JP2016044806A - Hydraulic supply system changeover mechanism - Google Patents

Hydraulic supply system changeover mechanism Download PDF

Info

Publication number
JP2016044806A
JP2016044806A JP2014172273A JP2014172273A JP2016044806A JP 2016044806 A JP2016044806 A JP 2016044806A JP 2014172273 A JP2014172273 A JP 2014172273A JP 2014172273 A JP2014172273 A JP 2014172273A JP 2016044806 A JP2016044806 A JP 2016044806A
Authority
JP
Japan
Prior art keywords
pressure
low
line
hydraulic
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014172273A
Other languages
Japanese (ja)
Inventor
俊希 宮島
Toshiki Miyajima
俊希 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014172273A priority Critical patent/JP2016044806A/en
Publication of JP2016044806A publication Critical patent/JP2016044806A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable hydraulic supply system changeover mechanism in which an effect of reducing driving power of the hydraulic supply system using a plurality of pump systems can be realized to a maximum state, showing less amount of rapid variation of hydraulic pressure at the time of changeover of the pump supply system and less energy loss of working oil at the time of pressure adjustment.SOLUTION: A high pressure branch line 3 and a low pressure branch line 4 branched from each of a high pressure line 1 and a low pressure line 2 are installed in parallel through arrangement of a spool valve 30 at their intermediate location. Then, a pilot pressure 1" determining a pressure in a high pressure circuit 200 is acted while one end of a valve body 31 of the spool valve 30 is being biased by a spring 33 and in turn a line hydraulic pressure 1' at the upstream side of the branch point C1 in the high pressure line 1 is acted on the other end of the valve body 31. Further, an opening edge of the second annular oil passage 31b of the valve body 31 communicating with the high pressure branch line 3 is provided with a recess 31e.SELECTED DRAWING: Figure 1

Description

本発明は油圧供給システムの系統切換機構に関し、より詳細には複数系統のポンプを用いた油圧供給システムの駆動動力削減効果を最大限に引き出すことが出来ると共にポンプ供給系統切り換え時における油圧の急激な変動ならびに調圧時における作動油のエネルギー損失が少なく、信頼性の高い油圧供給システムの系統切換機構に関するものである。   The present invention relates to a system switching mechanism of a hydraulic supply system, and more specifically, the effect of reducing the driving power of a hydraulic supply system using a plurality of pumps can be maximized and the hydraulic pressure at the time of switching the pump supply system can be drastically reduced. The present invention relates to a system switching mechanism of a highly reliable hydraulic pressure supply system with less energy loss of hydraulic oil during fluctuation and pressure regulation.

従来、CVT(ベルト式無段変速機)のプーリー機構、CVTの前後進切換機構(前進用クラッチ、後進用ブレーキ)あるいはトルクコンバータのロックアップクラッチ機構等の油圧作動機構に対する油圧供給方式として、元圧供給路(CVTのプーリー機構に作動油を供給する油路)に常時連結された第1ポンプと、下流に供給先を切り換える切換バルブが設けられた第2ポンプという2つの油圧ポンプを備え、通常走行時においては、その切換バルブによって第2ポンプの供給先を元圧供給油路に切り換えて、第1ポンプと第2ポンプによって作動油を元圧供給油路に供給する一方、ニュートラル制御時においては、その切換バルブによって第2のポンプの供給先を別系統(潤滑供給油路)に切り換えて第1ポンプのみが元圧供給油路に作動油を供給するように構成された油圧供給方式(油圧制御回路)が知られている(例えば、引用文献1の図4)。
上記第2ポンプの供給先を切り換える上記切換バルブは、スプールと、スプールを一方向側へ付勢するスプリングと、切換ソレノイド弁から出力される切換油圧を受け入れる油室とを備え、切換ソレノイド弁から切換油圧が出力されない場合はスプリングの付勢力によってスプールが一方向側に移動させられ、第2ポンプが元圧供給路に連通し第2ポンプからの作動油が元圧供給路に供給される一方、切換ソレノイド弁から切換油圧が出力される場合はスプリングの付勢力に抗がってスプールが他方側へ移動させられ、第2ポンプが潤滑供給油路に連通し第2ポンプの作動油が潤滑供給油路に供給される、という旨が記載されている(引用文献1の[0034])。
Conventionally, as a hydraulic pressure supply system for a hydraulic operating mechanism such as a CVT (belt continuously variable transmission) pulley mechanism, a CVT forward / reverse switching mechanism (forward clutch, reverse brake) or a torque converter lockup clutch mechanism, It has two hydraulic pumps, a first pump that is always connected to a pressure supply path (an oil path that supplies hydraulic oil to the pulley mechanism of the CVT) and a second pump that is provided with a switching valve that switches the supply destination downstream. During normal travel, the switching valve is used to switch the supply destination of the second pump to the main pressure supply oil passage, and the hydraulic oil is supplied to the main pressure supply oil passage by the first pump and the second pump. In this case, the supply destination of the second pump is switched to another system (lubricant supply oil passage) by the switching valve, and only the first pump becomes the original pressure supply oil passage. Hydraulic supply system configured to supply aggressive media (hydraulic control circuit) is known (e.g., FIG. 4 of the cited document 1).
The switching valve that switches the supply destination of the second pump includes a spool, a spring that biases the spool in one direction, and an oil chamber that receives a switching hydraulic pressure output from the switching solenoid valve. When the switching hydraulic pressure is not output, the spool is moved in one direction by the urging force of the spring, and the second pump communicates with the main pressure supply path, and hydraulic oil from the second pump is supplied to the main pressure supply path. When the switching hydraulic pressure is output from the switching solenoid valve, the spool is moved to the other side against the urging force of the spring, the second pump communicates with the lubrication supply oil passage, and the hydraulic oil of the second pump is lubricated. The fact that it is supplied to the supply oil passage is described ([0034] of cited document 1).

特開2010−190371号公報JP 2010-190371 A

図8は、引用文献1に記載されている、高圧ポンプと低圧ポンプを有し(ソレノイド制御)昇圧バルブによって低圧ポンプの供給先を高圧回路から低圧回路に切り換える油圧供給システムの系統図(図8(a))並びに作動油の流量線図(図8(b))である。この作動油の流量線図(図8(b))は高圧回路の消費流量Qを横軸にとり、高圧リリーフバルブのドレイン流量Qを縦軸にとり、Qに対するQの変化を示す。
説明の都合上、今、油圧供給システムは高圧ポンプ及び低圧ポンプの合計流量Q+Qと高圧回路の消費流量Qが等しい動作点Aの状態であると仮定する。すなわち、低圧ポンプの吐出流量の最大流量Qの全てが高圧回路に供給され、全体として高圧回路にはQ+Qの流量が供給され、高圧ラインから廃棄される作動油の流量(以下、「ドレイン流量Q」という。)はゼロの状態である。高圧回路の消費流量Qが減少すると、高圧リリーフバルブが開となり、油圧供給システムは必要以上の作動油(余剰油)を高圧分岐ラインを通して廃棄しながら動作点Aから動作点Cへ移行する(すなわち、高圧流量Qは徐々に減少する一方、ドレイン流量Qは徐々に増加する。)。そして、動作点Cに達した時にソレノイド制御により昇圧バルブが開となり、低圧ポンプの吐出流量Qは低圧分岐ラインを通して低圧回路に供給され、その結果ドレイン流量Qは一気に動作点Dまで低下する(動作点C→動作点D)。動作点Dからさらに高圧回路の消費流量Qが減少すると、高圧リリーフバルブのドレイン流量Qは徐々に増加し、Qがゼロに至ると高圧ポンプの吐出流量Qと高圧リリーフバルブのドレイン流量Qが等しい動作点Eとなる(動作点D→動作点E)。動作点Eから高圧回路の消費流量Qが徐々に増加すると、高圧リリーフバルブのドレイン流量Qは徐々に減少して動作点Fに至る(動作点E→動作点F)。動作点Fに至るとソレノイド制御により昇圧バルブが閉となり、低圧ポンプの吐出流量Qは高圧ラインに供給され、その結果ドレイン流量Qは一気に動作点Bまで上昇する(動作点F→動作点B)。動作点Bから高圧回路の消費流量Qが増加すると、高圧リリーフバルブのドレイン流量Qは徐々に減少し、動作点Aに至る(動作点B→動作点A)。
FIG. 8 is a system diagram of a hydraulic pressure supply system described in the cited document 1 that has a high-pressure pump and a low-pressure pump (solenoid control) and switches the supply destination of the low-pressure pump from a high-pressure circuit to a low-pressure circuit by a boost valve (FIG. 8). FIG. 8A is a flow diagram of hydraulic oil (FIG. 8B). Flow diagram of the hydraulic fluid (FIG. 8 (b)) represented by the horizontal axis consumption rate Q h of the high-voltage circuit, placed vertically drain flow rate Q d of the high-pressure relief valve, showing a change in Q d for Q h.
For convenience of explanation, it is assumed that the hydraulic supply system is in a state of an operating point A where the total flow rate Q 1 + Q 2 of the high pressure pump and the low pressure pump is equal to the consumption flow rate Q h of the high pressure circuit. That is, all of the maximum flow rate Q 2 of the discharge flow rate of the low pressure pump is supplied to the high pressure circuit, and the flow rate of Q 1 + Q 2 is supplied to the high pressure circuit as a whole. “Drain flow rate Q d ”) is zero. When flow consumption Q h of the high-pressure circuit is reduced, the high pressure relief valve is opened, the hydraulic supply system shifts from the operating point A to operating point C while excessive operating oil (surplus oil) was discarded through the high pressure branch line ( that is, while reducing high flow rate Q h gradually, drain flow Q d gradually increases.). Then, the boost valve by the solenoid control when reaching the operating point C is opened, the discharge flow rate Q 2 of the low-pressure pump is supplied to the low-voltage circuit through a low-pressure branch line decreases to result the drain flow rate Q d is at once the operating point D (Operating point C → operating point D). Further flow consumption Q h of the high-pressure circuit is reduced from the operating point D, the drain flow rate Q d of the high-pressure relief valve is gradually increased, the discharge flow rate Q 1, the drain of the high-pressure relief valve of the high-pressure pump when Q h reaches zero flow rate Q d is equal operating point E (operating point D → operating point E). When flow consumption Q h of the high-pressure circuit from the operating point E is gradually increased, the drain flow rate Q d of the high-pressure relief valve gradually reaches the reduced operating point F (operating point E → operating point F). Reaches the operating point F booster valve by a solenoid control is closed, the discharge flow rate Q 2 of the low-pressure pump is supplied to the high pressure line, as a result the drain flow rate Q d is raised to stretch the operation point B (operating point F → operating point B). When flow consumption Q h of the high pressure circuit increases from operating point B, the drain flow rate Q d of the high-pressure relief valve decreases gradually and reaches the operation point A (operating point B → operating point A).

