WO2012160857A1 - Paper-based chip for reaction and method for producing same - Google Patents

Paper-based chip for reaction and method for producing same Download PDF

Info

Publication number
WO2012160857A1
WO2012160857A1 PCT/JP2012/056086 JP2012056086W WO2012160857A1 WO 2012160857 A1 WO2012160857 A1 WO 2012160857A1 JP 2012056086 W JP2012056086 W JP 2012056086W WO 2012160857 A1 WO2012160857 A1 WO 2012160857A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
paper
flow path
ultraviolet curable
ink
Prior art date
Application number
PCT/JP2012/056086
Other languages
French (fr)
Japanese (ja)
Inventor
健人 前島
智明 伊井
鈴木 孝治
ダニエル チッテリオ
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2013516234A priority Critical patent/JP5935153B2/en
Publication of WO2012160857A1 publication Critical patent/WO2012160857A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Specific cations in water, e.g. heavy metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/20Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using microanalysis, e.g. drop reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/126Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • B01L3/527Containers specially adapted for storing or dispensing a reagent for a plurality of reagents

Definitions

  • the present invention relates to a paper-based reaction substrate in which flow paths and reaction spots are formed on paper and a method for manufacturing the same.
  • Non-Patent Document 1 discloses a method for producing a paper-based microchannel chip that prints microchannels and reaction spots using a wax printer.
  • the wax printer requires heating after printing, the process becomes complicated and the cost increases.
  • the width of the line that can be drawn is at least about 0.85 mm, and it is difficult to draw a fine microchannel.
  • the reaction spot cannot be coated with a reagent with a wax printer.
  • Non-Patent Document 2 paper was immersed in a polystyrene toluene solution, dried and coated with polystyrene on the entire surface, and a flow path and reaction spots were printed on the paper with an inkjet printer using toluene as an ink.
  • a method for forming flow paths and reaction spots on paper by selectively etching polystyrene is described.
  • this method requires a large amount of a volatile organic solvent, causes environmental pollution problems, and uses a large amount of a volatile organic solvent or polystyrene.
  • An object of the present invention is to produce a reaction chip having a high-definition flow path by a simple method without using a large amount of a volatile organic solvent, and thus produce a reaction chip at low cost. It is possible to provide a reaction chip manufacturing method and a reaction chip manufactured by the method.
  • the inventors of the present application have printed an outer edge of a flow path or a reaction spot with ultraviolet curable ink on a paper by using an inkjet printer, thereby easily and low-cost without using a volatile organic solvent.
  • the present invention has been completed by conceiving that it is possible to manufacture a reaction chip precisely.
  • the present invention includes a step of printing an outer edge of a desired flow path and / or reaction spot on paper with ultraviolet curable ink by an inkjet printer, and irradiating the ultraviolet curable ink ejected on paper with ultraviolet rays.
  • a method for producing a paper-based reaction chip comprising a step of curing ink and a step of coating a reagent necessary for the reaction on the reaction spot.
  • the present invention also provides a paper-based reaction chip manufactured by the method of the present invention.
  • the ultraviolet curable ink can be cured simply by irradiating with ultraviolet rays, a reaction chip can be easily produced at low cost.
  • the inkjet printer currently marketed has a higher resolution than a wax printer, and can be produced even with a reaction chip having a relatively high-definition microchannel.
  • it is not necessary to use a volatile organic solvent and a polymer solution is applied to the entire surface of the paper as in Non-Patent Document 2, and a volatile organic solvent is applied from an inkjet printer.
  • This method is advantageous in terms of environmental pollution and cost as compared with a method of selectively removing the polymer by etching by discharging a solvent. Furthermore, in a preferred embodiment, since both the flow path and the reaction spot and the reagent can be printed using an ink jet printer, a reaction chip can be produced more simply and at low cost.
  • the “reaction chip” is provided with a channel and / or a reaction spot (sometimes referred to as “channel or the like” in the present specification) on a base material, and a reagent necessary for the reaction is further reacted. It means what is coated on the spot. Conventionally, these are provided on a slide glass or a plastic substrate, and are called “chips” such as microchannel chips, DNA chips, peptide chips, etc.
  • the base material is paper
  • the “chip” has flexibility.
  • it prints on paper with an inkjet printer it can be set as arbitrary two-dimensional shapes, and is not limited to a rectangular shape like the conventional slide glass. It can also be much larger than a glass slide, and this is also called a “chip”.
  • the base material is paper is called “paper base”.
  • the paper is not particularly limited as long as it can be printed by an ink jet printer, and examples thereof include filter paper, plain paper (normal copy paper), paper for an ink jet printer, a postcard, an envelope, and the like.
  • an outer edge of a flow path or the like is printed on paper with ultraviolet curable ink by an inkjet printer.
  • the width of the outer edge is not particularly limited, but usually it may be about 0.1 to 1.2 mm as set on the computer.
  • the inkjet printer a general-purpose printer that is commercially available as a peripheral device for a personal computer can be used.
  • Commercially available commercially available inkjet printers are mainly of the piezo type and the thermal type.
  • the piezo method is a method in which ink is ejected using a piezo element that deforms when a voltage is applied. It is used in Seiko Epson (Machjet (trade name) system) and Brother's inkjet printers.
  • the thermal method is a method in which a part of the nozzle is heated and ink is ejected by the generated bubbles.
  • a piezo method it is used in Canon printers (called the Bubble Jet (registered trademark) system) and Hewlett-Packard ink-jet printers.
  • a piezo method heats the ink
  • a piezo ink jet printer if the reagents described below may cause problems due to heating.
  • many biological substances such as antibodies and antigens and various chemical substances may be affected by heat, it is often preferable to use a piezo ink jet printer.
  • the inner diameter of the nozzle of the ink jet printer is usually about 10 ⁇ m to 90 ⁇ m.
  • UV curable ink is cured by irradiating with ultraviolet rays to give a resin film, and is widely used for UV coating.
  • the ultraviolet curable ink used in the present invention may be a commercially available product, or may be prepared by appropriately blending known components used in the ultraviolet curable ink.
  • the outer edge of the flow path or the like is printed with the ultraviolet curable ink, and since the aqueous liquid is usually put in the flow path or the like, the ultraviolet curable ink is hydrophobic after being cured. High is preferred. Further, it is desired that the photopolymerization rate is high, the ink can be ejected by a printer (melting point and viscosity are appropriate), low odor, and low toxicity. Furthermore, characteristics such as high stability against fluctuations in humidity and the fact that the polymerization reaction does not proceed at the stage where ultraviolet rays are not irradiated are also desired. Those satisfying these are preferably those containing monomers or oligomers that undergo photoradical polymerization.
  • the monomer for photo radical polymerization is particularly preferably an acrylic monomer having a high hydrophobicity after curing, a high photo polymerization rate, and a viscosity capable of being printed by an ink jet printer, and especially acrylic acid and about 14 to 18 carbon atoms.
  • esters with normal saturated aliphatic alcohols are preferred.
  • tetradecyl acrylate, pentadecyl acrylate, hexadecyl acrylate, heptadecyl acrylate, octadecyl acrylate, and the like are preferable.
  • octadecyl acrylate is solid at room temperature
  • other liquids that are liquid at room temperature such as 1,10-bis (acryloyloxy) decane ⁇ (also known as 1,10-decandiol diacrylate) (DDA)
  • DDA 1,10-bis (acryloyloxy) decane ⁇
  • the viscosity of ink that can be printed with an ink jet printer is usually about 0.4-20 mPa ⁇ s, although it varies depending on the nozzle diameter used.
  • the above-mentioned monomers and oligomers can be used alone or in combination of two or more.
  • the ultraviolet curable ink further contains a photopolymerization initiator.
  • Various photopolymerization initiators used for UV coating are well known and are soluble in the above-mentioned photoradical polymerizable monomers (or mixtures of photoradical polymerizable monomers and photopolymerizable oligomers) that are liquid at room temperature. Possible ones can be selected and used as appropriate.
  • Examples of preferred photopolymerization initiators include azobisisobutyronitrile (AIBN), benzophenone (BP), and benzyldimethyl ketal (BDK). These are all well known. Commercially available products can be preferably used.
  • Examples of commercially available products include 2-hydroxy-2-methyl-1-phenyl-propan-1-one (trade name DAROCUR 1173), Bis (2,4,6-trimethylbenzoyl) ) -Phenylphosphine oxide (trade name IRGACUR 819, 2- (dimethylamino) -1- (4-morpholin-4-ylphenyl) -2- (phenylmethyl) butan-1-one (trade name IRGACUR 369) , 2,2-dimethoxy-2-phenylacetophenone (trade name IRGACUR 651), ethyl-4-dimethylaminobenzoate (trade name DAROCUR EDB), isopropylthioxanthone (trade name CIBACURE 2-ITX), phenylglyoxylic acid methyl ester (product) Name DAROCUR MBF) (all from Ciba Specialty Chemicals Inc.) and 2-ethylanthraquinone
  • photopolymerization initiators can be used alone or
  • the concentration of the photopolymerization initiator is usually about 5 to 25% by weight, preferably about 10 to 20% by weight in the ultraviolet curable ink.
  • the shape of the flow path or the like printed on the paper there is no limitation on the shape of the flow path or the like printed on the paper, and any desired shape can be obtained.
  • a flow path having the shape shown in FIG. 1 has a circular sample spotting portion 10a at the center, from which eight flow channels 10 extend radially, and a circular reaction spot 12 is located at the end of each flow channel.
  • the sample spot application part 10a can be considered as a part of the flow path.
  • each reaction spot is coated with a different reagent.
  • Each reagent is, for example, a pH indicator, various ionophores that change color by reacting with various ions such as lead ions, copper ions, nitrite ions, reagents that change color by reacting with various agricultural chemicals, antibodies against pathogenic bacteria such as Salmonella and Escherichia coli, etc. is there.
  • the sample solution spotted on the sample spotting portion 10a reaches each reaction spot 12 through each flow path 10, where it reacts with each reagent and presents according to various components contained in the sample solution. Color or discolor. Based on the color of each reagent after the reaction, various ions, pesticides, pathogens, etc. contained in the sample solution can be detected.
  • the shape of the flow path or the like printed on the paper is not limited to that shown in FIG. 1, but may be any one according to the purpose of measurement or reaction.
  • the width of the flow path is not limited at all, and is, for example, about 0.8 to 1.5 mm as set on a computer.
  • Various microchannel chips are known, and any known microchannel can be formed, and a shape suitable for a target measurement or reaction can be designed.
  • the reaction spot does not need to be located at the end of the flow path as in the example shown in FIG. 1, and a desired reagent can be coated on a part or all of the flow path to form a reaction spot. .
  • the flow path is not necessarily required, and for example, a shape in which a plurality of simple circles serving as reaction spots are arranged may be used.
  • each reaction spot can be used in the same manner as a well of a microplate widely used in the measurement field.
  • An ink jet printer is used as a peripheral device of a personal computer, and can accurately print an image created with drawing software. Accordingly, the outer edge of a desired flow path or the like can be accurately drawn using a drawing software of a personal computer, and this can be advantageously printed with an ink jet printer.
  • the liquid may permeate the paper and leak to the opposite side.
