JP2016050912A - Paper substrate device and manufacturing method of the same - Google Patents

Paper substrate device and manufacturing method of the same Download PDF

Info

Publication number
JP2016050912A
JP2016050912A JP2014178063A JP2014178063A JP2016050912A JP 2016050912 A JP2016050912 A JP 2016050912A JP 2014178063 A JP2014178063 A JP 2014178063A JP 2014178063 A JP2014178063 A JP 2014178063A JP 2016050912 A JP2016050912 A JP 2016050912A
Authority
JP
Japan
Prior art keywords
paper substrate
general formula
compound represented
solution
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014178063A
Other languages
Japanese (ja)
Other versions
JP6547252B2 (en
Inventor
ダニエル チッテリオ
Daniel Citterio
ダニエル チッテリオ
鈴木 孝治
Koji Suzuki
鈴木  孝治
希衣 中田
Kie Nakata
希衣 中田
健人 前島
Kento Maejima
健人 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2014178063A priority Critical patent/JP6547252B2/en
Publication of JP2016050912A publication Critical patent/JP2016050912A/en
Application granted granted Critical
Publication of JP6547252B2 publication Critical patent/JP6547252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new paper substrate device and a manufacturing method of it that can perform an analysis or reaction without requiring much sample solution and can be produced easily without using UV irradiation, heating, titanium dioxide particles, or the like.SOLUTION: The paper substrate device includes: a paper substrate; a hydrophobic silane coupling agent that is applied onto the paper substrate and has a specific structure; and a flow channel with a desired shape formed of a hydrophilic silane coupling agent that is applied in the region coated with the hydrophobic silane coupling agent and has a specific structure.SELECTED DRAWING: Figure 1

Description

本発明は、各種の化学分析や化学反応等に用いられる紙基材デバイス(「紙基板マイクロ流体デバイス」(microfluidic paper-based analytical devices、μPADs)、「紙ベース反応用チップ」等とも呼ばれる)及びその製造方法に関する。   The present invention is a paper substrate device (also referred to as “paper substrate microfluidic devices” (μPADs), “paper-based reaction chips”, etc.) used for various chemical analyzes and chemical reactions, and the like. It relates to the manufacturing method.

紙基材デバイスは、紙上で流路を用いて分析や化学反応等を行うデバイスであり、紙基材であるため持ち運びや廃棄が簡単で、少量のサンプルで分析を行うことが可能なために近年注目を浴びている。現在までに開発された紙基材デバイスとしては、(1)ろ紙にインクジェットプリンタを用いてUV照射により硬化するインクを流路の形に印刷し、UVを照射し、これを表・裏に施すことにより、印刷したところのみ疎水性の壁を構築して流路を形成する方法(特許文献1、非特許文献1)、(2)トリメトキシオクタデシルシランと熱を用いて疎水性の壁をつくり流路を作製する方法(非特許文献2)、(3)二酸化チタン粒子を紙基板に吹きつけて基板を全体的に疎水化させ、紫外線を選択的に照射して親水化することにより流路やスポットの部分を作製する方法(非特許文献3)等が知られている。   Paper-based devices are devices that use flow paths on paper to perform analysis, chemical reactions, etc., and because they are paper-based, they can be easily carried and discarded, and can be analyzed with a small amount of sample. Has attracted attention in recent years. Paper substrate devices developed to date include: (1) Print ink on the filter paper that is cured by UV irradiation using an inkjet printer in the form of a flow path, irradiate UV, and apply it to the front and back Thus, a method of forming a flow path by constructing a hydrophobic wall only at the place of printing (Patent Document 1, Non-Patent Document 1), (2) Creating a hydrophobic wall using trimethoxyoctadecylsilane and heat A method for producing a channel (Non-patent Document 2), (3) The channel is made hydrophobic by spraying titanium dioxide particles onto a paper substrate and hydrophobizing it selectively by irradiating ultraviolet rays. And a method for producing a spot portion (Non-patent Document 3) is known.

特許文献1記載の方法は、インクジェットプリンタにより任意の形状の流路を簡便に作製できるという利点があるが、UV照射が必要であり、また、試料液は、ろ紙中を毛管現象で移動するため、移動速度が低く、移動中に試料液の蒸発が起きたり、ろ紙内部への試料液の浸潤のため、比較的多量の試料液が必要になるという欠点を有する。非特許文献2記載の方法では、加熱が必要であり、また、ろ紙基板を用いるため、特許文献1記載の方法と同様な問題がある。非特許文献3記載の方法は、試料液の移動に毛管現象を利用しないため、多量の試料液が必要ではないという利点を有するが、二酸化チタン粒子を吹き付ける必要があり、UV照射も必要である。   The method described in Patent Document 1 has an advantage that a flow path having an arbitrary shape can be easily produced by an ink jet printer, but UV irradiation is required, and the sample liquid moves through the filter paper by capillary action. The moving speed is low, the sample liquid evaporates during the movement, and a relatively large amount of the sample liquid is required due to the infiltration of the sample liquid into the filter paper. In the method described in Non-Patent Document 2, heating is necessary, and a filter paper substrate is used, so that there are problems similar to the method described in Patent Document 1. The method described in Non-Patent Document 3 has the advantage that a large amount of sample liquid is not necessary because it does not use capillary action for the movement of the sample liquid, but it is necessary to spray titanium dioxide particles and UV irradiation is also necessary. .