ところで高圧回路の調圧が行われるためには、常にQ>0を満たす必要がある。理想的にはQ<Qでは、即ち動作点Gにおいて昇圧バルブを開として、これとは逆にQ>Qでは、即ち動作点Hにおいて昇圧バルブを閉とすれば、高圧回路に対する調圧は行われる。
しかし、実際は、高圧ポンプの吐出流量Qの、ポンプの製品バラツキや耐久劣化と,オイルの温度変化や経年劣化による粘度変化に起因するバラツキ(以下、「Qバラツキ」という。)があっても、常にQ>0を満たす必要があるから、実際の昇圧バルブの開閉ポイントは、Qバラツキを考慮して、高圧ポンプの流量Qよりも小さい領域、例えば動作点C及び動作点Fで行う必要があり、その結果、低圧ポンプを低圧のまま使う頻度が減少してしまうという問題があった。
それに加え、昇圧バルブの開閉はソレノイドバルブによって短時間に行われるため、図8(b)に示されるように、動作点C→動作点Dまたは動作点F→動作点Bにおいて急激な流量変化に伴う作動油の圧力変動(切換ショック)が発生し、その結果、ポンプ供給系統(高圧系統および低圧系統)の油圧が不安定になるという問題があった。
更に、ソレノイド制御による昇圧バルブは、ソレノイドを通電するための駆動回路ならびに駆動回路を制御するための制御装置が別途必要となり、システムとしての信頼性が劣るという問題があった。
そこで、本発明は、上記従来技術の問題点に鑑み成されたものであり、その目的は、複数系統のポンプを用いた油圧供給システムの駆動動力削減効果を最大限に引き出すことが出来ると共にポンプ供給系統切り換え時における油圧の急激な変動ならびに調圧時における作動油のエネルギー損失が少なく、信頼性の高い油圧供給システムの系統切換機構を提供することにある。
By the way, in order to regulate the high voltage circuit, it is necessary to always satisfy Q d > 0. Ideally, if Q h <Q 1 , that is, the boost valve is opened at the operating point G, and conversely, if Q h > Q 1 , that is, if the boost valve is closed at the operating point H, then Pressure regulation is performed.
However, in practice, the discharge flow rate to Q 1 high-pressure pump, and product variation or deterioration in durability of the pump, variations due to viscosity change due to temperature change and aged deterioration of the oil (hereinafter, referred to as "Q 1 variation".) There is However, since it is necessary to always satisfy Q d > 0, an actual opening / closing point of the boost valve is considered to be a region smaller than the flow rate Q 1 of the high-pressure pump, for example, operating point C and operating point F in consideration of Q 1 variation. As a result, there is a problem that the frequency of using the low-pressure pump at a low pressure decreases.
In addition, since the booster valve is opened and closed by the solenoid valve in a short time, as shown in FIG. 8B, the flow rate changes suddenly at the operating point C → the operating point D or the operating point F → the operating point B. The accompanying hydraulic oil pressure fluctuation (switching shock) occurred, and as a result, the hydraulic pressure of the pump supply system (high pressure system and low pressure system) became unstable.
Further, the booster valve based on solenoid control has a problem in that it requires a separate drive circuit for energizing the solenoid and a control device for controlling the drive circuit, resulting in poor system reliability.
Therefore, the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to maximize the driving power reduction effect of a hydraulic supply system using a plurality of systems of pumps. It is an object of the present invention to provide a highly reliable system for switching a hydraulic pressure supply system that is less susceptible to sudden fluctuations in hydraulic pressure during switching of the supply system and less energy loss of hydraulic oil during pressure regulation.

上記目的を達成するための本発明に係る油圧供給システムの系統切換機構では、変速機を駆動する油圧機構から成る高圧回路(200)に作動油を供給する第1吐出ポート(10a、10'a)と、前記第1吐出ポート(10a、10'a)と前記高圧回路(200)を連結する高圧ライン(1)と、必要に応じ前記高圧回路(200)または前記高圧回路より油圧の低い低圧回路(300)に作動油を供給する第2吐出ポート(20a、10'b)と、前記第2吐出ポート(20a、10'b)から延び一方向弁(7)を介して前記高圧ライン(1)に連結する低圧ライン(2)と、前記高圧ライン(1)から分岐し前記低圧回路(300)側に連結する高圧分岐ライン(3)と、前記低圧ライン(2)から分岐し前記低圧回路(300)側に連結する低圧分岐ライン(4)とを備え、作動油を前記高圧回路(200)又は前記低圧回路(300)に供給する油圧供給システムにおいて、
前記高圧分岐ライン(3)と前記低圧分岐ライン(4)は共通のスプール弁(30)に並行に設けられていると共に、前記スプール弁(30)の弁体(31)に対し前記高圧回路(200)の圧力を決めるパイロット圧(1”)ならびに前記高圧ライン(1)からフィードバックされて来るライン油圧(1’)がそれぞれ作用し、前記弁体(31)における前記パイロット圧(1”)と前記ライン油圧(1’)の力のつり合いによって、先ず前記低圧分岐ライン(4)のみが閉状態から開状態となり、続いて前記高圧分岐ライン(3)が閉状態から開状態となるように構成されていることを特徴とする。
In the system switching mechanism of the hydraulic pressure supply system according to the present invention for achieving the above object, the first discharge port (10a, 10'a) that supplies hydraulic oil to the high-pressure circuit (200) including the hydraulic mechanism that drives the transmission. ), A high pressure line (1) connecting the first discharge port (10a, 10'a) and the high pressure circuit (200), and a low pressure having a lower hydraulic pressure than the high pressure circuit (200) or the high pressure circuit as necessary. A second discharge port (20a, 10'b) for supplying hydraulic oil to the circuit (300) and the high pressure line (7) extending from the second discharge port (20a, 10'b) via a one-way valve (7) 1), a low pressure line (2) connected to the high pressure line (1), a high pressure branch line (3) connected to the low pressure circuit (300) side, and a low pressure line (2) branched from the low pressure line (2). Connected to circuit (300) side That a low-pressure branch line (4), the hydraulic oil in the hydraulic pressure supply system for supplying said the high-voltage circuit (200) or said low-pressure circuit (300),
The high-pressure branch line (3) and the low-pressure branch line (4) are provided in parallel with a common spool valve (30), and the high-pressure circuit (31) is connected to the valve body (31) of the spool valve (30). 200) and a line hydraulic pressure (1 ′) fed back from the high pressure line (1) act on the pilot pressure (1 ″) in the valve body (31), respectively. Only the low pressure branch line (4) is first changed from the closed state to the open state by the balance of the force of the line hydraulic pressure (1 '), and then the high pressure branch line (3) is changed from the closed state to the open state. It is characterized by being.

上記構成では、高圧ポンプ(10)及び低圧ポンプ(20)によって高圧回路(200)に供給される作動油の流量が高圧回路(200)の消費流量を超える場合、上記ライン油圧(1’)が上昇し、弁体(31)における上記ライン油圧(1’)および上記パイロット圧(1”)の力のつり合いによって弁体(31)が移動させられ、先ず上記低圧ポンプ(20)から吐出される作動油を廃棄する上記低圧分岐ライン(4)が開状態となり、上記低圧分岐ライン(4)を通して余剰作動油が廃棄され、高圧回路(200)に対する調圧が成される。そして、上記低圧分岐ライン(4)を通しての余剰作動油の廃棄だけでは高圧回路(200)に対する調圧が完了しない場合は、弁体(31)が更に移動させられ、上記高圧ポンプ(10)から吐出される作動油を廃棄する上記高圧分岐ライン(3)が開状態となり、上記高圧分岐ライン(3)を通して余剰作動油が廃棄され、高圧回路(200)に対する調圧が成されることになる。このように、ポンプ性能のバラツキや作動油の粘度変化があっても、高圧回路(200)の消費流量と高圧ポンプ(10)の吐出流量の大小関係に応じ、低圧ポンプ(20)の圧油供給先が高圧回路(200)から低圧回路(300)へ自動的・自律的に切り換わるため、後述する通り、低圧ポンプ(20)から吐出される作動油を低圧状態のまま使う(ポンプ供給システムの)作動領域が増え、その結果調圧時における作動油のエネルギー損失が好適に低減され、複数系統のポンプを用いた油圧供給システムの駆動動力削減効果を最大限に引き出すことが出来るようになる。また、各ポンプの供給系統の切換は、弁体(31)における上記ライン油圧(1’)および上記パイロット圧(1”)の力のつり合いによって漸進的に行われるため、供給系統切換時における切換ショックが軽減される。さらに、切換用のソレノイドと駆動回路が不要となり、構造が簡素化されると共に、電気デバイスの数が減るためシステム全体の信頼性が向上する。   In the above configuration, when the flow rate of hydraulic oil supplied to the high pressure circuit (200) by the high pressure pump (10) and the low pressure pump (20) exceeds the consumption flow rate of the high pressure circuit (200), the line hydraulic pressure (1 ′) is The valve body (31) is moved by the balance between the line hydraulic pressure (1 ′) and the pilot pressure (1 ″) in the valve body (31), and is first discharged from the low-pressure pump (20). The low-pressure branch line (4) for discarding the hydraulic oil is opened, excess hydraulic oil is discarded through the low-pressure branch line (4), and pressure regulation for the high-pressure circuit (200) is performed. If pressure regulation for the high pressure circuit (200) is not completed simply by discarding excess hydraulic fluid through the line (4), the valve body (31) is further moved and the high pressure pump (10) The high-pressure branch line (3) for discarding discharged hydraulic oil is opened, excess hydraulic oil is discarded through the high-pressure branch line (3), and pressure regulation for the high-pressure circuit (200) is performed. Thus, even if there is a variation in pump performance or a change in the viscosity of hydraulic oil, the pressure of the low pressure pump (20) depends on the relationship between the consumption flow rate of the high pressure circuit (200) and the discharge flow rate of the high pressure pump (10). Since the oil supply destination is automatically and autonomously switched from the high pressure circuit (200) to the low pressure circuit (300), as described later, the hydraulic oil discharged from the low pressure pump (20) is used in the low pressure state (pump supply). As a result, the energy loss of hydraulic oil during pressure regulation is reduced appropriately, and the drive power reduction effect of the hydraulic supply system using multiple pumps is maximized. In addition, the switching of the supply system of each pump is performed gradually by the balance of the line hydraulic pressure (1 ′) and the pilot pressure (1 ″) in the valve body (31). The switching shock at the time of switching the supply system is reduced. Further, the switching solenoid and the drive circuit are not required, the structure is simplified, and the number of electrical devices is reduced, so that the reliability of the entire system is improved.