  • the ultraviolet curable ink may be printed only on the portion 10000 where the liquid comes into contact when the chip is used, that is, only on the back surface of the flow path or the like, or circumscribes the wider area, for example, the entire flow path. It may be printed in a rectangular shape.
  • printing on the back surface 200 can be performed simultaneously with the front surface 100.
  • the shape to be printed on the back surface can be accurately drawn using the drawing software of a personal computer as with the front surface.
  • a cover can be formed with ultraviolet curable ink in a flow path having the pattern shown in FIG. An example of this is shown in FIG.
  • a cover 20000 is formed by coating a ring-shaped region including eight flow paths 10 communicating with the sample adhering portion 10 a and the reaction spot 12 with ultraviolet curable ink. In this way, the surface of the flow path is coated with the ultraviolet curable ink and cured to form the cover 20000, so that the sample spotted on the sample sticking portion 10a reaches the reaction spot 12 before the sample reaches the reaction spot 12.
  • the coating from the surface is preferably all or part of the surface of the flow path 10 that communicates the sample spotting portion 10 a and the reaction spot 12. % Or more, preferably 90% or more, and most preferably, the entire flow path is covered.
  • the ultraviolet curable ink it is preferable to coat the back surface of the flow path with the ultraviolet curable ink, whereby the flow path is a flow path that is isolated from the outside and has only the inside of the paper. It becomes possible. As a result, it is possible to more strictly prevent foreign matter from entering the sample. In this case, since the sample passes through only the inside of the paper and reaches the reaction spot, it is preferable to use paper that is well infiltrated with liquid, such as filter paper.
  • the step of coating the surface of the flow path with the ultraviolet curable ink is also preferably performed by printing using an ink jet printer.
  • This coating step may be performed by first printing and curing the flow path, and then printing it on the print pattern using an ink jet printer, or simultaneously covering the outer edge of the flow path or the like when printing. You may print.
  • the outer edge of the flow path 10 is drawn with a dark solid line
  • the cover 20000 is drawn with a thin solid line, so that the ultraviolet curable ink that draws the outer edge of the flow path 10 and the ultraviolet curing that draws the cover 20000.
  • the density of the ink (the amount of ink per unit area) can be made different, and therefore the depth of the outer edge 10b of the flow path 10 (since the UV curable ink is a solution, it penetrates from the paper surface to a certain depth).
  • a cover 20000 can be formed (see FIG. 7). Note that the thin solid line here can be drawn by adjusting the color transmittance, the gray level, and the RGB value. If UV curable ink is coated (300) also from the back surface of the flow path, the flow path 1000 can pass only through the inside of the paper (preferably filter paper) and can be blocked from the outside as shown in FIG. However, if desired, the cover 20000 may be printed without printing the outer edge of the flow path 10.
  • the sample sticking portion 10 a In this case, only the outer edge of the sample sticking portion 10 a, the outer edge of the reaction spot 12, and the cover 20000 are included. Printed. In this case, the sample spotted on the sample sticking part 10a diffuses radially inside the paper and reaches the reaction spot, but when there is a sufficient amount of sample as in the case of water quality inspection. Such an embodiment is also possible.
  • the ultraviolet curable ink is cured by irradiating the ultraviolet curable ink with ultraviolet rays.
  • Ultraviolet irradiation can be performed using a commercially available ultraviolet irradiation apparatus. Irradiation conditions are not particularly limited as long as the ultraviolet curable ink is cured to become a hydrophobic line, and can be appropriately set according to the used amount of the ultraviolet curable ink and the ink used. Irradiation at an energy density of 300 to 1200 mW / cm 2 may be performed for 15 seconds to 2 minutes.
  • the wavelength of the ultraviolet rays is not particularly limited as long as it is a wavelength capable of curing the ultraviolet curable ink, but usually, a safe near ultraviolet ray of about 260 nm to 380 nm can sufficiently achieve the object.
  • a safe near ultraviolet ray of about 260 nm to 380 nm can sufficiently achieve the object.
  • the reagent to be coated is a reagent necessary for a target measurement or reaction, and is arbitrarily selected.
  • reagents include pH indicators such as ionophores and simazines that react with various ions such as lead ions, calcium ions, copper ions, phosphate ions, nitrite ions, borate ions, and fluorine ions. It is used in various antigens and antibodies for immunoassay, DNA chips and peptide chips, such as reagents that react with various agricultural chemicals such as and atrazine, color bacteria such as Salmonella and antibodies that react with E. coli. Although various DNA, a peptide, etc. can be mentioned, it is not limited to these.
  • the second reagent can be dropped with a dropper or the like as in the prior art, and in some cases, the second reagent can also be printed by an ink jet printer.
  • microchannel chips have been used not only for measurement but also for production of desired substances using chemical reactions.
  • the chip of the present invention can be used not only for measurement but also for a chemical reaction for substance production, similarly to the known microchannel chip.
  • Reagent coating can be performed manually using a dropper or the like, but a liquid containing a reagent and having a viscosity that can be printed by an ink jet printer is prepared and printed by the ink jet printer. Is convenient and preferred. As described above, if the viscosity is in the range of about 0.4 to 20 mPa ⁇ s, it can be printed by an ink jet printer. When the viscosity of the reagent solution is larger than this range, the viscosity can be lowered by diluting with an appropriate diluent. On the other hand, when the reagent solution is smaller than this range, there is a thickening effect that does not hinder the reaction. Substances can be added as thickeners.
  • the reagent solution may be in the form of a solution, an emulsion, or a suspension as long as the nozzle of the printer does not clog. In the case of a suspension, printing is usually possible without problems if the size of the suspended particles is about 1 ⁇ m or less.
  • Printing of the reagent solution by the inkjet printer may be performed after the ultraviolet curable ink is cured, or may be performed simultaneously with the printing of the ultraviolet curable ink.
  • the outer edges of the flow path and the like are drawn in black
  • the part where the reagent is coated is drawn in color
  • the ultraviolet curable ink is applied to the black ink cartridge
  • the reagent liquid is applied.
  • the printing may be carried out in a color ink cartridge.
  • some commercially available ink jet printers are set to eject a small amount of color ink even in black drawing. In such ink jet printers, a small amount of reagent is contained in ultraviolet curable ink.
  • Example 1 Preparation of UV curable ink 7: 3 (weight ratio) mixture of photo-radically polymerizable monomer octadecyl acrylate and photo-radically polymerizable oligomer 1,10-bis (acryloyloxy) decane (DDA) did. Benzyl dimethyl ketal (BDK), a photopolymerization initiator, was dissolved in this to a final concentration of 15% by weight to obtain an ultraviolet curable ink. The viscosity of this ink was 8.7 mPa ⁇ s.
  • BDK Benzyl dimethyl ketal
  • the printed flow path had a shape shown in FIG. 2 in which two squares each having a side of 3 mm were connected by a flow path having a length of 3 mm and a width of 1.5 mm. One square is a reaction spot, and the other square is a sample sticking part of the flow path.
  • This ink jet printer is equipped with two black ink cartridges and three color ink cartridges (magenta, cyan, yellow), the maximum resolution is 5760 x 1440 dpi, and the minimum droplet amount is 3 pL.
  • the pattern shown in FIG. 2 was drawn with the drawing software of the personal computer, and this was printed with the said inkjet printer. All the ink cartridges were filled with ultraviolet curable ink, and printing was performed by setting to monochrome printing.
  • the paper used was filter paper.
  • the back side was printed with ultraviolet curable ink.
  • a solid rectangle that encloses the entire pattern shown in FIG. 2 was printed.
  • Reagent coating One square serving as a reaction spot was coated with a pH indicator.
  • the coated pH indicator is a mixture of bromothymol blue (BTB), thymol blue (TB) and methyl red (MR).
  • BTB and TB long-chain alkyl groups were introduced in order to increase fat solubility.
  • Each indicator was encapsulated in emulsion nanoparticles composed of poly (1-vinylpyrrolidone-co-styrene) (P (VP-St)), and the emulsion was used as a reagent solution.
  • P poly (1-vinylpyrrolidone-co-styrene
  • MR is more lipophilic than the former two, and MR sodium salt dissolves in the organic layer, so it was encapsulated in nanoparticles without an alkyl chain. Specifically, it was performed as follows. (i) MR 8.1 mg was dissolved in ethanol 20 mL. (ii) 38% (w / w) P (VP-ST) emulsion 1.05g, Milli-Q water (trade name) 40mL, ethanol 80mL are placed in a 300 mL eggplant flask and stirred, and (i) is gradually added dropwise. did.
  • pH measurement Buffers of pH 4.0, 5.0, 6.0, 7.0, and 8.0 were prepared using citric acid and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ⁇ 12H 2 O).
  • a pH 9.0 buffer was prepared using sodium carbonate Na 2 CO 3 and sodium bicarbonate NaHCO 3 .
  • each standard sample solution having each pH was dropped onto the square of the pattern shown in FIG. 2 and not coated with a pH indicator.
  • the dropped standard sample solution reached the square (reaction spot) coated with the pH indicator through the channel and reacted with the pH indicator.
  • the pH indicator reacted with each standard sample solution and changed its color.
  • a * on the vertical axis represents a * in the L * a * b * color system.
  • the a * value decreases as the pH increases, and it has become clear that the pH can be measured using this pH measuring chip.
  • Example 2 Preparation of lead ion detection chip A lead ion detection chip was prepared in the same manner as in Example 1 except that xylenol orange (Alfa Aesar), which is an indicator of lead ions, was used as a reagent for coating the reaction spot. .
  • xylenol orange Alfa Aesar
  • M lead (II) chloride aqueous solutions are prepared as standard sample solutions, respectively, and 4 ⁇ L each is coated with a lead ion indicator as in Example 1. It was dripped at the square which is not. The dropped standard sample solution reached the square (reaction spot) coated with the lead ion indicator through the channel and reacted with the lead ion indicator. Thereby, the lead ion indicator reacted with each standard sample solution, and discolored. After capturing as an image using a scanner, quantitative data was obtained by digital color analysis.
  • Example 3 The patterns such as the flow paths shown in FIGS. 6 and 7 were printed.
  • a piezo ink jet printer (PX-101) commercially available from Epson, the ink cartridge was filled with the UV curable ink prepared as described above, and the surface covered channels and the cover were printed.
  • the flow path has a circular sample spotting portion 10a at the center, from which a flow path 10 having eight surfaces radially covered with a cover 20000 extends, and a circular reaction spot at the end of each flow path. 6 is the shape shown in FIG.
  • the sample spot 10a is a circle with a radius of 2.5mm
  • the flow path 10 is a rectangle with a width of 1.0mm and a length of 2.5mm
  • the cover 20000 is a large circle with a radius of 5mm to a small circle with a radius of 2.5mm
  • the reaction spots 12 were eight circles with a radius of 2 mm.
  • This ink jet printer is equipped with two black ink cartridges and three color ink cartridges (magenta, cyan, yellow), the maximum resolution is 5760 x 1440 dpi, and the minimum droplet amount is 3 pL.
  • the pattern shown in FIG. 6 was drawn with the drawing software of the personal computer, and this was printed with the said inkjet printer. All ink cartridges were filled with ultraviolet curable ink, and printing was performed with color printing set.
  • the paper used was filter paper.
  • Example 4 to 16 Experiments using various photoinitiators were conducted. That is, the same operation as Example 1 was performed except having used the photoinitiator as what was shown in Table 1 (a density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