WO 2012/160857 A1WO 2012/160857 A1

Kento Maejimaet.al., RSC Adv., 2013,3, 9258-9263Kento Maejimaet.al., RSC Adv., 2013,3, 9258-9263 Longfei Cai et.al., Analyst, 2014, 139, 4593-4598Longfei Cai et.al., Analyst, 2014, 139, 4593-4598 Aritra Ghosh et.al., Lab Chip, 2014, 14, 1538Aritra Ghosh et.al., Lab Chip, 2014, 14, 1538

本発明の目的は、多量の試料液を必要とすることなく分析や反応を行うことができ、UV照射や加熱、二酸化チタン粒子等を用いることなく簡便に作製することができる新規な紙基材デバイス及びその製造方法を提供することである。   An object of the present invention is to provide a novel paper base material that can be analyzed and reacted without requiring a large amount of sample solution, and can be easily produced without using UV irradiation, heating, titanium dioxide particles, etc. It is to provide a device and a manufacturing method thereof.

本願発明者らは、鋭意研究の結果、基材表面に疎水性のシランカップリング剤をコーティングし、その上に親水性のシランカップリング剤を選択的に重ねてコーティングして流路を形成することにより、紙基材中での毛管現象を利用することなく試料液を迅速に移動させることができ、これにより試料液の必要量を減少させることができ、また、流路はインクジェットプリンタにより容易に描画でき、UV照射、加熱、二酸化チタン粒子などを必要とすることなく簡便にデバイスを作製可能であることを見出し、本発明を完成した。   As a result of diligent research, the inventors of the present invention coat a hydrophobic silane coupling agent on the surface of the substrate, and selectively coat a hydrophilic silane coupling agent thereon to form a flow path. As a result, the sample liquid can be moved quickly without using the capillary action in the paper substrate, thereby reducing the required amount of the sample liquid, and the flow path can be easily controlled by an ink jet printer. The present invention was completed by discovering that a device can be easily produced without requiring UV irradiation, heating, titanium dioxide particles and the like.

すなわち、本発明は、
紙基材と、
該紙基材上にコーティングされた一般式[I]:
That is, the present invention
A paper substrate;
The general formula [I] coated on the paper substrate:

(式[I]中、R1は疎水性側鎖の炭素数6以上のアルキル基若しくは炭素数6以上のアルケニル基又はアリール基若しくはアルキルアリール基、R2、R3及びR4は互いに独立して炭素数1〜4のアルキル基を表す)
で示される化合物と、
該化合物がコーティングされた領域内にコーティングされた一般式[II]:
(In the formula [I], R 1 is an alkyl group having 6 or more carbon atoms, an alkenyl group having 6 or more carbon atoms, or an aryl group or an alkylaryl group, R 2 , R 3 and R 4 in the hydrophobic side chain, independently of each other. Represents an alkyl group having 1 to 4 carbon atoms)
A compound represented by
The general formula [II] coated in the area coated with the compound:

(式[II]中、R5、R6、R7及びR8は互いに独立して炭素数1又は2のアルキル基を表す)
で示される化合物から形成された、所望の形状の流路とを具備する紙基材デバイスを提供する。
(In the formula [II], R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group having 1 or 2 carbon atoms)
And a paper substrate device having a flow path of a desired shape formed from a compound represented by the formula:

また、本発明は、紙基材に、前記一般式[I]で示される化合物の溶液をコーティングし乾燥させる工程と、コーティングされた領域内に、前記一般式[II]で示される化合物の溶液を所望の形状にコーティングして乾燥させる工程とを含む、上記本発明の紙基材デバイスの製造方法を提供する。   The present invention also includes a step of coating a paper substrate with a solution of the compound represented by the general formula [I] and drying, and a solution of the compound represented by the general formula [II] in the coated region. A method for producing the paper substrate device of the present invention, comprising the step of coating the substrate with a desired shape and drying.

本発明により、試料液の移動に毛管現象を利用することがなく、このため多量の試料液を必要とすることなく分析や反応を行うことができ、UV照射や加熱、二酸化チタン粒子等を用いることなく簡便に作製することができる新規な紙基材デバイス及びその製造方法が初めて提供された。本発明の紙基材デバイスを用いれば、毛管現象を利用する公知の紙基材デバイスを用いる場合に比べて貴重な試料液の必要量を少なくすることができる。また、本発明の紙基材デバイスは簡便に安価に製造することが可能であり、市販の安価なコピー用紙等を基材として利用すれば製造コストを大きく低減させることができる。   According to the present invention, capillary action is not used for movement of the sample liquid, and therefore analysis and reaction can be performed without requiring a large amount of sample liquid, and UV irradiation, heating, titanium dioxide particles, etc. are used. For the first time, a novel paper substrate device and a method for producing the same were provided. If the paper base device of the present invention is used, a necessary amount of a valuable sample solution can be reduced as compared with the case where a known paper base device using a capillary phenomenon is used. Also, the paper base device of the present invention can be easily and inexpensively manufactured, and if a commercially available inexpensive copy paper or the like is used as the base material, the manufacturing cost can be greatly reduced.

下記実施例で作製した紙基材デバイスの流路の形状及び寸法を示す図である。It is a figure which shows the shape and dimension of the flow path of the paper base material device produced in the following Example. 下記実施例で測定した、試料中の第一鉄イオン濃度とGreen強度の差との関係を示す図である。It is a figure which shows the relationship between the ferrous ion density | concentration in a sample, and the difference of Green intensity | strength measured in the following Example.

