generating edge.

上記特徴構成によれば、流体が通流する流路の下方に渦発生用溝を設けることにより、その渦発生用溝の通流方向上流側の上方エッジが渦発生部として機能するので、例えば、流体が通流する流路の内部に渦発生部を設ける場合のように、流体の流れを大きく乱すことなく、流体の流速を検出することができる。
そして、その渦発生部として機能する渦発生用エッジに発電シートが取り付けられるので、渦発生用エッジに予め発電シートを取り付けた状態で、渦発生用溝を流路の下方に配置することが可能となり、流速検出操作の容易化を図ることができる。
According to the above characteristic configuration, by providing the vortex generating groove below the flow path through which the fluid flows, the upper edge on the upstream side in the flow direction of the vortex generating groove functions as a vortex generating portion. The flow velocity of the fluid can be detected without greatly disturbing the flow of the fluid as in the case where the vortex generator is provided inside the flow path through which the fluid flows.
Since the power generation sheet is attached to the vortex generation edge that functions as the vortex generation portion, the vortex generation groove can be disposed below the flow path with the power generation sheet previously attached to the vortex generation edge. Thus, the flow velocity detection operation can be facilitated.

上記特徴構成を備えた流量センサにおいて、前記発電シートが、前記渦発生用エッジの長手方向の中間位置に取り付けられ、その発電シートの両側に流体が前記渦発生用溝内に流入可能な流体流入部が設けられていることが好ましい。   In the flow rate sensor having the above-described characteristic configuration, the power generation sheet is attached to an intermediate position in the longitudinal direction of the vortex generation edge, and fluid can flow into the vortex generation groove on both sides of the power generation sheet. It is preferable that a portion is provided.

上記特徴構成によれば、流路内を通流する流体が、渦発生用エッジに取り付けられた発電シートの両側から渦発生用溝内に流入するので、発電シートの近くに渦が発生して、発電シートの振動が顕著となり、流体の流速をより一層確実に検出することができる。   According to the above characteristic configuration, the fluid flowing in the flow path flows into the vortex generating groove from both sides of the power generating sheet attached to the vortex generating edge, so that a vortex is generated near the power generating sheet. The vibration of the power generation sheet becomes remarkable, and the flow rate of the fluid can be detected more reliably.

自己励起式流速センサの第1の実施形態を示す概略構成斜視図Schematic configuration perspective view showing a first embodiment of a self-excitation flow rate sensor 自己励起式流速センサの第1の実施形態の縦断側面図(図1のII−II線矢視)Longitudinal side view of the first embodiment of the self-excitation flow rate sensor (indicated by arrows II-II in FIG. 1) 自己励起式流速センサの第1の実施形態の縦断側面図Longitudinal side view of the first embodiment of the self-excitation flow rate sensor 自己励起式流速センサの第2の実施形態の縦断側面図Longitudinal side view of a second embodiment of a self-exciting flow rate sensor

〔第1の実施形態〕
本発明による自己励起式流速センサの第1の実施形態を図面に基づいて説明する。
第1の実施形態による自己励起式流速センサは、図1から図3に示すように、断面形状が矩形や円形の管路1により形成される流路2内において、その流路2内を通流する気体(例えば、都市ガス)や液体などの流体の通流方向Fに直交して横断する渦発生用溝3が、流路1の下方に位置して設けられている。
その渦発生用溝3は、その上方エッジ4、5のうち、流体の通流方向Fの上流側に位置するエッジ4が、渦発生部として機能する渦発生用エッジ4に構成され、その渦発生用エッジ4によって、流路2内を通流する流体中に周期的に渦を発生させるように構成されている。
[First Embodiment]
A first embodiment of a self-excitation flow rate sensor according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the self-excitation flow rate sensor according to the first embodiment passes through the flow path 2 in a flow path 2 formed by a pipe 1 having a rectangular or circular cross section. A vortex generating groove 3 that intersects perpendicularly to the flow direction F of a fluid such as a flowing gas (for example, city gas) or a liquid is provided below the flow path 1.
In the vortex generating groove 3, the edge 4 located on the upstream side in the fluid flow direction F among the upper edges 4 and 5 is configured as a vortex generating edge 4 that functions as a vortex generating portion. The generation edge 4 is configured to periodically generate vortices in the fluid flowing through the flow path 2.