本発明に係る油圧供給システムの系統切換機構の第2の特徴は、前記弁体(31)の外周面には前記低圧分岐ライン(4)を連通させる第1環状油路(31a)ならびに前記高圧分岐ライン(3)を連通させる第2環状油路(31b)が別個独立に設けられ、且つ、前記スプール弁(30)のボディ(32)には前記低圧分岐ライン(4)の上流側が接続される低圧入口ポート(32a_in)ならびに前記高圧分岐ライン(4)の上流側が接続される高圧入口ポート(32b_in)が別個独立に設けられ、前記弁体(31)における前記パイロット圧(1”)と前記ライン油圧(1’)の力のつり合いによって、先ず前記第1環状油路(31a)と前記低圧入口ポート(32a_in)のみが非重複状態から重複状態となり、続いて前記第2環状油路(31b)と前記高圧入口ポート(32b_in)が非重複状態から重複状態となるように構成されていることである。   A second feature of the system switching mechanism of the hydraulic pressure supply system according to the present invention is that the first annular oil passage (31a) that communicates the low pressure branch line (4) with the outer peripheral surface of the valve body (31) and the high pressure. A second annular oil passage (31b) for communicating the branch line (3) is provided independently, and the upstream side of the low-pressure branch line (4) is connected to the body (32) of the spool valve (30). A low-pressure inlet port (32a_in) and a high-pressure inlet port (32b_in) to which the upstream side of the high-pressure branch line (4) is connected are provided independently, and the pilot pressure (1 ") in the valve body (31) and the Only the first annular oil passage (31a) and the low pressure inlet port (32a_in) are changed from the non-overlapping state to the overlapping state by the balance of the force of the line oil pressure (1 '), and then the second annular oil passage (31 b) and the high-pressure inlet port (32b_in) are configured to change from a non-overlapping state to an overlapping state.

上記構成では、低圧分岐ライン(4)および高圧分岐ライン(3)がともに閉状態にある時、上記弁体(31)における上記パイロット圧(1”)と上記ライン油圧(1’)の力のつり合いによって、先ず前記低圧分岐ライン(4)が閉状態から開状態となり余剰作動油が上記低圧分岐ライン(4)を通して廃棄され、続いて前記高圧分岐ライン(3)が閉状態から開状態となり余剰作動油が上記高圧分岐ライン(3)を通して廃棄される。このように、低圧分岐ライン(4)と高圧分岐ライン(3)が別個独立にそれぞれ設けられ、順に閉状態から開状態にされるため、直接合流することはない。   In the above configuration, when both the low pressure branch line (4) and the high pressure branch line (3) are in the closed state, the pilot pressure (1 ″) and the line hydraulic pressure (1 ′) in the valve body (31) As a result of the balance, the low-pressure branch line (4) is first changed from a closed state to an open state, and excess hydraulic oil is discarded through the low-pressure branch line (4), and then the high-pressure branch line (3) is changed from a closed state to an open state. The hydraulic oil is discarded through the high-pressure branch line (3) In this way, the low-pressure branch line (4) and the high-pressure branch line (3) are provided separately and separately, and are sequentially switched from the closed state to the open state. , Do not join directly.

本発明に係る油圧供給システムの系統切換機構の第3の特徴は、前記第1環状油路(31a)又は前記第2環状油路(31b)の開口縁部には切欠き(31e)が設けられていることである。   A third feature of the system switching mechanism of the hydraulic pressure supply system according to the present invention is that a notch (31e) is provided at an opening edge of the first annular oil passage (31a) or the second annular oil passage (31b). It is being done.

上記構成では、上記切欠き(31e)によって、上記高圧分岐ライン(3)又は上記低圧分岐ライン(4)の閉状態から開状態への切り換えがそれぞれ漸進的に成されるため、余剰作動油が上記高圧分岐ライン(3)又は低圧分岐ライン(4)を通して漸進的に廃棄され、各切換時におけるライン油圧の急激な変化が起きなくなる。   In the above configuration, the cutout (31e) gradually switches the high-pressure branch line (3) or the low-pressure branch line (4) from the closed state to the open state. It is gradually discarded through the high-pressure branch line (3) or the low-pressure branch line (4), and a rapid change in line oil pressure does not occur at each switching.

本発明に係る油圧供給システムの系統切換機構の第4の特徴は、前記第2環状油路(31b)の開口縁部には切欠き(31e)が設けられ、前記弁体(31)における前記パイロット圧(1”)と前記ライン油圧(1’)の力のつり合いによって、先ず前記第1環状油路(31a)と前記低圧入口ポート(32a_in)のみが非重複状態から重複状態となり、続いて前記第2環状油路(31b)の前記切欠き(31e)と前記高圧入口ポート(32b_in)が非重複状態から重複状態となるように構成されていることである。   A fourth feature of the system switching mechanism of the hydraulic pressure supply system according to the present invention is that a notch (31e) is provided at an opening edge of the second annular oil passage (31b), and the valve body (31) Due to the balance between the pilot pressure (1 ″) and the line hydraulic pressure (1 ′), only the first annular oil passage (31a) and the low pressure inlet port (32a_in) are changed from the non-overlapping state to the overlapping state. The notch (31e) and the high-pressure inlet port (32b_in) of the second annular oil passage (31b) are configured to change from a non-overlapping state to an overlapping state.

上記構成では、上記切欠き(31e)によって、特に高圧系統である上記高圧分岐ライン(3)の閉状態から開状態への切り換えが漸進的に成されるため、余剰作動油が上記高圧分岐ライン(3)を通して漸進的に廃棄され、切換時におけるライン油圧の急激な変化が起きなくなる。   In the above configuration, since the notch (31e) gradually switches the high-pressure branch line (3), which is a high-pressure system, from the closed state to the open state gradually, excess hydraulic oil is removed from the high-pressure branch line. It is gradually discarded through (3), and a sudden change in line oil pressure does not occur at the time of switching.

本発明に係る油圧供給システムの系統切換機構の第5の特徴は、前記変速機は無段変速可能なプーリー機構から成ると共に、前記プーリー機構に油圧を供給する各調圧弁(DR_REG_V、DN_REG_V)を駆動する各油圧(DRC圧、DNC圧)の内で何れか高い方の油圧が前記パイロット圧(1”)として前記高圧回路(200)から出力され、前記弁体(31)に作用することである。   A fifth feature of the system switching mechanism of the hydraulic pressure supply system according to the present invention is that the transmission is composed of a continuously variable transmission pulley mechanism, and each pressure regulating valve (DR_REG_V, DN_REG_V) that supplies hydraulic pressure to the pulley mechanism. The higher hydraulic pressure among the driven hydraulic pressures (DRC pressure, DNC pressure) is output from the high pressure circuit (200) as the pilot pressure (1 ″) and acts on the valve body (31). is there.

上記構成では、特にプーリー機構に係る高圧回路(200)の必要流量に応じて高圧ポンプ(10)のみで高圧回路(200)へ供給する状態と、高圧ポンプ(10)と低圧ポンプ(20)の各吐出を合わせて高圧回路(200)へ供給する状態を、好適に切り換えることが可能となる。   In the above configuration, the state in which only the high pressure pump (10) is supplied to the high pressure circuit (200) according to the required flow rate of the high pressure circuit (200) related to the pulley mechanism, and the high pressure pump (10) and the low pressure pump (20) It is possible to suitably switch the state of supplying each discharge to the high voltage circuit (200).

本発明に係る油圧供給システムの系統切換機構の第6の特徴は、前記低圧回路(300)は全体の回路システムのうち、潤滑など低圧でその用を満足する供給先から成ることである。   A sixth feature of the system switching mechanism of the hydraulic pressure supply system according to the present invention is that the low-pressure circuit (300) comprises a supply destination satisfying the use thereof at a low pressure such as lubrication among the entire circuit system.

上記構成では、上記高圧分岐ライン(3)及び上記低圧分岐ライン(4)を介してそれぞれ廃棄された作動油を使用して、歯車等を好適に潤滑することが可能となる。   In the above configuration, the gears and the like can be suitably lubricated by using the working oil discarded through the high-pressure branch line (3) and the low-pressure branch line (4).

本発明油圧供給システムの系統切換機構の第7の特徴は、前記高圧分岐ライン(3)及び前記低圧分岐ライン(4)はリリーフ弁(8)を介して前記第1吐出ポート(10a)を有する高圧ポンプ(10)並びに前記第2吐出ポート(20a)を有する低圧ポンプ(20)の各吸込口側に連結する帰還ライン(6)あるいはリザーバ(9)に連結していることである。   A seventh feature of the system switching mechanism of the hydraulic pressure supply system according to the present invention is that the high pressure branch line (3) and the low pressure branch line (4) have the first discharge port (10a) via a relief valve (8). The high pressure pump (10) and the low pressure pump (20) having the second discharge port (20a) are connected to the suction line side connected to the suction line side (6) or the reservoir (9).

上記構成では、上記高圧分岐ライン(3)及び上記低圧分岐ライン(4)を介してそれぞれ廃棄された作動油は一部が低圧回路に供給され、残りが帰還ライン(6)あるいはリザーバ(9)を介して高圧ポンプ(10)及び低圧ポンプ(20)に戻され再利用される。   In the above configuration, part of the hydraulic oil discarded through the high-pressure branch line (3) and the low-pressure branch line (4) is supplied to the low-pressure circuit, and the rest is returned to the return line (6) or the reservoir (9). Are returned to the high-pressure pump (10) and the low-pressure pump (20) through the second cycle and reused.

本発明油圧供給システムの系統切換機構の第8の特徴は、前記高圧ポンプ(10)及び前記低圧ポンプ(20)の代わりに、複数の互いに連通しない独立な吐出ポートを備えた単一のポンプ(10’)を用いて、一の吐出ポート(10'a)を前記高圧ライン(1)へ、他の吐出ポート(10'b)を前記低圧ライン(2)へそれぞれ接続することである。   The eighth feature of the system switching mechanism of the hydraulic pressure supply system of the present invention is that a single pump having a plurality of independent discharge ports that do not communicate with each other (instead of the high pressure pump (10) and the low pressure pump (20)). 10 ′), one discharge port (10′a) is connected to the high pressure line (1), and the other discharge port (10′b) is connected to the low pressure line (2).