上記の通り、本発明の紙基材デバイスは、紙基材を具備する。紙基材としては、いずれの紙をも用いることができ、コピー用紙やろ紙等を用いることができる。従来技術と同様、ろ紙を用いることも可能であるが、ろ紙よりも安価なコピー用紙を用いることがコスト的に有利であり、下記実施例でもコピー用紙を用いている。   As described above, the paper substrate device of the present invention includes a paper substrate. Any paper can be used as the paper substrate, and copy paper, filter paper, and the like can be used. As with the prior art, filter paper can be used. However, it is advantageous in terms of cost to use copy paper that is less expensive than filter paper, and copy paper is also used in the following embodiments.

紙基材上には、上記一般式[I]で示される化合物がコーティングされている。上記一般式[I]中、R1は疎水性側鎖の炭素数6以上のアルキル基若しくは炭素数6以上のアルケニル基、又はアリール基若しくはアルキルアリール基である。これらは、疎水性を与えるものであり、アルキル基又はアルケニル基の炭素数の上限は特にないが、炭素数の上限は通常、30程度である。アルキル基又はアルケニル基の場合、炭素数は好ましくは15〜25であり、特には16〜20である。下記実施例では炭素数18のオクタデシル基を用いている。アリール基としては、ベンゼン及びナフタレンを好ましい例として挙げることができる。アルキルアリール基中のアリール基は、好ましくはベンゼン又はナフタレンであり、アルキルアリール基中のアルキル部分の炭素数は特に限定されず、通常、1〜30である。 On the paper substrate, the compound represented by the above general formula [I] is coated. In the general formula [I], R 1 represents a hydrophobic side chain alkyl group having 6 or more carbon atoms, an alkenyl group having 6 or more carbon atoms, an aryl group, or an alkylaryl group. These impart hydrophobicity, and the upper limit of the carbon number of the alkyl group or alkenyl group is not particularly limited, but the upper limit of the carbon number is usually about 30. In the case of an alkyl group or an alkenyl group, the carbon number is preferably 15 to 25, and particularly 16 to 20. In the following examples, an octadecyl group having 18 carbon atoms is used. Preferred examples of the aryl group include benzene and naphthalene. The aryl group in the alkylaryl group is preferably benzene or naphthalene, and the carbon number of the alkyl moiety in the alkylaryl group is not particularly limited, and is usually 1-30.

上記一般式[I]中、R2、R3及びR4は互いに独立して炭素数1〜4のアルキル基であり、好ましくは全てエチル基である。 In the above general formula [I], R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, preferably all ethyl groups.

上記一般式[I]で示される化合物のコーティングは、該化合物の溶液を紙基材にコーティングし、乾燥させることにより行うことができる。溶媒としては、該化合物を溶解できるものであれば特に限定されず、入手が容易で人体への悪影響が比較的少ないイソプロパノールのような低級アルコール(好ましくは炭素数1〜4)を好ましく用いることができる。溶液は、紙基材の全面にコーティングしてもよいし、一部領域のみにコーティングしてもよいが、全面にコーティングすることが簡便である。コーティングは、浸漬、スプレーコーティング、ロールコーティング等のいずれの方法によってもよいが、操作が簡便で、同じ溶液を用いた場合に紙基材の疎水性がより大きくなる浸漬が好ましい。紙基材全体を溶液中に浸漬することにより、紙基材の両面の全面がコーティングされる。コーティング後、溶液を乾燥させて溶媒を蒸発させることにより、上記一般式[I]で示される化合物が紙基材上にコーティングされる。乾燥は室温下で放置することにより容易に行うことができる。乾燥時間は通常12時間〜48時間程度、好ましくは18時間〜30時間程度でよく、48時間よりも長く乾燥してもよい。上記一般式[I]で示される化合物をコーティングすることにより、紙基材は疎水化される。   Coating of the compound represented by the general formula [I] can be performed by coating a solution of the compound on a paper substrate and drying. The solvent is not particularly limited as long as it can dissolve the compound, and it is preferable to use a lower alcohol (preferably having 1 to 4 carbon atoms) such as isopropanol which is easily available and has relatively little adverse effect on the human body. it can. The solution may be coated on the entire surface of the paper substrate, or may be coated only on a partial region, but it is convenient to coat the entire surface. The coating may be performed by any method such as dipping, spray coating, roll coating, etc., but dipping is preferable because the operation is simple and the hydrophobicity of the paper substrate becomes greater when the same solution is used. By immersing the entire paper substrate in the solution, the entire surface of both sides of the paper substrate is coated. After coating, the compound represented by the above general formula [I] is coated on a paper substrate by drying the solution and evaporating the solvent. Drying can be easily performed by leaving it to stand at room temperature. The drying time is usually about 12 hours to 48 hours, preferably about 18 hours to 30 hours, and may be dried for longer than 48 hours. By coating the compound represented by the general formula [I], the paper substrate is hydrophobized.

コーティングされた一般式[I]で示される化合物の層上の一部領域には、流路を構成する上記一般式[II]で示される化合物が選択的にコーティングされる。上記一般式[II]中、R5、R6、R7及びR8は互いに独立して炭素数1又は2のアルキル基であり、Si原子に結合している炭素数1又は2の低級アルコキシル基により親水性が付与される。 A partial region on the coated layer of the compound represented by the general formula [I] is selectively coated with the compound represented by the general formula [II] constituting the flow path. In the general formula [II], R 5 , R 6 , R 7 and R 8 are each independently an alkyl group having 1 or 2 carbon atoms, and a lower alkoxyl having 1 or 2 carbon atoms bonded to a Si atom. Hydrophilicity is imparted by the group.