Disclosed are a method for producing a chip for reaction, which is capable of not only producing even a chip for reaction having a very minute flow path by a simple method without using a large quantity of volatile organic solvent but also producing the chip for reaction at low cost, and a chip for reaction produced by the method. A method for producing a paper-based chip for reaction comprises: a step for printing the outer edge of a desired flow path and/or reaction spot on paper with ultraviolet curable ink by an inkjet printer; a step for irradiating the ultraviolet curable ink discharged onto the paper with ultraviolet rays to cure the ink; and a step for coating the reaction spot with a reagent necessary for the reaction.

Description

紙ベース反応用チップ及びその製造方法Paper-based reaction chip and manufacturing method thereof
 本発明は、紙上に流路や反応スポットを形成した、紙ベース反応用基板及びその製造方法に関する。 The present invention relates to a paper-based reaction substrate in which flow paths and reaction spots are formed on paper and a method for manufacturing the same.
 従来より、飲料水や飲食物の衛生検査や、種々の感染症の診断等に種々の検査チップが用いられている。従来から用いられているこれらの検査チップの多くは、ガラス基板やプラスチック基板上に溝や凹部を形成することにより流路や反応スポットを設け、反応スポットに検査に必要な試薬類をコーティングしたものである。 Conventionally, various inspection chips have been used for sanitary inspection of drinking water and food and beverages, diagnosis of various infectious diseases, and the like. Many of these inspection chips that have been used in the past are provided with channels and reaction spots by forming grooves and recesses on a glass substrate or plastic substrate, and the reaction spots are coated with reagents necessary for inspection. It is.
 しかしながら、これらの検査チップは、作製する費用が高く、高価である。発展途上国では、衛生検査や感染症診断の需要が特に大きいが、多くの発展途上国は経済的にあまり恵まれておらず、より安価な検査チップが強く求められている。 However, these inspection chips are expensive and expensive to produce. In developing countries, the demand for hygiene tests and infectious disease diagnosis is particularly large, but many developing countries are not very economically economical and there is a strong demand for cheaper test chips.
 安価な検査チップを提供する1つの方法として、紙を基板とし、紙上にプリンターを利用して、流路や反応スポットを印刷する手法が提案されている。例えば、非特許文献1には、ワックスプリンターを用いてマイクロ流路や反応スポットを印刷する紙ベースのマイクロ流路チップの作製方法が開示されている。しかしながら、ワックスプリンターでは印刷後に加熱を必要とするため、工程が煩雑となってコストも高くなる。また、ワックスプリンターでは、描ける線の幅が最小でも0.85mm程度であり、微細なマイクロ流路を描くことが困難である。また、ワックスプリンターでは反応スポットに試薬をコーティングすることができない。 As one method for providing an inexpensive inspection chip, a method has been proposed in which paper is used as a substrate and a flow path and reaction spots are printed on the paper using a printer. For example, Non-Patent Document 1 discloses a method for producing a paper-based microchannel chip that prints microchannels and reaction spots using a wax printer. However, since the wax printer requires heating after printing, the process becomes complicated and the cost increases. Also, with a wax printer, the width of the line that can be drawn is at least about 0.85 mm, and it is difficult to draw a fine microchannel. In addition, the reaction spot cannot be coated with a reagent with a wax printer.
 また、非特許文献2には、紙をポリスチレントルエン溶液に浸漬し、乾燥して全面にポリスチレンをコーティングし、トルエンをインクとしてインクジェットプリンターでこの紙上に流路や反応スポットを印刷し、コーティングされたポリスチレンを選択的にエッチングすることにより紙上に流路や反応スポットを形成する方法が記載されている。しかしながら、この方法では、大量の揮発性有機溶媒が必要であり、環境汚染の問題を引き起こすとともに、大量の揮発性有機溶媒やポリスチレンを用いるため、その分コストも高くなる。 In Non-Patent Document 2, paper was immersed in a polystyrene toluene solution, dried and coated with polystyrene on the entire surface, and a flow path and reaction spots were printed on the paper with an inkjet printer using toluene as an ink. A method for forming flow paths and reaction spots on paper by selectively etching polystyrene is described. However, this method requires a large amount of a volatile organic solvent, causes environmental pollution problems, and uses a large amount of a volatile organic solvent or polystyrene.
 本発明の目的は、大量の揮発性有機溶媒を用いることなく、簡単な方法により、高精細な流路を有する反応用チップをも作製することができ、ひいては低コストで反応用チップを作製することが可能な、反応用チップの製造方法及びその方法により製造された反応用チップを提供することである。 An object of the present invention is to produce a reaction chip having a high-definition flow path by a simple method without using a large amount of a volatile organic solvent, and thus produce a reaction chip at low cost. It is possible to provide a reaction chip manufacturing method and a reaction chip manufactured by the method.
 本願発明者らは、鋭意研究の結果、紙上に、インクジェットプリンターを用いて紫外線硬化性インクで流路や反応スポットの外縁を印刷することにより、揮発性有機溶媒を用いることなく、簡便に低コストに精密に反応用チップを製造することが可能であることに想到し、本発明を完成した。 As a result of diligent research, the inventors of the present application have printed an outer edge of a flow path or a reaction spot with ultraviolet curable ink on a paper by using an inkjet printer, thereby easily and low-cost without using a volatile organic solvent. The present invention has been completed by conceiving that it is possible to manufacture a reaction chip precisely.
 すなわち、本発明は、紫外線硬化性インクで紙上に所望の流路及び/又は反応スポットの外縁をインクジェットプリンターにより印刷する工程と、紙上に吐出された前記紫外線硬化性インクに紫外線を照射して該インクを硬化させる工程と、前記反応スポットに、反応に必要な試薬をコーティングする工程を含む、紙ベース反応用チップの製造方法を提供する。また、本発明は、上記本発明の方法により製造した紙ベース反応用チップを提供する。 That is, the present invention includes a step of printing an outer edge of a desired flow path and / or reaction spot on paper with ultraviolet curable ink by an inkjet printer, and irradiating the ultraviolet curable ink ejected on paper with ultraviolet rays. There is provided a method for producing a paper-based reaction chip, comprising a step of curing ink and a step of coating a reagent necessary for the reaction on the reaction spot. The present invention also provides a paper-based reaction chip manufactured by the method of the present invention.
 本発明の方法によれば、紫外線硬化性インクは単に紫外線を照射するだけで硬化させることができるので、簡便に低コストで反応用チップを作製することができる。また、現在市販されているインクジェットプリンターは、ワックスプリンターよりも解像度が高く、比較的高精細なマイクロ流路を有する反応用チップでも作製することができる。さらに、紫外線硬化性インクを硬化させる本発明の方法によれば、揮発性有機溶媒を用いる必要がなく、非特許文献2のように紙の全面にポリマー溶液を塗布し、インクジェットプリンターから揮発性有機溶媒を吐出して選択的にポリマーをエッチング除去する方法に比較して環境汚染及びコストの面で有利である。さらに、好ましい態様では、インクジェットプリンターを用いて流路や反応スポットと、試薬の両者を印刷することができるので、より簡便、低コストに反応用チップを作製することができる。 According to the method of the present invention, since the ultraviolet curable ink can be cured simply by irradiating with ultraviolet rays, a reaction chip can be easily produced at low cost. Moreover, the inkjet printer currently marketed has a higher resolution than a wax printer, and can be produced even with a reaction chip having a relatively high-definition microchannel. Furthermore, according to the method of the present invention for curing an ultraviolet curable ink, it is not necessary to use a volatile organic solvent, and a polymer solution is applied to the entire surface of the paper as in Non-Patent Document 2, and a volatile organic solvent is applied from an inkjet printer. This method is advantageous in terms of environmental pollution and cost as compared with a method of selectively removing the polymer by etching by discharging a solvent. Furthermore, in a preferred embodiment, since both the flow path and the reaction spot and the reagent can be printed using an ink jet printer, a reaction chip can be produced more simply and at low cost.
本発明の方法により製造される、水質検査に利用可能な紙ベース反応用チップの流路等の一例を示す図である。It is a figure which shows an example of the flow path etc. of the paper base reaction chip | tip which can be utilized for the water quality test manufactured by the method of this invention. 下記実施例において作製した流路等のパターンを示す図である。It is a figure which shows the pattern of the flow path etc. which were produced in the following Example. 下記実施例において作製したpH測定チップを用いたpH測定結果を示す図である。It is a figure which shows the pH measurement result using the pH measurement chip | tip produced in the following Example. 下記実施例において作製した鉛イオン検出チップを用いた鉛イオンの測定結果を示す図である。It is a figure which shows the measurement result of lead ion using the lead ion detection chip produced in the following example. 下記実施例において作製した流路等の断面を表す模式図である。It is a schematic diagram showing the cross section of the flow path etc. which were produced in the following Example. 別の実施例において作製した、流路の表面に被覆したカバーを有する流路等のパターンを示す図である。It is a figure which shows the pattern of the flow path etc. which have the cover coat | covered on the surface of the flow path produced in another Example. 図6に示す流路等の断面を表す模式図である。It is a schematic diagram showing the cross section of the flow path etc. which are shown in FIG.
 本発明において、「反応用チップ」は、基材上に流路及び/又は反応スポット(本明細書において「流路等」と呼ぶことがある)が設けられ、さらに反応に必要な試薬が反応スポットにコーティングされているものを意味する。従来、これらはスライドガラスやプラスチック基板上に設けられ、マイクロ流路チップ、DNAチップ、ペプチドチップ等のように「チップ」と呼ばれているため、本発明においてもそれを踏襲して「チップ」と呼んでいるが、本発明では基材が紙であるので、「チップ」は可撓性を有する。また、インクジェットプリンターで紙に印刷するため、任意の二次元的形状とすることができ、従来のスライドガラスのように長方形状に限定されるものではない。また、スライドガラスよりもずっと大きなものとすることも可能であり、このようなものも「チップ」と呼んでいる。なお、基材が紙であることを「紙ベース」と呼んでいる。 In the present invention, the “reaction chip” is provided with a channel and / or a reaction spot (sometimes referred to as “channel or the like” in the present specification) on a base material, and a reagent necessary for the reaction is further reacted. It means what is coated on the spot. Conventionally, these are provided on a slide glass or a plastic substrate, and are called “chips” such as microchannel chips, DNA chips, peptide chips, etc. However, in the present invention, since the base material is paper, the “chip” has flexibility. Moreover, since it prints on paper with an inkjet printer, it can be set as arbitrary two-dimensional shapes, and is not limited to a rectangular shape like the conventional slide glass. It can also be much larger than a glass slide, and this is also called a “chip”. In addition, that the base material is paper is called “paper base”.
 本発明においては、紙に印刷を行う。ここで、紙としては、インクジェットプリンターにより印刷可能であれば特に限定されず、ろ紙、普通紙(通常のコピー用紙)、インクジェットプリンター用の用紙、葉書、封筒等を挙げることができる。 In the present invention, printing is performed on paper. Here, the paper is not particularly limited as long as it can be printed by an ink jet printer, and examples thereof include filter paper, plain paper (normal copy paper), paper for an ink jet printer, a postcard, an envelope, and the like.
 上記の通り、本発明の方法では、インクジェットプリンターにより、紙上に紫外線硬化性インクで流路等の外縁を印刷する。外縁の幅は特に限定されないが、通常、コンピューター上の設定で0.1~1.2mm程度でよい。 As described above, in the method of the present invention, an outer edge of a flow path or the like is printed on paper with ultraviolet curable ink by an inkjet printer. The width of the outer edge is not particularly limited, but usually it may be about 0.1 to 1.2 mm as set on the computer.
