JP2016049915A - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP2016049915A
JP2016049915A JP2014177332A JP2014177332A JP2016049915A JP 2016049915 A JP2016049915 A JP 2016049915A JP 2014177332 A JP2014177332 A JP 2014177332A JP 2014177332 A JP2014177332 A JP 2014177332A JP 2016049915 A JP2016049915 A JP 2016049915A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
pressure
liquid separator
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014177332A
Other languages
English (en)
Inventor
角田 功
Isao Tsunoda
功 角田
和馬 市川
Kazuma Ichikawa
和馬 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014177332A priority Critical patent/JP2016049915A/ja
Publication of JP2016049915A publication Critical patent/JP2016049915A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】騒音の増大等の不具合を招くことなく、暖房負荷の大きい状況においても空調空気を迅速に温めることができる車両用空調装置を提供する。【解決手段】コンプレッサ21で圧縮された冷媒の熱を放熱する室内コンデンサ55と、外気と熱交換する室外熱交換器24を設ける。室内コンデンサ55の下流側の第1の減圧弁37と第2の減圧弁38の間に、中間圧の冷媒をガス冷媒と液冷媒とに分離する第2の気液分離器39を設ける。中間圧のガス冷媒をコンプレッサ21に導入するインジェクション通路42と、中間圧の液冷媒を第2の減圧弁38で減圧して室外熱交換器24に導入する室外熱交換器側通路43を設ける。室外熱交換器24で熱交換された冷媒と、中間圧のガス冷媒とをコンプレッサ21導入して暖房運転を行う。第2の気液分離器39に、その内部を昇温可能な電気ヒータ44等の加熱手段を設ける。【選択図】図1

Description

この発明は、ヒートポンプサイクルを利用して暖房運転を行う車両用空調装置に関するものである。
電気自動車等のエンジンを具備しない車両等においては、ヒートポンプサイクルを利用して暖房運転を行う車両用空調装置が用いられている。
この種の車両用空調装置の多くは、暖房運転時に、コンプレッサから吐出された冷媒が室内コンデンサで放熱された後に、暖房用減圧弁で膨張させられ、暖房用減圧弁で減圧された低温低圧の冷媒が室外熱交換器において外気と熱交換される。そして、このとき空調空気は、室内コンデンサを通過することで加熱され、暖房として車室内に供給される。
ところで、この種の車両用空調装置においては、外気温度が低くなると、室外熱交換器での吸熱量が減少してコンプレッサでの吸入圧力が低下する。そして、コンプレッサでの吸入圧力が低下すると、冷媒の比体積が増大して冷媒循環量が減少し、その結果、暖房能力が低下してしまう。
このため、この対策としてガスインジェクション方式を採用した車両用空調装置が案出されている(例えば、特許文献1参照)。
ガスインジェクション方式の車両用空調装置は、室内コンデンサの下流側に、室内コンデンサを通過した高圧の冷媒を中間圧に減圧する第1の減圧弁と、第1の減圧弁で減圧された中間圧の冷媒をさらに低圧に減圧する第2の減圧弁とが設けられ、第1の減圧弁と第2の減圧弁の間に、第1の減圧弁で減圧された冷媒を中間圧の液冷媒とガス冷媒とに分離する気液分離器が設けられている。気液分離器で分離された中間圧の液冷媒は、第2の減圧弁を通過して室外熱交換器に導入され、室外熱交換器で外気と熱交換された後にコンプレッサの吸入部に戻され、一方、気液分離器で分離された中間圧のガス冷媒はコンプレッサの吸入部に直接戻される。
したがって、この車両用空調装置においては、外気温度が低下し室外熱交換器での吸熱量が減少して室外熱交換器からコンプレッサへの冷媒の戻り量が減少することがあっても、気液分離器で分離された中間圧のガス冷媒がコンプレッサの吸入部に直接戻されるため、冷媒循環量が減少することによる暖房能力の低下を抑制することができる。
特開平9−39550号公報
上記従来のガスインジェクション方式の車両用空調装置においては、気液分離器で分離された中間圧のガス冷媒をコンプレッサの吸入部に直接戻すことで、外気温の低い状況でも暖房能力の低下をある程度補うことができるものの、暖房負荷がさらに大きい状況では迅速に空調空気を暖めることがむずかしい。
この対策として、空調ユニット内の通路の室内コンデンサの前後に加熱ヒータ等の別の熱源を設置することも考えられるが、その場合には、追加した熱源によって空調ユニット内の通路の通気抵抗が増大し、送風用のブロアの出力を高める等しなければ充分な風量を得られなくなる。したがって、この場合には、送風用のブロアの出力の増大によって車室内の騒音が増大する等の別の不具合を招くことになる。
そこでこの発明は、騒音の増大等の不具合を招くことなく、暖房負荷の大きい状況においても空調空気を迅速に温めることができる車両用空調装置を提供しようとするものである。