上記一般式[II]で示される化合物のコーティングは、該化合物の溶液を上記一般式[I]で示される化合物の層の上に、一般式[II]で示される化合物の溶液を選択的にコーティングし、乾燥させることにより行うことができる。溶液の溶媒としては、一般式[II]で示される化合物を溶解できるものであれば特に限定されないが、好ましくは、水又は弱酸や弱塩基の水溶液が用いられ、例えば、pH3〜5程度の酢酸水溶液を用いることができる。インクジェットプリンタでインクを吐出させやすくするために、微量の界面活性剤を含ませてもよい。界面活性剤としては、例えば、Triton X-100(商品名)のような非イオン界面活性剤を好ましく用いることができるが、これらに限定されるものではない。界面活性剤の濃度は適宜設定することができ、通常、0.01重量%〜0.05重量%程度である。溶液中の該化合物の濃度は特に限定されないが、通常、0.1〜10v/v%程度、好ましくは0.5〜2v/v%程度である。   The coating of the compound represented by the general formula [II] is performed by selectively applying a solution of the compound represented by the general formula [II] on the layer of the compound represented by the general formula [I]. It can be done by coating and drying. The solvent of the solution is not particularly limited as long as it can dissolve the compound represented by the general formula [II]. Preferably, water or an aqueous solution of a weak acid or a weak base is used. For example, acetic acid having a pH of about 3 to 5 is used. An aqueous solution can be used. In order to make it easy to eject ink with an ink jet printer, a trace amount of surfactant may be included. As the surfactant, for example, a nonionic surfactant such as Triton X-100 (trade name) can be preferably used, but is not limited thereto. The concentration of the surfactant can be appropriately set, and is usually about 0.01% by weight to 0.05% by weight. The concentration of the compound in the solution is not particularly limited, but is usually about 0.1 to 10 v / v%, preferably about 0.5 to 2 v / v%.

一般式[II]で示される化合物の溶液のコーティング方法は特に限定されないが、インクジェットプリンタのインクとして該溶液を用い、パソコンソフトを駆使して作製した流路を印刷することが最も簡便であり、複雑な形状の流路も容易に描画できるので好ましい。ここで、「流路」は、試料液等が流通する通路のみならず、試料液等の液に濡れることを意図する全ての領域を包含する意味で用いており、例えば、試料液を貼着したり、所望の化学反応を起こさせたりする、通路よりも幅広のスポット部等をも包含する意味で用いている。例えば、下記実施例では図1に示す形状をインクジェットプリンタにより描画したが、図1における両端の正方形部分も本発明で言う「流路」に包含される。もっとも、流路の一部のみを一般式[II]で示される化合物で形成することも可能である。インクジェットプリンタで流路を印刷後、乾燥させることにより本発明の紙基材デバイスを得ることができる。乾燥は、室温下で放置することにより容易に行うことができる。乾燥時間は通常5〜120分程度、好ましくは20分〜60分程度でよく、120分よりも長く乾燥してもよい。   The coating method of the solution of the compound represented by the general formula [II] is not particularly limited, but the solution is used as an ink for an ink jet printer, and it is most convenient to print a flow path prepared using a personal computer software. A complicatedly shaped channel is also preferable because it can be drawn easily. Here, the “flow channel” is used to include not only the passage through which the sample solution or the like flows but also all the regions that are intended to get wet with the sample solution or the like. Or a spot portion having a width wider than the passage, which causes a desired chemical reaction. For example, in the following embodiment, the shape shown in FIG. 1 is drawn by an ink jet printer, but square portions at both ends in FIG. 1 are also included in the “flow path” referred to in the present invention. However, it is also possible to form only a part of the channel with the compound represented by the general formula [II]. The paper substrate device of the present invention can be obtained by printing the flow path with an ink jet printer and then drying it. Drying can be easily performed by leaving it to stand at room temperature. The drying time is usually about 5 to 120 minutes, preferably about 20 to 60 minutes, and may be dried longer than 120 minutes.

マイクロ流路自体は周知であり、任意の形状の流路を描画して、任意の分析や反応を行うことができる。分析や反応のための化合物を流路のスポット部等に固定化することができる。分析や反応に必要な試薬類は、一般式[II]で示される化合物で流路を形成した後、インクジェットプリンタによりさらに流路上に印刷することができる。この場合、一般式[II]で示される化合物と試薬の親和性が低くて固定化が困難な場合には、一般式[II]で示される化合物と親和性の高い、好ましくは一般式[II]の化合物とシランカップリングする物質と試薬とを結合させたものをインクジェットプリンタにより印刷することができる。試薬との結合に適し、一般式[II]で示される化合物と親和性の高い物質としては、例えば、上記一般式[II]中のR5、R6、R7及びR8のいずれかにアミノ基やカルボキシル基等の官能基を導入したものを挙げることができる。下記実施例では、3-アミノプロピルトリエトキシシラン(APTES)と、Fe2+の検出試薬であるフェロジンとを溶液中でイオン結合させたものをインクジェットプリンタにより流路のスポット部に重ねて印刷することにより、フェロジンを固定化している。 The microchannel itself is well known, and an arbitrary analysis and reaction can be performed by drawing a channel having an arbitrary shape. Compounds for analysis and reaction can be immobilized on the spot portion of the channel. Reagents necessary for analysis and reaction can be further printed on the flow path by an ink jet printer after forming the flow path with the compound represented by the general formula [II]. In this case, when the compound of general formula [II] and the reagent have low affinity and are difficult to be immobilized, the compound of general formula [II] has high affinity, preferably general formula [II A compound obtained by combining a compound of the above formula, a silane coupling substance and a reagent can be printed by an ink jet printer. Examples of the substance suitable for binding to the reagent and having a high affinity with the compound represented by the general formula [II] include any of R 5 , R 6 , R 7 and R 8 in the general formula [II]. Examples thereof include those having a functional group such as an amino group or a carboxyl group introduced therein. In the following examples, 3-aminopropyltriethoxysilane (APTES) and ferrozine, which is a Fe 2+ detection reagent, are ion-bonded in a solution and printed on the spot portion of the flow path by using an inkjet printer. Thus, ferrozine is immobilized.