その渦発生用エッジ4の長手方向の中間位置、より具体的には、渦発生用エッジ4の長手方向の中央部に、薄膜化により柔軟性に優れ、かつ、耐水性や耐衝撃性などを備えた自己励起式の矩形の発電シート6の一辺が、例えば、接着により取り付けられ、その発電シート6の両側には、流体が渦発生用溝3内に流入可能な流体流入部7が設けられている。
発電シート6は、ポリフッカビニリデンに代表される強誘電性高分子からなり、より具体的には、例えば、ピエゾフィルム((株)東京センサ製の商品名)からなり、振動することにより自己励起して高電圧の電力を発生する特性を備えている。
その発電シート6には、2本のリード線8が接続され、そのリード線8の端子8aが、外部へ突出する状態で渦発生用溝3に設けられ、それら発電シート6、リード線8、および、端子8aが、渦発生用溝3に組み付けられてひとつのユニットに構成されている。
At the middle position in the longitudinal direction of the edge 4 for vortex generation, more specifically, at the center in the longitudinal direction of the edge 4 for vortex generation, excellent flexibility and water resistance and impact resistance are achieved by thinning. One side of the provided self-excited rectangular power generation sheet 6 is attached by, for example, adhesion, and a fluid inflow portion 7 through which fluid can flow into the vortex generating groove 3 is provided on both sides of the power generation sheet 6. ing.
The power generation sheet 6 is made of a ferroelectric polymer typified by polyfucavinylidene, more specifically, for example, a piezoelectric film (trade name, manufactured by Tokyo Sensor Co., Ltd.), and is self-excited by vibration. Thus, it has a characteristic of generating high voltage power.
Two lead wires 8 are connected to the power generation sheet 6, and terminals 8 a of the lead wires 8 are provided in the vortex generating groove 3 so as to protrude to the outside, and the power generation sheet 6, the lead wires 8, And the terminal 8a is assembled | attached to the groove | channel 3 for vortex generation, and is comprised by one unit.

発電シート6に接続されるリード線8の端子8aには、2本のケーブル9を介して振動周期検出手段10が接続されている。つまり、振動周期検出手段10が、2本のリード線8とケーブル9を介して発電シート6に電気的に接続して設けられ、その振動周期検出手段10が、発電シート6により発生する電力の周波数に基づいて発電シート6の振動周期を求めるように構成され、その振動周期検出手段10に対して、流速導出手段11が接続されている。
流速導出手段11は、予め計測された発電シート6の振動周期と流体の流速との関係データを記憶していて、振動周期検出手段10から送信される発電シート6の振動周期に基づいて流体の流速を導出するように構成されている。
A vibration period detecting means 10 is connected to the terminal 8 a of the lead wire 8 connected to the power generation sheet 6 via two cables 9. In other words, the vibration period detection means 10 is provided in electrical connection with the power generation sheet 6 via the two lead wires 8 and the cable 9, and the vibration period detection means 10 provides the power generated by the power generation sheet 6. A vibration cycle of the power generation sheet 6 is obtained based on the frequency, and a flow velocity deriving unit 11 is connected to the vibration cycle detecting unit 10.
The flow velocity deriving unit 11 stores relational data between the vibration cycle of the power generation sheet 6 and the flow velocity of the fluid that are measured in advance, and based on the vibration cycle of the power generation sheet 6 transmitted from the vibration cycle detection unit 10. It is configured to derive the flow velocity.

このような構成の自己励起式流速センサによれば、流路2内における流体の通流に伴って、渦発生用エッジ4の下流側、つまり、図2に示すように、渦発生用溝3内において、発電シート6の下方横側方に周期的に渦が発生し、その渦が、図3に示すように、渦発生用エッジ4から剥離して渦発生用溝3から上方へ流出する。その渦の周期的な挙動によって、発電シート6が、流体の流れに即した状態で、図2に示す状態から上方へ振動して図3に示す状態へ、さらに、その後、再び図2に示す状態となり、大きく上下に繰り返し振動して発電する。
その発電シート6により発生する電力の周波数に基づいて、振動周期検出手段10が、発電シート6の振動周期を検出し、その検出結果を流速導出手段11へ送信する。
流速導出手段11では、送信されてきた発電シート6の振動周期に基づいて、その振動周期に対応する流体の流速を記憶しているデータから導出し、例えば、その導出した流速を表示装置に表示することになり、当然、その流速から流路2内を流れる流体の流量も求めることができる。
According to the self-excitation flow velocity sensor having such a configuration, the vortex generating groove 3 is arranged downstream of the vortex generating edge 4, that is, as shown in FIG. Inside, a vortex is periodically generated on the lower lateral side of the power generation sheet 6, and the vortex is peeled off from the vortex generating edge 4 and flows upward from the vortex generating groove 3 as shown in FIG. . Due to the periodic behavior of the vortices, the power generation sheet 6 vibrates upward from the state shown in FIG. 2 in accordance with the flow of the fluid to the state shown in FIG. 3, and then again shown in FIG. It becomes a state, and it generates power by repeatedly vibrating up and down.
Based on the frequency of the electric power generated by the power generation sheet 6, the vibration cycle detection unit 10 detects the vibration cycle of the power generation sheet 6 and transmits the detection result to the flow velocity deriving unit 11.
The flow velocity deriving unit 11 derives the flow velocity of the fluid corresponding to the vibration cycle based on the transmitted vibration cycle of the power generation sheet 6 and displays the derived flow velocity on the display device, for example. Of course, the flow rate of the fluid flowing in the flow path 2 can also be obtained from the flow velocity.