この発明に係る車両用空調装置は、上記課題を解決するために、冷媒を圧縮するコンプレッサ(例えば、実施形態のコンプレッサ21)と、前記コンプレッサで圧縮された冷媒の熱を放熱する室内コンデンサ(例えば、実施形態の室内コンデンサ55)と、冷媒の熱を外気と熱交換する室外熱交換器(例えば、実施形態の室外熱交換器24)と、前記室内コンデンサを通過した高圧の冷媒を中間圧に減圧する第1の減圧弁(例えば、実施形態の第1の減圧弁37)と、前記第1の減圧弁で減圧された中間圧の冷媒をさらに低圧に減圧する第2の減圧弁(例えば、実施形態の第2の減圧弁38)と、前記第1の減圧弁と前記第2の減圧弁の間に介装されて、前記第1の減圧弁で減圧された冷媒を前記中間圧のガス冷媒と液冷媒とに分離する気液分離器(例えば、実施形態の第2の気液分離器39)と、前記気液分離器で分離された前記中間圧のガス冷媒を前記コンプレッサの吸入部(例えば、実施形態の吸入部21c)に導入するインジェクション通路(例えば、実施形態のインジェクション通路42)と、前記気液分離器で分離された前記中間圧の液冷媒を前記第2の減圧弁で低圧に減圧して前記室外熱交換器に導入する室外熱交換器側通路(例えば、実施形態の室外熱交換器側通路43)と、を備え、前記室外熱交換器で熱交換された冷媒と、前記気液分離器で分離された前記中間圧のガス冷媒とを前記コンプレッサの吸入部に導入してガスインジェクション式の暖房運転を行う車両用空調装置において、前記気液分離器には、当該気液分離器内を昇温可能な加熱手段(例えば、実施形態の電気ヒータ44)が設けられるようにした。
これにより、気液分離器内が加熱手段によって昇温されると、気液分離器内の液冷媒が蒸発して分離されるガス冷媒の流量が増加する。この結果、コンプレッサの吸入部でより多くのガス冷媒が吸入され、コンプレッサの仕事量が増大して冷媒通路内を循環する冷媒量が増大するとともに、コンプレッサに吸入されるガス冷媒に加熱手段による熱量が加算される。
前記加熱手段は、前記ガスインジェクション式の暖房運転時に、暖房負荷が小さいときにオフにされ、暖房負荷が大きいときにオンにされるようにしても良い。
これにより、暖房負荷が小さい状況では、加熱手段の作動がオフにされてガスインジェクション式の暖房運転が行われる。このとき、気液分離器で自然に分離されたガス冷媒がコンプレッサの吸入部に導入される。一方、暖房負荷が大きい状況では、加熱手段の作動がオンにされることにより、気液分離器内が加熱手段によって昇温される。こうして気液分離器内が昇温されると、気液分離器内の液冷媒が蒸発して分離されるガス冷媒の流量が増加するとともに、コンプレッサに吸入されるガス冷媒に加熱手段による熱量が加算される。
前記ガスインジェクション式の暖房運転時に、前記加熱手段がオンにされるときには、前記気液分離器内に前記中間圧の液冷媒が残存するように、前記第1の減圧弁の開度が制御されることが望ましい。
この場合、気液分離器内での液冷媒からガス冷媒への相変換が安定的に行われるため、コンプレッサで吸入されるガス冷媒の流量を安定的に確保することが可能になる。
前記加熱手段は電気ヒータ(例えば、実施形態の電気ヒータ44)によって構成されることが好ましい。この場合、装置全体の大型化を招くことなく、気液分離器内を必要に応じて容易に昇温することができる。
この発明によれば、加熱手段によって気液分離器内を昇温することにより、気液分離器からコンプレッサに供給されるガス冷媒の流量を増大させ、かつそのガス冷媒に加熱手段による熱量を加算することができるため、暖房負荷の大きい状況においても空調空気を迅速に温めることができる。
また、この発明によれば、空調ユニット内の通路に熱源を追加設置するものでないことから、空調ユニット内の通路の通気抵抗が増大することがない。したがって、この発明によれば、風量の低下を補うために送風用のブロアの出力を高める必要がないことから、送風用のブロアの出力の増大によって騒音が増大する不具合を招くこともない。
この発明の一実施形態の車両用空調装置の構成図である。 この発明の一実施形態の車両用空調装置の構成図である。 この発明の一実施形態の車両用空調装置の構成図である。 この発明の一実施形態の車両用空調装置の構成図である。 この発明の一実施形態の車両用空調装置の小暖房負荷時の圧力−エンタルピ線図である。 この発明の一実施形態の車両用空調装置の中暖房負荷時の圧力−エンタルピ線図である。 この発明の一実施形態の車両用空調装置の大暖房負荷時の圧力−エンタルピ線図である。 この発明の一実施形態の車両用空調装置の作動の一例を示すフローチャートである。 この発明の他の実施形態の車両用空調装置の小暖房負荷時の圧力−エンタルピ線図である。 この発明の他の実施形態の車両用空調装置の中暖房負荷時の圧力−エンタルピ線図である。 この発明の他の実施形態の車両用空調装置の大暖房負荷時の圧力−エンタルピ線図である。 この発明の他の実施形態の車両用空調装置の作動の一例を示すフローチャートである。
以下、この発明の一実施形態を図面に基づいて説明する。
図1〜図4は、この実施形態に係る車両用空調装置10の構成図である。図1は、ガスインジェクション式の暖房運転時における冷媒の流れを示し、図2は、通常暖房運転時における冷媒の流れを示している。また、図3は、冷房運転時における冷媒の流れを示し、図4は、除湿運転時における冷媒の流れを示している。
この実施形態に係る車両用空調装置10は、車両駆動源としてのエンジン(内燃機関)を具備していない電気自動車等に搭載されている。車両用空調装置10は、空調ユニット11と、冷媒が循環可能なヒートポンプサイクル12と、冷媒を用いた空調制御を行う図示しない制御装置と、を主に備えている。
空調ユニット11は、空調空気が流通するダクト51と、このダクト51内に収容されたブロア52と、エバポレータ53と、エアミックスドア54と、室内コンデンサ55と、を備えている。
ダクト51は、空気取込口56a,56b及び空気吹き出し口57a,57bを有する。上述したブロア52、エバポレータ53、エアミックスドア54、及び、室内コンデンサ55は、ダクト51における空調空気の流通方向の上流側(空気取込口56a,56b側)から下流側(空気吹き出し口57a,57b側)に向けてこの順で配置されている。
空気取込口56a,56bは、それぞれ内気を取り込む内気取込口と、外気を取り込む外気取込口を構成している。空気取込口56a,56bは、内気ドア72と外気ドア73によってそれぞれ開閉され、例えば、図示しない制御装置による制御により内気ドア72と外気ドア73の開度が調整されることで、ダクト51内に流入する内気と外気の流量割合が調整される。
空気吹き出し口57a,57bは、それぞれVENT吹き出し口とDEF吹き出し口を構成している。各空気吹き出し口57a,57bは、VENTドア63とフットドア64によりそれぞれ開閉可能とされ、例えば、図示しない制御装置による制御によりVENTドア63とフットドア64の開閉が切り替えられることで、各空気吹き出し口57a,57bから吹き出される空気割合が調整される。
ブロア52は、例えば、図示しない制御装置による制御により印加される駆動電圧に応じて駆動され、空気取込口56a,56bからダクト51内に取り込まれた空調空気(内気及び外気の少なくとも一方)を下流側、つまりエバポレータ53及び室内コンデンサ55に向けて送出する。