 インクジェットプリンターとしては、パソコンの周辺機器として市販されている汎用のものを用いることができる。汎用されている市販のインクジェットプリンターは、主としてピエゾ方式とサーマル方式のものである。ピエゾ方式は電圧を印加すると変形するピエゾ素子を用いてインクを吐出させる方式である。セイコーエプソン社(マッハジェット(商品名)方式)やブラザー社らのインクジェットプリンタに採用されている。一方、サーマル方式は、ノズルの一部を加熱し、発生したバブルによりインクを吐出させる方式である。キヤノン社(バブルジェット(登録商標)(商品名)方式と呼ばれている)やヒューレット・パッカード社のインクジェットプリンタに採用されている。本発明の方法では、ピエゾ方式及びサーマル方式のいずれをも用いることができる。もっとも、サーマル方式は、インクを加熱するため、後述する試薬が、加熱により不都合が生じる恐れがある場合にはピエゾ方式のインクジェットプリンターを用いることが好ましい。抗体や抗原等の生物由来物質や、様々な化学物質の多くのものは熱により何らかの影響を受ける恐れがあるので、多くの場合、ピエゾ方式のインクジェットプリンターを用いることが好ましい。なお、インクジェットプリンターのノズルの内径は、通常、10μm~90μm程度である。 As the inkjet printer, a general-purpose printer that is commercially available as a peripheral device for a personal computer can be used. Commercially available commercially available inkjet printers are mainly of the piezo type and the thermal type. The piezo method is a method in which ink is ejected using a piezo element that deforms when a voltage is applied. It is used in Seiko Epson (Machjet (trade name) system) and Brother's inkjet printers. On the other hand, the thermal method is a method in which a part of the nozzle is heated and ink is ejected by the generated bubbles. It is used in Canon printers (called the Bubble Jet (registered trademark) system) and Hewlett-Packard ink-jet printers. In the method of the present invention, either a piezo method or a thermal method can be used. However, since the thermal method heats the ink, it is preferable to use a piezo ink jet printer if the reagents described below may cause problems due to heating. Since many biological substances such as antibodies and antigens and various chemical substances may be affected by heat, it is often preferable to use a piezo ink jet printer. The inner diameter of the nozzle of the ink jet printer is usually about 10 μm to 90 μm.
 紫外線硬化性インクは、紫外線を照射することにより硬化して樹脂被膜を与えるもので、UVコーティングに広く用いられている。本発明に用いる紫外線硬化性インクは、市販品を用いることもできるし、紫外線硬化性インクに用いられている周知の成分を適宜配合して調製することもできる。 UV curable ink is cured by irradiating with ultraviolet rays to give a resin film, and is widely used for UV coating. The ultraviolet curable ink used in the present invention may be a commercially available product, or may be prepared by appropriately blending known components used in the ultraviolet curable ink.
 本発明の方法では、紫外線硬化性インクにより流路等の外縁を印刷するものであり、流路等には通常、水系の液が入れられることから、紫外線硬化性インクは、硬化後の疎水性が高いものが好ましい。また、光重合速度が速い、プリンタで吐出可能(融点・粘度が適切)、低臭気性・低毒性であることが望まれる。さらには、湿度の変動に対して安定性が高い、紫外線が照射されていない段階で重合反応が進まない、等の特性も望まれる。これらを満足するものとして、光ラジカル重合するモノマー又はオリゴマーを含むものが好ましい。光ラジカル重合するモノマーとしては、特に、硬化後の疎水性が高く光重合速度が速く、インクジェットプリンターによる印刷が可能な粘度を有するアクリル系モノマーが好ましく、とりわけ、アクリル酸と炭素数14~18程度のノルマル飽和脂肪族アルコールとのエステルが好ましい。具体的には、アクリル酸テトラデシル、アクリル酸ペンタデシル、アクリル酸ヘキサデシル、アクリル酸ヘプタデシル、アクリル酸オクタデシル等が好ましい。これらのうち、アクリル酸オクタデシルは、常温で固体であるので、1,10-ビス(アクリロイルオキシ)デカン (別名:1,10-デカンジオールジアクリレート) (DDA)等の常温で液体である他の光ラジカル重合性のオリゴマーやモノマーに溶解して用いることができる。なお、インクジェットプリンターで印刷可能なインクの粘度は、用いるノズル径等により異なるが、通常、0.4-20mPa・s程度である。また、上記したモノマー及びオリゴマーは、単独でも2種以上を組み合わせても用いることができる。 In the method of the present invention, the outer edge of the flow path or the like is printed with the ultraviolet curable ink, and since the aqueous liquid is usually put in the flow path or the like, the ultraviolet curable ink is hydrophobic after being cured. High is preferred. Further, it is desired that the photopolymerization rate is high, the ink can be ejected by a printer (melting point and viscosity are appropriate), low odor, and low toxicity. Furthermore, characteristics such as high stability against fluctuations in humidity and the fact that the polymerization reaction does not proceed at the stage where ultraviolet rays are not irradiated are also desired. Those satisfying these are preferably those containing monomers or oligomers that undergo photoradical polymerization. The monomer for photo radical polymerization is particularly preferably an acrylic monomer having a high hydrophobicity after curing, a high photo polymerization rate, and a viscosity capable of being printed by an ink jet printer, and especially acrylic acid and about 14 to 18 carbon atoms. Of these, esters with normal saturated aliphatic alcohols are preferred. Specifically, tetradecyl acrylate, pentadecyl acrylate, hexadecyl acrylate, heptadecyl acrylate, octadecyl acrylate, and the like are preferable. Among these, since octadecyl acrylate is solid at room temperature, other liquids that are liquid at room temperature such as 1,10-bis (acryloyloxy) decane 別名 (also known as 1,10-decandiol diacrylate) (DDA) It can be used by dissolving in a radically polymerizable oligomer or monomer. The viscosity of ink that can be printed with an ink jet printer is usually about 0.4-20 mPa · s, although it varies depending on the nozzle diameter used. Moreover, the above-mentioned monomers and oligomers can be used alone or in combination of two or more.
 紫外線硬化性インクはさらに、光重合開始剤を含む。UVコーティングに用いられている光重合開始剤も種々のものが周知であり、上記した常温で液体の光ラジカル重合性モノマー(又は光ラジカル重合性モノマーと光ラジカル重合性オリゴマーとの混合物)に溶解可能なものを適宜選択して用いることができる。好ましい光重合開始剤の例として、アゾビスイソブチロニトリル(AIBN)、ベンゾフェノン(BP)、ベンジルジメチルケタール(BDK)等を挙げることができる。これらはいずれも周知である。市販品を好ましく用いることができ、市販品の例としては、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(商品名DAROCUR 1173)、Bis(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキシド(商品名IRGACUR 819、2-(ジメチルアミノ)-1-(4-モルフォリン-4-イルフェニル)-2-(フェニルメチル)ブタン-1-オン(商品名IRGACUR 369)、2,2-ジメトキシ-2-フェニルアセトフェノン(商品名IRGACUR 651)、エチル-4-ジメチルアミノベンゾエート(商品名DAROCUR EDB)、イソプロピルチオキサントン(商品名CIBACURE 2-ITX)、フェニルグリオキシル酸メチルエステル(商品名DAROCUR MBF)(以上、全てCiba Specialty Chemicals Inc製)、及び2-エチルアントラキノンを挙げることができる。なお、これらの光重合開始剤は単独でも組み合わせても用いることができる。 The ultraviolet curable ink further contains a photopolymerization initiator. Various photopolymerization initiators used for UV coating are well known and are soluble in the above-mentioned photoradical polymerizable monomers (or mixtures of photoradical polymerizable monomers and photopolymerizable oligomers) that are liquid at room temperature. Possible ones can be selected and used as appropriate. Examples of preferred photopolymerization initiators include azobisisobutyronitrile (AIBN), benzophenone (BP), and benzyldimethyl ketal (BDK). These are all well known. Commercially available products can be preferably used. Examples of commercially available products include 2-hydroxy-2-methyl-1-phenyl-propan-1-one (trade name DAROCUR 1173), Bis (2,4,6-trimethylbenzoyl) ) -Phenylphosphine oxide (trade name IRGACUR 819, 2- (dimethylamino) -1- (4-morpholin-4-ylphenyl) -2- (phenylmethyl) butan-1-one (trade name IRGACUR 369) , 2,2-dimethoxy-2-phenylacetophenone (trade name IRGACUR 651), ethyl-4-dimethylaminobenzoate (trade name DAROCUR EDB), isopropylthioxanthone (trade name CIBACURE 2-ITX), phenylglyoxylic acid methyl ester (product) Name DAROCUR MBF) (all from Ciba Specialty Chemicals Inc.) and 2-ethylanthraquinone These photopolymerization initiators can be used alone or in combination.
 光重合開始剤の濃度は、紫外線硬化性インク中、通常、5~25重量%程度、好ましくは10~20重量%程度である。 The concentration of the photopolymerization initiator is usually about 5 to 25% by weight, preferably about 10 to 20% by weight in the ultraviolet curable ink.
 紙上に印刷する流路等の形状には何ら制限はなく、所望の任意な形状とすることができる。例えば、水質検査チップとして、図1に示す形状の流路等が考えられる。図1に示す流路等は、中央に円形の試料点着部10aを有し、ここから放射状に8本の流路10が延び、各流路の端部に円形の反応スポット12が位置する形状である。試料点着部10aは、流路の一部と考えることができる。図1に示す例では、各反応スポットには、それぞれ異なる試薬がコーティングされる。各試薬は、例えばpH指示薬、鉛イオン、銅イオン、亜硝酸イオン等の各種イオンと反応して変色する各種イオノフォア、各種農薬と反応して変色する試薬、サルモネラ菌、大腸菌等の病原菌に対する抗体等である。試料点着部10aに点着された試料液は、各流路10を通って各反応スポット12に到達し、ここで、各試薬と反応し、試料液中に含まれる各種成分に応じ、呈色又は変色する。反応後の各試薬の色に基づき、試料液中に含まれる各種イオン、農薬、病原菌等を検出することができる。 There is no limitation on the shape of the flow path or the like printed on the paper, and any desired shape can be obtained. For example, a flow path having the shape shown in FIG. The flow channel shown in FIG. 1 has a circular sample spotting portion 10a at the center, from which eight flow channels 10 extend radially, and a circular reaction spot 12 is located at the end of each flow channel. Shape. The sample spot application part 10a can be considered as a part of the flow path. In the example shown in FIG. 1, each reaction spot is coated with a different reagent. Each reagent is, for example, a pH indicator, various ionophores that change color by reacting with various ions such as lead ions, copper ions, nitrite ions, reagents that change color by reacting with various agricultural chemicals, antibodies against pathogenic bacteria such as Salmonella and Escherichia coli, etc. is there. The sample solution spotted on the sample spotting portion 10a reaches each reaction spot 12 through each flow path 10, where it reacts with each reagent and presents according to various components contained in the sample solution. Color or discolor. Based on the color of each reagent after the reaction, various ions, pesticides, pathogens, etc. contained in the sample solution can be detected.
 紙上に印刷する流路等の形状は、もちろん図1に示すものに限定されるものではなく、測定や反応の目的に応じた任意のものとすることができる。流路の幅も何ら限定されるものではなく、例えば、コンピューター上の設定で0.8~1.5mm程度である。種々のマイクロ流路チップが公知であり、公知のいずれのマイクロ流路を形成することもできるし、目的とする測定や反応に適した形状をデザインすることもできる。また、反応スポットは、図1に示す例のように流路の端部に位置する必要はなく、流路の一部又は全部に所望の試薬をコーティングして反応スポットとすることも可能である。従って、例えば、一本の流路の異なる箇所にそれぞれ必要な試薬(抗体等)をコーティングして、一本の流路でラテラルフロー型のイムノクロマトグラフィーを行うことも可能である。また、流路も必ずしも必要ではなく、例えば、反応スポットとなる、単なる円を複数配置したような形状でもよい。この場合には、各反応スポットを、測定分野において汎用されているマイクロプレートのウェルと同様に使用することが可能である。インクジェットプリンターは、パソコンの周辺機器として用いられているものであり、描画ソフトで作成した画像を精密に印刷することができる。従って、所望の流路等の外縁もパソコンの描画ソフトを用いて精密に描くことができ、これをインクジェットプリンターで精密に印刷することが可能であるので有利である。 Of course, the shape of the flow path or the like printed on the paper is not limited to that shown in FIG. 1, but may be any one according to the purpose of measurement or reaction. The width of the flow path is not limited at all, and is, for example, about 0.8 to 1.5 mm as set on a computer. Various microchannel chips are known, and any known microchannel can be formed, and a shape suitable for a target measurement or reaction can be designed. In addition, the reaction spot does not need to be located at the end of the flow path as in the example shown in FIG. 1, and a desired reagent can be coated on a part or all of the flow path to form a reaction spot. . Therefore, for example, it is also possible to perform lateral flow type immunochromatography in a single flow path by coating different parts of the single flow path with necessary reagents (antibodies, etc.). Further, the flow path is not necessarily required, and for example, a shape in which a plurality of simple circles serving as reaction spots are arranged may be used. In this case, each reaction spot can be used in the same manner as a well of a microplate widely used in the measurement field. An ink jet printer is used as a peripheral device of a personal computer, and can accurately print an image created with drawing software. Accordingly, the outer edge of a desired flow path or the like can be accurately drawn using a drawing software of a personal computer, and this can be advantageously printed with an ink jet printer.