〔第2の実施形態〕
本発明による自己励起式流速センサの第2の実施形態について説明するが、重複説明を避けるため、第1の実施形態で説明した構成や同じ作用を有する構成については、同じ符号を付すことで説明を省略し、主として第1の実施形態と異なる構成について説明する。
第2の実施形態による自己励起式流速センサは、図4に示すとおりであり、第1の実施形態と異なる点は、矩形に形成された自己励起式の発電シート6の一辺が、渦発生用エッジ4の長手方向の中央部に取り付けられるのに加えて、発電シート6の他の辺(上記の一辺に対向する辺)も、例えば、接着により下流側のエッジ5に取り付けられ、その状態で発電シート6が振動するように構成されている点である。
この実施形態においても、周期的に発生される渦の挙動により発電シート6が大きく上下に振動し、最終的に、流体の流速を検出することができる。
[Second Embodiment]
The second embodiment of the self-excitation flow velocity sensor according to the present invention will be described, but in order to avoid duplication, the configuration described in the first embodiment and the configuration having the same action are described by attaching the same reference numerals. A description will be mainly given of a configuration different from that of the first embodiment.
The self-exciting flow velocity sensor according to the second embodiment is as shown in FIG. 4, and is different from the first embodiment in that one side of the self-exciting power generation sheet 6 formed in a rectangular shape is for vortex generation. In addition to being attached to the central portion of the edge 4 in the longitudinal direction, the other side of the power generation sheet 6 (side facing the one side) is also attached to the downstream edge 5 by adhesion, for example. The power generation sheet 6 is configured to vibrate.
Also in this embodiment, the power generation sheet 6 largely vibrates up and down due to the behavior of vortices generated periodically, and finally the fluid flow velocity can be detected.

〔別実施形態〕
(1)これまでの実施形態では、発電シート6を渦発生用エッジ4の長手方向の中間位置に取り付けた例を示したが、渦発生用エッジ4の長手方向の一側方に近接して取り付けることもできる。
(2)また、渦発生用溝3の上流側の上方エッジ4により渦発生部を構成した例を示したが、例えば、エッジを有する部材を流路2内へ突出させ、その突出したエッジにより渦発生部を構成することもでき、渦発生部に関しては種々の改変が可能である。
[Another embodiment]
(1) In the embodiments described so far, the example in which the power generation sheet 6 is attached to the middle position in the longitudinal direction of the vortex generating edge 4 has been shown. It can also be attached.
(2) Moreover, although the example which comprised the vortex generating part by the upper edge 4 of the upstream of the vortex generating groove 3 was shown, for example, the member which has an edge protrudes in the flow path 2, and the protruding edge A vortex generator can also be configured, and various modifications can be made to the vortex generator.

2 流路
3 渦発生用溝
4 渦発生部(渦発生用エッジ)
6 自己励起式の発電シート
7 流体流入部
10 振動周期検出手段
11 流速導出手段
F 流体の通流方向
2 Flow path 3 Vortex generating groove 4 Vortex generator (vortex generating edge)
6 Self-exciting power generation sheet 7 Fluid inflow section 10 Vibration period detecting means 11 Flow velocity deriving means F Flow direction of fluid

Claims (3)