上記構成では、単一のポンプによって作動油を複数の系統に供給するため、ポンプを駆動する駆動動力が好適に低減されると共に、作動油の供給系統が簡素化されシステム全体の重量が軽減される。   In the above configuration, since the hydraulic oil is supplied to a plurality of systems by a single pump, the driving power for driving the pump is suitably reduced, the hydraulic oil supply system is simplified, and the weight of the entire system is reduced. The

本発明の油圧供給システムの系統切換機構(100)によれば、高圧回路(200)の消費流量より高圧ポンプ(10)の吐出流量が大きい場合は低圧ポンプ(20)の吐出先を低圧回路(300)とし,高圧回路(200)の消費流量より高圧ポンプ(10)の吐出流量が小さい場合は低圧ポンプ(20)の吐出先を高圧回路(200)とする切り替えが、自動的・自律的に成される。即ち、ポンプの運転を開始すると、低圧ポンプ(20)の低圧分岐ライン(4)、続いて高圧ポンプ(10)の高圧分岐ライン(3)が上記パイロット圧(1”)と上記ライン油圧(1’)の力のつり合いによって自動的・自律的にそれぞれ閉状態から開状態に切り換わることにより、低圧ポンプ(20)の供給先がポンプ性能のバラツキやオイル粘度の変動に拘わらず高圧回路(200)から低圧回路(300)へ、又は低圧回路(300)から高圧回路(200)へ自動的・自律的に且つ漸進的に切り換わることになる。そのため、低圧ポンプ(20)から吐出される作動油を低圧状態のまま使う(低圧分岐ライン(4)の)作動領域が増え、その結果ポンプ駆動動力が好適に低減され、複数系統のポンプを用いた油圧供給システムの駆動動力削減効果を最大限に引き出すことが出来るようになる。
また、上記油圧供給系統の切換は、弁体(31)における上記高圧ライン(1)の上記ライン油圧(1’)および上記パイロット圧(1”)の力のつり合いによって漸進的に行われるため、供給系統切換時における切換ショックが軽減される。
更に、切換え用のソレノイドと駆動回路が不要となり、構造が簡素化されると共に、電気デバイスの数が減るためシステム全体の信頼性が向上する。
According to the system switching mechanism (100) of the hydraulic pressure supply system of the present invention, when the discharge flow rate of the high pressure pump (10) is larger than the consumption flow rate of the high pressure circuit (200), the discharge destination of the low pressure pump (20) is set to the low pressure circuit (200). 300), and when the discharge flow rate of the high pressure pump (10) is smaller than the consumption flow rate of the high pressure circuit (200), the switching to the high pressure circuit (200) as the discharge destination of the low pressure pump (20) is automatically and autonomously performed. Made. That is, when the operation of the pump is started, the low-pressure branch line (4) of the low-pressure pump (20) and then the high-pressure branch line (3) of the high-pressure pump (10) are connected to the pilot pressure (1 ″) and the line oil pressure (1 By automatically and autonomously switching from the closed state to the open state according to the force balance of '), the supply destination of the low-pressure pump (20) can be controlled regardless of variations in pump performance or fluctuations in oil viscosity. ) To the low pressure circuit (300) or from the low pressure circuit (300) to the high pressure circuit (200) automatically, autonomously and gradually, so that the operation discharged from the low pressure pump (20) The operating area (of the low-pressure branch line (4)) where oil is used in a low pressure state is increased, and as a result, the pump drive power is suitably reduced, and the drive of the hydraulic supply system using a plurality of pumps The power reduction effect can be maximized.
Further, the switching of the hydraulic pressure supply system is gradually performed by the balance of the force of the line hydraulic pressure (1 ′) and the pilot pressure (1 ″) of the high pressure line (1) in the valve body (31). Switching shock during supply system switching is reduced.
Further, the switching solenoid and the drive circuit are not required, the structure is simplified, and the number of electrical devices is reduced, so that the reliability of the entire system is improved.

本発明の油圧供給システムの系統切換機構を示す説明図である。It is explanatory drawing which shows the system | strain switching mechanism of the hydraulic pressure supply system of this invention. 本発明に係る高圧回路の要部を示す説明図である。It is explanatory drawing which shows the principal part of the high voltage circuit which concerns on this invention. 本発明に係る油圧供給システムの流量線図(切欠き有り)を示す説明図である。It is explanatory drawing which shows the flow rate diagram (there is a notch) of the hydraulic pressure supply system which concerns on this invention. 本発明に係る油圧供給システムの流量線図(切欠き無し)を示す説明図である。It is explanatory drawing which shows the flow rate diagram (there is no notch) of the hydraulic pressure supply system which concerns on this invention. 本発明に係る油圧供給システムの各動作点における作動油の流れを示す説明図である。It is explanatory drawing which shows the flow of the hydraulic fluid in each operating point of the hydraulic pressure supply system which concerns on this invention. 本発明に係る油圧供給システムの各動作点におけるPHレギュレータバルブの状態を示す説明図である。It is explanatory drawing which shows the state of PH regulator valve | bulb in each operating point of the hydraulic pressure supply system which concerns on this invention. 本発明の油圧供給システムの系統切換機構の他の例を示す説明図である。It is explanatory drawing which shows the other example of the system | strain switching mechanism of the hydraulic pressure supply system of this invention. 従来の油圧供給システムの系統切換機構及びその流量線図を示す説明図である。It is explanatory drawing which shows the system | strain switching mechanism of the conventional hydraulic pressure supply system, and its flow rate diagram.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明の油圧供給システムの系統切換機構100を示す説明図である。なお、図1(a)は全体のシステム系統図であり、同(b)は本発明に係るPHレギュレータバルブ30の要部断面図である。
この油圧供給システムの系統切換機構100は、高圧回路200に作動油を供給する高圧ポンプ10と、高圧ポンプ10と高圧回路200を連結する高圧ライン1と、必要に応じ高圧回路200または低圧回路300に作動油を供給する低圧ポンプ20と、低圧ポンプ20の吐出口から延び一方向弁7を介して高圧ライン1に連結する低圧ライン2と、高圧ライン1から分岐し低圧回路300側に接続する高圧分岐ライン3(A系統)と、低圧ライン2から分岐し低圧回路300側に接続する低圧分岐ライン4(B系統)と、高圧分岐ライン3と低圧分岐ライン4を結合して低圧回路300に連結する低圧合流ライン5と、高圧分岐ライン3及び低圧分岐ライン4を通して廃棄された作動油の一部を高圧ポンプ10及び低圧ポンプ20の吸込口側に戻す帰還ライン6と、高圧ポンプ10から吐出された作動油が低圧ポンプ20側(低圧系統)に流入することを阻止する一方向弁7と、A系統、B系統および低圧合流ライン5と帰還ライン6を連通する低圧リリーフ弁8と、作動油を貯留するリザーバ9と、A系統またはB系統を切断/接続して必要に応じ高圧ポンプ10または低圧ポンプ20から吐出される作動油を廃棄するPHレギュレータバルブ30と、高圧ライン1のC1−C2間のライン油圧をPHレギュレータバルブ30に作用させるライン油圧ピックアップライン1’(ライン油圧)と、高圧回路200の油圧を調節するための信号圧をPHレギュレータバルブ30に作用させるパイロットライン1”(パイロット油圧)とを具備して構成されている。なお、本発明の系統切換機構100の動作については、図3から図6を参照しながら後述する。また、上記パイロットライン1”(DRC圧、DNC圧)については図2を参照しながら後述する。また、上述の通り、高圧分岐ライン3および低圧分岐ライン4については適宜簡略してA系統、B系統とそれぞれ呼ぶ場合がある。以下、各構成について更に詳細に説明する。
FIG. 1 is an explanatory view showing a system switching mechanism 100 of the hydraulic pressure supply system of the present invention. 1A is an overall system diagram, and FIG. 1B is a cross-sectional view of the main part of a PH regulator valve 30 according to the present invention.
The system switching mechanism 100 of the hydraulic pressure supply system includes a high pressure pump 10 that supplies hydraulic oil to the high pressure circuit 200, a high pressure line 1 that connects the high pressure pump 10 and the high pressure circuit 200, and a high pressure circuit 200 or a low pressure circuit 300 as necessary. A low-pressure pump 20 for supplying hydraulic oil to the high-pressure line, a low-pressure line 2 extending from the discharge port of the low-pressure pump 20 and connected to the high-pressure line 1 via the one-way valve 7, and branched from the high-pressure line 1 and connected to the low-pressure circuit 300 side. The high-pressure branch line 3 (A system), the low-pressure branch line 4 (B system) branched from the low-pressure line 2 and connected to the low-voltage circuit 300 side, and the high-pressure branch line 3 and the low-pressure branch line 4 are coupled to the low-voltage circuit 300. Part of the hydraulic oil discarded through the low-pressure merging line 5 to be connected, the high-pressure branch line 3 and the low-pressure branch line 4 is sucked into the high-pressure pump 10 and the low-pressure pump 20 A return line 6 that returns to the side, a one-way valve 7 that prevents hydraulic oil discharged from the high-pressure pump 10 from flowing into the low-pressure pump 20 side (low-pressure system), a system A, a system B, and a low-pressure merge line 5 Disconnect / connect the low pressure relief valve 8 communicating with the return line 6, the reservoir 9 storing hydraulic oil, and the A system or B system, and discard the hydraulic oil discharged from the high pressure pump 10 or the low pressure pump 20 as necessary. The PH regulator valve 30 to be operated, the line hydraulic pressure line C 1 -C 2 of the high pressure line 1 to act on the PH regulator valve 30, and the signal pressure for adjusting the hydraulic pressure of the high pressure circuit 200. Is provided with a pilot line 1 ″ (pilot hydraulic pressure) for operating the PH regulator valve 30. The system of the present invention. The operation of the switching mechanism 100 will be described later with reference to FIGS. 3-6. In addition, the pilot line 1 "(DRC pressure, DNC pressure) will be described later with reference to FIG. Further, as described above, the high-pressure branch line 3 and the low-pressure branch line 4 may be simply referred to as A system and B system, respectively, as appropriate. Hereinafter, each configuration will be described in more detail.

高圧ポンプ10および低圧ポンプ20は、エンジンE/Gによって回転駆動される容積型ポンプである。リザーバ9内に貯留する作動油を吸い上げ、高圧ポンプ10は第1吐出ポート10bから高圧ライン1に、低圧ポンプ20は第2吐出ポート20aから第1低圧ライン2に作動油をそれぞれ吐出する。   The high-pressure pump 10 and the low-pressure pump 20 are positive displacement pumps that are rotationally driven by the engine E / G. The hydraulic oil stored in the reservoir 9 is sucked up, the high pressure pump 10 discharges the hydraulic oil from the first discharge port 10b to the high pressure line 1, and the low pressure pump 20 discharges the hydraulic oil from the second discharge port 20a to the first low pressure line 2.

PHレギュレータバルブ30は、図1(b)に示すように、弁体31、ボディ32及びスプリング33とから成る圧力調整弁である。弁体31には低圧分岐ライン4を連通する第1環状油路31aと、高圧分岐ライン3を連通する第2環状油路31bと、高圧ライン1のC1−C2間を流れる上記ライン油圧が作用する受圧面31cと、上記パイロット圧が作用する中空円筒部31dとがそれぞれ設けられている。また、ボディ32の外周面には低圧分岐ライン4の上流側が接続される低圧入口ポート32a_inと、低圧分岐ライン4の下流側が接続される低圧出口ポート32a_outと、高圧分岐ライン3の上流側が接続される高圧入口ポート32b_inと、高圧分岐ライン3の下流側が接続される高圧出口ポート32b_outと、ライン油圧ピックアップライン1’が接続されるポート32cと、パイロットライン1”が接続されるポート32dがそれぞれ設けられている。後述する通り、先ず第1環状油路31aと低圧入口ポート32a_inが非重複状態から重複状態へ切り換わりA系統が閉状態から開状態となり、続いて第2環状油路31bと高圧入口ポート32b_inが非重複状態から重複状態へ切り換わりB系統が閉状態から開状態となる。   The PH regulator valve 30 is a pressure regulating valve including a valve body 31, a body 32, and a spring 33, as shown in FIG. The valve body 31 is subjected to the first annular oil passage 31 a communicating with the low pressure branch line 4, the second annular oil passage 31 b communicating with the high pressure branch line 3, and the above-described line hydraulic pressure flowing between C 1 and C 2 of the high pressure line 1. A pressure receiving surface 31c that performs the above operation and a hollow cylindrical portion 31d on which the pilot pressure acts are provided. Further, a low pressure inlet port 32a_in to which the upstream side of the low pressure branch line 4 is connected, a low pressure outlet port 32a_out to which the downstream side of the low pressure branch line 4 is connected, and an upstream side of the high pressure branch line 3 are connected to the outer peripheral surface of the body 32. A high pressure inlet port 32b_in, a high pressure outlet port 32b_out to which the downstream side of the high pressure branch line 3 is connected, a port 32c to which the line hydraulic pickup line 1 ′ is connected, and a port 32d to which the pilot line 1 ″ is connected. As will be described later, first, the first annular oil passage 31a and the low pressure inlet port 32a_in are switched from the non-overlapping state to the overlapping state, the A system is changed from the closed state to the open state, and then the second annular oil passage 31b and the high pressure The inlet port 32b_in is switched from the non-overlapping state to the overlapping state, and the B system is changed from the closed state to the open state.