エバポレータ53は、内部に流入した低圧の冷媒と車室内雰囲気(ダクト51内)との熱交換を行ない、例えば、冷媒が蒸発する際の吸熱によって、エバポレータ53を通過する空調空気を冷却する。
室内コンデンサ55は、内部に流入した高温かつ高圧の冷媒によって放熱可能であって、例えば、室内コンデンサ55を通過する空調空気を加熱する。
エアミックスドア54は、例えば、図示しない制御装置による制御によって回動操作される。エアミックスドア54は、ダクト51内のエバポレータ53の下流から室内コンデンサ55に向かう通風経路を開放する加熱位置と、室内コンデンサ55を迂回する通風経路を開放する冷却位置との間で回動する。これにより、エバポレータ53を通過した空調空気のうち、室内コンデンサ55に導入される風量と、室内コンデンサ55を迂回して車室内へ排出される風量と、の風量割合が調整される。
ヒートポンプサイクル12は、上述したエバポレータ53及び室内コンデンサ55と、冷媒を圧縮するコンプレッサ21と、車室外に配置されて冷媒と室外雰囲気との間で熱交換を行う室外熱交換器24と、を備えている。ヒートポンプサイクル12の冷媒流路31は、通常の冷房、暖房、除湿の各運転時に用いられる基本流路31Aの他に、後に詳述するガスインジェクション式の暖房運転時に用いられるガスインジェクション専用流路31Bを備えている。
冷媒流路31の基本流路31Aは、コンプレッサ21を中心に、コンプレッサ21の下流側(吐出部21a)に室内コンデンサ55が接続され、室内コンデンサ55のさらに下流側に暖房用減圧弁22が接続され、暖房用減圧弁22の下流側に室外熱交換器24が接続されている。そして、室外熱交換器24の下流側は三方弁25を介して冷房用通路28と直戻り通路29に分岐している。直戻り通路29には合流部33を介して第1の気液分離器26が接続され、第1の気液分離器26にはコンプレッサ21の吸入部21bが接続されている。また、冷房用通路28には、冷房用減圧弁27とエバポレータ53が上流側からこの順に並んで配置され、エバポレータ53の下流側は上記の合流部33に接続されている。
コンプレッサ21は、例えば、図示しない制御装置により制御されるモータによって駆動され、第1の気液分離器26からガス冷媒(気相の冷媒)を吸入するとともに、この冷媒を圧縮した後に、高温かつ高圧の冷媒として上述した室内コンデンサ55に吐出する。
基本流路31Aの室内コンデンサ55の下流側には、ガスインジェクション専用流路31Bが分岐する分岐部35が設けられている。基本流路31Aの分岐部35の下流側には、流路切換用の電磁弁36が設けられ、さらにその電磁弁36の下流側には、暖房用減圧弁22と、冷房用電磁弁23とが並列に配置されている。なお、電磁弁36は、例えば、図示しない制御装置による制御により、ガスインジェクション式の暖房運転を行う場合以外の状況において開状態とされる。
暖房用減圧弁22は、いわゆる絞り弁であって、室内コンデンサ55から吐出された冷媒を、減圧して膨張させた後、低温かつ低圧で気液2相(液相リッチ)の噴霧状の冷媒として室外熱交換器24に吐出する。
なお、この実施形態の暖房用減圧弁22は、通常の暖房運転時だけでなく、除湿運転の際等にも開口面積を拡大されて用いられる。
冷房用電磁弁23は、基本流路31A上において、暖房用減圧弁22の両側に設けられた第1分岐部32aと第2分岐部32bの間を接続するとともに暖房用減圧弁22を迂回する迂回流路32上に設けられ、例えば、図示しない制御装置による制御により開閉される。なお、冷房用電磁弁23は、通常の暖房運転の実行時には閉状態とされ、冷房運転の実行時には開状態とされる。
これにより、例えば、通常の暖房運転の実行時には、室内コンデンサ55から排出された冷媒は暖房用減圧弁22で大きく減圧され、低温かつ低圧の状態で室外熱交換器24に流入する。
一方、冷房運転の実行時には、室内コンデンサ55から排出された冷媒は冷房用電磁弁23を通過して高温の状態で室外熱交換器24に流入する。
室外熱交換器24は、車室外に配置され、内部に流入した冷媒と車室外雰囲気との間で熱交換を行なう。室外熱交換器24は、暖房運転の実行時には、内部に流入する低温かつ低圧の冷媒によって車室外雰囲気から吸熱可能であって、車室外雰囲気からの吸熱によって冷媒を昇温する。
一方、室外熱交換器24は、冷房運転の実行時には、内部に流入する高温の冷媒によって車室外雰囲気へと放熱可能であって、車室外雰囲気への放熱及びコンデンサーファン24aの送風によって冷媒を冷却する。
なお、室外熱交換器24の近傍部には、図示しない外気温センサが設けられ、その外気温センサの検出情報が制御装置に出力されるようになっている。外気温センサの検出信号は、例えば、暖房運転時に外気温に応じた暖房負荷を把握するために用いられる。
三方弁25は、室外熱交換器24から流出した冷媒を冷房用通路28と直戻り通路29のいずれかに切り換えて吐出する。具体的には、三方弁25は、例えば、図示しない制御装置による制御により、冷媒の流通方向を、冷房用減圧弁27とエバポレータ53を経由する冷房用通路28と、冷房用減圧弁27とエバポレータ53を経由しない直戻り通路29のいずれかに切換えられる。
三方弁25は、暖房運転(ガスインジェクション式の暖房運転も含む)の実行時には、冷媒の流通方向を、直戻り通路29側に切り換えられ、冷房運転の実行時や除湿運転の実行時には、冷媒の流通方向を、冷房用通路28側に切り換えられる。
第1の気液分離器26は、合流部33とコンプレッサ21との間に接続され、合流部33から流出した冷媒の気液を分離し、ガス冷媒(気相の冷媒)をコンプレッサ21に吸入させる。
また、冷房用減圧弁27は、いわゆる絞り弁であって、三方弁25とエバポレータ53の流入口との間に接続され、例えば、図示しない制御装置によって制御される弁開度に応じて三方弁25から流出した冷媒を減圧して膨張させた後、低温かつ低圧で気液2相(気相リッチ)の噴霧状の冷媒としてエバポレータ53に吐出する。
エバポレータ53は、冷房用減圧弁27と合流部33(第1の気液分離器26)との間に接続されている。
基本流路31Aの室内コンデンサ55の下流側の分岐部35には、ガスインジェクション専用流路31Bの上流部が接続されている。