 反応用チップを用いて行う反応は、多くの場合、水溶液のような水系の液を用いて行われるので、液が紙を浸透して反対側に漏出する恐れがある。このような反対側への漏出を防止するために、例えば図5のように少なくとも紙50上に印刷された流路等1000の裏面に、紫外線硬化性インクをコーティングすることが望ましい。この場合、チップの使用時に液が接触する部分10000のみ、すなわち、流路等の裏面のみに紫外線硬化性インクを印刷してもよいし、より広い領域、例えば、流路等の全体に外接する長方形状に印刷してもよい。現在市販されているインクジェットプリンターの多くは両面印刷に対応しているので、裏面200への印刷も表面100と同時に行うことが可能である。もっとも、先に表面を印刷し、紫外線を照射して紫外線硬化性インクを硬化させた後、裏面の印刷を行うことも可能である。また、裏面に印刷する形状も、表面と同様、パソコンの描画ソフトを用いて正確に描画することができる。 Since the reaction performed using the reaction chip is often performed using an aqueous liquid such as an aqueous solution, the liquid may permeate the paper and leak to the opposite side. In order to prevent such leakage to the opposite side, it is desirable to coat ultraviolet curable ink at least on the back surface of the flow path 1000 printed on the paper 50 as shown in FIG. In this case, the ultraviolet curable ink may be printed only on the portion 10000 where the liquid comes into contact when the chip is used, that is, only on the back surface of the flow path or the like, or circumscribes the wider area, for example, the entire flow path. It may be printed in a rectangular shape. Since many of the inkjet printers currently on the market support double-sided printing, printing on the back surface 200 can be performed simultaneously with the front surface 100. However, it is also possible to print the back surface after first printing the front surface and irradiating ultraviolet rays to cure the ultraviolet curable ink. Also, the shape to be printed on the back surface can be accurately drawn using the drawing software of a personal computer as with the front surface.
 さらに、流路の少なくとも一部を紙の表面から紫外線硬化性インクで被覆してもよい。例えば、上記した図1に示すパターンを有する流路等に、紫外線硬化性インクでカバーを形成することができる。この例を図6に示す。図6に示す例では、試料貼着部10aと反応スポット12とを連通する8本の流路10を含む輪状の領域を、紫外線硬化性インクでコーティングしてカバー20000を形成している。このように流路の表面を紫外線硬化性インクで被覆し、硬化させてカバー20000を形成するすることにより、試料貼着部10aに点着した試料が、反応スポット12に到達する前に、試料に外部環境から異物(試料以外のもの)が混入することを防止することができ、測定の正確性を高めることができる。表面からの被覆は、図6に示すように、試料点着部10aと反応スポット12を連通する流路10の表面の全部又は一部であることが好ましく、流路10の表面の面積の50%以上、好ましくは90%以上、最も好ましくは流路の全部を被覆することが好ましい。この場合、上記の通り、流路の裏面にも紫外線硬化性インクをコーティングすることが好ましく、これにより、流路は、表面も裏面も外界から隔離され、紙の内部のみを通る流路とすることが可能になる。これにより、試料への異物混入をより厳重に防止することができる。なお、この場合には、試料は、紙の内部のみを通過して反応スポットに到達することになるので、紙は、濾紙のように液体がよく浸透する紙を採用することが好ましい。 Furthermore, at least a part of the flow path may be covered with ultraviolet curable ink from the paper surface. For example, a cover can be formed with ultraviolet curable ink in a flow path having the pattern shown in FIG. An example of this is shown in FIG. In the example shown in FIG. 6, a cover 20000 is formed by coating a ring-shaped region including eight flow paths 10 communicating with the sample adhering portion 10 a and the reaction spot 12 with ultraviolet curable ink. In this way, the surface of the flow path is coated with the ultraviolet curable ink and cured to form the cover 20000, so that the sample spotted on the sample sticking portion 10a reaches the reaction spot 12 before the sample reaches the reaction spot 12. It is possible to prevent foreign matter (other than the sample) from being mixed in from the external environment, and the measurement accuracy can be improved. As shown in FIG. 6, the coating from the surface is preferably all or part of the surface of the flow path 10 that communicates the sample spotting portion 10 a and the reaction spot 12. % Or more, preferably 90% or more, and most preferably, the entire flow path is covered. In this case, as described above, it is preferable to coat the back surface of the flow path with the ultraviolet curable ink, whereby the flow path is a flow path that is isolated from the outside and has only the inside of the paper. It becomes possible. As a result, it is possible to more strictly prevent foreign matter from entering the sample. In this case, since the sample passes through only the inside of the paper and reaches the reaction spot, it is preferable to use paper that is well infiltrated with liquid, such as filter paper.
 流路の表面を紫外線硬化性インクで被覆する工程も、インクジェットプリンターを用いた印刷により行うことが好ましい。この被覆工程は、先に流路を印刷、硬化した後に、印刷パターン上にインクジェットプリンターを用いて重ねて印刷することにより行ってもよいし、流路等の外縁を印刷する際に同時にカバーを印刷してもよい。後者の場合には、工程数を少なくできる利点がある。なお、後者の場合であっても、流路10の外縁を濃い実線で描き、カバー20000を薄い実線で描くことにより、流路10の外縁を描く紫外線硬化性インクと、カバー20000を描く紫外線硬化性インクの密度(単位面積当たりのインク量)を異ならしめることができ、従って、流路10の外縁10bの深さ(紫外線硬化性インクは溶液なので、紙の表面からある程度の深さまで浸透する)よりもカバー20000を形成することができる(図7参照)。なお、ここでいう薄い実線は、色の透過率、灰色の程度及びRGB値を調整して描くことができる。流路の裏面からも紫外線硬化性インクをコーティング(300)すれば、図7に示すように流路1000は紙(好ましくは濾紙)の内部のみを通り、外界から遮断することができる。もっとも、所望により、流路10の外縁を印刷せずに、カバー20000を印刷してもよく、この場合には、試料貼着部10aの外縁と、反応スポット12の外縁と、カバー20000のみが印刷される。この場合、試料貼着部10aに点着された試料は、紙の内部を放射状に拡散して反応スポットに到達することになるが、水質検査の場合のように試料が十分量存在する場合には、このような態様も可能である。 The step of coating the surface of the flow path with the ultraviolet curable ink is also preferably performed by printing using an ink jet printer. This coating step may be performed by first printing and curing the flow path, and then printing it on the print pattern using an ink jet printer, or simultaneously covering the outer edge of the flow path or the like when printing. You may print. In the latter case, there is an advantage that the number of steps can be reduced. Even in the latter case, the outer edge of the flow path 10 is drawn with a dark solid line, and the cover 20000 is drawn with a thin solid line, so that the ultraviolet curable ink that draws the outer edge of the flow path 10 and the ultraviolet curing that draws the cover 20000. The density of the ink (the amount of ink per unit area) can be made different, and therefore the depth of the outer edge 10b of the flow path 10 (since the UV curable ink is a solution, it penetrates from the paper surface to a certain depth). A cover 20000 can be formed (see FIG. 7). Note that the thin solid line here can be drawn by adjusting the color transmittance, the gray level, and the RGB value. If UV curable ink is coated (300) also from the back surface of the flow path, the flow path 1000 can pass only through the inside of the paper (preferably filter paper) and can be blocked from the outside as shown in FIG. However, if desired, the cover 20000 may be printed without printing the outer edge of the flow path 10. In this case, only the outer edge of the sample sticking portion 10 a, the outer edge of the reaction spot 12, and the cover 20000 are included. Printed. In this case, the sample spotted on the sample sticking part 10a diffuses radially inside the paper and reaches the reaction spot, but when there is a sufficient amount of sample as in the case of water quality inspection. Such an embodiment is also possible.
 流路等の外縁、及び場合により、流路の裏面や、表面のカバーを印刷後、紫外線硬化性インクに紫外線を照射して紫外線硬化性インクを硬化させる。紫外線の照射は、市販の紫外線照射装置を用いて行うことができる。照射条件は、紫外線硬化性インクが硬化して疎水性の線になる条件であれば特に限定されず、用いる紫外線硬化性インクやインクの使用量に応じて適宜設定することができるが、通常、300~1200 mW/cm2のエネルギー密度で15秒間~2分間程度照射すればよい。また、紫外線の波長は紫外線硬化性インクを硬化させることができる波長であれば特に限定されないが、通常、260nm~380nm程度の安全な近紫外線で十分目的を達成することが可能である。なお、両面に印刷した場合には、各面ごとに紫外線を照射してそれぞれ紫外線硬化性インクを硬化させる。 After printing the outer edge of the channel or the like, and possibly the back surface of the channel or the cover on the front surface, the ultraviolet curable ink is cured by irradiating the ultraviolet curable ink with ultraviolet rays. Ultraviolet irradiation can be performed using a commercially available ultraviolet irradiation apparatus. Irradiation conditions are not particularly limited as long as the ultraviolet curable ink is cured to become a hydrophobic line, and can be appropriately set according to the used amount of the ultraviolet curable ink and the ink used. Irradiation at an energy density of 300 to 1200 mW / cm 2 may be performed for 15 seconds to 2 minutes. Further, the wavelength of the ultraviolet rays is not particularly limited as long as it is a wavelength capable of curing the ultraviolet curable ink, but usually, a safe near ultraviolet ray of about 260 nm to 380 nm can sufficiently achieve the object. When printing on both sides, each side is irradiated with ultraviolet rays to cure each ultraviolet curable ink.
 次に反応スポットに試薬をコーティングする。コーティングする試薬は、目的とする測定や反応に必要な試薬であり、任意に選択されるものである。このような試薬としては、例えば、pH指示薬、例えば鉛イオン、カルシウムイオン、銅イオン、リン酸イオン、亜硝酸イオン、ホウ酸イオン、フッ素イオン等の各種イオンと反応して呈色するイオノフォア、シマジンやアトラジン等の各種農薬と反応して呈色する試薬、サルモネラ菌のような病原菌や大腸菌と抗原抗体反応する抗体等、免疫測定のための各種抗原や抗体、DNAチップやペプチドチップに用いられている各種DNAやペプチド等を挙げることができるがこれらに限定されるものではない。なお、試薬の種類によっては、試料液との反応後、さらに第2の試薬を反応させる必要がある場合もあるが(例えば、サンドイッチ法による免疫測定における標識抗体等)、このような場合には、第2の試薬は従来と同様、スポイト等で滴下することができるし、場合によっては第2の試薬もインクジェットプリンターにより印刷することも可能である。また、マイクロ流路チップは、近年、測定用のみならず、化学反応を用いた所望の物質の製造にも用いられている。本発明のチップも、公知のマイクロ流路チップと同様、測定のみならず、物質製造のための化学反応にも用いることができる。 Next, coat the reaction spot with the reagent. The reagent to be coated is a reagent necessary for a target measurement or reaction, and is arbitrarily selected. Examples of such reagents include pH indicators such as ionophores and simazines that react with various ions such as lead ions, calcium ions, copper ions, phosphate ions, nitrite ions, borate ions, and fluorine ions. It is used in various antigens and antibodies for immunoassay, DNA chips and peptide chips, such as reagents that react with various agricultural chemicals such as and atrazine, color bacteria such as Salmonella and antibodies that react with E. coli. Although various DNA, a peptide, etc. can be mentioned, it is not limited to these. Depending on the type of reagent, it may be necessary to react with the second reagent after the reaction with the sample solution (for example, a labeled antibody in immunoassay by the sandwich method). In such a case, The second reagent can be dropped with a dropper or the like as in the prior art, and in some cases, the second reagent can also be printed by an ink jet printer. In recent years, microchannel chips have been used not only for measurement but also for production of desired substances using chemical reactions. The chip of the present invention can be used not only for measurement but also for a chemical reaction for substance production, similarly to the known microchannel chip.