以下、本発明を実施例に基づき具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.

実施例1 紙基材デバイスの作製
1.OTES(オクタデシルトリエトキシシラン)溶液
上記一般式[I]で示される化合物として、オクタデシルトリエトキシシラン(OTES、一般式[I]中、R1がオクタデシル基(炭素数18)、R2、R3及びR4が全てエチル基)を用いた。OTESの1v/v%イソプロパノール溶液を調製した。
Example 1 Fabrication of a paper substrate device OTES (octadecyltriethoxysilane) solution As the compound represented by the above general formula [I], octadecyltriethoxysilane (OTES, in general formula [I], R 1 is an octadecyl group (carbon number 18), R 2 , R 3 And R 4 are all ethyl groups). A 1 v / v% isopropanol solution of OTES was prepared.

2.TMOS(テトラメチルオルトケイ酸)インク
上記一般式[II]で示される化合物として、テトラメチルオルトケイ酸(TMOS, 一般式[I]中、R5、R6、R7及びR8が全てメチル基)を用いた。以下の手順でTMOSインクを作製した。
2. TMOS (tetramethylorthosilicate) ink As a compound represented by the above general formula [II], tetramethylorthosilicate (TMOS, in general formula [I], R 5 , R 6 , R 7 and R 8 are all methyl groups) Was used. The TMOS ink was prepared according to the following procedure.

(1)0.02 wt% TritonX-100(商品名、界面活性剤)水溶液を水(milli-Q(商品名))を溶媒として作製した。これをピペットマン(商品名)で50mLとり、2μLの酢酸を加えた酢酸溶液を今回用いたインクの溶媒とした。pH3.92であった。
(2)スクリュー管にピペットマン(商品名)を用いて4.5 mLの酢酸-TritonX-100(商品名)水溶液をとった。
(3) (2)をマグネティックスターラーで撹拌しながら、同じくピペットマン(商品名)で取った0.5mLのTMOSを1滴ずつ滴下し、TMOS10%(v/v)のインクを作った。
以後、ここで作製したインクをTMOSインクとする。
(1) A 0.02 wt% TritonX-100 (trade name, surfactant) aqueous solution was prepared using water (milli-Q (trade name)) as a solvent. 50 mL of this was taken with Pipetteman (trade name), and an acetic acid solution added with 2 μL of acetic acid was used as the solvent of the ink used this time. The pH was 3.92.
(2) 4.5 mL of an acetic acid-TritonX-100 (trade name) aqueous solution was taken using a pipetteman (trade name) on the screw tube.
(3) While stirring (2) with a magnetic stirrer, 0.5 mL of TMOS taken with the same Pipetteman (trade name) was added dropwise to make TMOS 10% (v / v) ink.
Hereinafter, the ink prepared here is referred to as TMOS ink.

3.流路作製
1で調製したOTES溶液中にコピー用紙を浸漬し、24時間室温で乾燥させた。コピー用紙の水に対する接触角は77°であり、親水性であった(水に対する接触角が90°未満)が、OTESコーティング後は、120°となり疎水性となった。
3. Flow path preparation The copy paper was immersed in the OTES solution prepared in 1, and dried at room temperature for 24 hours. The contact angle of the copy paper with respect to water was 77 °, which was hydrophilic (the contact angle with respect to water was less than 90 °), but after OTES coating, it became 120 ° and became hydrophobic.

次に、市販のインクジェットプリンタ(FUJIFILM Dimatix社の DMP-2831。インクカートリッジは液滴量が10pLのDMC-11610)を用いて、2で調製したTMOSインクをOTESコーティングを行ったコピー用紙上に印刷した。印刷した流路は図1に示す形状及び寸法のものであり、同じ場所に2回印刷を行った。室温で20分乾燥し、本発明の紙基材デバイスを得た。   Next, using a commercially available inkjet printer (FUJIFILM Dimatix DMP-2831, ink cartridge DMC-11610 with a droplet volume of 10pL), print the TMOS ink prepared in 2 on the copy paper coated with OTES. did. The printed flow path has the shape and dimensions shown in FIG. 1, and printing was performed twice in the same place. The paper substrate device of the present invention was obtained by drying at room temperature for 20 minutes.