ガスインジェクション専用流路31Bには、室内コンデンサ55を通過した高圧の冷媒を中間圧に減圧する第1の減圧弁37と、第1の減圧弁37で減圧された中間圧の冷媒をさらに低圧に減圧する第2の減圧弁38と、第1の減圧弁37と第2の減圧弁38の間に介装されて、第1の減圧弁37で減圧された冷媒を中間圧のガス冷媒と液冷媒とに分離する第2の気液分離器39(気液分離器)と、が設けられている。また、分岐部35と第1の減圧弁37の間には、流路切換用の電磁弁40が設けられている。
第1の減圧弁37と第2の減圧弁38は、いわゆる絞り弁であって、例えば、図示しない制御装置による制御により、開口面積を調整可能とされている。ガスインジェクション専用流路31Bの第2の減圧弁38の下流側は、合流部41を通して室外熱交換器24に接続されている。合流部41は、基本流路31A中の第2分岐部32bと室外熱交換器24の間に設けられている。
第2の気液分離器39は、冷媒の流入部と、ガス冷媒の取り出し口と、液冷媒の取り出し口とを有している(いずれも符号省略)。冷媒の流入部は、第1の減圧弁37の下流側に接続されており、ガス冷媒の取り出し口と液冷媒の取り出し口は、インジェクション通路42と室外熱交換器側通路43とにそれぞれ接続されている。
インジェクション通路42は、コンプレッサ21の吸入部21cに接続され、第2の気液分離器39で分離された中間圧のガス冷媒をコンプレッサ21の吸入部21cに導入する。
室外熱交換器側通路43は、その途中に第2の減圧弁38が介装され、第2の気液分離器39で分離された中間圧の液冷媒を第2の減圧弁38で低圧に減圧し、合流部41を介して室外熱交換器側通路43に導入する。
また、第2の気液分離器39には、第2の気液分離器39の内部を昇温可能な電気ヒータ44(加熱手段)が設けられている。電気ヒータ44は、例えば、図示しない制御装置によって制御され、外気温センサ等によって検出される暖房負荷に応じて作動のオン,オフが切り換えられるようになっている。
なお、制御装置は、車室内に配設された図示しないスイッチ等を介して操作者により入力された指令信号に基づいて車両用空調装置10を制御する。そして、制御装置は、車両用空調装置10の運転モードを、暖房運転モード、冷房運転モード、除湿運転モード等に切り替え制御することが可能とされている。
次に、上述した車両用空調装置10の各運転モード毎の動作について説明する。
車両用空調装置10によって暖房運転を行う場合には、図1,図2に示すように、エアミックスドア54が室内コンデンサ55に向かう通風経路を開放する加熱位置とされ、冷房用電磁弁23が閉状態とされ、三方弁25が室外熱交換器24と合流部33とを接続する状態とされる。なお、空調ユニット11は、図1,図2の例では、フットドア64が開状態とされ、VENTドア63が閉状態とされているが、これらの開閉は運転者の操作等によって任意に変更することができる。
また、冷媒流路31中の三方弁25は、暖房運転時には、直戻り通路29側に切り換えられる。
この実施形態の場合、暖房運転モードでは、外気温等の暖房負荷に応じてヒートポンプサイクル12の冷媒流路31の各部が三種類の状態に切り換えられる。
具体的には、第1の所定値<第2の所定値とした場合に、暖房負荷が第1の所定値よりも小さいときには、以下の(a)の態様によって暖房運転が行われ、暖房負荷が第1の所定値以上に大きく、かつ第2の所定値よりも小さいときには、以下の(b)の態様によって暖房運転が行われ、暖房負荷が第2の所定値以上に大きいときには、以下の(c)の態様によって暖房運転が行われる。
(a)小暖房負荷時(通常の暖房運転)
暖房負荷が第1の所定値よりも小さい状況においては、制御装置による制御により、図2に示すように、冷媒流路31の基本流路31Aの電磁弁36が開状態にされるとともに、ガスインジェクション専用流路31Bの電磁弁40が閉状態にされ、基本流路31A中の冷房用電磁弁23が閉状態にされる。
この状態において、コンプレッサ21が作動すると、コンプレッサ21から吐出された高温かつ高圧の冷媒が室内コンデンサ55に導入され、室内コンデンサ55における放熱によって空調ユニット11のダクト51内の空調空気を加熱する。
室内コンデンサ55を通過した冷媒は、暖房用減圧弁22によって減圧されて膨張し、液相リッチの噴霧状となる。液相リッチの噴霧状となった冷媒は、その後に室外熱交換器24に流入し、室外熱交換器24において車室外雰囲気から吸熱して気相リッチの噴霧状となる。そして、室外熱交換器24を通過した冷媒は、三方弁25と合流部33とを通過して第1の気液分離器26に流入する。そして、第1の気液分離器26に流入した冷媒は、気相と液相とに分離され、気相の冷媒であるガス冷媒がコンプレッサ21に吸入される。
このとき、暖房負荷は比較的小さいため、室外熱交換器24での吸熱量がある程度以上に確保されている。このため、室外熱交換器24からコンプレッサ21への冷媒の戻り流量は充分に確保されている。
なお、図5は、この実施形態に係る車両用空調装置10の小暖房負荷時における圧力−エンタルピ線図(モリエル線図)である。
上述のように冷媒流路31の基本流路31A内を冷媒が流れる状況で、空調ユニット11のブロア52が駆動されると、空調ユニット11のダクト51内を空調空気が流れ、その空調空気がエバポレータ53を通過した後に室内コンデンサ55を通過する。そして、空調空気は、室内コンデンサ55を通過する際に室内コンデンサ55との間で熱交換され、空気吹き出し口57bを通って車室内に暖房として供給される。
(b)中暖房負荷時(ガスインジェクション暖房運転)
暖房負荷が、第1の所定値以上に大きく、かつ第2の所定値よりも小さい状況においては、制御装置による制御により、図1に示すように、冷媒流路31の基本流路31Aの電磁弁36が閉状態にされるとともに、ガスインジェクション専用流路31Bの電磁弁40が開状態にされる。また、第2の気液分離器39内の電気ヒータ44は、制御装置による制御によってオフ状態とされる。
この状態において、コンプレッサ21が作動すると、小暖房負荷時と同様にコンプレッサ21から吐出された高温かつ高圧の冷媒が室内コンデンサ55に導入され、室内コンデンサ55における放熱によって空調ユニット11のダクト51内の空調空気を加熱する。
室内コンデンサ55を通過した冷媒は、分岐部35からガスインジェクション専用流路31Bに流入し、第1の減圧弁37によって中間圧に減圧された状態において、第2の気液分離器39内に流入する。第2の気液分離器39に流入した冷媒は、気相のガス冷媒と液相の液冷媒とに分離される。