 試薬のコーティングは、スポイト等を用いて手動により行うことも可能であるが、試薬を含む液であって、インクジェットプリンターにより印刷可能な粘度を有するものを調製し、これをインクジェットプリンターで印刷することが便利で好ましい。粘度は、上記の通り、0.4~20mPa・s程度の範囲であればインクジェットプリンターにより印刷可能である。試薬液の粘度がこの範囲よりも大きい場合には適切な希釈液で希釈することにより粘度を下げることができ、一方、この範囲よりも小さい場合には、反応を妨げない、増粘効果のある物質を増粘剤として添加することができる。好ましい増粘剤の例として、グリセリン、エチレングリコール、ジエチレングリコール等を挙げることができる。試薬液は、プリンターのノズルが目詰まりを起こさない限り、溶液、エマルション、懸濁液のいずれの形態でもよい。懸濁液の場合、懸濁される粒子の大きさが1μm以下程度であれば通常、問題なく印刷可能である。 Reagent coating can be performed manually using a dropper or the like, but a liquid containing a reagent and having a viscosity that can be printed by an ink jet printer is prepared and printed by the ink jet printer. Is convenient and preferred. As described above, if the viscosity is in the range of about 0.4 to 20 mPa · s, it can be printed by an ink jet printer. When the viscosity of the reagent solution is larger than this range, the viscosity can be lowered by diluting with an appropriate diluent. On the other hand, when the reagent solution is smaller than this range, there is a thickening effect that does not hinder the reaction. Substances can be added as thickeners. Examples of preferred thickeners include glycerin, ethylene glycol, diethylene glycol and the like. The reagent solution may be in the form of a solution, an emulsion, or a suspension as long as the nozzle of the printer does not clog. In the case of a suspension, printing is usually possible without problems if the size of the suspended particles is about 1 μm or less.
 インクジェットプリンターによる試薬液の印刷は、紫外線硬化性インクの硬化後に行ってもよいし、紫外線硬化性インクの印刷と同時に行うことも可能である。この場合、例えば、印刷すべきパターンを描画ソフト描く際に、流路等の外縁はブラックで描き、試薬をコーティングする部分はカラーで描き、紫外線硬化性インクをブラックインクのカートリッジに、試薬液をカラーインクのカートリッジに収容して印刷を行えばよい。もっとも、市販のインクジェットプリンターでは、インク詰まりを防止するために、ブラックの描画でもカラーインクを微量に吐出する設定になっているものもあり、このようなインクジェットプリンターでは紫外線硬化性インクに試薬が微量混じってしまう。このような設定になっていないプリンターを用いれば、上記の方法で同時印刷が可能であるし、微量の試薬が紫外線硬化性インクに混入しても実用上の問題がない場合には、上記のような設定になっているプリンターでも同時印刷が可能である。もっとも、混入を完全に防止することが望まれる場合には、下記実施例に記載の通り、先に流路等の外縁を硬化させた後に試薬を印刷することが好ましい。また、同一の反応スポットに複数種類の試薬を積層する必要がある場合(例えばサンドイッチ型の免疫測定を行うための抗体とブロッキング剤等)には、同一の反応スポットに異なる試薬液を複数回印刷することも可能である。 Printing of the reagent solution by the inkjet printer may be performed after the ultraviolet curable ink is cured, or may be performed simultaneously with the printing of the ultraviolet curable ink. In this case, for example, when drawing the pattern to be printed, the outer edges of the flow path and the like are drawn in black, the part where the reagent is coated is drawn in color, the ultraviolet curable ink is applied to the black ink cartridge, and the reagent liquid is applied. The printing may be carried out in a color ink cartridge. However, in order to prevent ink clogging, some commercially available ink jet printers are set to eject a small amount of color ink even in black drawing. In such ink jet printers, a small amount of reagent is contained in ultraviolet curable ink. It will be mixed. If a printer that is not set as described above is used, simultaneous printing is possible by the above method, and if there is no practical problem even if a small amount of reagent is mixed in the UV curable ink, Simultaneous printing is possible even with printers that are set up like this. However, when it is desired to completely prevent the contamination, it is preferable to print the reagent after first curing the outer edge of the flow path and the like as described in the following examples. In addition, when it is necessary to stack multiple types of reagents in the same reaction spot (for example, an antibody and a blocking agent for sandwich type immunoassay), different reagent solutions are printed multiple times in the same reaction spot. It is also possible to do.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
実施例1
1.紫外線硬化性インクの調製
 光ラジカル重合性モノマーであるアクリル酸オクタデシルと、光ラジカル重合性オリゴマーである1,10-ビス(アクリロイルオキシ)デカン(DDA)との7:3(重量比)混合物を調製した。これに光重合開始剤であるベンジルジメチルケタール(BDK)を終濃度15重量%で溶解し、紫外線硬化性インクとした。このインクの粘度は、8.7mPa・sであった
Example 1
1. Preparation of UV curable ink 7: 3 (weight ratio) mixture of photo-radically polymerizable monomer octadecyl acrylate and photo-radically polymerizable oligomer 1,10-bis (acryloyloxy) decane (DDA) did. Benzyl dimethyl ketal (BDK), a photopolymerization initiator, was dissolved in this to a final concentration of 15% by weight to obtain an ultraviolet curable ink. The viscosity of this ink was 8.7 mPa · s.
2.流路等の印刷
 エプソン社から市販されているピエゾ方式のインクジェットプリンター(PX-101)を用いて、上記の通り調製した紫外線硬化性インクをインクカートリッジに充填して流路等の印刷を行った。印刷した流路等は、一辺が3mmの正方形2個を長さ3mm、幅1.5mmの流路でつないだ図2に示す形状であった。一方の正方形が反応スポット、もう1つの正方形が流路の試料貼着部である。なお、このインクジェットプリンターは、ブラックインクカートリッジ2個、カラーインクカートリッジ(マゼンタ、シアン、イエロー)3個を搭載し、最高解像度が5760 x 1440 dpi、最小液滴量が3pLである。図2に示すパターンをパソコンの描画ソフトで描き、これを上記インクジェットプリンターで印刷した。紫外線硬化性インクを全てのインクカートリッジに充填し、印刷はモノクロ印刷に設定して行った。また、紙はろ紙を用いた。
2. Printing of the flow path, etc. Using a piezo inkjet printer (PX-101) commercially available from Epson, the ink cartridge was filled with the UV curable ink prepared as described above and the flow path was printed. . The printed flow path had a shape shown in FIG. 2 in which two squares each having a side of 3 mm were connected by a flow path having a length of 3 mm and a width of 1.5 mm. One square is a reaction spot, and the other square is a sample sticking part of the flow path. This ink jet printer is equipped with two black ink cartridges and three color ink cartridges (magenta, cyan, yellow), the maximum resolution is 5760 x 1440 dpi, and the minimum droplet amount is 3 pL. The pattern shown in FIG. 2 was drawn with the drawing software of the personal computer, and this was printed with the said inkjet printer. All the ink cartridges were filled with ultraviolet curable ink, and printing was performed by setting to monochrome printing. The paper used was filter paper.
 同時に裏面にも紫外線硬化性インクで印刷した。裏面には、図2に示すパターンの全体を囲包する長方形をベタ印刷した。 At the same time, the back side was printed with ultraviolet curable ink. On the back side, a solid rectangle that encloses the entire pattern shown in FIG. 2 was printed.
3.紫外線硬化
 市販の紫外線照射装置を用い、波長365nmの紫外線を600mW/cm2のエネルギー密度で60秒間照射し、インクを硬化させた。描かれたパターンの一方の正方形に食用赤色着色剤溶液を添加したところ、着色剤溶液は、流路を通過して他方の正方形に到達し、パターン全体が赤色になった。また、液漏れは認められなかった。4週間後、同じ試験を行ったところ、同じ結果が得られた。従って、描かれたパターンは、経時的にも安定であることが確認された。
3. Ultraviolet curing Using a commercially available ultraviolet irradiation device, ultraviolet rays having a wavelength of 365 nm were irradiated for 60 seconds at an energy density of 600 mW / cm 2 to cure the ink. When the edible red colorant solution was added to one square of the drawn pattern, the colorant solution passed through the channel and reached the other square, and the entire pattern turned red. Moreover, no liquid leakage was observed. After 4 weeks, the same test was conducted and the same result was obtained. Therefore, it was confirmed that the drawn pattern was stable over time.
4. 試薬のコーティング
 反応スポットとなる一方の正方形に、pH指示薬をコーティングした。コーティングしたpH指示薬は、ブロモチモールブルー(BTB)、チモールブルー(TB)及びメチルレッド(MR)の混合物である。BTBとTBには、脂溶性を高めるために長鎖アルキル基を導入した。各指示薬はポリ(1-ビニルピロリドン-co-スチレン)(P(VP-St))から成るエマルションナノ粒子に内包させ、エマルションを試薬液として用いた。以下、これらの操作を詳細に説明する。
4). Reagent coating One square serving as a reaction spot was coated with a pH indicator. The coated pH indicator is a mixture of bromothymol blue (BTB), thymol blue (TB) and methyl red (MR). In BTB and TB, long-chain alkyl groups were introduced in order to increase fat solubility. Each indicator was encapsulated in emulsion nanoparticles composed of poly (1-vinylpyrrolidone-co-styrene) (P (VP-St)), and the emulsion was used as a reagent solution. Hereinafter, these operations will be described in detail.
(1)  BTBへのアルキル鎖の導入
 下記スキームに従い、BTBへアルキル鎖を導入した。
(1) Introduction of alkyl chain into BTB According to the following scheme, an alkyl chain was introduced into BTB.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 具体的には次のように行った。
(i) BTB-Na (147.85 mg、0.229 mmol、1 eq)とトリメチルステアリルアンモニウムクロリド(79.51 mg、0.228 mmol、1eq)をMilli-Q水(商品名)に溶解した。
(ii) (i)の溶液を、連続抽出装置を用いて一夜クロロホルム層へ抽出した。
(iii) 翌日、得られたクロロホルム層を無水硫酸ナトリウムで乾燥させ、乾燥剤をろ別した。クロロホルムを減圧除去し、さらに真空ポンプで乾燥させた。化合物は、収量136.6 mg、収率64.0 %で得られた。
Specifically, it was performed as follows.
(i) BTB-Na (147.85 mg, 0.229 mmol, 1 eq) and trimethylstearyl ammonium chloride (79.51 mg, 0.228 mmol, 1 eq) were dissolved in Milli-Q water (trade name).
(ii) The solution of (i) was extracted into the chloroform layer overnight using a continuous extraction apparatus.
(iii) On the next day, the obtained chloroform layer was dried over anhydrous sodium sulfate, and the desiccant was filtered off. Chloroform was removed under reduced pressure and further dried with a vacuum pump. Compound 1 was obtained with a yield of 136.6 mg and a yield of 64.0%.
(2) アルキル鎖を導入したBTBを含むナノ粒子の作製
(i) 化合物(i)17.7 mgをエタノール 20 mLに溶解した。
(ii) 38 %(w/w) ポリ(1-ビニルピロリドン-co-スチレン)(P(VP-St))エマルション in H2O, (64 %(w/w)スチレン(乾燥基準)), (平均粒子径245 nm)) (Aldrich社製) P(VP-ST)エマルション1.05 g、Milli-Q水(商品名)40 mL、エタノール80mLを300 mLナスフラスコに取って攪拌し、(i)を徐々に滴下した。
(iii)エタノールおよび水を減圧除去し、得られた濃縮液にMilli-Q水(商品名)を加えて10 gとした。
(iv) (iii)で得られた分散液100μLをマイクロチューブに取り、マイクロチューブ用遠心分離機でフィルターを用いて遠心分離(RCF=10,000、Time=30 min)した。その結果透明なろ液が得られたため、BTBはナノ粒子から漏れ出ていないことを確認した。
(2) Preparation of nanoparticles containing BTB with alkyl chains
(i) Compound (i) 17.7 mg was dissolved in ethanol 20 mL.
(ii) 38% (w / w) poly (1-vinylpyrrolidone-co-styrene) (P (VP-St)) emulsion in H 2 O, (64% (w / w) styrene (dry basis)), (Average particle size 245 nm)) (Aldrich) P (VP-ST) emulsion 1.05 g, Milli-Q water (trade name) 40 mL, ethanol 80 mL were placed in a 300 mL eggplant flask and stirred, (i) Was gradually added dropwise.
(iii) Ethanol and water were removed under reduced pressure, and Milli-Q water (trade name) was added to the resulting concentrated solution to make 10 g.
(iv) 100 μL of the dispersion obtained in (iii) was placed in a microtube and centrifuged with a filter using a microtube centrifuge (RCF = 10,000, Time = 30 min). As a result, a transparent filtrate was obtained, and it was confirmed that BTB did not leak from the nanoparticles.
(3) TBへのアルキル鎖の導入
 下記スキームに従い、TBへアルキル鎖を導入した。
(3) Introduction of alkyl chain into TB According to the following scheme, an alkyl chain was introduced into TB.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 具体的には次のように行った。
(i) TB-Na (49.12 mg、0.101 mmol、1 eq)とトリドデシルメチルアンモニウムクロリド(58.24 mg、0.102 mmol、1 eq)をMilli-Q水(商品名)に溶解した。