PHレギュレータバルブ30の弁体31に対しては、スプリング33の弾性力、パイロットライン1”から供されるパイロット圧P1”、ライン油圧ピックアップライン1’から供されるライン油圧P1’が作用し、通常はこれら3力がバランスする位置で弁体31は静止している。しかし、例えば高圧回路200の消費流量が減少して、ライン油圧P1’が上昇してこれら3力のつり合いが崩れ、その結果、第1環状油路31aが開となり、低圧分岐ライン4からの作動油が第1環状油路31aに流入する。この場合、低圧分岐ライン4から流入した作動油は、低圧出口ポート32a_outから流出して低圧分岐ライン4の下流へ供される。 PH against valve body 31 of the regulator valve 30, the elastic force, "the pilot pressure P 1 to be subjected to" pilot line 1, the 'line pressure P 1 to be subjected to' line pressure pickup line 1 action of the spring 33 Normally, however, the valve body 31 is stationary at a position where these three forces are balanced. However, for example, the flow rate of the high-pressure circuit 200 decreases, the line hydraulic pressure P 1 ′ rises and the balance of these three forces breaks, and as a result, the first annular oil passage 31 a is opened and the low-pressure branch line 4 The hydraulic oil flows into the first annular oil passage 31a. In this case, the hydraulic oil flowing in from the low-pressure branch line 4 flows out from the low-pressure outlet port 32a_out and is provided downstream of the low-pressure branch line 4.

続いて、ライン油圧P1’、スプリング33の弾性力およびパイロット圧P1”の力のつり合いが崩れ、その結果、第2環状油路31bが開となると、高圧分岐ライン3からの作動油が第2環状油路31bに流入する。この場合、高圧分岐ライン3から流入した作動油は、高圧出口ポート32b_outから流出して高圧分岐ライン3の下流へ供される。 Subsequently, the balance between the line hydraulic pressure P 1 ′ , the elastic force of the spring 33 and the force of the pilot pressure P 1 ″ collapses. As a result, when the second annular oil passage 31b is opened, the hydraulic oil from the high-pressure branch line 3 is discharged. In this case, the hydraulic oil flowing in from the high pressure branch line 3 flows out of the high pressure outlet port 32b_out and is provided downstream of the high pressure branch line 3.

一方向弁7は、高圧ライン1から低圧ライン2への作動油の流入を阻止するが、第1低圧ライン2から高圧ライン1への作動油の流入を許可する。つまり、一方向弁7によって高圧系統の油圧が直接に低圧系統の油圧に流入することがないようにしている。   The one-way valve 7 prevents the hydraulic oil from flowing from the high pressure line 1 to the low pressure line 2, but permits the hydraulic oil to flow from the first low pressure line 2 to the high pressure line 1. That is, the one-way valve 7 prevents the high pressure system hydraulic pressure from directly flowing into the low pressure system hydraulic pressure.

低圧リリーフ弁8は、低圧回路300の油圧が予め設定された値を超えた場合に、A系統、B系統および低圧合流ライン5と帰還ライン6を連通し、作動油の一部を帰還ライン6へ破棄する。廃棄された作動油は、高圧ポンプ10及び低圧ポンプ20の吸込口側またはリザーバ9に戻され、再び高圧ライン1または第1低圧ライン2へ供されることになる。   When the hydraulic pressure of the low pressure circuit 300 exceeds a preset value, the low pressure relief valve 8 communicates the A system, the B system, the low pressure merging line 5 and the feedback line 6, and a part of the hydraulic oil is returned to the feedback line 6. Destroy. The discarded hydraulic oil is returned to the suction port side or the reservoir 9 of the high-pressure pump 10 and the low-pressure pump 20 and supplied again to the high-pressure line 1 or the first low-pressure line 2.

高圧回路200は、例えば、CVT(ベルト式無段変速機)のプーリー機構、CVTの前後進切換機構(前進用クラッチ、後進用ブレーキ)あるいはトルクコンバータのロックアップクラッチ機構等の油圧作動機構に油圧を供給する油圧回路である。   The high-voltage circuit 200 is hydraulically applied to a hydraulic operating mechanism such as a CVT (belt continuously variable transmission) pulley mechanism, a CVT forward / reverse switching mechanism (forward clutch, reverse brake), or a torque converter lockup clutch mechanism. Is a hydraulic circuit for supplying

低圧回路300は、全体の回路システムのうち、潤滑など低圧でその用を満足する供給先、例えば潤滑回路,熱交換器,およびオイルフィルター等である。   The low-pressure circuit 300 is a supply destination satisfying the use at a low pressure such as lubrication in the entire circuit system, for example, a lubrication circuit, a heat exchanger, and an oil filter.

図2は、本発明に係る高圧回路200の要部を示す説明図である。なお、ここでの説明及び図示は、上記パイロットライン1”に関連するドライブプーリー機構200DR及びドリブンプーリー機構200DNに係る油圧回路に限定することとし、その他の前後進切換機構及びトルクコンバータのロックアップ機構に係る油圧回路については説明及び図示を省略することとした。   FIG. 2 is an explanatory diagram showing a main part of the high-voltage circuit 200 according to the present invention. The description and illustration here are limited to the hydraulic circuit related to the drive pulley mechanism 200DR and the driven pulley mechanism 200DN related to the pilot line 1 ″, and other forward / reverse switching mechanisms and a lock-up mechanism of the torque converter. The description and illustration of the hydraulic circuit according to the above are omitted.

高圧ポンプ10等から吐出され高圧ライン1を介して高圧回路200に供された作動油は、PHラインPH_Lを流れ、その後ドライブプーリー機構200DR及びドリブンプーリー機構200DNを駆動するPHプーリーラインPH_PLと、DR調圧弁DR_REG_V及びDN調圧弁DN_REG_V並びにDR制御弁DR_CTL_V及びDN制御弁DN_CTL_Vを駆動/制御するPHバルブラインPH_VLという二系統に分岐される。   The hydraulic oil discharged from the high-pressure pump 10 or the like and supplied to the high-pressure circuit 200 via the high-pressure line 1 flows through the PH line PH_L, and then the PH pulley line PH_PL that drives the drive pulley mechanism 200DR and the driven pulley mechanism 200DN, DR The pressure control valve DR_REG_V and the DN pressure control valve DN_REG_V, and the DR control valve DR_CTL_V and the DN control valve DN_CTL_V are branched into two systems, namely, a PH valve line PH_VL.

先ず、PHバルブラインPH_VLに分岐された作動油は、減圧弁CR_VによってCR圧まで減圧されながらCRラインCR_Lを流れ、その後CRドライブラインCR_DRL及びCRドリブンラインCR_DNLという二系統に分岐され、DR制御弁DR_CTL_V及びDN制御弁DN_CTL_VによってDRC圧、DNC圧にそれぞれ調圧され、DRC圧及びDNC圧はDRCラインDRC_L及びDNCラインDNC_Lを介してDR調圧弁DR_REG_V及びDN調圧弁DN_REG_Vにそれぞれ供される。なお、DR制御弁DR_CTL_V及びDN制御弁DN_CTL_Vのスプールの一端はDRソレノイドバルブDR_SOL_V及びDNソレノイドバルブDN_SOL_Vによってそれぞれ付勢され、各ソレノイドの推力(通電量)によって作動油のDNC圧およびDRC圧が制御される。   First, the hydraulic oil branched to the PH valve line PH_VL flows through the CR line CR_L while being reduced to the CR pressure by the pressure reducing valve CR_V, and then branched into two systems, the CR drive line CR_DRL and the CR driven line CR_DNL, and the DR control valve The DRC pressure and the DNC pressure are respectively regulated by the DR_CTL_V and the DN control valve DN_CTL_V, and the DRC pressure and the DNC pressure are respectively supplied to the DR pressure regulating valve DR_REG_V and the DN pressure regulating valve DN_REG_V via the DRC line DRC_L and the DNC line DNC_L. One end of the spool of DR control valve DR_CTL_V and DN control valve DN_CTL_V is energized by DR solenoid valve DR_SOL_V and DN solenoid valve DN_SOL_V, respectively, and the DNC pressure and DRC pressure of hydraulic oil are controlled by the thrust (energization amount) of each solenoid. Is done.

一方、PHプーリーラインPH_PLに分岐された作動油は、更にドライブプーリーラインPH_P_DRLとドリブンプーリーラインPH_P_DNLという二系統に分岐され、DR調圧弁DR_REG_V及びDN調圧弁DN_REG_VによってDR圧およびDN圧にそれぞれ調圧され、DRラインDR_L及びDNラインDN_Lを介してドライブプーリー機構200DR及びドリブンプーリー機構200DNにそれぞれ供給され、上記DRソレノイドバルブDR_SOL_V及びDNソレノイドバルブDN_SOL_Vへの通電量が制御されることによってドライブプーリー200DR及びドリブンプーリー200DNの各側圧が増減されて変速比が制御される。   On the other hand, the hydraulic oil branched to the PH pulley line PH_PL is further branched into two systems, a drive pulley line PH_P_DRL and a driven pulley line PH_P_DNL, and adjusted to a DR pressure and a DN pressure by a DR pressure regulating valve DR_REG_V and a DN pressure regulating valve DN_REG_V, respectively. And supplied to the drive pulley mechanism 200DR and the driven pulley mechanism 200DN via the DR line DR_L and the DN line DN_L, respectively, and the drive pulley 200DR and Each side pressure of the driven pulley 200DN is increased or decreased to control the gear ratio.