第2の気液分離器39で分離された中間圧のガス冷媒は、インジェクション通路42を通ってコンプレッサ21の吸入部21cに吸入され、第2の気液分離器39で分離された中間圧の液冷媒は、室外熱交換器側通路43に流入する。
室外熱交換器側通路43に流入した中間圧の液冷媒は、第2の減圧弁38によって減圧されて膨張し、液相リッチの噴霧状になって室外熱交換器24に流入する。室外熱交換器24に流入した冷媒は、車室外雰囲気から吸熱して気相リッチの噴霧状となり、室外熱交換器24を通過した後に、三方弁25を通って第1の気液分離器26に流入する。第1の気液分離器26に流入した冷媒は、気相と液相とに分離され、気相の冷媒であるガス冷媒がコンプレッサ21の吸入部21bに吸入される。
なお、図6は、この実施形態に係る車両用空調装置10の中暖房負荷時における圧力−エンタルピ線図(モリエル線図)である。
この状況で、空調ユニット11のブロア52が駆動されると、空調ユニット11のダクト51内を流れる空調空気が室内コンデンサ55との間で熱交換され、空気吹き出し口57bを通って車室内に暖房として供給される。
こうして暖房運転が行われるとき、コンプレッサ21には、室外熱交換器24を通過して第1の気液分離器26によって分離されたガス冷媒に加えて、室外熱交換器24に流入せずに第2の気液分離器39によって分離された中間圧のガス冷媒が吸入される。したがって、このとき外気温が低く室外熱交換器24での吸熱量を充分に確保することが難しい状況であっても、コンプレッサ21において充分な流量のガス冷媒を吸入することができる。
(c)大暖房負荷時(電気ヒータ44を用いるガスインジェクション暖房運転)
暖房負荷が、第2の所定値以上に大きい状況においては、中暖房負荷時と同様に、冷媒流路31の基本流路31Aの電磁弁36が閉状態にされるとともに、ガスインジェクション専用流路31Bの電磁弁40が開状態にされる。ただし、第2の気液分離器39内の電気ヒータ44は、制御装置による制御によってオン状態とされる。
この状態において、コンプレッサ21が作動すると、中暖房負荷時と同様にコンプレッサ21から吐出された高温かつ高圧の冷媒が室内コンデンサ55に導入され、室内コンデンサ55における放熱によって空調ユニット11のダクト51内の空調空気を加熱する。
室内コンデンサ55を通過した冷媒は、分岐部35からガスインジェクション専用流路31Bに流入し、第1の減圧弁37によって中間圧に減圧された状態において、第2の気液分離器39内に流入する。第2の気液分離器39に流入した冷媒は、中暖房負荷時と同様に気相のガス冷媒と液相の液冷媒とに分離されるが、第2の気液分離器39の内部が電気ヒータ44によって加熱されているため、第2の気液分離器39内の液冷媒は電気ヒータ44による熱によって一部が蒸発してガス冷媒に変換される。
ところで、第2の気液分離器39の内部においては、底部側に滞留する液冷媒が電気ヒータ44の熱によってガス冷媒に相変換するが、底部側に滞留する液冷媒が全く存在しなくなることは、コンプレッサ21に充分な流量のガス冷媒を安定的に供給するうえで望ましくない。このため、この実施形態の場合、大暖房負荷時に第2の気液分離器39内の電気ヒータ44をオンにするときには、制御手段による制御により、中間圧の冷媒液が第2の気液分離器39内に残存するように第1の減圧弁37の開口面積が調整される。
こうして第2の気液分離器39で分離された中間圧のガス冷媒は、インジェクション通路42を通ってコンプレッサ21の吸入部21cに導入されるが、上述のように第2の気液分離器39で分離されるガス冷媒の流量は電気ヒータ44の熱によって増加するため、コンプレッサ21に吸入される中間圧のガス冷媒の流量も増加する。
一方、室外熱交換器側通路43に流入した中間圧の液冷媒は、中暖房負荷時と同様に、第2の減圧弁38によって減圧されて膨張し、液相リッチの噴霧状になって室外熱交換器24に流入する。室外熱交換器24に流入した冷媒は、車室外雰囲気と熱交換を行って気相リッチの噴霧状となった後に、三方弁25を通って第1の気液分離器26に流入する。第1の気液分離器26に流入した冷媒は、気相と液相とに分離され、気相の冷媒であるガス冷媒がコンプレッサ21の吸入部21bに吸入される。
なお、図7は、この実施形態に係る車両用空調装置10の大暖房負荷時における圧力−エンタルピ線図(モリエル線図)である。
この状況で、空調ユニット11のブロア52が駆動されると、空調ユニット11のダクト51内を流れる空調空気が室内コンデンサ55との間で熱交換され、空気吹き出し口57bを通って車室内に暖房として供給される。
こうして暖房運転が行われるとき、コンプレッサ21には、室外熱交換器24を通過して熱交換を行ったガス冷媒と、第2の気液分離器39によって分離された中間圧のガス冷媒とが吸入される。このとき、外気温が低く暖房負荷が極めて大きい状況であるために、室外熱交換器24においては充分な吸熱量を確保することが難しいが、第2の気液分離器39からコンプレッサ21に導入される中間圧のガス冷媒の流量が電気ヒータ44の熱によって増加するため、コンプレッサ21においては、充分な流量のガス冷媒を吸入することができる。
一方、この車両用空調装置10によって冷房運転を行う場合には、図3に示すように、エアミックスドア54が、エバポレータ53を通過した空調空気が室内コンデンサ55を迂回するよう冷却位置とされ、冷房用電磁弁23が開状態(暖房用減圧弁22が閉状態)とされ、三方弁25が室外熱交換器24と冷房用減圧弁27とを接続する状態とされる。なお、空調ユニット11は、図3の例では、フットドア64が閉状態とされ、VENTドア63が開状態とされているが、これらの開閉は運転者の操作等によって任意に変更することができる。また、このとき冷媒流路31の基本流路31A側の電磁弁36は開状態とされ、ガスインジェクション専用流路31B側の電磁弁40は閉状態とされている。
この場合、ヒートポンプサイクル12においては、コンプレッサ21から吐出された高温かつ高圧の冷媒が、室内コンデンサ55と冷房用電磁弁23を通過して、室外熱交換器24において車室外雰囲気へと放熱された後、冷房用減圧弁27に流入する。このとき、冷媒は、冷房用減圧弁27によって膨張させられて液相リッチの噴霧状とされ、次に、エバポレータ53における吸熱によって空調ユニット11のダクト51内の空調空気を冷却する。
エバポレータ53を通過した気相リッチの冷媒は、合流部33を通過して第1の気液分離器26に流入し、第1の気液分離器26において気液分離された後、気相の冷媒であるガス冷媒がコンプレッサ21に吸入される。