(ii) (i)の溶液を、分液漏斗を用いて3回抽出を行い、クロロホルム層を取り出した。
(iii) 得られたクロロホルム層に飽和塩化ナトリウム水溶液を加えてもう一度抽出した。
(iv) 無水硫酸ナトリウムで乾燥させ、乾燥剤をろ別した。クロロホルムを減圧除去し、さらに真空ポンプで乾燥させた。化合物は、収量92.5 mg、収率67.6 %で得られた。
Specifically, it was performed as follows.
(i) TB-Na (49.12 mg, 0.101 mmol, 1 eq) and tridodecylmethylammonium chloride (58.24 mg, 0.102 mmol, 1 eq) were dissolved in Milli-Q water (trade name).
(ii) The solution of (i) was extracted three times using a separatory funnel, and the chloroform layer was taken out.
(iii) A saturated aqueous sodium chloride solution was added to the resulting chloroform layer and extracted once more.
(iv) It was dried over anhydrous sodium sulfate, and the desiccant was filtered off. Chloroform was removed under reduced pressure and further dried with a vacuum pump. Compound 2 was obtained in a yield of 92.5 mg and a yield of 67.6%.
(4) アルキル鎖を導入したTBを含むナノ粒子の作製
(i) 化合物(2)18.63 mgをエタノール 20 mLに溶解した。
(ii) 38 %(w/w) P(VP-ST)エマルション1.05 g、Milli-Q水(商品名)40 mL、エタノール80mLを300 mlナスフラスコに取って攪拌し、(1)を徐々に滴下した。
(iii) エタノールおよび水を減圧除去し、得られた濃縮液にMilli-Qを加えて10 gとした。
(iv) (iii)で得られた分散液100μLをマイクロチューブに取り、マイクロチューブ用遠心分離機でフィルターを用いて遠心分離(RCF=10,000、Time=30min)した。その結果透明なろ液が得られたため、TBはナノ粒子から漏れ出ていないことを確認した。
(4) Fabrication of nanoparticles containing TB with alkyl chain
(i) Compound (2) 18.63 mg was dissolved in ethanol 20 mL.
(ii) Add 1.05 g of 38% (w / w) P (VP-ST) emulsion, 40 mL of Milli-Q water (trade name) and 80 mL of ethanol to a 300 mL eggplant flask and stir. It was dripped.
(iii) Ethanol and water were removed under reduced pressure, and Milli-Q was added to the resulting concentrated solution to make 10 g.
(iv) 100 μL of the dispersion obtained in (iii) was placed in a microtube and centrifuged with a filter using a microtube centrifuge (RCF = 10,000, Time = 30 min). As a result, a transparent filtrate was obtained, and it was confirmed that TB did not leak from the nanoparticles.
(5) MRのナノ粒子への含有
 MRは前二者に比べて脂溶性が高く、MRナトリウム塩が有機層に溶解してしまうため、アルキル鎖の無い状態でナノ粒子に内包させた。具体的には次のように行った。
(i) MR 8.1mgをエタノール 20mLに溶解した。
(ii) 38 %(w/w) P(VP-ST)エマルション 1.05g、Milli-Q水(商品名)40mL、エタノール 80mLを300 mLナスフラスコに取って攪拌し、(i)を徐々に滴下した。
(iii)エタノールおよび水を減圧除去し、得られた濃縮液にMilli-Q水(商品名)を加えて10gとした。
(iv) 減圧除去の過程で(iii)から、ナノ粒子に収まりきらなかったMRの沈殿物が生成した。これらを1.2μmシリンジフィルターで取り除いた。
(v) (iv) 100μLをマイクロチューブに取り、マイクロチューブ用遠心分離機でフィルターを用いて遠心分離(RCF=10,000、Time=30 min)した。その結果赤色に着色していたため、ナノ粒子からのMRの漏れを確認した。
(5) Inclusion of MR in nanoparticles MR is more lipophilic than the former two, and MR sodium salt dissolves in the organic layer, so it was encapsulated in nanoparticles without an alkyl chain. Specifically, it was performed as follows.
(i) MR 8.1 mg was dissolved in ethanol 20 mL.
(ii) 38% (w / w) P (VP-ST) emulsion 1.05g, Milli-Q water (trade name) 40mL, ethanol 80mL are placed in a 300 mL eggplant flask and stirred, and (i) is gradually added dropwise. did.
(iii) Ethanol and water were removed under reduced pressure, and Milli-Q water (trade name) was added to the resulting concentrated solution to make 10 g.
(iv) In the process of removing under reduced pressure, a precipitate of MR that did not fit into the nanoparticles was generated from (iii). These were removed with a 1.2 μm syringe filter.
(v) (iv) 100 μL was taken in a microtube and centrifuged with a filter using a microtube centrifuge (RCF = 10,000, Time = 30 min). As a result, it was colored red, so MR leakage from the nanoparticles was confirmed.
(6) 試薬液の印刷
(i) 上記のように調製した、アルキル基導入BTB含有エマルション、アルキル基導入TB含有エマルション及びMR含有エマルションを220:330:660 (μL)の割合で混合した。
(ii) インクのpH応答性を明確にするため、(i)の分散液:0.1M NaOH溶液=1210:36.3 (μL)で混合し、溶液の色が緑色になったことを確認した。
(iii) (ii)のインク:グリセリン:2-プロパノール:Milli-Q=1246.3:500:1500:1753.7 (μL)の割合で混合し、粒子の固形分率が0.484 %(w/w)になるように調整した。また、グリセリンは粘度調整(増粘剤)およびプリントヘッドの乾燥防止のため、2-プロパノールは表面張力調整のために加えた。
(iv) 調製したpH指示薬液を限外ろ過して固形物を除去し、上記と同じインクジェットプリンターのインクカートリッジに充填して、図2に示すパターンの一方の正方形部分に印刷し、乾燥させた。
(6) Printing reagent solution
(i) The alkyl group-introduced BTB-containing emulsion, the alkyl group-introduced TB-containing emulsion and the MR-containing emulsion prepared as described above were mixed at a ratio of 220: 330: 660 (μL).
(ii) In order to clarify the pH responsiveness of the ink, the dispersion of (i): 0.1M NaOH solution = 110: 36.3 (μL) was mixed, and it was confirmed that the color of the solution became green.
(iii) The ink of (ii): glycerin: 2-propanol: Milli-Q = 1246.3: 500: 1500: 1753.7 (μL) is mixed, and the solids content of the particles becomes 0.484% (w / w) Adjusted as follows. Glycerin was added for adjusting the viscosity (thickening agent) and preventing the print head from drying, and 2-propanol was added for adjusting the surface tension.
(iv) The prepared pH indicator solution was ultrafiltered to remove solids, filled in the ink cartridge of the same inkjet printer as described above, printed on one square portion of the pattern shown in FIG. 2, and dried. .
5. pH測定
 クエン酸およびりん酸水素二ナトリウム・12水和物(Na2HPO4・12H2O)を用いてpH 4.0、5.0、6.0、7.0、8.0のバッファーを調製した。また、炭酸ナトリウムNa2CO3および炭酸水素ナトリウムNaHCO3を用いてpH 9.0のバッファーを調製した。
5. pH measurement Buffers of pH 4.0, 5.0, 6.0, 7.0, and 8.0 were prepared using citric acid and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 · 12H 2 O). In addition, a pH 9.0 buffer was prepared using sodium carbonate Na 2 CO 3 and sodium bicarbonate NaHCO 3 .
 これらの各pHを有する標準試料液各4μLを、図2に示すパターンの、pH指示薬をコーティングしていない方の正方形に滴下した。滴下した標準試料液は流路を通ってpH指示薬をコーティングした正方形(反応スポット)に到達し、pH指示薬と反応した。これにより、pH指示薬は、各標準試料液と反応して変色した。スキャナを用いて画像として取り込んだのち、デジタルカラーアナリシスで定量データを得た。 4 μL of each standard sample solution having each pH was dropped onto the square of the pattern shown in FIG. 2 and not coated with a pH indicator. The dropped standard sample solution reached the square (reaction spot) coated with the pH indicator through the channel and reacted with the pH indicator. Thereby, the pH indicator reacted with each standard sample solution and changed its color. After capturing as an image using a scanner, quantitative data was obtained by digital color analysis.
 結果を図3に示す。図3中、縦軸のa*はL*a*b*表色系のa*を示す。図3から明らかなように、pHが大きくなるほどa*値は小さくなっており、このpH測定用チップによりpHが測定可能なことが明らかになった。 The results are shown in FIG. In FIG. 3, a * on the vertical axis represents a * in the L * a * b * color system. As is clear from FIG. 3, the a * value decreases as the pH increases, and it has become clear that the pH can be measured using this pH measuring chip.
実施例2
1. 鉛イオン検出チップの作製
 反応スポットにコーティングする試薬として、鉛イオンの指示薬であるキシレノールオレンジ) (Alfa Aesar社製)を用いたことを除き、実施例1と同様にして鉛イオン検出チップを作製した。
Example 2
1. Preparation of lead ion detection chip A lead ion detection chip was prepared in the same manner as in Example 1 except that xylenol orange (Alfa Aesar), which is an indicator of lead ions, was used as a reagent for coating the reaction spot. .
 0.75 mM キシレノールオレンジ-10 %(w/w)グリセリン-30 %(w/w)2-プロパノール水溶液を調製し、限外ろ過後、実施例1で用いたものと同じインクジェットプリンターのインクカートリッジに充填し、実施例1と同様に反応用スポットの正方形部分に印刷した。 Prepare 0.75 mM xylenol orange -10 (% (w / w) glycerin-30% (w / w) 2-propanol aqueous solution, and after ultrafiltration, fill the ink cartridge of the same inkjet printer used in Example 1 In the same manner as in Example 1, printing was performed on the square portion of the reaction spot.
2. 鉛イオンの測定
 標準試料液として、10-2、10-3、10-4、10-5 M塩化鉛(II)水溶液をそれぞれ調整し、実施例1と同様、各4μLを鉛イオン指示薬をコーティングしていない方の正方形に滴下した。滴下した標準試料液は流路を通って鉛イオン指示薬をコーティングした正方形(反応スポット)に到達し、鉛イオン指示薬と反応した。これにより、鉛イオン指示薬は、各標準試料液と反応して変色した。スキャナを用いて画像として取り込んだのち、デジタルカラーアナリシスで定量データを得た。
2. Measurement of lead ions 10 -2 , 10 -3 , 10 -4 , and 10 -5 M lead (II) chloride aqueous solutions are prepared as standard sample solutions, respectively, and 4 μL each is coated with a lead ion indicator as in Example 1. It was dripped at the square which is not. The dropped standard sample solution reached the square (reaction spot) coated with the lead ion indicator through the channel and reacted with the lead ion indicator. Thereby, the lead ion indicator reacted with each standard sample solution, and discolored. After capturing as an image using a scanner, quantitative data was obtained by digital color analysis.
 結果を図4に示す。図4に示す通り、鉛イオン濃度が約10-3Mになるとa*値が急に立ち上がっているので、この鉛イオン検出チップにより、検出限界を約10-3Mとして鉛イオンを検出できることが明らかになった。 The results are shown in FIG. As shown in Fig. 4, since the a * value suddenly rises when the lead ion concentration reaches about 10 -3 M, this lead ion detection chip can detect lead ions with a detection limit of about 10 -3 M. It was revealed.
実施例3
 上記した図6及び図7に示す流路等のパターンを印刷した。エプソン社から市販されているピエゾ方式のインクジェットプリンター(PX-101)を用いて、上記の通り調製した紫外線硬化性インクをインクカートリッジに充填して表面カバーした流路等及びカバーの印刷を行った。流路等は、中央に円形の試料点着部10aを有し、ここから放射状に8本の表面にカバー20000が施された流路10が延び、各流路の端部に円形の反応スポット12が位置する図6に示す形状である。実際に印刷した流路等は試料点着部10aが半径2.5mmの円、流路10が幅1.0mm、長さ2.5mmの長方形、カバー20000は半径5mmの大円から半径2.5mmの小円を切り取った輪状で、反応スポット12が半径が2mmの円8個であった。なお、このインクジェットプリンターは、ブラックインクカートリッジ2個、カラーインクカートリッジ(マゼンタ、シアン、イエロー)3個を搭載し、最高解像度が5760 x 1440 dpi、最小液滴量が3pLである。図6に示すパターンをパソコンの描画ソフトで描き、これを上記インクジェットプリンターで印刷した。紫外線硬化性インクを全てのインクカートリッジに充填し、印刷はカラー印刷に設定して行った。また、紙はろ紙を用いた。
Example 3
The patterns such as the flow paths shown in FIGS. 6 and 7 were printed. Using a piezo ink jet printer (PX-101) commercially available from Epson, the ink cartridge was filled with the UV curable ink prepared as described above, and the surface covered channels and the cover were printed. . The flow path has a circular sample spotting portion 10a at the center, from which a flow path 10 having eight surfaces radially covered with a cover 20000 extends, and a circular reaction spot at the end of each flow path. 6 is the shape shown in FIG. Actually printed flow path etc., the sample spot 10a is a circle with a radius of 2.5mm, the flow path 10 is a rectangle with a width of 1.0mm and a length of 2.5mm, and the cover 20000 is a large circle with a radius of 5mm to a small circle with a radius of 2.5mm The reaction spots 12 were eight circles with a radius of 2 mm. This ink jet printer is equipped with two black ink cartridges and three color ink cartridges (magenta, cyan, yellow), the maximum resolution is 5760 x 1440 dpi, and the minimum droplet amount is 3 pL. The pattern shown in FIG. 6 was drawn with the drawing software of the personal computer, and this was printed with the said inkjet printer. All ink cartridges were filled with ultraviolet curable ink, and printing was performed with color printing set. The paper used was filter paper.
実施例4~16
 種々の光重合開始剤を用いた実験を行った。すなわち、光重合開始剤を、表1に示すもの(濃度も表1に示す)としたことを除き実施例1と同じ操作を行った。いずれの光重合開始剤を用いた場合も実施例1と同様な結果が得られた。

