なお、上記DR調圧弁DR_REG_V及びDN調圧弁DN_REG_Vを駆動する上記DRC圧及びDNC圧は、PHレギュレータバルブ30に隣接するPHシフト弁PH_SHIFT_Vに供給され、PHシフト弁PH_SHIFT_Vにおいて、DRC圧とDNC圧の何れか高い方の油圧がPHパイロット圧としてパイロットライン1"へ出力され、上記PHレギュレータバルブ30の弁体31の一端に作用する。   The DRC pressure and the DNC pressure that drive the DR pressure regulating valve DR_REG_V and the DN pressure regulating valve DN_REG_V are supplied to the PH shift valve PH_SHIFT_V adjacent to the PH regulator valve 30, and the DR shift pressure PH_SHIFT_V includes the DRC pressure and the DNC pressure. The higher hydraulic pressure is output to the pilot line 1 ″ as the PH pilot pressure and acts on one end of the valve body 31 of the PH regulator valve 30.

図3及び図4は、本発明に係る油圧供給システムの流量線図を示す説明図であり、横軸は高圧回路200の消費流量Qを,縦軸はA系統からのドレイン流量Qd1、B系統からのドレイン流量Qd2、低圧回路供給流量、高圧ポンプ吐出圧力、ならびに低圧ポンプ吐出圧力をそれぞれ示す。なお、Qは高圧ポンプ10の吐出流量、Qは低圧ポンプ20の吐出流量をそれぞれ示す。また、図3は切欠き31e有りの場合を、図4は切欠き31e無しの場合をそれぞれ示している。 3 and 4 are explanatory views showing a flow diagram of a hydraulic pressure supply system according to the present invention, the flow consumption Q h of the horizontal axis high-voltage circuit 200, the drain flow rate Q d1 from the vertical axis A strains, A drain flow rate Q d2 from the B system, a low pressure circuit supply flow rate, a high pressure pump discharge pressure, and a low pressure pump discharge pressure are shown. Q 1 indicates the discharge flow rate of the high-pressure pump 10, and Q 2 indicates the discharge flow rate of the low-pressure pump 20. FIG. 3 shows the case with the notch 31e, and FIG. 4 shows the case without the notch 31e.

図3(b)の動作点A’では,高圧回路200の消費流量Qが,高圧ポンプ10の吐出流量Qと低圧ポンプ20の吐出流量Qの和に等しい。2つのポンプの吐出流量は、すべて高圧回路200に流れるため,A系統からのドレイン流量Qd1とB系統からのドレイン流量Qd2は、ともにゼロで、低圧回路300への供給流量もゼロである。なお、動作点A’ではA系統(高圧分岐ライン3)およびB系統(低圧分岐ライン4)はともに閉状態であり、PHレギュレータバルブ30は、図1(b)の状態である。即ち、低圧入口ポート32a_in及び高圧入口ポート32b_inはともに弁体31によって閉塞され、第1環状油路31aと低圧入口ポート32a_inおよび第2環状油路31bと高圧入口ポート32b_inはともに非重複状態にある。 At the operating point A ′ in FIG. 3B, the consumption flow rate Q h of the high pressure circuit 200 is equal to the sum of the discharge flow rate Q 1 of the high pressure pump 10 and the discharge flow rate Q 2 of the low pressure pump 20. Since the discharge flow rates of the two pumps all flow into the high pressure circuit 200, the drain flow rate Q d1 from the A system and the drain flow rate Q d2 from the B system are both zero, and the supply flow rate to the low pressure circuit 300 is also zero. . At the operating point A ′, the A system (high pressure branch line 3) and the B system (low pressure branch line 4) are both closed, and the PH regulator valve 30 is in the state shown in FIG. That is, the low pressure inlet port 32a_in and the high pressure inlet port 32b_in are both closed by the valve body 31, and the first annular oil passage 31a and the low pressure inlet port 32a_in and the second annular oil passage 31b and the high pressure inlet port 32b_in are both non-overlapping. .

図3(b)に戻り、動作点A’から動作点B’においては、B系統から廃棄される作動油のドレイン流量Qd2がゼロから増加する。即ち、図6(a)に示すように、油圧ピックアップライン1’のライン油圧により、弁体31が右方へ移動し、低圧入口ポート32a_inと第1環状流路31aが重複しB系統(低圧分岐ライン4)が徐々に開となり、図5(b)に示すように、低圧ポンプ20から吐出された作動油の一部(ドレイン流量Qd2)はB系統を通って低圧回路300に流れる。なお、一方向弁7はまだ開の状態であり、従って、低圧ポンプ20の吐出流量Qの内、ドレイン流量Qd2を除いたQ−Qd2が高圧ライン1に供給され、全体として高圧回路200にはQ+Q−Qd2=Qの作動油が供給され、低圧回路300にはQd2の作動油が供給される。特に、動作点A’から動作点B’においては、B系統(低圧ポンプ20)から廃棄される作動油のみによって高圧回路200に対する調圧、ひいては低圧回路300に対する作動油の供給が成される。 Returning to FIG. 3B, from the operating point A ′ to the operating point B ′, the drain flow rate Q d2 of the hydraulic oil discarded from the B system increases from zero. That is, as shown in FIG. 6 (a), the valve body 31 moves to the right due to the line hydraulic pressure of the hydraulic pickup line 1 ′, and the low pressure inlet port 32a_in and the first annular flow path 31a overlap, resulting in the B system (low pressure). The branch line 4) is gradually opened, and as shown in FIG. 5 (b), a part of the hydraulic oil (drain flow rate Q d2 ) discharged from the low pressure pump 20 flows to the low pressure circuit 300 through the B system. Note that the one-way valve 7 is still in an open state, and therefore, Q 2 -Q d2 excluding the drain flow rate Q d2 out of the discharge flow rate Q 2 of the low pressure pump 20 is supplied to the high pressure line 1, and as a whole the high pressure The circuit 200 is supplied with hydraulic fluid of Q 1 + Q 2 −Q d2 = Q h , and the low pressure circuit 300 is supplied with hydraulic fluid of Q d2 . In particular, from the operating point A ′ to the operating point B ′, the pressure adjustment to the high-pressure circuit 200 and the supply of the operating oil to the low-pressure circuit 300 are performed only by the operating oil discarded from the B system (low-pressure pump 20).

図3(b)に戻り、動作点B'から動作点C’においては、ドレイン流量Qd2の傾き角度が変化している。これは、図6(b)に示すように、弁体31が更に右方向へ移動し、B系統は半分程度開弁した時に高圧入口ポート32b_inと弁体31の切欠き31eが重複し始め、A系統(高圧分岐ライン3)が開状態となるからである。図5(c)に示すように、ドレイン流量Qd1>0となる。特に、図3(a)に示されるように、切欠き31eの効果により、A系統が開状態となった時のドレイン流量Qd1の立ち上がり角度が鈍くなり、ひいてはドレイン流量Qd2の傾き角度も鈍くなり、その結果、急激な流量変動(圧力変動)が抑制される。また、動作点B’から動作点C’においては、A系統およびB系統の双方が開状態にあり、従って、高圧回路200にはQ+Q−Qd1−Qd2=Qの作動油が供給され、低圧回路にはQd1+Qd2の作動油が供給される。 Returning to FIG. 3B, the inclination angle of the drain flow rate Qd2 changes from the operating point B ′ to the operating point C ′. As shown in FIG. 6 (b), when the valve body 31 further moves to the right and the B system is opened about half, the high pressure inlet port 32b_in and the notch 31e of the valve body 31 begin to overlap. This is because the A system (the high-pressure branch line 3) is in an open state. As shown in FIG. 5C, the drain flow rate Q d1 > 0. In particular, as shown in FIG. 3A, due to the effect of the notch 31e, the rising angle of the drain flow rate Q d1 when the system A is in an open state becomes dull, and as a result, the inclination angle of the drain flow rate Q d2 is also reduced. As a result, sudden flow fluctuations (pressure fluctuations) are suppressed. Further, from the operating point B ′ to the operating point C ′, both the A system and the B system are in an open state, and therefore the high-pressure circuit 200 has a hydraulic oil of Q 1 + Q 2 −Q d1 −Q d2 = Q h . Is supplied, and hydraulic fluid of Q d1 + Q d2 is supplied to the low pressure circuit.

また、動作点C’においては、一方向弁7が閉状態となり、低圧ポンプ20から吐出される流量Qの全てがB系統(低圧分岐ライン4)に供給される。この場合、低圧ポンプ20から吐出される作動油は高圧ライン1に供給されないため、全体として高圧回路200にはQ−Qd1=Qの流量が供給され、低圧回路300にはQ+Qd1の作動油が供給される。また、図3(e)に示されるように動作点C’を境に低圧ポンプ20の吐出圧力は低下し始める。 In the operating point C ', the one-way valve 7 is closed, all flow Q 2 to which is discharged from the low-pressure pump 20 is supplied to the B lineage (low pressure branch line 4). In this case, since the hydraulic oil discharged from the low pressure pump 20 is not supplied to the high pressure line 1, the flow rate of Q 1 −Q d1 = Q h is supplied to the high pressure circuit 200 as a whole, and Q 2 + Q is supplied to the low pressure circuit 300. d1 hydraulic oil is supplied. Further, as shown in FIG. 3 (e), the discharge pressure of the low-pressure pump 20 starts to decrease at the operating point C ′.

再び図3(b)に戻り、動作点C’から動作点D’においては、B系統についてはドレイン流量Qd2は一定値(Q)を示している一方、図3(a)に示されるようにA系統のドレイン流量Qd1は増加している。すなわち、B系統については低圧ポンプ20から吐出される流量Qの全てが低圧回路300に供給される一方、A系統については高圧入口ポート32b_inと第2環状流路31bとの重複度に比例したドレイン流量Qd1が低圧回路300に供給され、高圧回路200に対する調圧はA系統のみによって行われている。また、PHレギュレータバルブ30は、図6(c)の状態である。即ち、低圧入口ポート32a_inは大きく開けられ、低圧ポンプ20の吐出圧力は、低圧リリーフ弁8の開弁圧力に低圧入口ポート32a_inから低圧出口ポート32a_outの圧力差を足したものとなる。高圧回路200へは、Q−Qd1の作動油が供給され、低圧回路300にはQ+Qd1の作動油が供給される。この区間は低圧ポンプを低圧のまま使うため、低圧ポンプの駆動動力は小さくなる。 Returning to FIG. 3 (b) again, from the operating point C ′ to the operating point D ′, the drain flow rate Q d2 shows a constant value (Q 2 ) for the B system, while shown in FIG. Thus, the drain flow rate Q d1 of the A system is increased. That is, for the B system while all the flow Q 2 to which is discharged from the low-pressure pump 20 is supplied to the low pressure circuit 300, the system A is proportional to the degree of overlap between the high pressure inlet port 32b_in a second annular channel 31b The drain flow rate Q d1 is supplied to the low-pressure circuit 300, and the pressure regulation for the high-pressure circuit 200 is performed only by the A system. The PH regulator valve 30 is in the state shown in FIG. That is, the low pressure inlet port 32a_in is opened widely, and the discharge pressure of the low pressure pump 20 is obtained by adding the pressure difference between the low pressure inlet port 32a_in and the low pressure outlet port 32a_out to the opening pressure of the low pressure relief valve 8. The high pressure circuit 200 is supplied with hydraulic oil Q 1 -Q d 1 , and the low pressure circuit 300 is supplied with hydraulic oil Q 2 + Q d 1 . In this section, the low-pressure pump is used at a low pressure, so the driving power of the low-pressure pump is small.