こうして、冷媒流路31内を冷媒が流れる状況で、空調ユニット11のブロア52が駆動されると、空調ユニット11のダクト51内を空調空気が流れ、その空調空気がエバポレータ53を通過する際にエバポレータ53との間で熱交換される。その後、空調空気は、室内コンデンサ55を迂回した後、VENT吹き出し口57aを通って車室内に冷房として供給される。
また、この車両用空調装置10によって除湿運転を行う場合には、図4に示すように、空調ユニット11においては、エアミックスドア54が室内コンデンサ55に向かう通風経路を開放する加熱位置とされ、フットドア64が開状態とされ、VENTドア63が閉状態とされる。また、ヒートポンプサイクル12においては、冷房用電磁弁23が閉状態(暖房用減圧弁22が開状態)とされ、三方弁25が室外熱交換器24と冷房用減圧弁27とを接続する状態とされる。また、このとき冷媒流路31の基本流路31A側の電磁弁36は開状態とされ、ガスインジェクション専用流路31B側の電磁弁40は閉状態とされている。
この場合、ヒートポンプサイクル12においては、コンプレッサ21から吐出された高温かつ高圧の冷媒が室内コンデンサ55を通過し、このとき室内コンデンサ55における放熱によって空調ユニット11内の空調空気を加熱する。
室内コンデンサ55を通過した冷媒は、暖房用減圧弁22によって僅かに減圧された後に室外熱交換器24を通過し、その後に三方弁25を介して冷房用減圧弁27に流入する。このとき、冷媒は、冷房用減圧弁27によって減圧されて膨張し、つづく、エバポレータ53における吸熱によって空調ユニット11のダクト51内の空調空気を冷却する。エバポレータ53によって冷却された空調空気は、室内コンデンサ55で加熱された後に空気吹き出し口57bから車室内に排出される。
なお、エバポレータ53を通過した冷媒は、合流部33を通過して第1の気液分離器26に流入し、分離されたガス冷媒がコンプレッサ21に吸入される。
図8は、車両用空調装置10の空調制御の流れを示すフローチャートである。
以下、図8に示すフローチャートを参照して、車両用空調装置10による空調制御の一例を説明する。
ステップS101とステップS102においては、車両用空調装置10の現在の運転モードが暖房運転モード、除湿運転モード、冷房運転モードのいずれのモードであるかを判定し、現在の運転モードが暖房運転モードである場合には、ステップS103に進み、除湿運転モードである場合には、ステップS104に進み、冷房運転モードである場合には、ステップS105に進む。
現在の運転モードが暖房運転モードであってステップS103に進んだ場合には、初期段階では、ガスインジェクションを行わない通常の暖房運転を実行する。つづくステップS106では、暖房負荷が大きく現状での暖房能力が不足しているか否かを判定し、暖房能力が不足している場合には、つづくステップS107において、ガスインジェクション式の暖房運転に切り替える。この状態では、第2の気液分離器39内の電気ヒータ44はオフにされている。
つづくステップS108においては、暖房負荷がさらに大きく現状での暖房能力が不足しているか否かを判定し、暖房能力が不足している場合には、つづくステップS109において、第2の気液分離器39内の電気ヒータ44をオンにする。そして、つづくステップS110においては、第2の気液分離器39内に液冷媒が必ず残存するように第1の減圧弁37の開度を制御する。
以上のように、この実施形態に係る車両用空調装置10は、加熱手段である電気ヒータ44によって第2の気液分離器39内を昇温することで、コンプレッサ21で吸入されるガス冷媒の流量を増大させることができるとともに、コンプレッサ21に吸入されるガス冷媒に電気ヒータ44による熱量を加算することができるため、暖房負荷の大きい状況においても空調空気を迅速に温めることができる。
この実施形態に係る車両用空調装置10は、空調ユニット11内の通路に熱源を追加設置するものではないため、空調ユニット11内の通路の通気抵抗が増大することがない。したがって、この実施形態に係る車両用空調装置10の場合、空調ユニット11の風量低下を補うためにブロア52の出力を高める必要がないため、ブロア52の出力の増大によって騒音が増大する不具合も生じない。
また、この実施形態に係る車両用空調装置10においては、ガスインジェクション式の暖房運転時に、暖房負荷が小さいときに第2の気液分離器39内の電気ヒータ44がオフにされ、暖房負荷が大きいときにオンにされる。このため、この車両用空調装置10の場合、暖房負荷に応じて適切な暖房能力に切り換えることができ、不要な電力消費を抑制することができる。
また、この実施形態に係る車両用空調装置10においては、ガスインジェクション式の暖房運転時に、電気ヒータ44がオンにされるときには、第2の気液分離器39内に中間圧の液冷媒が残存するように、第1の減圧弁37の開度が制御される。このため、電気ヒータ44をオンにしたガスインジェクション式の暖房運転時には、第2の気液分離器39内において液冷媒からガス冷媒への相変換を途切れなく安定的に行うことができる。したがって、この実施形態に係る車両用空調装置10においては、コンプレッサ21で吸入されるガス冷媒の流量を安定的に確保することができる。
ここで説明した実施形態においては、第2の気液分離器39内を昇温する加熱手段として電気ヒータ44を用いているが、加熱手段は必ずしも電気ヒータ44に限らず、例えば、エンジンを搭載する車両であれば、エンジンの燃焼熱を利用した機器であっても良い。ただし、この実施形態のように、加熱手段として電気ヒータ44を採用した場合には、車両用空調装置10全体の大型化を招くことなく、第2の気液分離器39内を必要に応じて容易に昇温することができる。
つづいて、図9〜図12に示す他の実施形態について説明する。
図9は、他の実施形態に係る車両用空調装置の小暖房負荷時における圧力−エンタルピ線図(モリエル線図)を示し、図10は、同車両用空調装置の中暖房負荷時における圧力−エンタルピ線図(モリエル線図)を示している。また、図10は、同車両用空調装置の大暖房負荷時における圧力−エンタルピ線図(モリエル線図)を示している。
この他の実施形態に係る車両用空調装置は、ヒートポンプサイクルや空調ユニットの構成は上述した実施形態とほぼ同様であるが、暖房時には、第2の気液分離で分離された中間圧のガス冷媒をコンプレッサの吸入部に吸入させるガスインジェクション式の暖房運転のみを行う点が上述した実施形態のものと異なっている。