流路内を通流する流体の流速を測定する流速センサであって、
前記流路内を通流する流体中に周期的に渦を発生させる渦発生部と、その渦の周期的な挙動により振動して電力を発生する自己励起式の発電シートを備え、その発電シートにより発生する電力の周波数に基づいて前記発電シートの振動周期を求める振動周期検出手段が、前記発電シートに電気的に接続して設けられ、前記振動周期検出手段により検出する前記発電シートの振動周期に基づいて流体の流速を導出する流速導出手段が設けられている自己励起式流速センサ。
A flow rate sensor for measuring a flow rate of a fluid flowing through a flow path,
A vortex generator that periodically generates vortices in the fluid flowing in the flow path, and a self-excited power generation sheet that generates electric power by vibrating due to the periodic behavior of the vortex, the power generation sheet The vibration period detecting means for obtaining the vibration period of the power generation sheet based on the frequency of the electric power generated by the power generation sheet is electrically connected to the power generation sheet, and is detected by the vibration period detection means. Self-excited flow rate sensor provided with flow rate deriving means for deriving the flow rate of fluid based on the above.
前記流路の下方に流体の通流方向に直交する渦発生用溝が設けられ、その渦発生用溝の上方エッジのうちの流体の通流方向上流側に位置するエッジが、前記渦発生部として機能する渦発生用エッジに構成され、その渦発生用エッジに前記発電シートが取り付けられている請求項1に記載の自己励起式流速センサ。   A vortex generating groove perpendicular to the fluid flow direction is provided below the flow path, and an edge located upstream of the fluid flow direction in the upper edge of the vortex generation groove is the vortex generating portion. The self-exciting flow velocity sensor according to claim 1, wherein the self-excitation flow velocity sensor is configured as a vortex generating edge that functions as the vortex generating edge. 前記発電シートが、前記渦発生用エッジの長手方向の中間位置に取り付けられ、その発電シートの両側に流体が前記渦発生用溝内に流入可能な流体流入部が設けられている請求項2に記載の自己励起式流速センサ。   The power generation sheet is attached to an intermediate position in the longitudinal direction of the vortex generation edge, and a fluid inflow portion through which fluid can flow into the vortex generation groove is provided on both sides of the power generation sheet. The described self-exciting flow rate sensor.
JP2011034720A 2011-02-21 2011-02-21 Self-exciting flow rate sensor Active JP5676301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034720A JP5676301B2 (en) 2011-02-21 2011-02-21 Self-exciting flow rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034720A JP5676301B2 (en) 2011-02-21 2011-02-21 Self-exciting flow rate sensor

Publications (2)

Publication Number Publication Date
JP2012173102A true JP2012173102A (en) 2012-09-10
JP5676301B2 JP5676301B2 (en) 2015-02-25

Family

ID=46976147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034720A Active JP5676301B2 (en) 2011-02-21 2011-02-21 Self-exciting flow rate sensor

Country Status (1)

Country Link
JP (1) JP5676301B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040798A (en) * 2013-08-22 2015-03-02 アズビル株式会社 Vortex flowmeter
JP2016050927A (en) * 2014-09-02 2016-04-11 大阪瓦斯株式会社 Flow rate measurement device
CN105674064A (en) * 2016-01-15 2016-06-15 苏州创必成电子科技有限公司 Short-range self-powered monitor for pipe fluid information

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085419A (en) * 1994-06-20 1996-01-12 Tokyo Gas Co Ltd Flow meter
JPH10227670A (en) * 1997-02-17 1998-08-25 Tokyo Gas Co Ltd Gas flowmeter
JP2007101284A (en) * 2005-10-03 2007-04-19 Oval Corp Oscillatory karman vortex flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085419A (en) * 1994-06-20 1996-01-12 Tokyo Gas Co Ltd Flow meter
JPH10227670A (en) * 1997-02-17 1998-08-25 Tokyo Gas Co Ltd Gas flowmeter
JP2007101284A (en) * 2005-10-03 2007-04-19 Oval Corp Oscillatory karman vortex flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040798A (en) * 2013-08-22 2015-03-02 アズビル株式会社 Vortex flowmeter
JP2016050927A (en) * 2014-09-02 2016-04-11 大阪瓦斯株式会社 Flow rate measurement device
CN105674064A (en) * 2016-01-15 2016-06-15 苏州创必成电子科技有限公司 Short-range self-powered monitor for pipe fluid information

Also Published As

Publication number Publication date
JP5676301B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
US3867839A (en) Vortex-type flowmeter having strain gauge sensor in an elastic suspension
JP2018525626A (en) Electromagnetic flow sensor
RU2013143018A (en) VIBRATION FLOW METER AND METHOD FOR TEMPERATURE MEASUREMENT
JP5676301B2 (en) Self-exciting flow rate sensor
JP4158980B2 (en) Multi vortex flowmeter
JP2742388B2 (en) Flow velocity measuring device
JP6026963B2 (en) Flow sensor and flow detection system
CN111213036B (en) Vortex flowmeter
JP4894704B2 (en) Fluid flow measuring device
JP6406936B2 (en) Flow measuring device
JP6656021B2 (en) Flow sensor
JP6697906B2 (en) Flow measurement method
JP4453341B2 (en) Ultrasonic flow meter
JP2015206629A (en) vortex flowmeter
JP4438119B2 (en) Flow measuring device
JP5337929B2 (en) Fluid rate gyro
JP2007333459A (en) Multi vortex flowmeter using mass flow as switching point
JP2023037141A (en) Karman vortex type flowmeter
JP2005308435A (en) Water meter
JP4411917B2 (en) Vortex flow meter
JPH1114412A (en) Vortex flowmeter
JPH102769A (en) Vortex flowmeter
JP2003207378A (en) Vortex flowmeter
JPH04151519A (en) Flowmeter
CN111164388A (en) Vortex flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150