実施例2 流速の測定
実施例1で作製したデバイスの流路に色素水溶液を流した際の流速を測定した。食紅水溶液5μLを、図1に示す流路の一端の正方形部分に滴下し、他端の正方形部分に到達するまでの時間を目視により測定した。測定は35回行った。一方、比較のため、同じ形状、寸法の流路を特許文献1記載の方法によりろ紙基板上に作製し、同様にして流速を測定した。
Example 2 Measurement of Flow Rate The flow rate when an aqueous dye solution was allowed to flow through the flow path of the device produced in Example 1 was measured. 1 μL of the red food solution was dropped on the square part at one end of the flow channel shown in FIG. 1 and the time until it reached the square part at the other end was visually measured. The measurement was performed 35 times. On the other hand, for comparison, flow paths having the same shape and size were produced on a filter paper substrate by the method described in Patent Document 1, and the flow velocity was measured in the same manner.

その結果、実施例1で作製した本発明のデバイスの流路では、平均流速が1.1mm/sであったのに対し、特許文献1記載のデバイスの流路では0.2mm/sであり、本発明のデバイスを用いた場合には5倍以上の流速が観察された。なお、観察の結果、滴下した水溶液は、滴下の際の運動量を駆動力として親水性の流路に沿って進むように思われ、水溶液はコピー用紙に全く染みこまないので毛管現象により移動するものではない。   As a result, in the flow path of the device of the present invention produced in Example 1, the average flow velocity was 1.1 mm / s, whereas in the flow path of the device described in Patent Document 1, it was 0.2 mm / s. When the inventive device was used, a flow rate of 5 times or more was observed. As a result of observation, the dripped aqueous solution seems to travel along the hydrophilic flow path with the momentum at the time of dripping as the driving force, and the aqueous solution does not soak into the copy paper at all and moves by capillary action. is not.

実施例3 Fe2+の検出
実施例1で作製したデバイスを用いて、Fe2+の検出試験を行った。Fe2+の検出試薬として、フェロジン(3-(2-ピリジル)-5,6-ビス(4-スルフォフェニル)-1,2,4-トリアジン二ナトリウム塩、PTDS)(pKa:3.2)を用いた。PTDSは、pH 3〜10でFe2+と反応して赤紫色キレートを形成する。検出試薬は、インクジェットプリンタで印刷することにより、流路の一端の正方形部の中に一辺1mmの正方形の形状に積層した。PTDS単独では、親水性の流路に固定化しにくいので、TMOSとシランカップリングする3-アミノプロピルトリエトキシシラン(APTES, pKb:3.6)をPTDSと溶液中で接触させてイオン結合させ、この溶液をインクジェットプリンタで印刷することにより固定化した。PTDSとAPTESは、溶液中で次のようにイオン結合していると考えられる。
Example 3 Detection of Fe 2+ Using the device prepared in Example 1, an Fe 2+ detection test was performed. As a Fe 2+ detection reagent, ferrozine (3- (2-pyridyl) -5,6-bis (4-sulfophenyl) -1,2,4-triazine disodium salt, PTDS) (pKa: 3.2) Using. PTDS reacts with Fe 2+ at pH 3-10 to form a red purple chelate. The detection reagent was stacked in a square shape with a side of 1 mm in a square part at one end of the flow path by printing with an inkjet printer. Since PTDS alone is difficult to immobilize in a hydrophilic flow path, 3-aminopropyltriethoxysilane (APTES, pKb: 3.6) that couples TMOS with silane is brought into contact with PTDS in solution to form an ionic bond. Was fixed by printing with an inkjet printer. PTDS and APTES are considered to be ionically bonded as follows in the solution.

すなわち、1mM PDTS溶液をpH3.2バッファー(クエン酸 0.1 M・アスコルビン酸 25 mM/TMAOH 0.1M)を溶媒として作製した。一方、APTESの3mMイソプロパノール溶液を調製した。それぞれ調製したAPTES溶液とPDTS溶液を体積比1:1(モル比3:1)で混合し、この混合溶液を上記したインクジェットプリンタにより流路一端の正方形の中央部に1mm四方の正方形状に印刷した。これにより、PDTSが流路の正方形部に固定化された。   That is, a 1 mM PDTS solution was prepared using pH 3.2 buffer (citric acid 0.1 M, ascorbic acid 25 mM / TMAOH 0.1 M) as a solvent. Meanwhile, a 3 mM isopropanol solution of APTES was prepared. Each prepared APTES solution and PDTS solution are mixed at a volume ratio of 1: 1 (molar ratio 3: 1), and this mixed solution is printed in a square shape of 1 mm square at the center of the square at one end of the flow path by the inkjet printer described above. did. Thereby, PDTS was fixed to the square part of the flow path.

次に、濃度0、100、250、500、1000μMの硫酸アンモニウム第一鉄((NH4)2Fe(SO4)2)水溶液を調製し、各3μLを、流路の一端の正方形部(PTDSを固定化した正方形部ではない方の正方形部)にそれぞれ滴下し、固定化PTDSと発色反応させた。反応後、PTDSを固定化した正方形部の色解析をImage J(商品名)で行い、Greenの強度を測定した。色解析は、試料の滴下前後で行い、その差を計算した。結果を図2に示す。 Next, prepare ferrous ammonium sulfate ((NH 4 ) 2 Fe (SO 4 ) 2 ) aqueous solutions with concentrations of 0, 100, 250, 500, and 1000 μM, and add 3 μL of each to the square part (PTDS The solution was added dropwise to each of the square portions other than the fixed square portion) to cause a color reaction with the immobilized PTDS. After the reaction, the color analysis of the square part where PTDS was immobilized was performed with Image J (trade name), and the strength of Green was measured. Color analysis was performed before and after the sample was dropped, and the difference was calculated. The results are shown in FIG.