具体的には、小暖房負荷時には、図9に示すように、第2の気液分離器39内の電気ヒータをオフにし、第2の気液分離器39内で自然に分離されたガス冷媒と、室外熱交換器24を通過したガス冷媒とを、コンプレッサで吸入する。
そして、中暖房負荷時には、図10に示すように、第2の気液分離器39内の電気ヒータをオフにしたまま第1の減圧弁37の開度を広げ、それによって第2の気液分離器39から取り出されるガス冷媒の流量を増大させる。この結果、コンプレッサで吸入される中間圧のガス冷媒の流量が増大し、車両用空調装置の暖房能力が高まる。
また、大暖房負荷時には、図11に示すように、第2の気液分離器39内の電気ヒータをオンにし、それによって第2の気液分離器39の液冷媒の一部を蒸発させ、第2の気液分離器39内で分離されるガス冷媒の流量を増大させる。この結果、コンプレッサで吸入される中間圧のガス冷媒の流量がより増大するとともに、そのガス冷媒に電気ヒータによる熱量が加算され、車両用空調装置の暖房能力がより一層高まる。
図12は、他の実施形態に係る車両用空調装置の空調制御の流れを示すフローチャートである。
以下、図12に示すフローチャートを参照して、他の実施形態の空調制御の一例を説明する。
ステップS201とステップS202においては、車両用空調装置10の現在の運転モードが暖房運転モード、除湿運転モード、冷房運転モードのいずれのモードであるかを判定し、現在の運転モードが暖房運転モードである場合には、ステップS203に進み、除湿運転モードである場合には、ステップS204に進み、冷房運転モードである場合には、ステップS205に進む。
現在の運転モードが暖房運転モードであってステップS203に進んだ場合には、初期段階では、電気ヒータをオフにしてのガスインジェクション式の暖房運転を実行する。つづくステップS206では、暖房負荷が大きく現状での暖房能力が不足しているか否かを判定し、暖房能力が不足している場合には、つづくステップS207において、第1の減圧弁37の開口面積を所定開度に拡げ、ガスインジェクション式の暖房運転を実行する。この状態では、第2の気液分離器39内の電気ヒータはオフにされている。
つづくステップS208においては、暖房負荷がさらに大きく現状での暖房能力が不足しているか否かを判定し、暖房能力が不足している場合には、つづくステップS209において、第2の気液分離器39内の電気ヒータをオンにする。そして、つづくステップS210においては、第2の気液分離器39内に液冷媒が必ず残存するように第1の減圧弁37の開度を制御する。
ここで説明した他の実施形態に係る車両用空調装置は、上述した実施形態とほぼ同様の効果を得ることができる。
なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上述した実施形態では、電気自動車等のエンジンを具備していない車両に車両用空調装置を搭載しているが、車両用空調装置はエンジンを具備する車両や燃料電池自動車等にも適用することができる。
10…車両用空調装置
21…コンプレッサ
21c…吸入部
24…室外熱交換器
37…第1の減圧弁
38…第2の減圧弁
39…第2の気液分離器(気液分離器)
42…インジェクション通路
43…室外熱交換器側通路
44…電気ヒータ(加熱手段)
55…室内コンデンサ

Claims (4)

  1. 冷媒を圧縮するコンプレッサと、
    前記コンプレッサで圧縮された冷媒の熱を放熱する室内コンデンサと、
    冷媒の熱を外気と熱交換する室外熱交換器と、
    前記室内コンデンサを通過した高圧の冷媒を中間圧に減圧する第1の減圧弁と、
    前記第1の減圧弁で減圧された中間圧の冷媒をさらに低圧に減圧する第2の減圧弁と、
    前記第1の減圧弁と前記第2の減圧弁の間に介装されて、前記第1の減圧弁で減圧された冷媒を前記中間圧のガス冷媒と液冷媒とに分離する気液分離器と、
    前記気液分離器で分離された前記中間圧のガス冷媒を前記コンプレッサの吸入部に導入するインジェクション通路と、
    前記気液分離器で分離された前記中間圧の液冷媒を前記第2の減圧弁で低圧に減圧して前記室外熱交換器に導入する室外熱交換器側通路と、
    を備え、
    前記室外熱交換器で熱交換された冷媒と、前記気液分離器で分離された前記中間圧のガス冷媒とを前記コンプレッサの吸入部に導入してガスインジェクション式の暖房運転を行う車両用空調装置において、
    前記気液分離器には、当該気液分離器内を昇温可能な加熱手段が設けられていることを特徴とする車両用空調装置。
  2. 前記加熱手段は、前記ガスインジェクション式の暖房運転時に、暖房負荷が小さいときにオフにされ、暖房負荷が大きいときにオンにされることを特徴とする請求項1に記載の車両用空調装置。
  3. 前記ガスインジェクション式の暖房運転時に、前記加熱手段がオンにされるときには、前記気液分離器内に前記中間圧の液冷媒が残存するように、前記第1の減圧弁の開度が制御されることを特徴とする請求項1または2に記載の車両用空調装置。
  4. 前記加熱手段は電気ヒータによって構成されていることを特徴とする請求項1〜3のいずれか1項に記載の車両用空調装置。
JP2014177332A 2014-09-01 2014-09-01 車両用空調装置 Withdrawn JP2016049915A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014177332A JP2016049915A (ja) 2014-09-01 2014-09-01 車両用空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177332A JP2016049915A (ja) 2014-09-01 2014-09-01 車両用空調装置

Publications (1)

Publication Number Publication Date
JP2016049915A true JP2016049915A (ja) 2016-04-11

Family

ID=55657743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177332A Withdrawn JP2016049915A (ja) 2014-09-01 2014-09-01 車両用空調装置