なお、高圧回路200の必要流量Qが高圧ポンプ10の吐出流量を上回る場合は、上記逆のプロセス、即ち作動点D’→作動点C’→作動点B’→作動点A’を経て、高圧ポンプ10及び低圧ポンプ20の各油圧供給系統が低圧回路300から高圧回路200へ、漸進的に且つ自動的・自律的に切り換わることにより、高圧回路200への供給能力を保つ。 Incidentally, if the required flow rate Q h of the high-voltage circuit 200 exceeds the discharge flow rate of the high pressure pump 10, the reverse process, namely through the operating point D '→ operating point C' → operating point B '→ working point A', Each hydraulic pressure supply system of the high-pressure pump 10 and the low-pressure pump 20 is gradually and automatically and autonomously switched from the low-pressure circuit 300 to the high-pressure circuit 200, thereby maintaining the supply capability to the high-pressure circuit 200.

また、図4に示すように、切欠き31eがない場合は、とくにポンプ駆動軸の回転数が小さく、作動油の粘度が低い運転条件において、A系統によって高圧回路200の調圧が成される弁体31の位置範囲と、B系統によって高圧回路200の調圧が成される弁体31の位置範囲の間に、どちらの系統によっても調圧が成されない範囲が生ずる。この範囲を通過する時は、高圧回路200の圧力に意図しない変動を来す可能性がある。一方で、切欠き31eがない場合は、図3の動作点B’と動作点C’の間がないから、低圧ポンプ20を低圧のまま使う領域は最も広がり、低圧ポンプ20の駆動動力を最も小さくすることができる。   Further, as shown in FIG. 4, when there is no notch 31e, the high-pressure circuit 200 is regulated by the A system particularly in an operating condition where the rotational speed of the pump drive shaft is small and the viscosity of the hydraulic oil is low. Between the position range of the valve body 31 and the position range of the valve body 31 in which the pressure of the high-pressure circuit 200 is regulated by the B system, a range in which pressure regulation is not performed by either system is generated. When passing through this range, the pressure of the high-pressure circuit 200 may change unintentionally. On the other hand, when there is no notch 31e, there is no area between the operating point B ′ and the operating point C ′ in FIG. Can be small.

図7は、本発明の油圧供給システムの系統切換機構の他の例を示す説明図である。
上述した油圧供給システムの系統切換機構100では、高圧ライン1及び低圧ライン2に対し別個独立に高圧ポンプ(10)及び低圧ポンプ(20)がそれぞれ与えられ、高圧ポンプ(10)は高圧ライン1に、低圧ポンプ(2)は低圧ライン2に作動油をそれぞれ供給している。それに対し、この油圧供給システムの系統切換機構100’は、単一のポンプによって作動油を高圧ライン1及び低圧ライン2にそれぞれ供給するように構成されている。すなわち、単一のポンプ10’は複数の互いに連通しない吐出ポート10'a,10'bを備え、一の吐出ポート10'aは高圧ライン1へ、他の吐出ポート10'bは低圧ライン2へそれぞれ接続されることにより、別個独立に高圧ライン1又は低圧ライン2へ作動油が供給される。これにより、ポンプを駆動する駆動動力が好適に低減されると共に、作動油の供給系統が簡素化されシステム全体の重量が軽減される。なお、上記ポンプを除くその他の構成については上記油圧供給システムの系統切換機構100と同じである。
FIG. 7 is an explanatory view showing another example of the system switching mechanism of the hydraulic pressure supply system of the present invention.
In the above-described system switching mechanism 100 of the hydraulic supply system, a high pressure pump (10) and a low pressure pump (20) are separately provided to the high pressure line 1 and the low pressure line 2, respectively. The low pressure pump (2) supplies hydraulic oil to the low pressure line 2 respectively. On the other hand, the system switching mechanism 100 ′ of this hydraulic pressure supply system is configured to supply hydraulic oil to the high pressure line 1 and the low pressure line 2 by a single pump, respectively. That is, a single pump 10 'includes a plurality of non-communicating discharge ports 10'a and 10'b, one discharge port 10'a going to the high pressure line 1 and the other discharge port 10'b being the low pressure line 2. Are connected to the high pressure line 1 or the low pressure line 2 independently of each other. As a result, the driving power for driving the pump is suitably reduced, the hydraulic oil supply system is simplified, and the weight of the entire system is reduced. In addition, the configuration other than the pump is the same as that of the system switching mechanism 100 of the hydraulic pressure supply system.

以上の通り、本発明の油圧供給システムの系統切換機構100,100’によれば、高圧回路200の消費流量より高圧ポンプ10の吐出流量が大きい場合は低圧ポンプ20の吐出先を低圧回路300とし,高圧回路200の消費流量より高圧ポンプ10の吐出流量が小さい場合は低圧ポンプ20の吐出先を高圧回路200とする切り替えが,自動的・自律的になされる。即ち、ポンプの運転を開始すると,高圧回路200の圧力が上昇し、上記ライン油圧1’とパイロット圧1”の力のつり合いはライン油圧1’が勝るようになる。すると図1(b)の弁体31は右に移動し、低圧分岐ライン4(B系統)が開かれ図6(a)の状態となる。他方、高圧ポンプ10の吐出流量が高圧回路200の消費流量より小さい場合は弁体31の位置は図6(a)となり,高圧分岐ライン3(A系統)は閉塞し低圧分岐ライン4(B系統)の弁すき間を変えることにより、高圧回路200の圧力を調整する。このとき、低圧ポンプ20の吐出圧力は高圧回路200の圧力に一方向弁7の開弁圧を加えた圧力となる。高圧ポンプ10の吐出流量が高圧回路200の消費流量より大きい場合は、低圧分岐ライン4(B系統)の弁すき間が増加し、次いで一方向弁7が閉じる。次いで高圧ポンプ10の吐出により高圧回路200の圧力は上昇し、上記ライン油圧1’とパイロット圧1”の力のつり合いから図1(b)の弁体31はさらに右に動き弁体31の位置は図6(c)となり、高圧分岐ライン3(A系統)の弁すき間を変えることにより、高圧回路200の圧力を調整する。このとき、低圧ポンプ20の吐出圧力は低圧回路300の圧力とるため、低圧ポンプ20の駆動動力を削減することができる。そのため、低圧ポンプ(20)から吐出される作動油を低圧状態のまま使う(低圧分岐ライン(4)の)作動領域が増え、その結果ポンプ駆動動力が好適に低減され、複数系統のポンプを用いた油圧供給システムの駆動動力削減効果を最大限に引き出すことが出来るようになる。
また、上記油圧供給系統の切換は、弁体31に加わる高圧ライン1からの上記ライン油圧1’および上記パイロット圧1”の力のつり合いによって漸進的に行われるため、供給系統切換時における切換ショックが軽減される。
更に、切換え用のソレノイドと駆動回路が不要となり、構造が簡素化されると共に、電気デバイスの数が減るためシステム全体の信頼性が向上する。
As described above, according to the system switching mechanisms 100 and 100 ′ of the hydraulic pressure supply system of the present invention, when the discharge flow rate of the high pressure pump 10 is larger than the consumption flow rate of the high pressure circuit 200, the discharge destination of the low pressure pump 20 is the low pressure circuit 300. When the discharge flow rate of the high pressure pump 10 is smaller than the consumption flow rate of the high pressure circuit 200, the switching of the discharge destination of the low pressure pump 20 to the high pressure circuit 200 is automatically and autonomously performed. That is, when the operation of the pump is started, the pressure of the high pressure circuit 200 is increased, and the balance between the line hydraulic pressure 1 ′ and the pilot pressure 1 ″ is superior to that of the line hydraulic pressure 1 ′. The valve body 31 moves to the right, and the low-pressure branch line 4 (B system) is opened to the state shown in Fig. 6 (a) On the other hand, if the discharge flow rate of the high-pressure pump 10 is smaller than the consumption flow rate of the high-pressure circuit 200, 6A, the high pressure branch line 3 (A system) is closed and the pressure of the high pressure circuit 200 is adjusted by changing the valve clearance of the low pressure branch line 4 (B system). The discharge pressure of the low pressure pump 20 is a pressure obtained by adding the valve opening pressure of the one-way valve 7 to the pressure of the high pressure circuit 200. When the discharge flow rate of the high pressure pump 10 is larger than the consumption flow rate of the high pressure circuit 200, the low pressure branch line. 4 (B system) valve clearance increased, The one-way valve 7 is closed.Next, the pressure of the high-pressure circuit 200 is increased by the discharge of the high-pressure pump 10, and the valve body 31 in FIG. The position of the moving valve body 31 is as shown in FIG. 6C, and the pressure of the high-pressure circuit 200 is adjusted by changing the valve clearance of the high-pressure branch line 3 (A system). At this time, since the discharge pressure of the low pressure pump 20 is the pressure of the low pressure circuit 300, the driving power of the low pressure pump 20 can be reduced. For this reason, the operating region in which the hydraulic oil discharged from the low pressure pump (20) is used in a low pressure state (in the low pressure branch line (4)) is increased. As a result, the pump driving power is suitably reduced, and a plurality of pumps are used. The driving power reduction effect of the hydraulic supply system that has been used can be maximized.
Further, the switching of the hydraulic pressure supply system is gradually performed by the balance of the force of the line hydraulic pressure 1 ′ and the pilot pressure 1 ″ from the high pressure line 1 applied to the valve body 31. Is reduced.
Further, the switching solenoid and the drive circuit are not required, the structure is simplified, and the number of electrical devices is reduced, so that the reliability of the entire system is improved.