Examples 4 to 16
Experiments using various photoinitiators were conducted. That is, the same operation as Example 1 was performed except having used the photoinitiator as what was shown in Table 1 (a density | concentration is also shown in Table 1). The same results as in Example 1 were obtained when any photopolymerization initiator was used.

















Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 10 流路
 10a 試料貼着部
  10b 流路10の外縁断面
 12 反応スポット
 50 紙
 100 紙表面
 200 紙裏面
 1000 流路等の断面
 10000 チップの使用時に液が接触する部分
 10000a 裏面からの紫外線硬化性インクコーティングの断面
 20000 カバー
DESCRIPTION OF SYMBOLS 10 Flow path 10a Sample sticking part 10b Outer edge cross section of flow path 12 Reaction spot 50 Paper 100 Paper surface 200 Paper back surface 1000 Cross section of flow path etc. 10000 Portion where liquid contacts when using chip 10000a UV curable ink from back surface Cross section of coating 20000 Cover

Claims (9)

  1.  紫外線硬化性インクで紙上に所望の流路及び/又は反応スポットの外縁をインクジェットプリンターにより印刷する工程と、紙上に吐出された前記紫外線硬化性インクに紫外線を照射して該インクを硬化させる工程と、前記反応スポットに、反応に必要な試薬をコーティングする工程を含む、紙ベース反応用チップの製造方法。 A step of printing an outer edge of a desired flow path and / or reaction spot on paper with an ultraviolet curable ink, and a step of irradiating the ultraviolet curable ink discharged on the paper with ultraviolet rays to cure the ink. A method for producing a paper-based reaction chip, comprising a step of coating the reaction spot with a reagent necessary for the reaction.
  2.  前記コーティング工程が、インクジェットプリンターにより試薬液を前記反応スポット上に印刷することにより行われる請求項1記載の方法。 The method according to claim 1, wherein the coating step is performed by printing a reagent solution on the reaction spot with an ink jet printer.
  3.  少なくとも前記流路及び/又は反応スポットの裏面に、紫外線硬化性インクをコーティングする工程をさらに含む請求項1又は2記載の方法。 The method according to claim 1 or 2, further comprising a step of coating an ultraviolet curable ink on at least the back surface of the flow path and / or the reaction spot.
  4.  前記裏面への紫外線硬化性インクのコーティングも、インクジェットプリンターで紫外線硬化性インクを印刷することにより行う請求項3記載の方法。 4. The method according to claim 3, wherein the coating of the ultraviolet curable ink on the back surface is also performed by printing the ultraviolet curable ink with an inkjet printer.
  5.  前記流路及び/又は反応スポットの少なくとも一部を、紙の表面から紫外線硬化性インクで被覆し、硬化させる工程をさらに含む請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, further comprising a step of coating at least a part of the flow path and / or the reaction spot with an ultraviolet curable ink from the surface of paper and curing.
  6.  紙の表面から紫外線硬化性インクで被覆する領域は、試料点着部と反応スポットを連通する流路の表面の全部又は一部である請求項5記載の方法。 6. The method according to claim 5, wherein the region covered with the ultraviolet curable ink from the surface of the paper is all or a part of the surface of the flow path communicating the sample spotting portion and the reaction spot.
  7.  前記被覆工程も、インクジェットプリンターで紫外線硬化性インクを印刷することにより行う請求項6記載の方法。 The method according to claim 6, wherein the covering step is also performed by printing ultraviolet curable ink with an ink jet printer.
  8.  前記被覆工程は、流路及び/又は反応スポットの外縁をインクジェットプリンターにより印刷する工程と同時に行われる請求項7記載の方法。 The method according to claim 7, wherein the covering step is performed simultaneously with the step of printing the outer edge of the flow path and / or the reaction spot with an ink jet printer.
  9.  請求項1~8のいずれか1項に記載の方法により製造した紙ベース反応用チップ。 A paper-based reaction chip produced by the method according to any one of claims 1 to 8.
PCT/JP2012/056086 2011-05-20 2012-03-09 Paper-based chip for reaction and method for producing same WO2012160857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516234A JP5935153B2 (en) 2011-05-20 2012-03-09 Paper-based reaction chip and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011113638 2011-05-20
JP2011-113638 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012160857A1 true WO2012160857A1 (en) 2012-11-29

Family

ID=47216946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056086 WO2012160857A1 (en) 2011-05-20 2012-03-09 Paper-based chip for reaction and method for producing same

Country Status (2)

Country Link
JP (1) JP5935153B2 (en)
WO (1) WO2012160857A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133192A1 (en) 2013-02-28 2014-09-04 Ricoh Company, Ltd. Fluidic device and fabrication method thereof, and thermal transfer medium for fluidic device fabrication
JP2015052584A (en) * 2013-09-08 2015-03-19 山田 健太郎 Detection of transferrin family protein using paper device
JP2015117997A (en) * 2013-12-18 2015-06-25 株式会社リコー Fluid device for inspection, transfer material, and production method of fluid device for inspection
GB2527779A (en) * 2014-07-01 2016-01-06 Univ Southampton Fluid flow device with flow control and method for making the same
JP2016045199A (en) * 2014-08-25 2016-04-04 ゼロックス コーポレイションXerox Corporation Design of paper sensor
JP2016050912A (en) * 2014-09-02 2016-04-11 学校法人慶應義塾 Paper substrate device and manufacturing method of the same
WO2016178013A1 (en) * 2015-05-07 2016-11-10 University Of Southampton Fluid flow device on a porous substrate and method for making the same
US9500647B2 (en) 2013-09-19 2016-11-22 Ricoh Company, Ltd. Fluidic device, testing device, and method for fabricating fluidic device
CN106732840A (en) * 2017-01-24 2017-05-31 厦门大学 The 3D printing method and device of nanofiber paper substrate layered manufacturing micro-fluidic chip
KR101877365B1 (en) * 2017-02-16 2018-07-13 광주과학기술원 A kit based on the paper for collecting dust particles in air
US10151699B2 (en) 2015-10-12 2018-12-11 Hong Kong Baptist University Development of lead ion testing paper with naked-eye observable readout for ten min on-site detection
CN109482247A (en) * 2018-10-18 2019-03-19 哈尔滨工业大学(深圳) A kind of micro-fluidic chip manufacturing process and micro-fluidic chip
JP2021504884A (en) * 2017-12-22 2021-02-15 エルジー・ケム・リミテッド A washer for a secondary battery, a secondary battery including the washer, and a method for manufacturing the washer for the secondary battery.
WO2021220716A1 (en) 2020-04-28 2021-11-04 デクセリアルズ株式会社 Testing chip and method for manufacturing same
US11185857B2 (en) 2016-06-02 2021-11-30 University Of Southampton Fluid flow device and method for making the same
WO2022209535A1 (en) 2021-04-02 2022-10-06 デクセリアルズ株式会社 Testing chip and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340776B (en) 2019-08-29 2024-02-13 佳能株式会社 Method for manufacturing microfluidic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222611A (en) * 2001-11-20 2003-08-08 Nec Corp Separating apparatus and method therefor, and manufacturing method thereof
JP2005205670A (en) * 2004-01-21 2005-08-04 Shinshu Tlo:Kk Method and apparatus for forming three-dimensional object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222611A (en) * 2001-11-20 2003-08-08 Nec Corp Separating apparatus and method therefor, and manufacturing method thereof
JP2005205670A (en) * 2004-01-21 2005-08-04 Shinshu Tlo:Kk Method and apparatus for forming three-dimensional object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENTO MAEJIMA ET AL.: "UV Ink o Mochiita Kami Base Micro Ryutai Chip no Sakusei", 91ST ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2011) KOEN YOKOSHU 2, vol. 91, no. 2, 11 March 2011 (2011-03-11), pages 481 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133192A1 (en) 2013-02-28 2014-09-04 Ricoh Company, Ltd. Fluidic device and fabrication method thereof, and thermal transfer medium for fluidic device fabrication
JP2015052584A (en) * 2013-09-08 2015-03-19 山田 健太郎 Detection of transferrin family protein using paper device
US9500647B2 (en) 2013-09-19 2016-11-22 Ricoh Company, Ltd. Fluidic device, testing device, and method for fabricating fluidic device
JP2015117997A (en) * 2013-12-18 2015-06-25 株式会社リコー Fluid device for inspection, transfer material, and production method of fluid device for inspection
GB2527779A (en) * 2014-07-01 2016-01-06 Univ Southampton Fluid flow device with flow control and method for making the same
JP2016045199A (en) * 2014-08-25 2016-04-04 ゼロックス コーポレイションXerox Corporation Design of paper sensor
JP2016050912A (en) * 2014-09-02 2016-04-11 学校法人慶應義塾 Paper substrate device and manufacturing method of the same
US10794905B2 (en) 2015-05-07 2020-10-06 University Of Southampton Fluid flow device on a porous substrate and method for making the same
WO2016178013A1 (en) * 2015-05-07 2016-11-10 University Of Southampton Fluid flow device on a porous substrate and method for making the same
US10151699B2 (en) 2015-10-12 2018-12-11 Hong Kong Baptist University Development of lead ion testing paper with naked-eye observable readout for ten min on-site detection
US11185857B2 (en) 2016-06-02 2021-11-30 University Of Southampton Fluid flow device and method for making the same
CN106732840A (en) * 2017-01-24 2017-05-31 厦门大学 The 3D printing method and device of nanofiber paper substrate layered manufacturing micro-fluidic chip
KR101877365B1 (en) * 2017-02-16 2018-07-13 광주과학기술원 A kit based on the paper for collecting dust particles in air
US11557795B2 (en) 2017-08-29 2023-01-17 Lg Energy Solution, Ltd. Washer for secondary battery, secondary battery including same, and method for manufacturing washer for secondary battery
JP2021504884A (en) * 2017-12-22 2021-02-15 エルジー・ケム・リミテッド A washer for a secondary battery, a secondary battery including the washer, and a method for manufacturing the washer for the secondary battery.
JP7014373B2 (en) 2017-12-22 2022-02-01 エルジー・ケム・リミテッド A washer for a secondary battery, a secondary battery including the washer, and a method for manufacturing the washer for the secondary battery.
CN109482247A (en) * 2018-10-18 2019-03-19 哈尔滨工业大学(深圳) A kind of micro-fluidic chip manufacturing process and micro-fluidic chip
WO2021220716A1 (en) 2020-04-28 2021-11-04 デクセリアルズ株式会社 Testing chip and method for manufacturing same
WO2022209535A1 (en) 2021-04-02 2022-10-06 デクセリアルズ株式会社 Testing chip and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2012160857A1 (en) 2014-07-31
JP5935153B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5935153B2 (en) Paper-based reaction chip and manufacturing method thereof
Yamada et al. Paper‐based inkjet‐printed microfluidic analytical devices
Tomazelli Coltro et al. Recent advances in low‐cost microfluidic platforms for diagnostic applications
Li et al. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing
US11097269B2 (en) Microfluidic device and sample analysis method
WO2017115863A1 (en) Microfluid device and observation method
CN108940389A (en) Paper substrate micro-fluidic chip and its preparation method and application based on laser printing
CN107109320B (en) Nucleic acid introduction method, nucleic acid detection method, biological component analysis method, reagent kit, and array device for quantitative determination of biological component
JP2021099344A (en) analysis method
WO2010022324A2 (en) Methods of patterning paper
Selvakumar et al. Sensory materials for microfluidic paper based analytical devices-A review
Das et al. based microfluidic devices: Fabrication, detection, and significant applications in various fields
He et al. A low-cost and rapid microfluidic paper-based analytical device fabrication method: flash foam stamp lithography
WO2016159068A1 (en) Microwell array, manufacturing method thereof, microfluidic device, method for sealing aqueous liquid in well of microwell array, and method for analyzing aqueous liquid
Trinh et al. Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses
JP2008050407A (en) Photopolymerizable composition containing organic pigment microparticle
Zandi Shafagh et al. Reaction injection molding of hydrophilic-in-hydrophobic femtolitre-well arrays
CN107233853B (en) Drop array generator predefined by reagent, manufacturing method and drop generating method
EP3463661B1 (en) Fluid flow device and method for making the same
KR20220121872A (en) Inspection chip, and method of manufacturing the same
JP2011083996A (en) Ejection inspecting method and ejection inspecting recording medium
KR20150048541A (en) Encoded microcapsules and microarray fabricated therefrom
KR101872091B1 (en) Device for manufacturing vertically encoded hydrogel microparticles for multiplexed detection of target biological molecules, method for preparing the same, and method for preparing the microparticles using the device
CN113567405B (en) Paper-based microfluid diode device and visual biomolecule detection method
Supharoek et al. A simple microfluidic integrated with an optical sensor for micro flow injection colorimetric determination of glutathione

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789105

Country of ref document: EP

Kind code of ref document: A1