図2に示すように、試料溶液中のFe2+濃度に依存してGreen強度の差が変化しており、この方法でFe2+濃度の定量が可能であることがわかる。なお、特許文献1記載のデバイスを用いて同様な検出を行う場合、試料溶液は20〜50μL必要であった。このことから、本願発明のデバイスを用いれば、試料溶液の必要量を大きく低減させることができる。 As shown in FIG. 2, the difference in Green intensity changes depending on the Fe 2+ concentration in the sample solution, and it can be seen that the Fe 2+ concentration can be quantified by this method. In addition, when performing the same detection using the device of patent document 1, 20-50 microliters of sample solutions were required. For this reason, if the device of the present invention is used, the required amount of the sample solution can be greatly reduced.

Claims (10)

紙基材と、
該紙基材上にコーティングされた一般式[I]:
(式[I]中、R1は疎水性側鎖として炭素数6以上のアルキル基若しくは炭素数6以上のアルケニル基、又はアリール基若しくはアルキルアリール基、R2、R3及びR4は互いに独立して炭素数1〜4のアルキル基を表す)
で示される化合物と、
該化合物がコーティングされた領域内にコーティングされた一般式[II]:
(式[II]中、R5、R6、R7及びR8は互いに独立して炭素数1又は2のアルキル基を表す)
で示される化合物から形成された、所望の形状の流路とを具備する紙基材デバイス。
A paper substrate;
The general formula [I] coated on the paper substrate:
(In the formula [I], R 1 is an alkyl group having 6 or more carbon atoms or an alkenyl group having 6 or more carbon atoms, or an aryl group or alkylaryl group as a hydrophobic side chain, and R 2 , R 3 and R 4 are independent of each other. And represents an alkyl group having 1 to 4 carbon atoms)
A compound represented by
The general formula [II] coated in the area coated with the compound:
(In the formula [II], R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group having 1 or 2 carbon atoms)
A paper substrate device comprising a channel having a desired shape formed from a compound represented by
前記一般式[I]中、R1が炭素数6以上のアルキル基である請求項1記載の紙基材デバイス。 The paper substrate device according to claim 1 , wherein R 1 in the general formula [I] is an alkyl group having 6 or more carbon atoms. 前記一般式[I]中、R1が炭素数15〜25のアルキル基である請求項2記載の紙基材デバイス。 The paper substrate device according to claim 2, wherein R 1 in the general formula [I] is an alkyl group having 15 to 25 carbon atoms. 前記一般式[I]で示される化合物がオクタデシルトリエトキシシランである請求項1又は3記載の紙基材デバイス。   The paper substrate device according to claim 1 or 3, wherein the compound represented by the general formula [I] is octadecyltriethoxysilane. 前記一般式[II]中、R5、R6、R7及びR8がメチル基である請求項1〜4のいずれか1項に記載の紙基材デバイス。 Formula [II] in, R 5, R 6, a paper substrate device according to any one of claims 1 to 4 R 7 and R 8 are methyl groups. 前記紙基材がコピー用紙から成る請求項1〜5のいずれか1項に記載の紙基材デバイス。   The paper substrate device according to claim 1, wherein the paper substrate is made of copy paper. 前記一般式[I]で示される化合物が、前記紙基材の表面全面にコーティングされている請求項1〜6のいずれか1項に記載の紙基材デバイス。   The paper substrate device according to any one of claims 1 to 6, wherein the compound represented by the general formula [I] is coated on the entire surface of the paper substrate. 紙基材に、前記一般式[I]で示される化合物の溶液をコーティングし乾燥させる工程と、コーティングされた領域内に、前記一般式[II]で示される化合物の溶液を所望の形状にコーティングして乾燥させる工程とを含む、請求項1〜7のいずれか1項に記載の紙基材デバイスの製造方法。   A step of coating a paper substrate with a solution of the compound represented by the general formula [I] and drying, and coating the solution of the compound represented by the general formula [II] in a desired shape in the coated region The manufacturing method of the paper base device of any one of Claims 1-7 including the process made to dry. 前記一般式[I]で示される化合物は、該化合物の溶液中に前記紙基材を浸漬することによりコーティングされる請求項8記載の方法。   The method according to claim 8, wherein the compound represented by the general formula [I] is coated by immersing the paper substrate in a solution of the compound. 前記一般式[II]で示される化合物の溶液は、インクジェットプリンタにより所望の形状に描画される請求項7又は8記載の方法。   The method according to claim 7 or 8, wherein the solution of the compound represented by the general formula [II] is drawn in a desired shape by an ink jet printer.
JP2014178063A 2014-09-02 2014-09-02 Paper base device and method of manufacturing the same Expired - Fee Related JP6547252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178063A JP6547252B2 (en) 2014-09-02 2014-09-02 Paper base device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178063A JP6547252B2 (en) 2014-09-02 2014-09-02 Paper base device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016050912A true JP2016050912A (en) 2016-04-11
JP6547252B2 JP6547252B2 (en) 2019-07-24