1 高圧ライン
2 低圧ライン
3 高圧分岐ライン
4 低圧分岐ライン
5 低圧合流ライン
6 帰還ライン
7 一方向弁
8 低圧リリーフ弁
9 リザーバ
10 高圧ポンプ
20 低圧ポンプ
30 PHレギュレータバルブ
31 弁体
31a 第1環状油路
31b 第2環状油路
31e 切欠き
32 ボディ
100、100’ 油圧供給システムの系統切換機構
200 高圧回路
300 低圧回路
DESCRIPTION OF SYMBOLS 1 High pressure line 2 Low pressure line 3 High pressure branch line 4 Low pressure branch line 5 Low pressure junction line 6 Return line 7 One-way valve 8 Low pressure relief valve 9 Reservoir 10 High pressure pump 20 Low pressure pump 30 PH regulator valve 31 Valve body 31a First annular oil passage 31b Second annular oil passage 31e Notch 32 Body 100, 100 ′ System switching mechanism 200 of hydraulic pressure supply system High pressure circuit 300 Low pressure circuit

Claims (8)

変速機を駆動する油圧機構から成る高圧回路に作動油を供給する第1吐出ポートと、前記第1吐出ポートと前記高圧回路を連結する高圧ラインと、必要に応じ前記高圧回路または前記高圧回路より油圧の低い低圧回路に作動油を供給する第2吐出ポートと、前記第2吐出ポートから延び一方向弁を介して前記高圧ラインに連結する低圧ラインと、前記高圧ラインから分岐し前記低圧回路側に連結する高圧分岐ラインと、前記低圧ラインから分岐し前記低圧回路側に連結する低圧分岐ラインとを備え、作動油を前記高圧回路又は前記低圧回路に供給する油圧供給システムにおいて、
前記高圧分岐ラインと前記低圧分岐ラインは共通のスプール弁に並行に設けられていると共に、前記スプール弁の弁体に対し前記高圧回路の圧力を決めるパイロット圧ならびに前記高圧ラインからフィードバックされて来るライン油圧がそれぞれ作用し、前記弁体における前記パイロット圧と前記ライン油圧の力のつり合いによって、先ず前記低圧分岐ラインのみが閉状態から開状態となり、続いて前記高圧分岐ラインが閉状態から開状態となるように構成されていることを特徴とする油圧供給システムの系統切換機構。
A first discharge port that supplies hydraulic oil to a high-pressure circuit including a hydraulic mechanism that drives the transmission, a high-pressure line that connects the first discharge port and the high-pressure circuit, and the high-pressure circuit or the high-pressure circuit as necessary. A second discharge port for supplying hydraulic oil to a low pressure circuit having a low hydraulic pressure; a low pressure line extending from the second discharge port and connected to the high pressure line via a one-way valve; and branching from the high pressure line to the low pressure circuit side A high pressure branch line connected to the low pressure line and a low pressure branch line connected to the low pressure circuit side and supplying hydraulic oil to the high pressure circuit or the low pressure circuit,
The high-pressure branch line and the low-pressure branch line are provided in parallel to a common spool valve, and a pilot pressure that determines the pressure of the high-pressure circuit with respect to the valve body of the spool valve and a line fed back from the high-pressure line Each of the hydraulic pressures acts, and due to the balance between the pilot pressure and the line hydraulic force in the valve body, only the low-pressure branch line is changed from the closed state to the open state, and then the high-pressure branch line is changed from the closed state to the open state. It is comprised so that it may become. The system | strain switching mechanism of the hydraulic supply system characterized by the above-mentioned.
前記弁体の外周面には前記低圧分岐ラインを連通させる第1環状油路ならびに前記高圧分岐ラインを連通させる第2環状油路が別個独立に設けられ、且つ、前記スプール弁のボディには前記低圧分岐ラインの上流側が接続される低圧入口ポートならびに前記高圧分岐ラインの上流側が接続される高圧入口ポートが別個独立に設けられ、前記弁体に加わる前記パイロット圧と前記ライン油圧の力のつり合いによって、先ず前記第1環状油路と前記低圧入口ポートのみが非重複状態から重複状態となり、続いて前記第2環状油路と前記高圧入口ポートが非重複状態から重複状態となるように構成されていることを特徴とする請求項1に記載の油圧供給システムの系統切換機構。   A first annular oil passage that communicates with the low-pressure branch line and a second annular oil passage that communicates with the high-pressure branch line are separately provided on the outer peripheral surface of the valve body, and the body of the spool valve A low-pressure inlet port to which the upstream side of the low-pressure branch line is connected and a high-pressure inlet port to which the upstream side of the high-pressure branch line is connected are provided independently, and by the balance between the pilot pressure applied to the valve body and the line hydraulic force First, only the first annular oil passage and the low pressure inlet port are changed from the non-overlapping state to the overlapping state, and then the second annular oil passage and the high pressure inlet port are changed from the non-overlapping state to the overlapping state. The system switching mechanism of the hydraulic pressure supply system according to claim 1, wherein 前記第1環状油路又は前記第2環状油路の開口縁部には切欠きが設けられている請求項2に記載の油圧供給システムの系統切換機構。   The system switching mechanism of the hydraulic pressure supply system according to claim 2, wherein a notch is provided in an opening edge portion of the first annular oil passage or the second annular oil passage. 前記第2環状油路の開口縁部には切欠きが設けられ、前記弁体に加わる前記パイロット圧と前記ライン油圧の力のつり合いによって、先ず前記第1環状油路と前記低圧入口ポートのみが非重複状態から重複状態となり、続いて前記第2環状油路の前記切欠きと前記高圧入口ポートが非重複状態から重複状態となるように構成されていることを特徴とする請求項2に記載の油圧供給システムの系統切換機構。   A notch is provided at the opening edge of the second annular oil passage, and only the first annular oil passage and the low-pressure inlet port are first brought about by the balance between the pilot pressure applied to the valve body and the line oil pressure. The non-overlapping state is changed to the overlapping state, and the notch and the high-pressure inlet port of the second annular oil passage are subsequently changed from the non-overlapping state to the overlapping state. System switching mechanism of the hydraulic supply system. 前記変速機は無段変速可能なプーリー機構から成ると共に、前記プーリー機構に油圧を供給する各調圧弁を駆動する各油圧の内で何れか高い方の油圧が前記パイロット圧として前記高圧回路から出力され、前記弁体に作用することを特徴とする請求項1に記載の油圧供給システムの系統切換機構。   The transmission comprises a continuously variable transmission pulley mechanism, and the higher hydraulic pressure among the hydraulic pressures that drive the pressure regulating valves that supply hydraulic pressure to the pulley mechanism is output from the high pressure circuit as the pilot pressure. The system switching mechanism of the hydraulic pressure supply system according to claim 1, wherein the system switching mechanism acts on the valve body. 前記低圧回路は潤滑回路、熱交換器やオイルフィルターなどの、前記高圧回路より低い圧力でその用を満足する供給先から成ることを特徴とする請求項1に記載の油圧供給システムの系統切換機構。   2. The system switching mechanism of a hydraulic pressure supply system according to claim 1, wherein the low-pressure circuit is a lubrication circuit, a heat exchanger, an oil filter, or the like, which is a supply destination that satisfies its use at a lower pressure than the high-pressure circuit. . 前記高圧分岐ライン及び前記低圧分岐ラインはリリーフ弁を介して前記第1吐出ポートを有する高圧ポンプ並びに前記第2吐出ポートを有する低圧ポンプの各吸込口側に連結する帰還ラインあるいはリザーバに連結していることを特徴とする請求項1から6の何れかに記載の油圧供給システムの系統切換機構。   The high-pressure branch line and the low-pressure branch line are connected via a relief valve to a feedback line or a reservoir connected to each suction port side of the high-pressure pump having the first discharge port and the low-pressure pump having the second discharge port. The system switching mechanism of a hydraulic pressure supply system according to any one of claims 1 to 6, wherein 前記高圧ポンプ及び前記低圧ポンプの代わりに、複数の互いに連通しない独立な吐出ポートを備えた単一のポンプを用いて、一の吐出ポートを前記高圧ラインへ、他の吐出ポートを前記低圧ラインへそれぞれ接続することを特徴とする請求項7に記載の油圧供給システムの系統切換機構。   Instead of the high-pressure pump and the low-pressure pump, a single pump having a plurality of independent non-communicating discharge ports is used, one discharge port to the high-pressure line, and the other discharge port to the low-pressure line. The system switching mechanism of the hydraulic pressure supply system according to claim 7, wherein each is connected.
JP2014172273A 2014-08-27 2014-08-27 Hydraulic supply system changeover mechanism Pending JP2016044806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172273A JP2016044806A (en) 2014-08-27 2014-08-27 Hydraulic supply system changeover mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172273A JP2016044806A (en) 2014-08-27 2014-08-27 Hydraulic supply system changeover mechanism

Publications (1)

Publication Number Publication Date
JP2016044806A true JP2016044806A (en) 2016-04-04

Family

ID=55635551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172273A Pending JP2016044806A (en) 2014-08-27 2014-08-27 Hydraulic supply system changeover mechanism

Country Status (1)

Country Link
JP (1) JP2016044806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939786A (en) * 2017-12-22 2018-04-20 重庆青山工业有限责任公司 Double-clutch automatic gearbox hydraulic oil supply system and motor vehicle
CN110388452A (en) * 2019-07-26 2019-10-29 奇瑞汽车股份有限公司 Hydraulic feed system, control method and automobile
CN112240417A (en) * 2019-12-16 2021-01-19 新昌县善力机械科技有限公司 Hydraulic control method for high-pressure oil pipe
CN112984383A (en) * 2019-12-16 2021-06-18 中国石油天然气股份有限公司 Oil transportation method and system for finished oil pipeline

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939786A (en) * 2017-12-22 2018-04-20 重庆青山工业有限责任公司 Double-clutch automatic gearbox hydraulic oil supply system and motor vehicle
CN110388452A (en) * 2019-07-26 2019-10-29 奇瑞汽车股份有限公司 Hydraulic feed system, control method and automobile
CN112240417A (en) * 2019-12-16 2021-01-19 新昌县善力机械科技有限公司 Hydraulic control method for high-pressure oil pipe
CN112984383A (en) * 2019-12-16 2021-06-18 中国石油天然气股份有限公司 Oil transportation method and system for finished oil pipeline
CN112984383B (en) * 2019-12-16 2022-05-10 中国石油天然气股份有限公司 Oil transportation method and system for finished oil pipeline

Similar Documents

Publication Publication Date Title
JP6180356B2 (en) Hydraulic control device
KR100853133B1 (en) Hydraulic control unit
JP6207368B2 (en) Hydraulic supply system for automatic transmission for vehicles
JP5053970B2 (en) Hydraulic pump device for continuously variable transmission
WO2012060117A1 (en) Oil pressure control device provided with accumulator
US9829091B2 (en) Continuously variable transmission with a hydraulic control system
US10662977B2 (en) Vehicle hydraulic system
JP2016044806A (en) Hydraulic supply system changeover mechanism
US20180135743A1 (en) Multi-pressure hydraulic control system for a continuously variable automatic transmission
JP2005221047A (en) Oil pressure control device for continuously variable transmission
JPS6188063A (en) Hydraulic control device for belt stepless speed change gear
JP6405079B2 (en) Hydraulic control circuit
NL1039925C2 (en) SYSTEM FOR ARRANGING A CONTINUALLY VARIABLE TRANSMISSION.
JP2017227271A (en) Oil pressure supply device and pressure regulating valve
JP7091271B2 (en) Hydraulic control device
JP2010078088A (en) Hydraulic pump device for continuously variable transmission
JP2018200071A (en) Hydraulic controller
JP2016145635A (en) Vehicular driving device
JP2017155925A (en) Pump drive power adjustment mechanism of hydraulic circuit
JP2017223344A (en) Hydraulic circuit for hydraulic equipment
JP2017190851A (en) Hydraulic circuit for hydraulic equipment
JP5172569B2 (en) Hydraulic pump device for continuously variable transmission
JP2017207116A (en) Hydraulic circuit for hydraulic equipment
KR101448770B1 (en) Oil pressure supply system of continuous variable transmission for vehicle
JP2011052797A (en) Hydraulic controller for belt type continuously variable transmission

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161114