Country Status (1)

Country Link
JP (1) JP2016049915A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107477930A (zh) * 2017-08-21 2017-12-15 珠海格力电器股份有限公司 空调系统、空调装置及其控制方法和控制装置
CN108482064A (zh) * 2018-04-18 2018-09-04 上海加冷松芝汽车空调股份有限公司 新能源车用集成乘员舱空调及电池包热管理热泵系统
JP2019115124A (ja) * 2017-12-21 2019-07-11 本田技研工業株式会社 電動車両
JP2019115127A (ja) * 2017-12-21 2019-07-11 本田技研工業株式会社 電動車両
CN111076325A (zh) * 2018-10-19 2020-04-28 杭州三花研究院有限公司 空调系统及其控制方法
JP2020131799A (ja) * 2019-02-14 2020-08-31 三菱重工サーマルシステムズ株式会社 空調システム
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle
US11499757B2 (en) 2017-10-26 2022-11-15 Denso Corporation Vehicular heat management system
JP7331214B1 (ja) 2022-07-27 2023-08-22 三菱重工サーマルシステムズ株式会社 空調装置および空調装置の制御方法
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107477930A (zh) * 2017-08-21 2017-12-15 珠海格力电器股份有限公司 空调系统、空调装置及其控制方法和控制装置
CN107477930B (zh) * 2017-08-21 2023-09-08 珠海格力电器股份有限公司 空调系统、空调装置及其控制方法和控制装置
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle
US11499757B2 (en) 2017-10-26 2022-11-15 Denso Corporation Vehicular heat management system
US10889161B2 (en) 2017-12-21 2021-01-12 Honda Motor Co., Ltd. Electric vehicle
JP2019115127A (ja) * 2017-12-21 2019-07-11 本田技研工業株式会社 電動車両
JP2019115124A (ja) * 2017-12-21 2019-07-11 本田技研工業株式会社 電動車両
CN108482064B (zh) * 2018-04-18 2023-07-14 上海加冷松芝汽车空调股份有限公司 新能源车用集成乘员舱空调及电池包热管理热泵系统
CN108482064A (zh) * 2018-04-18 2018-09-04 上海加冷松芝汽车空调股份有限公司 新能源车用集成乘员舱空调及电池包热管理热泵系统
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor
CN111076325B (zh) * 2018-10-19 2021-08-24 杭州三花研究院有限公司 空调系统及其控制方法
CN111076325A (zh) * 2018-10-19 2020-04-28 杭州三花研究院有限公司 空调系统及其控制方法
JP2020131799A (ja) * 2019-02-14 2020-08-31 三菱重工サーマルシステムズ株式会社 空調システム
JP7381207B2 (ja) 2019-02-14 2023-11-15 三菱重工サーマルシステムズ株式会社 空調システム
JP7331214B1 (ja) 2022-07-27 2023-08-22 三菱重工サーマルシステムズ株式会社 空調装置および空調装置の制御方法
WO2024024635A1 (ja) * 2022-07-27 2024-02-01 三菱重工サーマルシステムズ株式会社 空調装置および空調装置の制御方法

Similar Documents

Publication Publication Date Title
JP2016049915A (ja) 車両用空調装置
CN107428222B (zh) 车辆热泵系统
JP6015636B2 (ja) ヒートポンプシステム
US20190111756A1 (en) Refrigeration cycle device
JP6323489B2 (ja) ヒートポンプシステム
KR102058119B1 (ko) 차량용 히트 펌프 시스템
JP4505510B2 (ja) 車両用空調システム
CN107709067B (zh) 车用空调装置
CN110997369B (zh) 制冷循环装置
US20200290426A1 (en) Vehicle-mounted temperature controller
KR101669826B1 (ko) 차량용 히트 펌프 시스템
JP2014228190A (ja) 冷凍サイクル装置
JP6680626B2 (ja) 車両用空調装置
KR102111323B1 (ko) 차량용 히트 펌프 시스템
KR101748213B1 (ko) 차량용 히트 펌프 시스템
JP2010260450A (ja) 車両用空調装置
WO2020158423A1 (ja) 冷凍サイクル装置
KR20140023733A (ko) 차량용 히트 펌프 시스템
JP6708170B2 (ja) 車両用空調装置
JP6225709B2 (ja) 空調装置
JP5510374B2 (ja) 熱交換システム
KR101622631B1 (ko) 차량용 히트 펌프 시스템 및 그 제어방법
JP6341021B2 (ja) 車両用空調装置
KR101418857B1 (ko) 차량용 히트 펌프 시스템
JP6589242B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170120