Family

ID=55658501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178063A Expired - Fee Related JP6547252B2 (en) 2014-09-02 2014-09-02 Paper base device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6547252B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307179A (en) * 1991-03-15 1993-11-19 Toshiba Corp Production of monomolecular film and production of monomolecular piled up film
JP2003028864A (en) * 2001-07-13 2003-01-29 Fuji Photo Film Co Ltd Substrate for dna chip, its manufacturing method, and dna chip manufacturing method
JP2003145042A (en) * 2001-11-08 2003-05-20 Matsushita Electric Ind Co Ltd Production method of coating film
JP2004061229A (en) * 2002-07-26 2004-02-26 Hitachi Ltd Infectious disease inspecting apparatus, inspection method, and micro fabrication for inspecting infection
JP2004535273A (en) * 2001-04-04 2004-11-25 アラダイアル, インコーポレイテッド System and method for dispensing liquid
WO2005022169A1 (en) * 2003-09-01 2005-03-10 Nec Corporation Chip
JP2005182001A (en) * 2003-11-28 2005-07-07 Takatoshi Kinoshita Optical body and its manufacturing method
JP2007033167A (en) * 2005-07-26 2007-02-08 Kagawa Univ Biochemical chip and its manufacturing method
US20080241953A1 (en) * 2005-09-06 2008-10-02 Inverness Medical Switzerland Gmbh Method and Apparatus for Patterning a Bibulous Substrate
JP2012037511A (en) * 2010-08-05 2012-02-23 Xerox Corp Non-polar solid inks for biomedical applications
WO2012160857A1 (en) * 2011-05-20 2012-11-29 学校法人慶應義塾 Paper-based chip for reaction and method for producing same
JP2013015532A (en) * 2006-11-24 2013-01-24 Agency For Science Technology & Research Device for processing sample in liquid droplet, apparatus, and method of using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307179A (en) * 1991-03-15 1993-11-19 Toshiba Corp Production of monomolecular film and production of monomolecular piled up film
JP2004535273A (en) * 2001-04-04 2004-11-25 アラダイアル, インコーポレイテッド System and method for dispensing liquid
JP2003028864A (en) * 2001-07-13 2003-01-29 Fuji Photo Film Co Ltd Substrate for dna chip, its manufacturing method, and dna chip manufacturing method
JP2003145042A (en) * 2001-11-08 2003-05-20 Matsushita Electric Ind Co Ltd Production method of coating film
JP2004061229A (en) * 2002-07-26 2004-02-26 Hitachi Ltd Infectious disease inspecting apparatus, inspection method, and micro fabrication for inspecting infection
WO2005022169A1 (en) * 2003-09-01 2005-03-10 Nec Corporation Chip
JP2005182001A (en) * 2003-11-28 2005-07-07 Takatoshi Kinoshita Optical body and its manufacturing method
JP2007033167A (en) * 2005-07-26 2007-02-08 Kagawa Univ Biochemical chip and its manufacturing method
US20080241953A1 (en) * 2005-09-06 2008-10-02 Inverness Medical Switzerland Gmbh Method and Apparatus for Patterning a Bibulous Substrate
JP2013015532A (en) * 2006-11-24 2013-01-24 Agency For Science Technology & Research Device for processing sample in liquid droplet, apparatus, and method of using the same
JP2012037511A (en) * 2010-08-05 2012-02-23 Xerox Corp Non-polar solid inks for biomedical applications
WO2012160857A1 (en) * 2011-05-20 2012-11-29 学校法人慶應義塾 Paper-based chip for reaction and method for producing same

Also Published As

Publication number Publication date
JP6547252B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
Evans et al. Modification of microfluidic paper-based devices with silica nanoparticles
Samiei et al. A review of digital microfluidics as portable platforms for lab-on a-chip applications
Henares et al. “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device
CN105849032B (en) The use of printing digital micro-fluid device and its manufacturing method
US11602746B2 (en) Chemically patterned microfluidic paper-based analytical device (C-μPAD) for multiplex analyte detection
US20090042319A1 (en) Biosensor Detection By Means Of Droplet Driving, Agitation, and Evaporation
Hamidon et al. Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics
Han et al. Measuring rapid kinetics by a potentiometric method in droplet-based microfluidic devices
CN104677896A (en) Preparation and application of paper-based microfluidic chip for colorimetric analysis
CN108132214B (en) Method for rapidly detecting heavy metals in water based on super-infiltration microchip
Malekghasemi et al. Rapid and alternative fabrication method for microfluidic paper based analytical devices
Dhavamani et al. Hand drawn paper-based optical assay plate for rapid and trace level determination of Ag+ in water
JP2015531494A (en) Quantitative analysis based on distance using an analytical device utilizing capillary action
Zhou et al. Inkjet-printed Ag micro-/nanostructure clusters on Cu substrates for in-situ pre-concentration and surface-enhanced Raman scattering
Zhu et al. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor
CN108579828A (en) A kind of Surface modification of microfluidic chip method that flow velocity is controllable
CN108593610B (en) Preparation method of fluorescence-enhanced test paper based on nanometer MV-MOF
JP6547252B2 (en) Paper base device and method of manufacturing the same
JP2013524258A (en) Cantilever for adhesion
Mao et al. Microchemical Pen: An Open Microreactor for Region‐Selective Surface Modification
KR20130066611A (en) Functionalizing biosensors using a multiplexed dip pen array
Cassano et al. Using airbrushes to pattern reagents for microarrays and paper-fluidic devices
Perry et al. Investigation of the anti-biofouling properties of graphene oxide aqueous solutions by electrowetting characterization
Wang et al. Using airflow-driven, evaporative gradients to improve sensitivity and fluid control in colorimetric paper-based assays
CN101201346A (en) Method for making and detecting biological chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6547252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees